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Preface

At the beginning of each semester, I always tell my students the story of my undergraduate 

Mechanics of Materials experience. While I somehow managed to make an A in the course, 

Mechanics of Materials was one of the most confusing courses in my undergraduate cur-

riculum. As I continued my studies, I found that I really didn’t understand the course concepts 

well, and this weakness hindered my understanding of subsequent design courses. It wasn’t 

until I began my career as an engineer that I began to relate the Mechanics of Materials 

concepts to specifi c design situations. Once I made that real-world connection, I understood 

the design procedures associated with my discipline more completely and I developed 

confi dence as a designer. My educational and work-related experiences convinced me of 

the central importance of the Mechanics of Materials course as the foundation for advanced 

design courses and engineering practice.

ix

As I gained experience during my early teaching career, it occurred to me that I was able to 

understand and explain the Mechanics of Materials concepts because I relied upon a set of 

mental images that facilitated my understanding of the subject. Years later, during a forma-

tive assessment of the MecMovies software, Dr. Andrew Dillon, Dean of the School of 

Information at the University of Texas at Austin, succinctly expressed the role of mental 

imagery in the following way: “A defi ning characteristic of an expert is that an expert has 

a strong mental image of his or her area of expertise while a novice does not.” Based on this 

insight, it seemed logical that one of the instructor’s primary objectives should be to teach 

to the mind’s eye—conveying and cultivating relevant mental images that inform and guide 

students in the study of Mechanics of Materials. The illustrations as well as the MecMovies 

software integrated in this book have been developed with this objective in mind.

The Education of the Mind’s Eye

Computer-based instruction often enhances the student’s understanding of Mechanics of 

Materials. With three-dimensional modeling and rendering software, it is possible to create 

photo-realistic images of various components and to show these components from various 

viewpoints. In addition, animation software allows objects or processes to be shown in 

 motion. By combining these two capabilities, a fuller description of a physical object can 

be presented, which can facilitate the mental visualization so integral to understanding and 

solving engineering problems.

MecMovies Instructional Software
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x
PREFACE Animation also offers a new generation of computer-based learning tools. The tradi-

tional instructional means used to teach Mechanics of Materials—example problems—can 

be greatly enhanced through animation by emphasizing and illustrating desired problem-

solving processes in a more memorable and engaging way. Animation can be used to create 

interactive tools that focus on specifi c skills students need to become profi cient problem-

solvers. These computer-based tools can provide not only the correct solution, but also a 

detailed visual and verbal explanation of the process needed to arrive at the solution. The 

feedback provided by the software can lessen some of the anxiety typically associated with 

traditional homework assignments, while also enabling learners to build their competence 

and confi dence at a pace that is right for them.

This book integrates computer-based instruction into the traditional textbook format 

with the addition of the MecMovies instructional software. At present, MecMovies con-

sists of over 160 animated “movies” on topics spanning the breadth of the Mechanics of 

Materials course. Most of these animations present detailed example problems, and 

about 80 movies are interactive, providing learners with the opportunity to apply con-

cepts and receive immediate feedback that includes key considerations, calculation 

 details, and intermediate results. MecMovies was a winner of the 2004 Premier Award 

for Excellence in Engineering Education Courseware presented by NEEDS (the National 

Engineering Education Delivery System, a digital library of learning resources for 

 engineering education).

In 26 years of teaching the fundamental topics of strength, deformation, and stability, I 

have encountered successes and frustrations, and I have learned from both. This book has 

grown out of a passion for clear communication between instructor and student and a drive 

for documented effectiveness in conveying this foundational material to the differing learn-

ers in my classes. With this book and the MecMovies instructional software that is inte-

grated throughout, my desire is to present and develop the theory and practice of  Mechanics 

of Materials in a straightforward plain-speaking manner that addresses the needs of varied 

learners. The text and software strive to be “student-friendly” without sacrifi cing rigor or 

depth in the presentation of topics.

Communicating visually: I invite you to thumb through this book. My hope is that you 

will fi nd a refreshing clarity in both the text and the illustrations. As both the author and 

the illustrator, I’ve tried to produce visual content that will help illuminate the subject 

matter for the mind’s eye of the reader. The illustrations use color, shading, perspective, 

texture, and dimension to convey concepts clearly, while aiming to place these concepts 

in the context of real-world components and objects. These illustrations have been pre-

pared by an engineer to be used by engineers to train future engineers.

Problem-solving schema: Educational research suggests that transfer of learning is 

more effective when students are able to develop problem-solving schema, which Webster’s 

Dictionary defi nes as “a mental codifi cation that includes an organized way of 

responding to a complex situation.” In other words, understanding and profi ciency are 

enhanced if students are encouraged to build a structured framework for mentally or-

ganizing concepts and their method of application. This book and software include a 

number of features aimed at helping students to organize and categorize the Mechanics 

of Materials concepts and problem-solving procedures. For instance, experience has 

shown that statically indeterminate axial and torsion structures are among the most 

Hallmarks of the Textbook
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PREFACEdiffi cult topics for students. To help organize the solution process for these topics, a 

fi ve-step method is utilized. This approach provides students with a problem-solving 

method that systematically transforms a potentially confusing situation into an easily 

understandable calculation procedure. Summary tables are also presented in these 

 topics to help students place common statically indeterminate structures into categories 

based on the specifi c geometry of the structure. Another topic that students typically 

fi nd confusing is the use of the superposition method to determine beam defl ections. 

This topic is introduced in the text through enumeration of eight simple skills com-

monly used in solving problems of this type. This organizational scheme allows 

 students to develop profi ciency incrementally before considering more complex 

 confi gurations.

Style and clarity of examples: To a great extent, the Mechanics of Materials course is 

taught through examples, and consequently, this book places great emphasis on the 

presentation and quality of example problems. The commentary and the illustrations 

associated with example problems are particularly important to the learner. The com-

mentary explains why various steps are taken and describes the rationale for each step 

in the solution process, while the illustrations help build the mental imagery needed to 

transfer the concepts to differing situations. Students have found the step-by-step 

 approach used in MecMovies to be particularly helpful, and a similar style is used in the 

text. Altogether, this book and the MecMovies software present more than 270 fully 

 illustrated example problems that provide both the breadth and the depth required to 

develop competency and confi dence in problem-solving skills. 

Homework philosophy: Since Mechanics of Materials is a problem-solving course, 

much deliberation has gone into the development of homework problems that elucidate 

and reinforce the course concepts. This book includes 1200 homework problems in a 

range of diffi culty suitable for learners at various stages of development. These prob-

lems have been designed with the intent of building the technical foundation and skills 

that will be necessary in subsequent engineering design courses. The problems are in-

tended to be challenging, and at the same time, practical and pertinent to traditional 

engineering practice.

New in the Third Edition

•  Two new sections have been added in Chapter 9 to discuss additional topics related to 

shear stress in beams:

  • 9.9 Shear Stress and Shear Flow in Thin-Walled Members
  • 9.10 Shear Centers of Thin-Walled Open Sections

•  Chapter 17, “Energy Methods,” has been developed to discuss the application of work 

and strain energy principles, virtual work principles, and Castigliano’s Theorem to 

solid mechanics problems.

•  Design equations in Chapter 16 for the critical buckling stress of structural steel 

columns have been updated to conform to the latest provisions of ANSI/AISC 360-10 

Specifi cation for Structural Steel Buildings. 

•  A number of changes have been made to the textbook problems: Of the problems that 

appeared in the second edition, 190 have been revised (16 percent of all the problems 

in the book), and 300 new problems have been added (25 percent). About half of the 

added problems are associated with the new material in Chapters 9 and 17. The other 

150 problems have been added to broaden the variety of problems available for many 

topics.
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Some instructors may have had unsatisfying experiences with instructional software in the 

past. Often, the results have not matched the expectations, and it is understandable that 

instructors may be reluctant to incorporate computer-based instructional content into their 

course. For those instructors, this book can stand completely on its own merits without the 

need for the MecMovies software. Instructors will fi nd that this book can be used to suc-

cessfully teach the time-honored Mechanics of Materials course without making use of the 

MecMovies software in any way. However, the MecMovies software integrated into this 

book is a new and valuable instructional medium that has proven to be both popular and 

effective with Mechanics of Materials students. Naysayers may argue that for many years 

instructional software has been included as supplemental material in textbooks, and it has 

not produced signifi cant changes in student performance. While I cannot disagree with this 

assessment, let me try to persuade you to view MecMovies differently. 

Experience has shown that the manner in which instructional software is integrated 

into a course is just as important as the quality of the software itself. Students have 

many demands on their study time, and in general, they will not invest their time and 

effort in software that they perceive to be peripheral to the course requirements. In other 

words, supplementary software is doomed to failure, regardless of its quality or merit. 

To be effective, instructional software must be integrated into the course assignments 

on a regular and frequent basis. Why would you as an instructor alter your traditional 

teaching routine to integrate computer-based assignments into your course? The answer 

is because the unique capabilities offered by MecMovies can (a) provide individualized 

instruction to your students, (b) enable you to spend more time discussing advanced 

rather than introductory aspects of many topics, and (c) make your teaching efforts 

more effective.

The computer as an instructional medium is well suited for individualized interactive 

learning exercises, particularly for those skills that require repetition to master. MecMovies 

has many interactive exercises, and at a minimum, these features can be utilized by instruc-

tors to (a) ensure that students have the appropriate skills in prerequisite topics such as 

centroids and moments of inertia, (b) develop necessary profi ciency in specifi c problem-

solving skills, and (c) encourage students to stay up to date with lecture topics. Three types 

of interactive features are included in MecMovies:

1.  Concept Checkpoints – This feature is used for rudimentary problems requiring only 

one or two calculations. It is also used to build profi ciency and confi dence in more com- 

plicated problems by subdividing the solution process into a sequence of steps that can 

be mastered sequentially. 

2.  Try One problems – This feature is appended to specifi c example problems. In a Try 

One problem, the student is presented with a problem similar to the example so that he 

or she has the opportunity to immediately apply the concepts and problem-solving pro-

cedures illustrated in the example. 

3.  Games – Games are used to develop profi ciency in specifi c skills that require repetition 

to master. For example, games are used to teach centroids, moments of inertia, shear-

force and bending-moment diagrams, and Mohr’s circle.

With each of these software features, numeric values in the problem statement are dynamically 

generated for each student, the student’s answers are evaluated, and a summary report suitable 

for printing is generated. This enables daily assignments to be collected without imposing 
a grading burden on the instructor.

Incorporating MecMovies into 
Course Assignments

xii
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xiii
PREFACEMany of the interactive MecMovies exercises assume no prior knowledge of the topic. 

Consequently, an instructor can require a MecMovies feature to be completed before giving 
a lecture on the topic. For example, Coach Mohr’s Circle of Stress guides students step by 

step through the details of constructing Mohr’s circle for plane stress. If students complete 

this exercise before attending the fi rst Mohr’s circle lecture, then the instructor can be con-

fi dent that students will have at least a basic understanding of how to use Mohr’s circle to 

determine principal stresses. The instructor is then free to build upon this basic level of 

understanding to explain additional aspects of Mohr’s circle calculations.

Student response to MecMovies has been excellent. Many students report that they 

prefer studying from MecMovies rather than from the text. Students quickly fi nd that Mec-

Movies does indeed help them understand the course material better and thus score better 

on exams. Furthermore, less quantifi able benefi ts have been observed when MecMovies is 

integrated into the course. Students are able to ask better, more specifi c questions in class 

concerning aspects of theory that they don’t yet fully understand, and students’ attitudes 

about the course overall seem to improve.
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Stress

CHAPTER 1

1

The three fundamental areas of engineering mechanics are statics, dynamics, and mechanics 

of materials. Statics and dynamics are devoted primarily to the study of external forces and 

motions associated with particles and rigid bodies (i.e., idealized objects in which any 

change of size or shape due to forces can be neglected). Mechanics of materials is the study 

of the internal effects caused by external loads acting on real bodies that deform (mean-

ing objects that can stretch, bend, or twist). Why are the internal effects in an object impor-

tant? Engineers are called upon to design and produce a variety of objects and structures 

such as automobiles, airplanes, ships, pipelines, bridges, buildings, tunnels, retaining walls, 

motors, and machines. Regardless of the application, however, a safe and successful design 

must address the following three mechanical concerns:

1.  Strength: Is the object strong enough to withstand the loads that will be applied 

to it? Will it break or fracture? Will it continue to perform properly under repeated 

loadings?

2.  Stiffness: Will the object defl ect or deform so much that it cannot perform its 

 intended function?

3.  Stability: Will the object suddenly bend or buckle out of shape at some elevated load 

so that it can no longer continue to perform its function?

1.1 Introduction

c01Stress.indd Page 1  1/27/12  2:22 PM user-F393c01Stress.indd Page 1  1/27/12  2:22 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



2
STRESS Addressing these concerns requires both an assessment of the intensity of internal forces 

and deformations acting within the body and an understanding of the mechanical charac-

teristics of the material used to make the object.

Mechanics of materials is a basic subject in many engineering fi elds. The course 

focuses on several types of components: bars subjected to axial loads, shafts in torsion, 

beams in bending, and columns in compression. Numerous formulas and rules for design 

found in engineering codes and specifi cations are based on mechanics of materials funda-

mentals associated with these types of components. With a strong foundation in mechanics 

of materials concepts and problem-solving skills, the student is well equipped to continue 

into more advanced engineering design courses.

Equilibrium of the lower portion of the bar is attained by a distribution of internal force that 

develops on the exposed cross section. This distribution of internal force has a resultant F 

that is normal to the exposed surface, is equal in magnitude to P, and has a line of action 

that is collinear with the line of action of P. The intensity of distributed internal force acting 

in the material is referred to as stress.

In this instance, the stress acts on a surface that is perpendicular to the direction of the 

internal force. A stress of this type is called a normal stress, and it is denoted by the Greek 

a
a

P

FIGURE 1.1a Bar with axial 

load P.

a
a

P

F

�avg

FIGURE 1.1b Average stress.

The technique of cutting an object to expose the internal forces acting on a plane 

surface is often referred to as the method of sections. The cutting plane is called the 

section plane. To investigate internal effects, one might simply say something like 

“Cut a section through the bar” to imply the use of the method of sections technique. 

This technique will be used throughout the study of mechanics of materials to inves-

tigate the internal effects caused by external forces acting on a solid body.

In every subject area, there are certain fundamental concepts that assume paramount 

importance for a satisfactory comprehension of the subject matter. In mechanics of 

materials, such a concept is that of stress. In the simplest qualitative terms, stress is the 
intensity of internal force. Force is a vector quantity and as such has both magnitude and 

direction. Intensity implies an area over which the force is distributed. Therefore, stress 

can be defi ned as

 Stress �
Force
Area

 (1.1)

To introduce the concept of a normal stress, consider a rectangular bar subjected 

to an axial force (Figure 1.1a). An axial force is a load that is directed along the lon-

gitudinal axis of the member. Axial forces that tend to elongate a member are termed 

tension forces, and forces that tend to shorten a member are termed compression 
forces. The axial force P in Figure 1.1a is a tension force. To investigate internal ef-

fects, the bar is cut by a transverse plane, such as plane a–a of Figure 1.1a, to expose 

a free-body diagram of the bottom half of the bar (Figure 1.1b). Since this cutting 

plane is perpendicular to the longitudinal axis of the bar, the exposed surface is called 

a cross section.

1.2 Normal Stress Under Axial Loading
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3
NORMAL STRESS UNDER AXIAL 

LOADING
letter � (sigma). To determine the magnitude of the normal stress in the bar, the average 

intensity of internal force on the cross section can be computed as

 avg
F
A

� �  (1.2)

where A is the cross-sectional area of the bar.

Consider now a small area � A on the exposed cross section of the bar, as shown in 

Figure 1.1c, and let �F represent the resultant of the internal forces transmitted in this small 

area. The average intensity of the internal force being transmitted in area �A is obtained by 

dividing �F by �A. If the internal forces transmitted across the section are assumed to be 

uniformly distributed, the area �A can be made smaller and smaller, and in the limit, it will 

approach a point on the exposed surface. The corresponding force �F also becomes smaller 

and smaller. The stress at the point on the cross section to which �A converges is defi ned as

 � �
�
lim
A

�F

�A0

 (1.3)

If the distribution of stress is to be uniform, as in Equation (1.2), the resultant force must 

act through the centroid of the cross-sectional area. For long, slender, axially loaded mem-

bers, such as those found in trusses and similar structures, it is generally assumed that the 

normal stress is uniformly distributed except near the points where external load is applied. 

Stress distributions in axially loaded members are not uniform near holes, grooves, fi llets, 

and other features. These situations will be discussed in later sections on stress concentra-

tions. In this book, it is understood that axial forces are applied at the centroids of the cross 
sections unless specifi cally stated otherwise.

Stress Units

Since the normal stress is computed by dividing the internal force by the cross-sectional 

area, stress has the dimensions of force per unit area. When U.S. Customary units are used, 

stress is commonly expressed in pounds per square inch (psi) or kips per square inch (ksi) 

where 1 kip � 1,000 lb. When the International System of Units, universally abbreviated 

SI (from the French Le Système International d’Unités), is used, stress is expressed in pas-

cals (Pa) and computed as force in newtons (N) divided by area in square meters (m2). For 

typical engineering applications, the pascal is a very small unit and, therefore, stress is 

more commonly expressed in megapascals (MPa) where 1 MPa � 1,000,000 Pa. A conve-

nient alternative when calculating stress in MPa is to express force in newtons and area in 

square millimeters (mm2). Therefore,

 1 MPa 1,000,000 N/m 1N/mm2 2� �  (1.4)

Signifi cant Digits

In this book, fi nal numerical answers are usually presented with three signifi cant digits 

when a number begins with the digits 2 through 9, and with four signifi cant digits when the 

The sign convention for normal stresses is defi ned as follows:

• A positive sign indicates a tension normal stress, and

• a negative sign denotes a compression normal stress.

FIGURE 1.1c Stress at a point.

a
a

P

�F

�A
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4
STRESS number begins with the digit 1. Intermediate values are generally recorded with additional 

digits to minimize the loss of numerical accuracy due to rounding.

In developing stress concepts through example problems and exercises, it is convenient 

to use the notion of a rigid element. Depending on how it is supported, a rigid element 

may move vertically or horizontally, or it may rotate about a support location. The rigid 

element is assumed to be infi nitely strong.

In many instances, the illustrations in this book attempt to show objects in realistic 

three-dimensional perspective. Wherever possible, an effort has been made to show 

free-body diagrams within the actual context of the object or structure. In these illustra-

tions, the free-body diagram is shown in full color, while other portions of the object or 

structure are faded out.

EXAMPLE 1.1

A solid 0.5-in.-diameter steel hanger rod is used to hold up one end of a walkway 

support beam. The force carried by the rod is 5,000 lb. Determine the normal stress 

in the rod. (Disregard the weight of the rod.)

SOLUTION
A free-body diagram of the rod is shown. The solid rod has a 

circular cross section, and its area is computed as

A d
4 4

(0.5 in.) 0.19635 in.2 2 2� �
� � �

where d � rod diameter.

Since the force in the rod is 5,000 lb, the normal stress in 

the rod can be computed as

�
F
A

5,000 lb

0.19635 in.
25,464.73135 psi

2
� � �

Although this answer is numerically correct, it would not be 

proper to report a stress of 25,464.73135 psi as the fi nal answer. 

A number with this many digits implies an accuracy that we 

have no right to claim. In this instance, both the rod diameter and the force are given with 

only one signifi cant digit of accuracy; however, the stress value we have computed here 

has 10 signifi cant digits.

In engineering, it is customary to round the fi nal answers to three signifi cant digits 

(if the fi rst digit is not 1) or four signifi cant digits (if the fi rst digit is 1). Using this guide-

line, the normal stress in the rod would be reported as

 25,500 psi� �  Ans.

Hanger
rod

Walkway
support
beam

5,000 lb

d

�

Free-body diagram 
of hanger rod.

c01Stress.indd Page 4  1/27/12  2:22 PM user-F393c01Stress.indd Page 4  1/27/12  2:22 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



EXAMPLE 1.2

Rigid bar ABC is supported by a pin at A and axial member (1), 

which has a cross-sectional area of 540 mm2. The weight of 

rigid bar ABC can be neglected. (Note: 1 kN � 1,000 N.)

(a)  Determine the normal stress in member (1) if a load of 

P � 8 kN is applied at C.

(b)  If the maximum normal stress in member (1) must be 

 limited to 50 MPa, what is the maximum load magnitude 

P that may be applied to the rigid bar at C?

Plan the Solution
(Part a)
Before the normal stress in member (1) can be computed, 

its axial force must be determined. To compute this force, 

consider a free-body diagram of rigid bar ABC and write a 

moment equilibrium equation about pin A.

SOLUTION
(Part a)
For rigid bar ABC, write the equilibrium equation for the sum 

of moments about pin A. Let F1 � internal force in member 

(1) and assume that F1 is a tension force. Positive moments in 

the equilibrium equation are defi ned by the right-hand rule.

ΣMA (8 kN)(2.2 m) (1.6 m) 01� � F� �

� F1 11 kN�

The normal stress in member (1) can be computed as

 �1 2

(11 kN)(1,000 N/kN)

540 mm
20.370 N/mm

F
A

1

1

2 20.4 MPa� � � �  Ans.

(Note the use of the conversion factor 1 MPa � 1 N/mm2.)

Plan the Solution
(Part b)
Using the stress given, compute the maximum force that member (1) may safely carry. 

Once this force is computed, use the moment equilibrium equation to determine the load P.

SOLUTION
(Part b)
Determine the maximum force allowed for member (1):

�
F
A

�

� 111 (50 MPa) (540 mm ) 50 N/mm )(540 mm� 2 )) 27,000 27 kN� � � � �N22 (AF

Compute the maximum allowable load P from the moment equilibrium equation:

Σ A (2.2 m) (1.6 m)(27 kN) 0� � � �PM
 � P 19.64 kN�  Ans.

1.6 m

2.2 m

A B C

P

(1)

5

1.6 m

2.2 m

A B C

P

(1)

Ay

Ax

F1

Free-body diagram of rigid bar ABC.
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EXAMPLE 1.3

A 50-mm-wide steel bar has axial loads 

applied at points B, C, and D. If the normal 

stress magnitude in the bar must not exceed 

60 MPa, determine the minimum thickness 

that can be used for the bar.

Plan the Solution
Draw free-body diagrams that expose the internal force in each of the three segments. 

Determine the magnitude and direction of the internal axial force in each segment required 

to satisfy equilibrium. Use the largest internal axial force magnitude and the allowable 

normal stress to compute the minimum cross-sectional area required for the bar. Divide the 

cross-sectional area by the 50-mm bar width to compute the minimum bar thickness.

SOLUTION
Begin by drawing a free-body diagram (FBD) that exposes the internal force in segment (3). 

Since the reaction force at A has not been calculated, it will be easier to cut through the bar 

in segment (3) and consider the portion of the bar starting at the cut surface and extending 

to the free end of the bar at D. An unknown internal axial force F3 exists in segment (3), and 

it is helpful to establish a consistent convention for problems of this type.

Based on a FBD cut through axial segment 

(3), the equilibrium equation is

Σ x 3 25 kN 0� � � �FF

�F3 25 kN 25 kN (T)

Repeat this procedure for a FBD exposing the 

internal force in segment (2),

ΣF Fx � � � � �2 40 kN 25 kN 0

� �F2 15 kN 15 kN (C),�

and for a FBD exposing the internal force in 

segment (1),

ΣF Fx � � � � � �1 80 kN 40 kN 25 kN 0

F1 65 kN (T)

It is always a good practice to construct a 

simple plot that graphically summarizes the 

internal axial forces along the bar. The axial-

force diagram on the left shows internal tension 

forces above the axis and internal compression 

forces below the axis.

The required cross-sectional area will be 

computed on the basis of the largest internal force 

(1) (2) (3)

x

D 25 kN
C40 kNB 80 kNA

50 mm

Problem-Solving Tip: When cutting a FBD through an axial member, assume that 

the internal force is tension and draw the force arrow directed away from the cut sur-
face. If the computed internal force value turns out to be a positive number, then the 

assumption of tension is confi rmed. If the computed value turns out to be a negative 

number, then the internal force is actually compression.

(1) (2) (3)

x

D 25 kN
C40 kNB 80 kNA

65 kN

25 kN

15 kN

Tension

Compression

(1) (2) (3)

x

D 25 kN
F3

(1) (2) (3)

x

D 25 kN
C40 kN

F2

(1) (2) (3)

x

D 25 kN
C40 kNB 80 kN

F1

Axial-force diagram showing internal forces in each bar segment.
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magnitude (i.e., absolute value). The normal stress in the bar must be limited to 60 MPa. 

To facilitate the calculation, the conversion 1 MPa � 1 N/mm2 is used; therefore, 60 MPa � 
60 N/mm2.

 �
�

� � �
F

A
A

F (65 kN)(1,000 N/kN)

60 N/mm
1,083.333

2
mm2 

Since the fl at steel bar is 50 mm wide, the minimum thickness that can be used for the bar is

 tmin

21,083,333 mm

50 mm
21.667 mm 21.7 mm� � �  Ans.

In practice, the bar thickness would be rounded up to the next larger standard size.

Review
Recheck your calculations, paying particular attention to the units. Always show the units 

in your calculations because this is an easy and fast way to discover mistakes. Are the an-

swers reasonable? If the bar thickness had been 0.0217 mm instead of 21.7 mm, would this 

have been a reasonable solution based on your common sense and intuition?

Two axial members are used to support a load P applied at joint B.

•  Member (1) has a cross-sectional area of A1 � 3,080 mm2 and an allowable 

normal stress of 180 MPa.

•  Member (2) has a cross-sectional area of A2 � 4,650 mm2 and an 

allowable normal stress of 75 MPa.

Determine the maximum load P that may be supported without exceeding either 

allowable normal stress.

 MecMovies Example M1.4 

Loads applied to a structure or a machine are generally transmitted to individual members 

through connections that use rivets, bolts, pins, nails, or welds. In all of these connections, 

one of the most signifi cant stresses induced is a shear stress. In the previous section, 

normal stress was defi ned as the intensity of internal force acting on a surface perpendicu-
lar to the direction of the internal force. Shear stress is also the intensity of internal force, 

but shear stress acts on a surface that is parallel to the internal force.

To investigate shear stress, consider a simple connection in which the force carried by 

an axial member is transmitted to a support by means of a solid circular pin (Figure 1.2a). 

The load is transmitted from the axial member to the support by shear force (i.e., a force 

that tends to cut) distributed on a transverse cross section of the pin. A free-body diagram 

1.3 Direct Shear Stress

P

FIGURE 1.2a Single shear pin 

connection.

7
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8
STRESS of the axial member with the pin is shown in Figure 1.2b. In this diagram, a resultant shear 

force V has replaced the distribution of shear force on the transverse cross section of the 

pin. Equilibrium requires that the resultant shear force V equal the applied load P. Since 

only one cross section of the pin transmits load between the axial member and the support, 

the pin is said to be in single shear.

From the defi nition of stress given by Equation (1.1), an average shear stress on the 

transverse cross section of the pin can be computed as

 �avg �
V

AV

 (1.5)

where AV � area transmitting shear stress. The Greek letter � (tau) is commonly used to denote 

shear stress. A sign convention for shear stress will be presented in a later section of the book.

The stress at a point on the transverse cross section of the pin can be obtained by 

using the same type of limit process that was used to obtain Equation (1.3) for the normal 

stress at a point. Thus,

 � �
�

lim
A VV

V
A0

�

�
 (1.6)

It will be shown later in this text that the shear stresses cannot be uniformly distributed over 

the transverse cross section of a pin or bolt and that the maximum shear stress on the trans-

verse cross section may be much larger than the average shear stress obtained by using 

Equation (1.5). The design of simple connections, however, is usually based on average 

stress considerations, and this procedure will be followed in this book.

The key to determining shear stress in connections is to visualize the failure surface or 

surfaces that will be created if the connectors (i.e., pins, bolts, nails, or welds) actually break 

(i.e., fracture). The shear area AV that transmits shear force is the area exposed when the con-

nector fractures. Two common types of shear failure surfaces for pinned or bolted connec-

tions are shown in Figures 1.3 and 1.4. Laboratory specimens that have failed on a single shear 

P

V

FIGURE 1.2b Free-body 

diagram showing shear force 

transmitted by pin.

MecMovies 1.7 and 1.8 
present animated illustrations of 

single and double shear bolted 

connections.

MecMovies 1.9 presents an 

animated illustration of a shear 

key connection between a gear 

and a shaft.

FIGURE 1.3 Single shear failure in pin specimens.
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9
DIRECT SHEAR STRESS

FIGURE 1.4 Double shear failure in a pin specimen.

plane are shown in Figure 1.3. Similarly, a pin that has failed on two parallel shear planes is 

shown in Figure 1.4.

Shackle

Pin

P = 28 kN
P = 28 kN

(1)
(2)

P = 28 kN

V

V

Shear forces V act on
two surfaces of the pin.

EXAMPLE 1.4

Chain members (1) and (2) are connected by a shackle and pin. If the 

axial force in the chains is P � 28 kN and the allowable shear stress 

in the pin is �allow � 90 MPa, determine the minimum acceptable 

diameter d for the pin.

Plan the Solution
To solve the problem, fi rst visualize the surfaces that would be revealed if the pin frac-

tured due to the applied load P. Shear stress will be developed in the pin on these sur-

faces, which will occur at the two interfaces (i.e., common boundaries) between the pin 

and the shackle. The shear area needed to resist the shear force acting on each of these 

surfaces must be found, and from this area the minimum pin diameter can be calculated.

SOLUTION
Draw a free-body diagram (FBD) of the pin, which connects chain (2) to the shackle. 

Two shear forces V will resist the applied load of P � 28 kN. The shear force V acting 

on each surface must equal one-half of the applied load P; therefore, V � 14 kN.

Next, the area of each surface is simply the cross-sectional area of the pin. The 

 average shear stress acting on each of the pin failure surfaces is, therefore, the shear 

force V divided by the cross-sectional area of the pin. Since the average shear stress must 

be limited to 90 MPa, the minimum cross-sectional area required to satisfy the allowable 

shear stress requirement can be computed as

� �
V

Apin

  � � �A
V

pin
allow

2

( kN)(1,000 N/kN)

90 N/mm�

14
155 55. 66 mm2

The minimum pin diameter required for use in the shackle can be determined from the 

required cross-sectional area:

    A dpin pin
2 2mm� �

�

4
155 556.    �d dpin pinmm say, mm14 07 15.  Ans.

In this connection, two cross sections of the pin are subjected to shear forces V; conse-

quently, the pin is said to be in double shear.

Free-body diagram of pin.
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A pin at C and a round aluminum rod at B support the rigid bar BCD. 

If the allowable pin shear stress is 50 MPa, what is the minimum 

diameter required for the pin at C?

 MecMovies Example M1.5MM

EXAMPLE 1.5

A belt pulley used to drive a device is attached to a 30-mm-diameter shaft 

with a square shear key. The belt tensions are 1,500 N and 600 N, as 

shown. The shear key dimensions are 6 mm by 6 mm by 25 mm long. 

Determine the shear stress produced in the shear key.

Plan the Solution
A shear key is a common component used to connect pulleys, chain 

sprockets, and gears to solid circular shafts. A rectangular slot is cut in the 

shaft, and a matching notch of the same width is cut in the pulley. After the 

slot and the notch are aligned, a square metal piece is inserted in the open-

ing. This metal piece is called a shear key; it forces the shaft and the pulley 

to rotate together.

Before beginning the calculations, try to visualize the failure surface 

in the shear key. Since the belt tensions are unequal, a moment is created 

about the center of the shaft that causes the shaft and pulley to rotate. This 

type of moment is called a torque. If the torque T created by the unequal 

belt tensions is too large, the shear key will break at the interface between 

the shaft and the pulley, allowing the pulley to spin freely on the shaft. 

This failure surface is the plane at which shear stress is created in the 

shear key.

From the belt tensions and the pulley diameter, determine the 

torque T exerted on the shaft by the pulley. From a free-body diagram 

(FBD) of the pulley, determine the force that must be supplied by the shear 

key to satisfy equilibrium. Once the force in the shear key is known, the 

shear stress in the key can be computed by using the shear key dimensions.

SOLUTION
Consider a FBD of the pulley. This FBD includes the belt tensions, but it 

specifi cally excludes the shaft. The FBD cuts through the shear key at the 

interface between the pulley and the shaft. We will assume that there could 

be internal force acting on the exposed surface of the shear key. This force 

will be denoted as shear force V. The distance from V to the center O of 

the shaft is equal to the radius of the shaft. Since the shaft diameter is 

30 mm, the distance from O to shear force V is 15 mm. The magnitude of 

shear force V can be found from a moment equilibrium equation about 

30 mm

120 mm

600 N

1,500 N

Shear key

1,500 N

600 N

O

If T is too large, 
the shear key will

break at the interface 
between the shaft and 
the pulley, as shown.

T

Visualize failure surface in shear key.

H 15 mm
120 mm

600 N

1,500 N

O

V

Free-body diagram of pulley.
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point O, which is the center of rotation for both the pulley and the 

shaft. In this equation, positive moments are defi ned by the right-

hand rule:

ΣMO � (1,500 N) (60 mm) � (600 N) (60 mm) � (15 mm)V � 0

V � 3,600 N

For the pulley to be in equilibrium, a shear force of V � 3,600 N must be 

supplied by the shear key.

An enlarged view of the shear key is shown on the right. The torque 

created by the belt tensions exerts a force of 3,600 N on the shear key. For 

equilibrium, a force equal in magnitude, but opposite in direction, must be exerted on the 

key by the shaft. This pair of forces tends to cut the key, producing a shear stress. The 

shear stress acts on the plane highlighted in red.

An internal force of V � 3,600 N must exist on an internal plane of the shear key if the 

pulley is to be in equilibrium. The area of this plane surface is the product of the shear key 

width and length:

AV � (6 mm)(25 mm) � 150 mm2
 

The shear stress produced in the shear key can now be computed:

 

�
V
AV

3,600 N

mm
N/mm MPa

2
2

150
2 24.0� � � �4.0

 

Ans.

6 mm

25 mm

The pulley exerts 
a force of 3,600 N 

on the key.

The shaft exerts a 
3,600 N reaction 
force on the key.

Shear stress is created on the 
plane at the interface between 

the pulley and the shaft.

Enlarged view of shear key.

A torque of T � 10 kN-m is transmitted between two fl anged 

shafts by means of four 22-mm-diameter bolts. Determine the 

average shear stress in each bolt if the diameter of the bolt 

circle is 250 mm. (Disregard friction between the fl anges.)

 MecMovies Example M1.6 

Another common type of shear loading is termed punching shear. Examples of this 

type of loading include the action of a punch in forming rivet holes in a metal plate, the 

tendency of building columns to punch through footings, and the tendency of a tensile 

axial load on a bolt to pull the shank of the bolt through the head. Under a punching shear 

load, the signifi cant stress is the average shear stress on the surface described by the 

perimeter of the punching member and the thickness of the punched member. Punching 

shear is illustrated by the three composite wood specimens shown in Figure 1.5. The 

central hole in each specimen is a pilot hole used to guide the punch. The specimen on 

the left shows the surface initiated at the outset of the shear failure. The center specimen 

reveals the failure surface after the punch is driven partially through the block. The spec-

imen on the right shows the block after the punch has been driven completely through 

the block.

MecMovies 1.10 presents an 

animated illustration of punching 

shear.

11
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12
STRESS

FIGURE 1.5 Punching shear failure in composite wood block specimens.

EXAMPLE 1.6

A punch for making holes in steel plates is shown. A downward punching force of 

32 kips is required to punch a 0.75-in.-diameter hole in a steel plate that is 0.25 in. 

thick. Determine the average shear stress in the steel plate at the instant when the cir-

cular slug is torn away from the steel plate.

Plan the Solution
Visualize the surface that is revealed when the slug is removed from the plate. Compute 

the shear stress from the applied punching force and the area of the exposed surface.

SOLUTION
The portion of the steel plate removed to create the hole is called a slug. The area sub-

jected to shear stress occurs around the perimeter of the slug. Use the slug diameter d and 

the plate thickness t to compute the shear area AV:

A dtV ( (0 75 0 25 0 58905. . .in.) in.) in.2� �� � �

The average shear stress � is computed from the punching force P � 32 kips and the shear 

area:

 

P 32

0 58905
54 3

2

kips

in.
ksi

.
.� � � �

AV  
Ans.

Punch

Steel plate
0.25 in. thick

Slug

32 kips

0.75 in.

0.25 in.

Shear stress acts on the
surface of the perimeter.

A third type of stress, bearing stress, is actually a special category of normal stress. Bearing 

stresses are compressive normal stresses that occur on the surface of contact between two sepa-
rate interacting members. This type of normal stress is defi ned in the same manner as normal and 

shear stresses (i.e., force per unit area); therefore, the average bearing stress �b is expressed as

 �b
b

F
A

�  
(1.7)

where Ab � area of contact between the two components.

1.4 Bearing Stress
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EXAMPLE 1.7

A steel pipe column (6.5-in. outside diameter; 0.25-in. wall thickness) 

supports a load of 11 kips. The steel pipe rests on a square steel base 

plate, which in turn rests on a concrete slab.

(a)  Determine the bearing stress between the steel pipe and the steel 

plate.

(b)  If the bearing stress of the steel plate on the concrete slab must 

be limited to 90 psi, what is the minimum allowable plate 

dimension a?

Plan the Solution
To compute bearing stress, the area of contact between two objects 

must be determined.

SOLUTION
(a)  The cross-sectional area of the pipe is required to compute the compressive bearing 

stress between the column post and the base plate. The cross-sectional area of a pipe 

is given by

 
A dpipe ( )

�

4
2 2� �D

where D � outside diameter and d � inside diameter. The inside diameter d is related to 

the outside diameter D by

t2� �d D

where t � wall thickness. Therefore, with D � 6.5 in. and d � 6.0 in., the area of the 

pipe is

in.) in.) i[ ]6 5 6 0 4 90872 2( . ( . . nn.2A dpipe

�

4

�

4
2 2� � �D � �( )  

The bearing stress between the pipe and the base plate is

�b
b

F
A

11

4 9087
2 24

2

kips

in.
ksi

.
.� � �

(b)  The minimum area required for the steel plate in order to limit the bearing stress to 

90 psi is

�b
b

F
A

�
   

� A
F

b
b�

( (
.

11

90
122 222 2

kips) 1,000 lb/kip)

psi
in.� � �

Since the steel plate is square, its area of contact with the concrete slab is

A a a ab � �122 222 122 222 11 06.in. .. n. in. say, 12 iin.� � � �i2 2  Ans.

11 kips

Concrete
slab

Square steel
base plate

a
a

Outside diameter = 6.5 in.
Wall thickness = 0.25 in.

Bearing stresses also develop on the contact surface between a plate and the body of 

a bolt or a pin. A bearing failure at a bolted connection in a thin steel component is shown in 

Figure 1.6. A tension load was applied upward to the steel component, and a bearing failure 

occurred below the bolt hole. 

13
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14
STRESS

The distribution of these stresses on a semicircular contact surface is quite compli-

cated, and an average bearing stress is often used for design purposes. This average bearing 

stress �b is computed by dividing the transmitted force by the projected area of contact 

between a plate and the bolt or pin, instead of the actual contact area. This approach is 

illustrated in the following example.

FIGURE 1.6 Bearing stress failure at a bolted connection.

EXAMPLE 1.8

A 2.5-in.-wide by 0.125-in.-thick steel plate is connected to a support with a 

0.75-in.-diameter pin. The steel plate carries an axial load of 1.8 kips. Determine 

the bearing stress in the steel plate.

Plan the Solution
Bearing stresses will develop on the surface where the steel plate contacts the pin, 

which is the right side of the hole in the illustration. To determine the average bear-

ing stress, the projected area of contact between the plate and the pin must be 

calculated.

SOLUTION
The 1.8-kip load pulls the steel plate to the left, which brings the right side of the hole into 

contact with the pin. Bearing stresses will occur on the right side of the hole (in the steel 

plate) and on the right half of the pin.

Since the actual distribution of bearing stress on a semicircular surface is compli-

cated, an average bearing stress is typically used for design purposes. Instead of using the 

actual contact area, the projected area of contact is used in the calculation.

The fi gure at the left shows an enlarged view of the projected contact area 

between the steel plate and the pin. An average bearing stress �b is exerted on the steel 

plate by the pin. Not shown is the equal magnitude bearing stress exerted on the pin by 

the steel plate.

2.5 in.

0.75-in.
pin

1.8 kips Steel plate

Support

�b
Ab

Enlarged view of projected 
contact area.
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The projected area Ab is equal to the product of the pin (or bolt) diameter d and the 

plate thickness t. For the pinned connection shown, the projected area Ab between the 

0.125-in.-thick steel plate and the 0.75-in.-diameter pin is calculated as

A dtb ( . ( . .0 75 0 125 0 09375 2in.) in.) in.� � �  

The average bearing stress between the plate and the pin is

 
�

1 8

0 09375
19 20

2

.

.
.

kips

in.
ksi�b

bA
F

� �
 

Ans.

A 60-mm-wide by 8-mm-thick steel plate is connected to a gusset plate by a 

20-mm-diameter pin. If a load of P � 70 kN is applied, determine the  normal, 

shear, and bearing stresses in this connection.

 MecMovies Example M1.1MM

steel
plate

60 mmpin

gusset
plate

column

8-mm plate
thickness

pin diameter = 20 mm

70 kN

M1.1 For the pin connection shown, determine the normal stress 

acting on the gross area, the normal stress acting on the net area, the 

shear stress in the pin, and the bearing stress in the steel plate at the pin.

M1.2 Use normal stress concepts for four introductory problems.

 MecMovies ExercisesMM

steel
plate

80 mmpin

gusset
plate

column

8-mm plate
thickness

pin diameter = 16 mm

45 kN

FIGURE M1.1

40 kN

40 kN

50 kN

10 kN

P

ABC
150 kN

30 kN 30 kN

90 kN 90 kN

50 kN 50 kN
1,000 mm 500 mm

W

FIGURE M1.2
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M1.4 Given the areas and allowable normal stresses for mem-

bers (1) and (2), determine the maximum load P that may be sup-

ported by the structure without exceeding either allowable stress.

M1.5 For the pin at C, determine the resultant force, the shear 

stress, or the minimum required pin diameter for six confi guration 

variations.

M1.6 A torque T is transmitted between two fl anged shafts by 

means of six bolts. If the shear stress in the bolts must be limited to 

a specifi ed value, determine the minimum bolt diameter required 

for the connection.

M1.3 Use shear stress concepts for four introductory problems.

FIGURE M1.3

FIGURE M1.4

FIGURE M1.5

FIGURE M1.6

P1.1 A stainless steel tube with an outside diameter of 60 mm 

and a wall thickness of 5 mm is used as a compression member. If 

the axial normal stress in the member must be limited to 200 MPa, 

determine the maximum load P that the member can support.

P1.2 A 2024-T4 aluminum tube with an outside diameter of 

2.50 in. will be used to support a 27-kip load. If the axial normal 

stress in the member must be limited to 18 ksi, determine the wall 

thickness required for the tube.

PROBLEMSPROBLEMS
P1.3 Two solid cylindrical rods (1) and (2) are joined together at 

fl ange B and loaded as shown in Figure P1.3/4. If the normal stress 

in each rod must be limited to 40 ksi, determine the minimum di-

ameter required for each rod.

P1.4 Two solid cylindrical rods (1) and (2) are joined together 

at fl ange B and loaded, as shown in Figure P1.3/4. The diameter of 

rod (1) is 1.75 in. and the diameter of rod (2) is 2.50 in. Determine 

the normal stresses in rods (1) and (2).

16
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P1.5 Axial loads are applied with rigid bearing plates to the 

solid cylindrical rods shown in Figure P1.5/6. The diameter of alu-

minum rod (1) is 2.00 in., the diameter of brass rod (2) is 1.50 in., 

and the diameter of steel rod (3) is 3.00 in. Determine the axial 

normal stress in each of the three rods.

P1.6 Axial loads are applied with rigid bearing plates to the 

solid cylindrical rods shown in Figure P1.5/6. The normal stress in 

aluminum rod (1) must be limited to 18 ksi, the normal stress in 

brass rod (2) must be limited to 25 ksi, and the normal stress in steel 

rod (3) must be limited to 15 ksi. Determine the minimum diameter 

required for each of the three rods.

P1.7 Two solid cylindrical rods support a load of P � 50 kN, as 

shown in Figure P1.7/8. If the normal stress in each rod must be 

limited to 130 MPa, determine the minimum diameter required for 

each rod.

P1.8 Two solid cylindrical rods support a load of P � 27 kN, as 

shown in Figure P1.7/8. Rod (1) has a diameter of 16 mm, and the diam-

eter of rod (2) is 12 mm. Determine the axial normal stress in each rod.

P1.9 A simple pin-connected truss is loaded and supported as 

shown in Figure P1.9. All members of the truss are aluminum pipes 

that have an outside diameter of 4.00 in. and a wall thickness of 

0.226 in. Determine the normal stress in each truss member.

P1.10 A simple pin-connected truss is loaded and supported as 

shown in Figure P1.10. All members of the truss are aluminum 

pipes that have an outside diameter of 60 mm and a wall thickness 

of 4 mm. Determine the normal stress in each truss member.

30 kips30 kips

15 kips

A

B

C

(1)

(2)

2d

1d

FIGURE P1.3/4

(1)

(2)

2.5 m 3.2 m

4.0 m

2.3 m

A

B

C

P

FIGURE P1.7/8

2 kips

5 kips

7 ft

8 ft6 ft

A B

C

(1)

(2)

(3)

FIGURE P1.9

12 kN

15 kN
1.5 m

3.3 m1.0 m

A C

B

(1)
(2)

(3)

FIGURE P1.10
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FIGURE P1.5/6

8 kips

4 kips 4 kips

15 kips15 kips

20 kips20 kips

A

B

C

D

(1)

(2)

(3)
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P1.11 A simple pin-connected truss is loaded and supported as 

shown in Figure P1.11. All members of the truss are aluminum 

pipes that have an outside diameter of 42 mm and a wall thickness 

of 3.5 mm. Determine the normal stress in each truss member.

P1.12 The rigid beam BC shown in Figure P1.12 is supported 

by rods (1) and (2) that have cross-sectional areas of 175 mm2 

and 300 mm2, respectively. For a uniformly distributed load of 

w � 15 kN/m, determine the normal stress in each rod. Assume 

L � 3 m and a � 1.8 m.

P1.13 Bar (1) in Figure P1.13 has a cross-sectional area of 

0.75 in.2. If the stress in bar (1) must be limited to 30 ksi, determine 

the maximum load P that may be supported by the structure.

P1.14 The rectangular bar shown in Figure P1.14 is subjected to 

a uniformly distributed axial loading of w � 13 kN/m and a con-

centrated force of P � 9 kN at B. Determine the magnitude of the 

maximum normal stress in the bar and its location x. Assume a � 

0.5 m, b � 0.7 m, c � 15 mm, and d � 40 mm.

P1.15 The solid 1.25-in.-diameter rod shown in Figure P1.15 is 

subjected to a uniform axial distributed loading along its length of 

w � 750 lb/ft. Two concentrated loads also act on the rod: P � 

2,000 lb and Q � 1,000 lb. Assume a � 16 in. and b � 32 in. Deter-

mine the normal stress in the rod at the following locations:

(a) x � 10 in.

(b) x � 30 in.

P1.16 Two 6-in.-wide wooden boards are to be joined by 

splice plates that will be fully glued onto the contact surfaces, as 

shown in Figure P1.16. The glue to be used can safely provide a 

shear strength of 120 psi. Determine the smallest allowable length 

L that can be used for the splice plates for an applied load of P � 

10,000 lb. Note that a gap of 0.5 in. is required between boards (1) 

and (2).

P1.17 For the clevis connection shown in Figure P1.17, deter-

mine the maximum applied load P that can be supported by the 

10-mm-diameter pin if the average shear stress in the pin must not 

exceed 95 MPa.

15 kN

30 kN

1.6 m

4.0 m

4.5 m

A

B

C

(1)

(2)

(3)

FIGURE P1.11

L

a

A

B C

D

w

(1) (2)

FIGURE P1.12

A B

P

C

D

6 ft 4 ft

(1)

FIGURE P1.13

a b
x

A B C

w

w

P

c

d

FIGURE P1.14

a b
x

A B C

w

P Q

FIGURE P1.15

P P

L

0.5 in.

6 in.

(1) (2)

FIGURE P1.16
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P1.18 For the connection shown in Figure P1.18, determine the 

average shear stress produced in the 3/8-in. diameter bolts if the 

applied load is P � 2,500 lb.

P1.19 The fi ve-bolt connection shown in Figure P1.19 must 

support an applied load of P � 265 kN. If the average shear stress in 

the bolts must be limited to 120 MPa, determine the minimum bolt 

diameter that may be used for this connection.

P1.20 A coupling is used to connect a 2-in.-diameter plastic 

pipe (1) to a 1.5-in.-diameter pipe (2), as shown in Figure P1.20. If 

the average shear stress in the adhesive must be limited to 400 psi, 

determine the minimum lengths L1 and L2 required for the joint if 

the applied load P is 5,000 lb.

P1.21 A hydraulic punch press is used to punch a slot in a 

0.50-in.-thick plate, as illustrated in Figure P1.21. If the plate 

shears at a stress of 30 ksi, determine the minimum force P required 

to punch the slot.

P1.22 The handle shown in Figure P1.22 is attached to a 

40-mm-diameter shaft with a square shear key. The forces applied 

to the lever are P � 1,300 N. If the average shear stress in the key 

must not exceed 150 MPa, determine the minimum dimension a 

that must be used if the key is 25 mm long. The overall length of 

the handle is L � 0.70 m.

P1.23 An axial load P is supported by the short steel column 

shown in Figure P1.23. The column has a cross-sectional area of 

14,500 mm2. If the average normal stress in the steel column must 

not exceed 75 MPa, determine the minimum required dimension a 
so that the bearing stress between the base plate and the concrete 

slab does not exceed 8 MPa. Assume b � 420 mm.

P

P

Pin

Clevis

Bar

t

FIGURE P1.17

P
FIGURE P1.18

P

FIGURE P1.19

(1)

(2)

Coupling

P

P

PP

1L 2L

Cutaway section of coupling

(1) (2)

FIGURE P1.20

Punch

Plate

Slug

P

Plan view of slug

3.00 in.

0.75 in.

FIGURE P1.21

L
2

L
2

d

aa

P

P Shear key

Shaft

Handle

FIGURE P1.22
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P1.24 The two wooden boards shown in Figure P1.24 are 

connected by a 0.5-in.-diameter bolt. Washers are installed under 

the head of the bolt and under the nut. The washer dimensions are 

D � 2 in. and d � 5/8 in. The nut is tightened to cause a tensile 

stress of 9,000 psi in the bolt. Determine the bearing stress be-

tween the washer and the wood.

P1.25 For the beam shown in Figure P1.25, the allowable bear-

ing stress for the material under the supports at A and B is �b � 

800 psi. Assume w � 2,100 lb/ft, P � 4,600 lb, a � 20 ft, and b � 

8 ft. Determine the size of square bearing plates required to sup-

port the loading shown. Dimension the plates to the nearest 1/2 in.

P1.26 The d � 15-mm-diameter solid rod shown in Figure 

P1.26 passes through a D � 20-mm-diameter hole in the support 

plate. When a load P is applied to the rod, the rod head rests on 

the support plate. The support plate has a thickness of b � 12 mm. 

The rod head has a diameter of a � 30 mm, and the head has a 

thickness of t � 10 mm. If the normal stress produced in the rod 

by load P is 225 MPa, determine

(a)  the bearing stress acting between the support plate and the 

rod head.

(b) the average shear stress produced in the rod head.

(c)  the punching shear stress produced in the support plate by the 

rod head.

P1.27 The rectangular bar is connected to the support bracket 

with a circular pin, as shown in Figure P1.27. The bar width is 

w � 1.75 in. and the bar thickness is 0.375 in. For an applied load 

of P � 5,600 lb, determine the average bearing stress produced in 

the bar by the 0.625-in.-diameter pin.

P1.28 The steel pipe column shown in Figure P1.28 has an 

outside diameter of 8.625 in. and a wall thickness of 0.25 in. The 

timber beam is 10.75 in. wide, and the upper plate has the same 

width. The load imposed on the column by the timber beam is 

80 kips. Determine the following:

(a)  the average bearing stress at the surfaces between the pipe 

 column and the upper and lower steel bearing plates

b

a

P

FIGURE P1.23

D

d

Washer

Washer
Bolt

Nut

FIGURE P1.24

ba

A B

P
w

FIGURE P1.25

P

Support
plate

Rod
Head

Hole diameter D

b

P

d

a

t

FIGURE P1.26

P

Pin

Bracket

Bar
w

FIGURE P1.27
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(b)  the length L of the rectangular upper bearing plate if its width 

is 10.75 in. and the average bearing stress between the steel 

plate and the wood beam is not to exceed 500 psi

(c)  the dimension a of the square lower bearing plate if the 

average bearing stress between the lower bearing plate and 

the concrete slab is not to exceed 900 psi

P1.29 A clevis-type pipe hanger supports an 8-in.-diameter pipe, 

as shown in Figure P1.29. The hanger rod has a diameter of 1/2 in. 

The bolt connecting the top yoke and the bottom strap has a diameter 

of 5/8 in. The bottom strap is 3/16 in. thick by 1.75 in. wide by 36 in. 

long. The weight of the pipe is 2,000 lb. Determine the following:

(a) the normal stress in the hanger rod

(b) the shear stress in the bolt

(c) the bearing stress in the bottom strap

Upper
bearing
plate

Timber
beam

Steel
pipe

Concrete
slab

Lower
bearing
plate

aa

10.75 in.

L

FIGURE P1.28

Top yoke

Hanger rod

Bottom strap

Bolt

FIGURE P1.29
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P1.31 The bell crank shown in Figure P1.31 is in equilibrium 

for the forces acting in rods (1) and (2). The bell crank is supported 

by a 10-mm-diameter pin at B that acts in single shear. The thick-

ness of the bell crank is 5 mm. Assume a � 65 mm, b � 150 mm, 

F1 � 1,100 N, and � � 50°. Determine the following:

(a) the shear stress in pin B
(b) the bearing stress in the bell crank at B

P1.30 Rigid bar ABC shown in Figure P1.30 is supported by 

a pin at bracket A and by tie rod (1). Tie rod (1) has a diameter 

of 5 mm, and it is supported by double-shear pin connections at 

B and D. The pin at bracket A is a single-shear connection. All 

pins are 7 mm in diameter. Assume a � 600 mm, b � 300 mm, 

h � 450 mm, P � 900 N, and � � 55°. Determine the following:

(a) the normal stress in rod (1)

(b) the shear stress in pin B
(c) the shear stress in pin A

P1.32 The beam shown in Figure P1.32 is supported by a pin at 

C and by a short link AB. If w � 30 kN/m, determine the average 

shear stress in the pins at A and C. Each pin has a diameter of 25 mm. 

Assume L � 1.8 m and � � 35°.

FIGURE P1.30

FIGURE P1.31
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FIGURE P1.32

P1.33 The bell-crank mechanism shown in Figure P1.33 is 

in equilibrium for an applied load of P � 7 kN applied at A. 

Assume a � 200 mm, b � 150 mm, and � � 65°. Determine the 

minimum diameter d required for pin B for each of the following 

conditions:

(a) The shear stress in the pin may not exceed 40 MPa.

(b) The bearing stress in the bell crank may not exceed 100 MPa.

(c)  The bearing stress in the support bracket may not exceed 

165 MPa.

FIGURE P1.33

In previous sections, normal, shear, and bearing stresses on planes parallel and perpendicu-

lar to the axes of centrically loaded members were introduced. Stresses on planes inclined 

to the axes of axially loaded bars will now be considered.

Consider a prismatic bar subjected to an axial force P applied to the centroid of the bar 

(Figure 1.7a). Loading of this type is termed uniaxial since the force applied to the bar acts in 

one direction (i.e., either tension or compression). The cross-sectional area of the bar is A. To 

investigate the stresses that are acting internally in the material, we will cut through the bar at 

section a–a. The free-body diagram (Figure 1.7b) exposes the normal stress � that is distrib-

uted over the cut section of the bar. The normal stress magnitude may be calculated from 

� � P�A, provided that the stress is uniformly distributed. In this case, the stress will be uni-

form because the bar is prismatic and the force P is applied at the centroid of the cross section. 

The resultant of this normal stress distribution is equal in magnitude to the applied load P and 

has a line of action that is coincident with the axes of the bar, as shown. Note that there will be 

no shear stress � since the cut surface is perpendicular to the direction of the resultant force.

Section a–a is unique, however, because it is the only surface that is perpendicular to 

the direction of force P. A more general case would consider a section cut through the bar at 

an arbitrary angle. Consider a free-body diagram along section b–b (Figure 1.7c). Because 

the stresses are the same throughout the entire bar, the stresses on the inclined surface must 

be uniformly distributed. Since the bar is in equilibrium, the resultant of the uniformly 

 distributed stress must equal P even though the stress acts on a surface that is inclined.

The orientation of the inclined surface can be defi ned by the angle � between the 

x axis and an axis normal to the plane, which is the n axis, as shown in Figure 1.7d. A posi-

tive angle � is defi ned as a counterclockwise rotation from the x axis to the n axis. The t axis 

is tangential to the cut surface, and the n–t axes form a right-handed coordinate system.

To investigate the stresses acting on the inclined plane (Figure 1.7d), the components 

of resultant force P acting perpendicular and parallel to the plane must be computed. Using 

� as defi ned previously, the perpendicular force component (i.e., normal force) is N � P cos 
�, and the parallel force component (i.e., shear force) is V � �P sin �. (The negative sign 

indicates that the shear force acts in the �t direction, as shown in Figure 1.7d.) The area of 

1.5 Stresses on Inclined Sections

MecMovies 1.11 is an 

animated presentation of the 

theory of stresses on an inclined 

plane.

In referencing planes, the 

orientation of the plane is 

specifi ed by the normal to the 

plane. The inclined plane shown 

in Figure 1.7d is termed the n 

face because the n axis is the 

normal to this surface.
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FIGURE 1.8 Variation of 

normal and shear stress as a 

function of inclined plane 

orientation �.

FIGURE 1.7 (a) Prismatic 

bar subjected to axial force P. 

(b) Normal stresses on 

section a–a. (c) Stresses on 

inclined section b–b. (d) Force 

components acting perpendicular 

and parallel to inclined plane. 

(e) Normal stresses acting on 

inclined plane. ( f ) Shear stresses 

acting on inclined plane.
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the inclined plane An � A�cos �, where A is the cross-sectional area of the axially loaded 

 member. The normal and shear stresses acting on the inclined plane (Figures 1.7e and 1.7f ) 

can now be determined by dividing the force component by the area of the inclined plane:

 �
�

� �
�

n
n

N
A

P
A

P
A

P
A

cos
cos ( cos )

cos
2

2
1 2� � � � �  (1.8)

 �

�
� � �nt

n

V
A

P
A

P
A

P
A

sin
sin

cos
sin cos

2
2� ��

�
� � � �  

(1.9)

Since both the area of the inclined surface An and the values for the normal and shear forces 

N and V on the surface depend on the angle of inclination �, the normal and shear stresses 

�n and �nt also depend on the angle of inclination � of the plane. This dependence of stress 
on both force and area means that stress is not a vector quantity; therefore, the laws of the 

vector addition do not apply to stresses.

A graph showing the values of �n and �nt as a function of � is given in Figure 1.8. 

These plots indicate that �n is largest when � is 0° or 180°, that �nt is largest when � is 
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STRESSES ON INCLINED 
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FIGURE 1.9 Shear stresses 

acting on a small volume 

element of material.
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STRESS 45° or 135°, and also that �max � �max�2. Therefore, the maximum normal and shear 

stresses in an axial member that is subjected to an uniaxial tension or compression force 

applied through the centroid of the member (termed a centric loading) are

 max
P
A

P
A

and
2

� �� �max  (1.10)

Note that the normal stress is either maximum or minimum on planes for which the shear 

stress is zero. It can be shown that the shear stress is always zero on the planes of maximum 

or minimum normal stress. The concepts of maximum and minimum normal stress and 

maximum shear stress for more general cases will be treated in later sections of this book.

The plot of normal and shear stresses for axial loading, shown in Figure 1.8, indicates 

that the sign of the shear stress changes when � is greater than 90°. The magnitude of the 

shear stress for any angle �, however, is the same as that for 90° � �. The sign change 

merely indicates that the shear force V changes direction.

Signifi cance

Although one might think that there is only a single stress in a material (particularly in a simple 

axial member), this discussion has demonstrated that there are many different  combinations of 

normal and shear stress in a solid object. The magnitude and direction of the normal and shear 

stresses at any point depend on the orientation of the plane being considered.

Why Is This Important? In designing a component, an engineer must be mindful of 

all possible combinations of normal stress �n and shear stress �nt that exist on internal sur-

faces of the object, not just the most obvious ones. Further, different materials are sensitive 

to different types of stress. For example, laboratory tests on specimens loaded in uniaxial 

tension reveal that brittle materials tend to fail in response to the magnitude of normal 

stress. These materials fracture on a transverse plane (i.e., a plane such as section a–a in 

Figure 1.7a). Ductile materials, on the other hand, are sensitive to the shear stress magni-

tude. A ductile material loaded in uniaxial tension will fracture on a 45° plane since the 

maximum shear stress occurs on this surface.

If an object is in equilibrium, then any portion of the object that one chooses to examine 

must also be in equilibrium, no matter how small that portion may be. Therefore, let us 

consider a small-volume element of material that is subjected to shear stress, as shown in 

Figure 1.9. The front and rear faces of this small element are free of stress.

Equilibrium involves forces, not stresses. For us to consider the equilibrium of this ele-

ment, we must fi nd the forces produced by the stresses that act on each face, by multiplying 

the stress acting on each face by the area of the face. For example, the horizontal force acting 

on the top face of this element is given by �yx�x�z, and the vertical force acting on the right 

face of this element is given by �xy�y�z. Equilibrium in the horizontal direction gives

Σ xF z x zx yx�0� ��� ��� � � � �yxyxyx �  

and equilibrium in the vertical direction gives

Σ yF z y zy xy�0� ��� ��� � � � �xyxyxy �

1.6  Equality of Shear Stresses 
on Perpendicular Planes
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Finally, taking moments about the z axis gives

( )yΣMz yx�0� �� ��� � � �xyxy z �x ( )x� � �yx z �y  

Therefore, equilibrium requires that

��xy �yx �xy � �yx� � �

In other words, if a shear stress acts on one plane in the object, then equal-magnitude shear 

stresses act on three other planes. The shear stresses must be oriented either as shown in 

Figure 1.9 or in the opposite directions on each face.

Shear stress arrows on adjacent 

faces act either toward each other 

or away from each other. In other 

words, the arrows are arranged 

head-to-head or tail-to-tail—never 

head-to-tail—on intersecting 

perpendicular planes.

EXAMPLE 1.9

A 120-mm-wide steel bar with a butt-welded joint, as shown, will be used to carry an 

axial tension load of P � 180 kN. If the normal and shear stresses on the plane of the butt 

weld must be limited to 80 MPa and 45 MPa, respectively, determine the minimum thick-

ness required for the bar.

Plan the Solution
Either the normal stress limit or the shear stress limit 

will dictate the area required for the bar. There is no 

way to know beforehand which stress will control; 

therefore, both possibilities must be checked. The 

minimum  cross-sectional area required for each limit 

must be determined. Using the larger of these two results, the minimum bar thickness 

will be determined. For illustration, this example will be worked in two ways: 

(a) by directly using the normal and shear components of force P, 

(b) by using Equations (1.8) and (1.9).

SOLUTION
(a) Solution Using Normal and Shear Force Components
Consider a free-body diagram (FBD) of the left half of the member. Resolve the axial 

force P � 180 kN into a force component N perpendicular to the weld and a force com-

ponent V parallel to the weld.

The minimum cross-sectional area of the weld An needed to limit the normal stress on the 

weld to 80 MPa can be computed from

n
n

n
N

A
A

( . (150 961

80 2

kN) 1,000 N/kN)

N/mm
1,8887.013 mm2� � � �

 

Similarly, the minimum cross-sectional area of the weld An needed to limit the shear 

stress on the weld to 45 MPa can be computed from

�nt
n

n
V

A
A

( . (98 035

45 2

kN) 1,000 N/kN)

N/mm
2,1778.556 mm2� ��

57°

P = 180 kNP = 180 kN
120 mm

57°

33°
x

t

n

N = (180 kN) cos 33° = 150.961 kN

33°

V = (180 kN) sin 33° = 98.035 kN

120 mm
P = 180 kNP = 180 kN

An nL t=
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The steel bar shown has a 100-mm by 25-mm rectangular cross section. If an axial 

force of P � 40 kN is applied to the bar, determine the normal and shear stresses 

acting on the inclined surface a–a.

 MecMovies Example M1.12

26

To satisfy both normal and shear stress limits, the minimum cross-sectional area An 

needed for the weld is An � 2,178.556 mm2. Next, we can determine the length of the 

weld Ln along the inclined surface. From the geometry of the surface,

cos
cos

.33
120 120

33
143 084°

mm mm

°
mm

L
L

n
n � ��

Therefore, to provide the necessary weld area, the minimum thickness is computed as

 
tmin

.
.�

2,178.556 mm

mm
mm

2

143 084
15 23�

 
Ans.

(b) Solution Using Equations (1.8) and (1.9)
Determine the angle � needed for Equations (1.8) and (1.9). The angle � is defi ned as the 

angle between the transverse cross section (i.e., the section perpendicular to the applied 

load) and the inclined surface, with positive angles defi ned in a counterclockwise direc-

tion. Although the butt weld angle is labeled 57° in the problem sketch, this is not the 

value needed for �. For use in the equations, � � �33°.

The normal and shear stresses on the inclined plane can be computed from

n t
P

A

P

A
�cos in cos2 and� � � �� �� sn

According to the 80-MPa normal stress limit, the minimum cross-sectional area required 

for the bar is

A
P

n
min cos

( ) ( )
cos (2

2
2

180

80

kN 1,000 N/kN

N/mm
�33 1 582 58 2° mm) , .

�
� � �� �

Similarly, the minimum area required for the bar, based on the 45-MPa shear stress 

limit, is

A
P

nt
min sin cos

( ) ( )
si�

180

45 2

kN 1,000 N/kN

N/mm
nn( ) cos( ) , .33 33 1 827 09 2mm��

�
�� � �� �° °  

Note: Here we are concerned with force and area magnitudes. If the area calculations had 

produced a negative value, we would have considered only the absolute value.

To satisfy both stress limits, the larger of the two areas must be used. Since the steel 

bar is 120 mm wide, the minimum bar thickness must be

 tmin .
1,827.09 mm

mm
mm

2

120
15 23� �  Ans.
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The steel bar shown has a 50-mm by 10-mm rectangular cross section. The allowable 

normal and shear stresses on the inclined surface must be limited to 40 MPa and 

25 MPa, respectively. Determine the magnitude of the maximum axial force of P that can 

be applied to the bar.

 MecMovies Example M1.13 

M1.12 The bar has a rectangular cross section. For a given load 

P, determine the force components perpendicular and parallel to 

section a–a, the inclined surface area, and the normal and shear 

stress magnitudes acting on surface a–a.

M1.13 The bar has a rectangular cross section. The allowable 

normal and shear stresses on inclined surface a–a are given. Deter-

mine the magnitude of the maximum axial force P that can be ap-

plied to the bar and determine the actual normal and shear stresses 

acting on inclined plane a–a.

 MecMovies ExercisesMM

FIGURE M1.12

FIGURE M1.13
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PROBLEMSPROBLEMS
P1.34 A structural steel bar with a 25 mm � 75 mm rectangular 

cross section is subjected to an axial load of 150 kN. Determine the 

maximum normal and shear stresses in the bar.

P1.35 A steel rod of circular cross section will be used to carry 

an axial load of 92 kips. The maximum stresses in the rod must be 

limited to 30 ksi in tension and 12 ksi in shear. Determine the re-

quired diameter for the rod.
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P1.37 An axial load P is applied to the 1.75-in.-by-0.75-in. rec-

tangular bar shown in Figure P1.37. Determine the normal stress 

perpendicular to plane AB and the shear stress parallel to plane AB 

if the bar is subjected to an axial load of P � 18 kips.

P1.36 An axial load P is applied to the rectangular bar shown in 

Figure P1.36. The cross-sectional area of the bar is 400 mm2. De-

termine the normal stress perpendicular to plane AB and the shear 

stress parallel to plane AB if the bar is subjected to an axial load of 

P � 70 kN.

P1.38 A compression load of P � 80 kips is applied to a 

4-in.-by-4-in. square post, as shown in Figure P1.38. Determine the 

normal stress perpendicular to plane AB and the shear stress paral-

lel to plane AB.

P1.39 Specifi cations for the 50 mm � 50 mm square bar shown 

in Figure P1.39 require that the normal and shear stresses on plane 

AB not exceed 120 MPa and 90 MPa, respectively. Determine the 

maximum load P that can be applied without exceeding the 

 specifi cations.

55° P

P

B

A

FIGURE P1.36

60°
P

P

B

A

1.75 in.

FIGURE P1.37

35°

P

B

A

FIGURE P1.38

35°

P

B

A

FIGURE P1.39

40°

P

B

A

6 in.

FIGURE P1.40

P1.40 Specifi cations for the 6 in. � 6 in. square post shown in 

Figure P1.40 require that the normal and shear stresses on plane 

AB not exceed 800 psi and 400 psi, respectively. Determine 

the  maximum load P that can be applied without exceeding the 

specifi cations.

P1.41 A 90-mm-wide bar will be used to carry an axial ten-

sion load of 280 kN, as shown in Figure P1.41. The normal and 

shear stresses on plane AB must be limited to 150 MPa and 100 MPa, 

respectively. Determine the minimum thickness t required for 

the bar.

P

50°

PB

A

t

90 mm

FIGURE P1.41
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P1.44 The rectangular bar has a width of w � 3.00 in. and a 

thickness of t � 2.00 in. The normal stress on plane AB of the 

 rectangular block shown in Figure P1.44/45 is 6 ksi (C) when the 

load P is applied. Determine

P1.42 A rectangular bar having width w � 6.00 in. and thick-

ness t � 1.50 in. is subjected to a tension load P, as shown in 

Figure P1.42/43. The normal and shear stresses on plane AB must 

not  exceed 16 ksi and 8 ksi, respectively. Determine the maximum 

load P that can be applied without  exceeding either stress limit.

P1.43 In Figure P1.42/43, a rectangular bar having width 

w � 1.25 in. and thickness t is subjected to a tension load of 

P � 30 kips. The normal and shear stresses on plane AB must not 

exceed 12 ksi and 8 ksi, respectively. Determine the minimum thick-

ness t required for the bar.

(a) the magnitude of load P.

(b) the shear stress on plane AB.

(c)  the maximum normal and shear stresses in the block at any 

possible orientation.

P1.45 The rectangular bar has a width of w � 100 mm and a 

thickness of t � 75 mm. The shear stress on plane AB of the 

 rectangular block shown in Figure P1.44/45 is 12 MPa when the 

load P is applied. Determine

(a) the magnitude of load P.

(b) the normal stress on plane AB.

(c)  the maximum normal and shear stresses in the block at any 

possible orientation.

P

A

B

w
3

1

FIGURE P1.42/43

B

A

w

P

t

3

4

FIGURE P1.44/45
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In the design of structural elements or machine components, the deformations experienced 

by the body because of applied loads often represent a design consideration equally as 

 important as stress. For this reason, the nature of the deformations experienced by a real 

deformable body as a result of internal stress will be studied, and methods to measure or 

compute deformations will be established.

Displacement

When a system of loads is applied to a machine component or structural element, 

individual points of the body generally move. This movement of a point with re-

spect to some convenient reference system of axes is a vector quantity known as a 

displacement. In some instances, displacements are associated with a translation 

and/or rotation of the body as a whole. The size and shape of the body are not 

changed by this type of displacement, which is termed a rigid-body displacement. 
In Figure 2.1a, consider points H and K on a solid body. If the body is 

displaced (both translated and rotated), points H and K will move to new locations 

H � and K �. The position vector between H � and K�, however, has the same length 

2.1  Displacement, Deformation, and 
the Concept of Strain

Strain

CHAPTER 2

FIGURE 2.1a Rigid-body displacement.

y

x

H

K

Original position

H�

K�

Position after
translation

and rotation
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STRAIN as the position vector between H and K. In other words, the orientation of H and K relative to 

each other does not change when a body undergoes a displacement.

Deformation

When displacements are caused by an applied load or a change in temperature, indi-

vidual points of the body move relative to each other. The change in any dimension 

associated with these load- or temperature-induced displacements is known 

as deformation. Figure 2.1b shows a body both before and after a deforma-

tion. For  simplicity, the deformation shown in the fi gure is such that point H 

does not change location; however, point K on the undeformed body moves to 

location K� after the deformation. Because of the deformation, the position 

vector between H and K� is much longer than the HK vector in the unde-

formed body. Also, notice that the grid squares shown on the body before 

deformation (Figure 2.1a) are no longer squares after the deformation. Con-

sequently, both the size and the shape of the body have been altered by the 

deformation.

Under general conditions of loading, deformations will not be uniform 

throughout the body. Some line segments will experience extensions, while 

 others will experience contractions. Different segments (of the same length) 

along the same line may experience different amounts of extension or contrac-

tion.  Similarly, angle changes between line segments may vary with position and  orientation 

in the body. This nonuniform nature of load-induced deformations will be investigated in 

more detail in Chapter 13.

Strain

Strain is a quantity used to provide a measure of the intensity of a deformation (deforma-

tion per unit length) just as stress is used to provide a measure of the intensity of an internal 

force (force per unit area). In Sections 1.2 and 1.3, two types of stresses were defi ned: nor-

mal stresses and shear stresses. The same classifi cation is used for strains. Normal strain, 

designated by the Greek letter � (epsilon), is used to provide a measure of the elongation 

or contraction of an arbitrary line segment in a body during deformation. Shear strain, 

designated by the Greek letter � (gamma), is used to provide a measure of angular distor-

tion (change in angle between two lines that are orthogonal in the undeformed state). The 

deformation, or strain, may be the result of a change in temperature, of a stress, or of some 

other physical phenomenon such as grain growth or shrinkage. In this book, only strains 

resulting from changes in temperature or stress are considered.

FIGURE 2.1b Deformation of a body.

y

x

After deformation

Before
deformation

H

K
K�

FIGURE 2.2 Normal strain.

L �

O

Average Normal Strain

The deformation (change in length and width) of a simple bar under an axial load (see 

Figure 2.2) can be used to illustrate the idea of a normal strain. The average normal strain 

�avg over the length of the bar is obtained by dividing the axial deformation � of the bar by 

its initial length L; thus,

 �
�

avg �
L  (2.1)

The symbol � is used to denote the deformation in the axial member.

2.2 Normal Strain
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NORMAL STRAIN

Normal Strain at a Point

In those cases in which the deformation is nonuniform along the length of the bar (e.g., a 

long bar hanging under its own weight), the average normal strain given by Equation (2.1) 

may be signifi cantly different from the normal strain at an arbitrary point O along the bar. 

The normal strain at a point can be determined by decreasing the length over which the 

actual deformation is measured. In the limit, a quantity defi ned as the normal strain at the 

point �(O) is obtained. This limit process is indicated by the expression
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Strain Units

Equations (2.1) and (2.2) indicate that normal strain is a dimensionless quantity; however, 

normal strains are frequently expressed in units of in./in., mm/mm, m/m, �in./in., �m/m, 

or ��. The symbol � in the context of strain is spoken as “micro,” and it denotes a factor of 

10�6. The conversion from dimensionless quantities such as in./in. or m/m to units of 

 “microstrain” (such as �in./in., �m/m, or ��) is

1 �� � 1 � 10     in./in. � 1 � 10     m/m�6 �6

Since normal strains are small, dimensionless numbers, it is also convenient to express 

strains in terms of percent. For most engineered objects made from metals and alloys, 

 normal strains seldom exceed values of 0.2%, which is equivalent to 0.002 m/m.

Measuring Normal Strains Experimentally

Normal strains can be measured with a simple component called a strain gage. The 

 common strain gage (Figure 2.3) consists of a thin metal-foil grid that is bonded to the 

 surface of a machine part or a structural element. When loads (and also temperature 

changes) are applied, the object being tested elongates or contracts, creating normal strains. 

Since the strain gage is bonded to the object, it undergoes the same strain as the object. As 

the strain gage elongates or contracts, the electrical resistance of the metal-foil grid changes 

 proportionately. The relationship between strain in the gage and its corresponding resis-

tance change is predetermined by the strain gage manufacturer through a calibration pro-

cedure for each type of gage. Consequently, precise measurement of resistance change in 

the gage serves as an indirect measure of strain. Strain gages are accurate and extremely 

sensitive, enabling normal strains as small as 1 �� to be measured. Applications involving 

strain gages will be discussed in more detail in Chapter 13.

Sign Conventions for Normal Strains

From the defi nitions given by Equation (2.1) and Equation (2.2), normal strain is positive 

when the  object elongates and negative when the object contracts. In general, elongation 

will occur if the axial stress in the object is tension. Therefore, positive normal strains are 

referred to as tensile strains. The opposite will be true for compressive axial stresses; there-

fore, negative normal strains are referred to as compressive strains.

Accordingly, a positive value of � indicates that the axial member gets longer, and a 

negative value of � indicates that the axial member gets shorter (termed contraction).

A normal strain in an axial 

member is also termed an 

axial strain.

FIGURE 2.3
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34
STRAIN

In developing the concept of normal strain through example problems and exercises, it 

is convenient to use the notion of a rigid bar. A rigid bar is meant to represent an object 

that undergoes no deformation of any kind. Depending on how it is supported, the rigid 

bar may translate (i.e., move up/down or left/right) or rotate about a support location 

(see Example 2.1), but it does not bend or deform in any way regardless of the loads 

acting on it. If a rigid bar is straight before loads are applied, then it will be straight after 

loads are applied. The bar may translate or rotate, but it will remain straight.

EXAMPLE 2.1

A rigid bar ABCD is pinned at A and supported by two 

steel rods connected at B and C, as shown. There is no 

strain in the vertical rods before load P is applied. 

After load P is applied, the normal strain in rod (2) is 

800 ��. Determine

(a) the axial normal strain in rod (1).

(b)  the axial normal strain in rod (1) if there is a 

1-mm gap in the connection between the rigid 

bar and rod (2) before the load is applied.

Plan the Solution
For this problem, the defi nition of normal strain will 

be used to relate strain and elongation for each rod. 

Since the rigid bar is pinned at A, it will rotate about 

the  support; however, it will remain straight. The 

 defl ections at points B, C, and D along the rigid bar 

can be determined by similar triangles. In part (b), the 1-mm gap will cause an increased 

rigid bar defl ection at C, and this will in turn lead to increased strain in rod (1).

SOLUTION
(a)  The normal strain is given for rod (2); therefore, the deformation in the rod can be 

computed as follows:

�
�

� �2
2

2
2 2 2 800

mm/mm

1,000,000
2,700 mm� � � � �   �

L
L �ε

�ε
1

2.16 mm�  � �

To compute the deformation, note that the given strain value �2 must be converted from units 

of �� into dimensionless units (i.e., mm/mm). Since the strain is positive, rod (2) elongates.

Since rod (2) is connected to the rigid bar and since rod (2) elongates, the rigid bar 

must defl ect 2.16 mm downward at joint C. However, rigid bar ABCD is supported by a 

pin at joint A, and defl ection is prevented at its left end. Therefore, rigid bar ABCD rotates 

about pin A. Sketch the confi guration of the rotated rigid bar, showing the defl ection that 

takes place at C. Sketches of this type are known as deformation diagrams.

Although the defl ections are very small, they have been greatly exaggerated here for 

clarity in the sketch. For problems of this type, a small-defl ection approximation is used:

sin tan� � �� �

where � is the rotation angle of the rigid bar in radians.

(1)

(2)

2.0 m 2.5 m

0.5 m

A

P

B C D

2.7 m

1.5 m

Rigid bar
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To clearly distinguish bet ween elongations 

that  occur in the rods and defl ections at locations 

along the rigid bar, rigid bar transverse defl ections 

(i.e., defl ections up or down in this case) will be 

denoted by the symbol v. Therefore, the rigid bar 

defl ection at joint C is  designated vC.

We will assume that there is a perfect fi t in the 

pin connection at joint C; therefore, the rigid bar 

defl ection at C is equal to the elongation that occurs 

in rod (2) (vC � �2).

From the deformation diagram of the rigid bar geometry, the rigid bar defl ection at 

joint B (vB) can be determined from similar triangles:

v v
vB C

B2 0 4 5

2 0

4 5
2 16 0 96

. .

.

.
. .

m m

m

m
mm mm� � � � � �

If there is a perfect fi t in the connection between rod (1) and the rigid bar at joint B, rod 

(1) elongates by an amount equal to the rigid bar defl ection at B; hence, � 1 � vB. Knowing 

the deformation produced in rod (1), we can now compute its strain:

 �
�

1
1

1

0.96 mm

1,500 mm
mm/mm 640� � � �

L
0 000640. �ε Ans.

(b) As in part (a), the deformation in the rod can be computed from

 �
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� �2
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22,700 mm) 2.16 mm�

Sketch the confi guration of the  rotated 

 rigid bar for case (b). In this case, there is 

a  1-mm gap between rod (2) and the rigid 

bar at C. This means that the rigid bar 

defl ects 1 mm downward at C before it 

begins to stretch rod (2). The total defl ec-

tion of C is made up of the 1-mm gap plus 

the elongation that occurs in rod (2); hence, 

vC � 2.16 mm � 1 mm � 3.16 mm.
As before, the rigid bar defl ection at 

joint B (vB) can be determined from  similar 

triangles:

v v
vB C

B2 0 4 5

2 0

4 5
3 16 1 404

. .

.

.
. .

m m

m

m
mm mm� � � � � �

Since there is a perfect fi t in the connection between rod (1) and the rigid bar at joint B, 

�1 � vB, and the strain in rod (1) can be computed:

 �
�

1
1

1

1.404 mm

1,500 mm
mm/mm 936� � � �

L
0 000936. �ε  Ans.

Compare the rod (1) strains for cases (a) and (b). Notice that a very small gap at C caused 

the strain in rod (1) to increase markedly.

vC = �2

A B C D

2.0 m

4.5 m

vB = �1

A B C D

2.0 m

4.5 m

vB
�2

1 mm

= �1

+vC = �2 1 mm

35
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A rigid steel bar ABC is supported by three rods. There is no strain in the 

rods before load P is applied. After load P is applied, the axial strain in rod 

(1) is 1,200 ��.

(a) Determine the axial strain in rods (2).

(b)  Determine the axial strain in rods (2) if there is a 0.5-mm gap in the 

connections between rods (2) and the rigid bar before the load is 

 applied.

 MecMovies Example M2.1 

A rigid steel bar ABC is pinned at B and supported by two rods at A and C. 

There is no strain in the rods before load P is applied. After load P is applied, 

the axial strain in rod (1) is �910 ��. Determine the axial strain in rod (2).

 MecMovies Example M2.2 

The load P produces an axial strain of �1,800 �� in post (2). 

 Determine the axial strain in rod (1).

 MecMovies Example M2.4 
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M2.1 A rigid horizontal bar ABC is supported by three vertical 

rods. There is no strain in the rods before load P is applied. After 

load P is applied, the axial strain is a specifi ed value. Determine the 

defl ection of the rigid bar at B and the normal strain in rods (2) if 

there is a specifi ed gap between rod (1) and the rigid bar before the 

load is applied.

M2.2 A rigid steel bar AB is pinned at A and supported by two 

rods. There is no strain in the rods before load P is applied. After 

load P is applied, the axial strain in rod (1) is a specifi ed value. 

Determine the axial strain in rod (2) and the downward defl ection 

of the rigid bar at B.

M2.3 Use normal strain concepts for four introductory problems 

using these two structural confi gurations.

 MecMovies ExercisesMM

FIGURE M2.1

FIGURE M2.3

FIGURE M2.2
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PROBLEMSPROBLEMS
P2.1 When an axial load is applied to the ends of the bar shown 

in Figure P2.1, the total elongation of the bar between joints A and 

C is 0.15 in. In segment (2), the normal strain is measured as 

1,300 �in./in. Determine

(a) the elongation of segment (2).

(b) the normal strain in segment (1) of the bar.

P2.4 A rigid bar ABCD is supported by two bars, as shown in Fig-

ure P2.4. There is no strain in the vertical bars before load P is  applied. 

After load P is applied, the normal strain in rod (1) is �570 �m/m. 

Determine

(a) the normal strain in rod (2).

(b)  the normal strain in rod (2) if there is a 1-mm gap in the 

 connection at pin C before the load is applied.

(c)  the normal strain in rod (2) if there is a 1-mm gap in the 

 connection at pin B before the load is applied.

FIGURE P2.1
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FIGURE P2.2
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Rigid bar

FIGURE P2.4

1,500 mm

900 mm

240 mm 360 mm 140 mm

A B C D

P(1)

(2)

Rigid bar

P2.2 The two bars shown in Figure P2.2 are used to support a 

load P. When unloaded, joint B has coordinates (0, 0). After load 

P is applied, joint B moves to the coordinate position (0.35 in., 

�0.60 in.). Assume a � 11 ft, b � 6 ft, and h � 8 ft. Determine 

the normal strain in each bar.

P2.3 A rigid steel bar is supported by three rods, as shown in 

Figure P2.3. There is no strain in the rods before the load P is 

applied. After load P is applied, the normal strain in rods 

(1) is 860 �m/m. Assume initial rod lengths of L1 � 2,400 mm and 

L2 � 1,800 mm. Determine

(a) the normal strain in rod (2).

(b)  the normal strain in rod (2) if there is a 2-mm gap in the 

 connections between the rigid bar and rods (1) at joints A and 

C before the load is applied.

(c)  the normal strain in rod (2) if there is a 2-mm gap in the 

 connection between the rigid bar and rod (2) at joint B before 

the load is applied.

P2.5 In Figure P2.5, rigid bar ABC is supported by a pin con-

nection at B and two axial members. A slot in member (1) allows 

the pin at A to slide 0.25 in. before it contacts the axial member. 

If the load P produces a compression normal strain in member (1) 

of �1,300 �in./in., determine the normal strain in member (2).
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FIGURE P2.5

20 in.

32 in. 0.25 in.

9 in.

A

B
C

P

(1)

(2)

160 in.

12 in.
FIGURE P2.6

D

Sanding sleeve

Mandrel

P2.6 The sanding-drum mandrel shown in Figure P2.6 is 

made for use with a hand drill. The mandrel is made from a 

rubber-like material that expands when the nut is tightened to 

secure the sanding sleeve placed over the outside surface. If the 

diameter D of the mandrel increases from 2.00 in. to 2.15 in. as 

the nut is tightened, determine

(a) the average normal strain along a diameter of the mandrel.

(b)  the circumferential strain at the outside surface of 

the mandrel.

P2.7 The normal strain in a suspended bar of material of vary-

ing cross section due to its own weight is given by the expression 

� y�3E, where � is the specifi c weight of the material, y is the dis-

tance from the free (i.e., bottom) end of the bar, and E is a material 

constant. Determine, in terms of �, L, and E the following:

(a) the change in length of the bar due to its own weight

(b) the average normal strain over the length L of the bar

(c) the maximum normal strain in the bar

P2.8 A steel cable is used to support an elevator cage at the 

bottom of a 2,000-ft-deep mineshaft. A uniform normal strain of 

250 �in./in. is produced in the cable by the weight of the cage. At 

each point, the weight of the cable produces an additional normal 

strain that is proportional to the length of the cable below the point. 

If the total normal strain in the cable at the cable drum (upper end 

of the cable) is 700 �in./in., determine

(a) the strain in the cable at a depth of 500 ft.

(b) the total elongation of the cable.

FIGURE 2.4 Shear strain.

x

y
�xy

�x

� �

L

O

A deformation involving a change in shape (distortion) can be used to illustrate a shear 

strain. An average shear strain �avg associated with two reference lines that are orthogonal 

in the undeformed state (two edges of the element shown in Figure 2.4) can be obtained by 

dividing the shear deformation � x (displacement of the top edge of the element with respect 

to the bottom edge) by the perpendicular distance L between these two edges. If the defor-

mation is small, meaning that sin � � tan � � � and cos � � 1, then shear strain can be 

defi ned as

 �
�

avg � x

L  (2.3)

For those cases in which the deformation is nonuniform, the shear strain at a point, �xy(O), 

associated with two orthogonal reference lines x and y is obtained by measuring the shear 

deformation as the size of the element is made smaller and smaller. In the limit,

 �
� �

xy
x xO

L
d
dLL

( ) lim�
�

�
�

� 0
 (2.4)

2.3  Shear Strain
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Since shear strain is defi ned as the tangent of the angle of distortion, which is equal to the 

angle in radians for small angles, an equivalent expression for shear strain that is  sometimes 

useful for calculations is

 �
�

�xy O( ) � � �
2

 (2.5)

In this expression, � � is the angle in the deformed state between two initially orthogonal 

reference lines.

Strain Units

Equations (2.3) through (2.5) indicate that shear strains are dimensionless angular quanti-

ties, expressed in radians (rad) or microradians (�rad). The conversion from radians, a 

dimensionless quantity, to microradians is 1 �rad � 1 × 10�6 rad.

Measuring Shear Strains Experimentally

Shear strain is an angular measure, and it is not possible to directly measure the extremely 

small angular changes typical of engineered structures. However, shear strain can be deter-

mined experimentally by using an array of three strain gages called a strain rosette. Strain 

rosettes will be discussed in more detail in Chapter 13.

Sign Conventions for Shear Strains

Equation (2.5) shows that shear strains will be positive if the angle � � between the x and y 

axes decreases. If the angle �� increases, the shear strain is negative. To state this another 

way, Equation (2.5) can be rearranged to give the angle �� in the deformed state between 

two reference lines that are initially 90° apart:

� � ��
�

�
2 xy  

If the value of �xy is positive, then the angle � � in the deformed state will be less than 90° 

(i.e., ��2 rad) (Figure 2.5a). If the value of �xy is negative, then the angle � � in the de-

formed state will be greater than 90° (Figure 2.5b). Positive and negative shear strains are 

not given special or distinctive names.

FIGURE 2.5a A positive value 

for the shear strain �xy means that 

the angle �� between the x and y 

axes decreases in the deformed 

object.

x

y

�xy–
2
�

FIGURE 2.5b The angle 

between the x and y axes 

increases when the shear 

strain �xy has a negative value.

x

y

�xy–
2
�

EXAMPLE 2.2

The shear force V shown causes side QS of the thin rectangular plate to displace 

 downward 0.0625 in. Determine the shear strain �xy at P.

Plan the Solution
Shear strain is an angular measure. Determine the angle between the x axis and side PQ 

of the deformed plate.

SOLUTION
Determine the angles created by the 0.0625-in. deformation. Note: The small angle 

 approximation will be used here; therefore, sin � � tan � � �.

� � �
0.0625 in.

8 in.
0.0078125 rad

x

y

P Q

R S

8 in.

0.0625 in.

V12 in.

40
STRAIN
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In the undeformed plate, the angle at P is ��2 rad. After the plate is deformed, the angle 

at P increases. Since the angle after deformation is equal to (��2) � � , the shear strain 

at P must be a negative value. Therefore, the shear strain at P is

 � � �0 00781. rad Ans.

x

y

P Q

R S

8 in.

0.0625 in.

V12 in.

�

�–
2
�

A thin triangular plate is uniformly deformed. Determine 

the shearing strain at P after point P has been displaced 

1 mm downward.

 MecMovies Example M2.5MM

A thin rectangular plate is uniformly deformed as shown. Determine the shear strain �xy at P.

Plan the Solution
Shear strain is an angular measure. Determine the two angles created by the 0.25-mm 

defl ection and the 0.50-mm defl ection. Add these two angles to determine the shear 

strain at P.

SOLUTION
Determine the angles created by each deformation. Note: The small angle approxima-

tion will be used here; therefore, sin � � tan � � �.

�1
0 50
720

0 000694� �
.

.
mm
mm

rad

�2
0 25
480

0 000521� �
.

.
mm
mm

rad

The shear strain at P is simply the sum of these two angles:

             
� � �� � � � �

�

1 2 0 000694 0 000521 0 001215. . .rad rad rad

1,2115 rad�  Ans.

Note: The angle at P in the deformed plate is less than ��2, as it should be for a posi-

tive shear strain. Although not asked for in the problem, the shear strain at corners Q 

and R will be negative, having the same magnitude as the shear strain at corner P.

EXAMPLE 2.3

x

y

P

Q

R

S

480 mm

0.25 mm

720 mm

0.50 mm

x

y

P

Q

R
S

480 mm

0.25 mm

720 mm

0.50 mm

�
1

�
2

�–
2
�
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P2.9 The 16-mm by 22-mm by 25-mm rubber blocks shown in 

Figure P2.9 are used in a double-U shear mount to isolate the vibra-

tion of a machine from its supports. An applied load of P � 690 N 

causes the upper frame to be defl ected downward by 7 mm. Deter-

mine the average shear strain and the shear stress in the rubber 

blocks.

Double U
anti-vibration
shear mount

Shear deformation
of blocks

P

16

25

22

Rubber block
dimensions

FIGURE P2.9

P2.10 A thin polymer plate PQR is deformed such that corner Q 

is displaced downward 1/16-in. to new position Q � as shown in 

Figure P2.10. Determine the shear strain at Q� associated with the 

two edges (PQ and QR).

25 in. 4 in.

in.

10 in.

P

Q

Q�

R
x

y

16
1—

FIGURE P2.10

PROBLEMSPROBLEMS
P2.11 A thin polymer plate PQR is deformed so that corner Q 

is displaced downward 1.0 mm to new position Q � as shown in 

Figure P2.11. Determine the shear strain at Q � associated with the 

two edges (PQ and QR).

300 mm

1.0 mm

120 mm 750 mm

P

Q

Q�

R
x

y

FIGURE P2.11

P2.12 A thin square plate is uniformly deformed as 

shown in Figure P2.12. Determine the shear strain �xy after 

deformations

(a) at corner P, and

(b) at corner Q.

100 mm

75 mm

100 mm110 mm

25 mm
y

x
P Q

R S

FIGURE P2.12
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P2.13 A thin square plate is uniformly deformed as shown in 

Figure P2.13. Determine the shear strain �xy after deformations

(a) at corner R, and

(b) at corner S.

100 mm

75 mm
100 mm

120 mm

25 mm

y

x

R

S

P

Q

FIGURE P2.13

P2.14 A thin square plate PQRS is symmetrically deformed into 

the shape shown by the dashed lines in Figure P2.14. For the de-

formed plate, determine

(a) the normal strain of diagonal QS.

(a) the shear strain �xy at corner P.

251.2 mm

249.7 mm

250 mm

y

x

S

R

Q

P

Undeformed

Deformed

FIGURE P2.14

When unrestrained, most engineering materials expand when heated and contract when 

cooled. The thermal strain caused by a one-degree (1°) change in temperature is designated 

by the Greek letter � (alpha) and is known as the coeffi cient of thermal expansion. The 

strain due to a temperature change of �T is

 � �T T� �  (2.6)

The coeffi cient of thermal expansion is approximately constant for a considerable range of 

temperatures. (In general, the coeffi cient increases with an increase of temperature.) For a 

uniform material (termed a homogeneous material) that has the same mechanical 

 properties in every direction (termed an isotropic material), the coeffi cient applies to all 

dimensions (i.e., all directions). Values of the coeffi cient of expansion for common materi-

als are included in Appendix D.

Total Strains

Strains caused by temperature changes and strains caused by applied loads are essentially 

independent. The total normal strain in a body acted on by both temperature changes and 

applied load is given by

 ���total � �	 T  (2.7)

Since homogeneous, isotropic materials, when unrestrained, expand uniformly in all  direc-

tions when heated (and contract uniformly when cooled), neither the shape of the body nor 

the shear stresses and shear strains are affected by temperature changes.

2.4 Thermal Strain

A material of uniform 

composition is called a 

homogeneous material. In 

materials of this type, local 

variations in composition 

can be considered negligible 

for engineering purposes. 

Furthermore, homogeneous 

materials cannot be 

mechanically separated 

into different materials 

(e.g., carbon fibers in a 

polymer matrix). Common 

homogeneous materials are 

metals, alloys, ceramics, 

glass, and some types 

of plastics.

An isotropic material has the 

same mechanical properties in 

all directions.
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Cutting tools such as mills and drills are connected to machining equipment by means of 

tool holders. The cutting tool must be fi rmly clamped by the tool holder to achieve pre-

cise machining, and shrink-fi t tool holders take advantage of thermal expansion proper-

ties to achieve this strong, concentric clamping force. To insert a cutting tool, the shrink-

fi t holder is rapidly heated while the cutting tool remains at room temperature. When the 

holder has expanded suffi ciently, the cutting tool drops into the holder. The holder is 

then cooled, clamping the cutting tool with a very large force directly on the tool shank.

At 20°C, the cutting tool shank has an outside diameter of 18.000 � 0.005 mm, and 

the tool holder has an inside diameter of 17.950 � 0.005 mm. If the tool shank is held at 

20°C, what is the minimum temperature to which the tool holder must be heated in order to 

insert the cutting tool shank? Assume the coeffi cient of thermal expansion for the tool 

holder is 11.9 � 10�6�°C.

Plan the Solution
Use the diameters and tolerances to compute the maximum outside diameter of the 

shank and the minimum inside diameter of the holder. The difference between these 

two diameters is the amount of expansion that must occur in the holder. For the tool 

shank to drop into the holder, the inside diameter of the holder must equal or exceed the 

shank diameter.

EXAMPLE 2.5

Cutting
tool

Shrink-fit
tool holder

A steel bridge beam has a total length of 150 m. Over the course 

of a year, the bridge is subjected to temperatures from �40°C to 

�40°C, and these temperature changes cause the beam to expand 

and contract. Expansion joints between the bridge beam and the 

supports at the ends of the bridge (called abutments) are installed to 

allow this length change to take place without restraint.  Determine 

the change in length that must be accommodated by the expan-

sion joints. Assume the coeffi cient of thermal expansion for steel 

is 11.9 � 10�6�°C.

Plan the Solution
Determine the thermal strain from Equation (2.6) for the total tem-

perature variation. The change in length is the product of the ther-

mal strain and the beam length.

SOLUTION
The thermal strain for a temperature variation of 80°C is

� �T T� � � �� � ��� 11 9 10 80 0 000952. ( ) .6 °C C m/m°

The total change in the beam length is, therefore,

 � �T L� � � �( . ) ( ) .0 000952 150 0 1428m/m m m 142.8 mm  Ans.

The expansion joint must accommodate at least 142.8 mm of horizontal movement.

EXAMPLE 2.4

Bridge
beam

Abutment

Expansion permitted

Typical “fi nger-type” expansion joint for bridges.
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SOLUTION
The maximum shank outside diameter is 18.000 � 0.005 mm � 18.005 mm. The mini-

mum holder inside diameter is 17.950 � 0.005 mm � 17.945 mm. Therefore, the inside 

diameter of the holder must be increased by 18.005 � 17.945 mm � 0.060 mm. To 

expand the holder by this amount requires a temperature increase:

� �T Td T� � � � �
� �� ��

0 060
0 060

10 17 945
.

.

( .
mm

mm

11.9 C6
�

° mmm
C

)
� 281°

Therefore, the tool holder must attain a minimum temperature of

 20 281° ° °C C 301 C� �  Ans.

P2.15 An airplane has a half-wingspan of 33 m. Determine the 

change in length of the aluminum alloy [�A � 22.5 � 10�6�°C] 

wing spar if the plane leaves the ground at a temperature of 15°C 

and climbs to an altitude where the temperature is �55°C.

P2.16 A square 2014-T4 aluminum alloy plate 400 mm on a side 

has a 75-mm-diameter circular hole at its center. The plate is heated 

from 20°C to 45°C. Determine the fi nal diameter of the hole.

P2.17 A cast iron pipe has an inside diameter of d � 208 mm 

and an outside diameter of D � 236 mm. The length of the pipe 

is L � 3.0 m. The coeffi cient of thermal expansion for cast iron 

is �I � 12.1 � 10�6�°C. Determine the dimension changes 

caused by an increase in temperature of 70°C.

P2.18 At a temperature of 40°F, a 0.08-in. gap exists between 

the ends of the two bars shown in Figure P2.18. Bar (1) is an alumi-

num alloy [� � 12.5 � 10�6�°F], and bar (2) is stainless steel 

[�  � 9.6 � 10�6�°F]. The supports at A and C are rigid. Determine 

the lowest temperature at which the two bars contact each other.

(1) (2)

A
B C

0.08-in. gap

40 in. 55 in.

FIGURE P2.18

P2.19 At a temperature of 5°C, a 3-mm gap exists between two poly-

mer bars and a rigid support, as shown in Figure P2.19. Bars (1) and (2) 

have coeffi cients of thermal expansion of �1 � 140 � 10�6�°C and 

�2 � 67 � 10�6�°C, respectively. The supports at A and C are rigid. 

Determine the lowest temperature at which the 3-mm gap is closed.

PROBLEMSPROBLEMS

540 mm 360 mm

(1) (2)

A B C

3-mm gap

FIGURE P2.19

P2.20 An aluminum pipe has a length of 60 m at a temperature of 

10°C. An adjacent steel pipe at the same temperature is 5 mm lon-

ger. At what temperature will the aluminum pipe be 15 mm longer 

than the steel pipe? Assume that the coeffi cient of thermal expan-

sion for the aluminum is 22.5 � 10�6�°C and that the coeffi cient of 

thermal expansion for the steel is 12.5 � 10�6�°C. 

P2.21 Determine the movement of the pointer of Figure P2.21 

with respect to the scale zero in response to a temperature increase 

of 60°F. The coeffi cients of thermal expansion are 6.6 � 10�6�°F 

for the steel and 12.5 � 10�6�°F for the aluminum. 

Smooth pins

1.5 in.7.0 in.

12 in.

+

–

0

Steel SteelAluminum

FIGURE P2.21
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dB � 299.75 mm and an outside diameter of DB � 310 mm. The 

sleeve is to be placed on a steel [�S � 11.9 � 10�6�°C] shaft with 

an outside diameter of DS � 300 mm. If the temperatures of the 

sleeve and the shaft remain the same, determine the temperature at 

which the sleeve will slip over the shaft with a gap of 0.05 mm.

P2.24 For the assembly shown in Figure P2.24, bars (1) and 

(2) each have cross-sectional areas of A � 1.6 in.2, elastic moduli 

of E � 15.2 � 106 psi, and coeffi cients of thermal expansion of 

� � 12.2 � 10�6�°F. If the temperature of the assembly is in-

creased by 80°F from its initial temperature, determine the result-

ing displacement of pin B. Assume h � 54 in. and � � 55°.

A

B

C

(1) (2)

h

FIGURE P2.24

P2.22 Determine the horizontal movement of point A of Figure 

P2.22 due to a temperature increase of 75°C. Assume that member 

AE has a negligible coeffi cient of thermal expansion. The coeffi -

cients of thermal expansion are 11.9 � 10�6�°C for the steel and 

22.5 � 10�6�°C for the aluminum alloy.

300 mm

25 mm

250 mm

Steel

Aluminum

A

B C

D E

FIGURE P2.22

P2.23 At a temperature of 25°C, a cold-rolled red brass 

[�B � 17.6 � 10�6�°C] sleeve has an inside diameter of 

46
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Mechanical Properties of Materials 

CHAPTER 3

47

To properly design a structural or mechanical component, the engineer must understand 

the characteristics and work within the limitations of the material used in the component. 

Materials such as steel, aluminum, plastics, and wood each respond uniquely to applied 

loads and stresses. To determine the strength and characteristics of materials such as these 

requires laboratory testing. One of the simplest and most effective laboratory tests for ob-

taining engineering design information about a material is called the tension test.
The tension test is very simple. A specimen of the material, usually a round rod or a 

fl at bar, is pulled with a controlled tension force. As the force is increased, the elongation 

of the specimen is measured and recorded. The relationship between applied load and re-

sulting deformation can be observed from a plot of the data. This load-deformation plot has 

limited direct usefulness, however, because it applies only to the specifi c specimen (mean-

ing the specifi c diameter or cross-sectional dimensions) used in the test procedure.

A more useful diagram than the load-deformation plot is one showing the relationship 

between stress and strain, called the stress–strain diagram. The stress–strain diagram is 

more useful because it applies to the material in general rather than to the particular speci-

men used in the test. The information obtained from the stress–strain diagram can be 

applied to all components, regardless of their dimensions. The load and elongation data 

obtained in the tension test can be readily converted to stress and strain data.

3.1 The Tension Test
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Tension Test Setup

To conduct the tension test, the test specimen is inserted into grips that hold the specimen 

securely while tension force is applied by the testing machine (Figure 3.1). Generally, the 

lower grip remains stationary while the upper grip moves upward, thus creating tension in 

the specimen.

Several types of grips are commonly used, depending on the specimen being tested. 

For plain round or fl at specimens, wedge-type grips are often used. The wedges are used in 

pairs that ride in a V-shaped holder. The wedges have teeth that bite into the specimen. 

The tension force applied to the specimen drives the wedges closer together, increasing the 

clamping force on the specimen. More sophisticated grips use fl uid pressure to actuate 

the wedges and increase their holding power.

Some tension specimens are machined by cutting threads on the rod ends and reduc-

ing the diameter between the threaded ends (Figure 3.2). Threads of this sort are called 

upset threads. Since the rod diameter at the ends is larger than the specimen diameter, the 

presence of the threads does not reduce the strength of the specimen. Tension specimens 

with upset threads are attached to the testing machine with threaded specimen holders, 

which eliminate any possibility that the specimen will slip or pull out of the grips during 

the test.

An instrument called an extensometer is used to measure the elongation in the ten-

sion test specimen. The extensometer has two knife-edges, which are clipped to the test 

specimen (clips not shown in Figure 3.1). The initial distance between knife-edges is 

called the gage length. As tension is applied, the extensometer measures the elongation 

that occurs in the specimen within the gage length. Extensometers are capable of very 

precise measurements—elongations as small as 0.0001 in. or 0.002 mm. They are avail-

able in a range of gage lengths, with the most common models ranging from 0.3 in. to 

2 in. (in U.S. units) and from 8 mm to 100 mm (in SI units).

Tension Test Measurements

Several measurements are made before, during, and after the test. Before the test, the 

cross-sectional area of the specimen must be determined. The specimen area will be used 

with the force data to compute the normal stress. The gage length of the extensometer 

should also be noted. Normal strain will be computed from the specimen deformation 

(i.e., its axial elongation) and the gage length. During the test, the force applied to the 

specimen is recorded, and the elongation in the specimen between the extensometer knife-

edges is measured. After the specimen has broken, the two halves of the specimen are 

fi tted together so that the fi nal gage length, and the diameter of the cross section at the 

fracture location can be measured. The average engineering strain determined from the 

fi nal and initial gage lengths provides one measure of ductility. The reduction in area (be-

tween the area of the fracture surface and the original cross-sectional area) divided by the 

original cross-sectional area provides a second measure of the ductility of the material. 

The term ductility describes that the amount of strain that the material can withstand before 

fracturing.

Tension Test Results. The typical results from a tension test of a ductile metal are shown 

in Figure 3.3. Several characteristic features are commonly found on the load-deformation 

plot. As the load is applied, there is a range in which the deformation is linearly related to 

the load (1). At some load, the load-deformation plot will begin to curve and there will be 

noticeably larger deformations in response to relatively small load increases (2). As load is 

continually increased, stretching in the specimen will be obvious (3). At some point, a 

Upper
grip

Lower
grip

Extensometer

Knife-edges

Gage
length

FIGURE 3.1 Tension test 

setup.

Upset
threads

FIGURE 3.2 Tension test 

specimen with upset threads.

MecMovies 3.1 shows an 

animated tension test.
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maximum load intensity will be reached (4). Immediately following this peak, the speci-

men will begin to narrow and elongate markedly at one specifi c location, which causes the 

load acting in the specimen to decrease (5). Shortly thereafter, the specimen will fracture 

(6), breaking into two pieces at the narrowest cross section.

Another interesting characteristic of materials, particularly metals, can be observed if 

the test is interrupted at a point beyond the linear region. For the test depicted in Figure 3.3, 

the specimen was loaded into region (3) and then the load was removed. The specimen 

does not unload along the original loading curve. Rather, it unloads along a path that is 

parallel to the initial linear plot (1). When the load is completely removed, the deforma-

tion of the specimen is not zero as it was at the outset of the test. In other words, the 

specimen has been permanently and irreversibly deformed. When the test resumes and the 

load is increased, the reloading path exactly follows the unloading path. As it approaches 

the original load-deformation plot, the reloading plot begins to curve (7) in a fashion 

similar to region (2) on the original plot. However, the load at which the reloading plot 

markedly turns (7) is larger than it was in the original loading (2). The process of unload-

ing and reloading has strengthened the material so that it can withstand a larger load 

before it becomes distinctly nonlinear. The unload/reload behavior seen here is a very 

useful characteristic, particularly for metals. One technique for increasing the strength of 

a material is a process of stretching and relaxing called work hardening.

Preparing the Stress–Strain Diagram. The load-deformation data that are obtained 

in the tension test provide information about only one specifi c size of specimen. The test 

results are more useful if they are generalized into a stress–strain diagram. To construct a 

stress–strain diagram from tension test results, 

(a)  divide the specimen elongation data by the extensometer gage length to obtain  normal 

strain, 

(b)  divide the load data by the initial specimen cross-sectional area to obtain normal 

stress, and 

(c) plot strain on the horizontal axis and stress on the vertical axis.

L
oa

d

Deformation

Unload

Reload

Fracture(7)

(6)
(5)

(4)

(3)

(2)

(1)

FIGURE 3.3 Load-deformation plot from tension test. 
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Typical stress–strain diagrams for an aluminum alloy and a low-carbon steel are shown in 

Figure 3.4. Material properties essential for engineering design are obtained from the 

stress–strain diagram. These stress–strain diagrams will be examined to determine  several 

important properties, including the proportional limit, the elastic modulus, the yield 

strength, and the ultimate strength. The difference between engineering stress and true 

stress will be discussed, and the concept of ductility in metals will be introduced.

Proportional Limit

The proportional limit is the stress at which the stress–strain plot is no longer linear. 

Strains in the linear portion of the stress–strain diagram typically represent only a small 

fraction of the total strain at fracture. Consequently, it is necessary to enlarge the scale to 

clearly  observe the linear portion of the curve. The linear region of the aluminum  alloy 

stress–strain diagram is enlarged in Figure 3.5. A best-fi t line is plotted through the  stress–

strain data points. The stress at which the stress–strain data begins to curve away from this 

line is called the proportional limit. The proportional limit for this material is approxi-

mately 43.5 ksi.

Recall the unload/reload behavior shown in Figure 3.3. As long as the stress in the 

material remains below the proportional limit, no permanent damage will be caused during 

loading and unloading. In an engineering context, this means that a component can be 

loaded and unloaded many, many times and it will still behave “just like new.” This property 

is called elasticity, and it means that a material returns to its original dimensions during 

unloading. The material itself is said to be elastic in this region.

Elastic Modulus

Most components are designed to function elastically. Consequently, the relationship 

 between stress and strain in the initial linear region of the stress–strain diagram is of 

3.2 The Stress–Strain Diagram

Most engineered components are 

designed to function elastically 

to avoid permanent deformations 

that occur after the proportional 

limit is exceeded. Additionally, 

the size and shape of an object 

are not signifi cantly changed if 

strains and deformations are kept 

small. This can be a particularly 

important consideration for 

mechanisms and machines, 

which consist of many parts that 

must fi t together to operate 

properly.

MecMovies 3.1 shows an 

animated discussion of stress–

strain diagrams.
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FIGURE 3.4 Typical stress–strain diagrams for two common metals.
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 particular interest for engineering materials. In 1807, Thomas Young proposed character-

izing the material’s behavior in the elastic region by the ratio between normal stress and 

normal strain. This ratio is the slope of the initial straight-line portion of the stress–strain 

diagram. It is called Young’s modulus, the elastic modulus, or the modulus of elasticity, 

and it is denoted by the symbol E:

 E
�

�

�

�
�  (3.1)

The elastic modulus E is a measure of the material’s stiffness. In contrast to strength 

 measures that predict how much load a component can withstand, a stiffness measure 

such as the elastic modulus E is important because it defi nes how much stretching, com-

pressing, bending, or defl ecting will occur in a component in response to the loads acting 

on it.

In any experimental procedure, there is some amount of error associated with making 

a measurement. To minimize the effect of this measurement error on the computed elastic 

modulus value, it is better to use widely separated data points to calculate E. In the linear 

portion of the stress–strain diagram, the two most widely spaced data points are the propor-

tional limit point and the origin. Using the proportional limit and the origin, the elastic 

modulus E would be computed as

 E
43.5 ksi

0.0041 in./ in.
10,610 ksi� �   (3.2)

In practice, the best value for the elastic modulus E is obtained from a least-squares fi t of a 

line to the data between the origin and the proportional limit. Using a least-squares  analysis, 

the elastic modulus for this material is E � 10,750 ksi.
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FIGURE 3.5 Proportional limit.
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Work Hardening

The effect of unloading and reloading on the load-deformation plot was shown in 

Figure 3.3. The effect of unloading and reloading on the stress–strain diagram is shown 

in Figure 3.6. Suppose that the stress acting on a material is increased above the propor-

tional limit stress to point B. The strain between origin O and the proportional limit A is 

termed elastic strain. This strain will be fully recovered after the stress is removed from 

the  material. The strain between the points A and B is termed inelastic strain. When the 

stress is removed (i.e., unloaded), only a portion of the inelastic strain will be recovered. As 

stress is removed from the material, it unloads on a path parallel to the  elastic modulus 

line—that is, parallel to path OA. A portion of the strain at B is  recovered elastically. How-

ever, a portion of the strain remains in the material  permanently. This strain is referred to 

as residual strain or permanent set or plastic deformation. As stress is reapplied, the 

material reloads along path CB. Upon reaching point B, the material will resume following 

the original stress–strain curve. The proportional limit after reloading becomes the stress at 

point B, which is greater than the proportional limit for the original loading (i.e., point A). 

This phenomenon is called work hardening because it has the effect of increasing the 

proportional limit for the material.

In general, a material acting in the linear portion of the stress–strain curve is said 

to exhibit elastic behavior. Strains in the material are  temporary, meaning that all strain 

is recovered when the stress on the material is removed. Beyond the elastic region, a 

material is said to exhibit plastic behavior. Although some strain in the plastic region is 

temporary and can be recovered upon removal of the stress, a portion of the strain in the 

material is permanent. The permanent strain is termed plastic deformation.

Elastic Limit

Most engineered components are designed to act elastically, meaning that when loads are 

released, the component will return to its original, undeformed confi guration. For proper 
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FIGURE 3.6 Work hardening.
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THE STRESS–STRAIN DIAGRAMdesign, therefore, it is important to defi ne the stress at which the material will no longer 

behave elastically. With most materials, there is a gradual transition from elastic to 

 plastic behavior, and the point at which plastic deformation  begins is diffi cult to defi ne 

with precision. One measure that has been used to establish this threshold is termed the 

elastic limit.

The elastic limit is the largest stress that a material can withstand without any 

 measurable permanent strain remaining after complete release of the stress. The proce-

dure required to determine the elastic limit involves cycles of loading and unloading, 

each time incrementally increasing the applied stress (Figure 3.7). For instance, stress is 

increased to point A and then removed, with the strain returning to the origin O. This 

process is  repeated for points B, C, D, and E. In each instance, the strain returns to the 

origin O upon unloading. Eventually, a stress will be reached (point F) such that not all 

of the strain will be recovered during unloading (point G). The elastic limit is the stress 

at point F.

How does the elastic limit differ from the proportional limit? Although such materials 

are not common in engineered applications, a material can be elastic even though the 

stress–strain relationship is nonlinear. For a nonlinear elastic material, the elastic limit 

could be substantially greater than the proportional limit stress. Nevertheless, the propor-

tional limit is generally favored in practice since the procedure required to establish the 

elastic limit is tedious.

Yielding

For many common materials (such as the low-carbon steel shown in Figure 3.4 and  enlarged 

in Figure 3.8), the elastic limit is indistinguishable from the proportional limit. Past the 

elastic limit, relatively large deformations will occur for small or almost negligible in-

creases in stress. This behavior is termed yielding.

A material that behaves in the manner depicted in Figure 3.8 is said to have a yield 
point. The yield point is the stress at which there is an appreciable increase in strain with 

no increase in stress. Low-carbon steel, in fact, has two yield points. Upon reaching the 

 upper yield point, the stress drops abruptly to a sustained lower yield point. When a ma-

terial yields without an increase in stress, it is often referred to as being perfectly plastic. 

Materials having a stress–strain diagram similar to Figure 3.8 are termed elastoplastic.

Not every material has a yield point. Materials such as the aluminum alloy shown in 

Figure 3.4 do not have a clearly defi ned yield point. While the proportional limit marks the 

uppermost end of the linear portion of the stress–strain curve, it is sometimes diffi cult in 

practice to determine the proportional limit stress, particularly for materials with a gradual 

transition from a straight line to a curve. For such materials, a yield strength is  defi ned. The 

yield strength is the stress that will induce a specifi ed permanent set (i.e., plastic deforma-

tion) in the material, usually 0.05% or 0.2%. (Note: A permanent set of 0.2% is another 

way of expressing a strain value of 0.002 in./in., or 0.002 mm/mm.) To determine the yield 

strength from the stress–strain diagram, mark a point on the strain axis at the specifi ed 

permanent set (Figure 3.9). Through this point, draw a line that is parallel to the initial 

elastic modulus line. The stress at which the offset line intersects the stress–strain diagram 

is termed the yield strength.

Strain Hardening and Ultimate Strength

After yielding has taken place, most materials can withstand additional stress before 

 fracturing. The stress–strain curve rises continuously toward a peak stress value, which is 

termed the ultimate strength. The ultimate strength may also be called the tensile strength 
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or the ultimate tensile strength (UTS). The rise in the curve is called strain hardening. The 

strain hardening regions and the ultimate strength points for a low-carbon steel and an 

aluminum alloy are indicated on the stress–strain diagrams in  Figure 3.4.

Necking

In the yield and strain hardening regions, the cross-sectional area of the specimen 

decreases uniformly and permanently. Once the specimen reaches the ultimate strength, 

however, the change in specimen cross-sectional area is no longer uniform through-

out the gage length. The cross-sectional area begins to decrease in a localized region 

of the specimen, forming a contraction, or “neck.” This behavior is referred to as 

necking (Figure 3.10 and Figure 3.11). Necking  occurs in ductile materials, but not in 

brittle materials. (See ductility on the next page.)

Fracture

Many ductile materials break in what is termed a cup-and-cone fracture (Figure 3.12). In 

the region of maximum necking, a circular fracture surface forms at an angle of roughly 45� 
with respect to the tensile axis. This failure surface appears as a cup on one portion of the 

broken specimen and as a cone on the other portion. In contrast, brittle materials often 

fracture on a fl at surface that is oriented perpendicular to the tensile axis. The stress at 

which the specimen breaks into two pieces is called the fracture stress.  Examine the re-

lationship between the ultimate strength and the fracture stress in Figure 3.4. Does it 
seem odd that the fracture stress is less than the ultimate strength? If the  specimen did not 

break at the ultimate strength, why would it break at a lower stress?  Recall that the normal 

stress in the specimen was  computed by dividing the specimen load by the original cross-

sectional area. This method of calculating stresses is known as engineering stress. Engi-

neering stress does not take into account any changes in the specimen’s cross-sectional area 

during application of the load. After the ultimate strength is reached, the specimen starts to 

neck. As contraction within the localized neck region grows more pronounced, the cross-

sectional area continually decreases. The engineering stress calcula tions, however, are 
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FIGURE 3.9 Yield strength using offset method.
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FIGURE 3.10 Necking in 

 tension specimen.

c03Mechanicalpropertiesofmaterials.indd Page 54  2/22/12  5:43 PM user-F393c03Mechanicalpropertiesofmaterials.indd Page 54  2/22/12  5:43 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



55
THE STRESS–STRAIN DIAGRAM

based on the original specimen cross-sectional area. Consequently, the engineering stress 

computed at fracture and shown on the stress–strain diagram is not an accurate refl ection 

of the true stress in the material. If one were to  measure the specimen diameter during the 

tension test and compute the true stress according to the reduced diameter, one would fi nd 

that the true stress continues to increase above the ultimate strength (Figure 3.13).

Ductility

Strength and stiffness are not the only properties of interest to a design engineer. Another 

important property is ductility. Ductility describes the material’s capacity for plastic 

 deformation.

A material that can withstand large strains before fracture is called a ductile  material. 
Materials that exhibit little or no yielding before fracture are called brittle materials. 

FIGURE 3.11 Necking in a 

ductile metal specimen.
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FIGURE 3.13 True stress versus engineering stress.

FIGURE 3.12 Cup-and-cone failure surfaces.
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 Ductility is not necessarily related to strength. Two materials could have exactly the same 

strength, but very different strains at fracture (Figure 3.14).

Often, increased material strength is achieved at the cost of reduced ductility. In 

Figure 3.15, stress–strain curves for four different types of steel are compared. All four curves 

branch from the same elastic modulus line; therefore, each of the steels has the same stiffness. 

The steels range from a brittle steel (1) to a ductile steel (4). Steel (1) represents a hard tool 

steel, which exhibits no plastic deformation before fracture. Steel (4) is typical of low-carbon 

steel, which exhibits extensive plastic deformation before fracture. Of these steels, steel (1) is 

the strongest, but also the least ductile. Steel (4) is the weakest, but also the most ductile.

For the engineer, ductility is important in that it indicates the extent to which a metal can 

be deformed without fracture in metalworking operations such as bending,  rolling, forming, 

drawing, and extruding. In fabricated structures and machine components,  ductility also gives 

an indication of the material’s ability to deform at holes, notches, fi llets, grooves, and other 
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FIGURE 3.14 Ductile versus brittle materials.

FIGURE 3.15 Trade-off between strength and ductility for steels.
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57
THE STRESS–STRAIN DIAGRAMdiscontinuities that cause stresses to intensify locally. Plastic deformation in a ductile material 

allows stress to fl ow to a larger region around discontinuities. This redistribution of stress 

minimizes peak stress magnitudes and helps to prevent fracture in the component. Since 

ductile materials stretch greatly before fracturing, excessive component deformations in 

buildings, bridges, and other structures can warn of impending failure, providing opportuni-

ties for safe exit from the structure and allowing for repairs. Brittle materials exhibit sudden 

failure with little or no warning. Ductile materials also give the structure some capacity to 

absorb and redistribute the effects of extreme load events such as earthquakes.

Ductility Measures. Two measures of ductility are obtained from the tension test. The 

fi rst is the engineering strain at fracture. To determine this measure, the two halves of the 

broken specimen are fi tted together, the fi nal gage length is measured, and then the average 

strain is calculated from the initial and fi nal gage lengths. This value is usually expressed 

as a percentage, and it is referred to as the percent elongation.

Strain hardening

•  As the material stretches, 

it can withstand increas-

ing amounts of stress.  

Ultimate strength  

•  According to the engineering defi nition of stress, the  ultimate strength is the largest 

stress that the material can  withstand.

Yield 

•  A slight increase in stress 

causes a marked increase  

in strain.

•  Beginning at yield, the 

material is permanently 

altered. Only a portion 

of the strain will be 

recovered after the stress 

has been removed.

•  Strains are termed 

 inelastic since only a 

portion of the strain 

will be recovered upon 

removal of the stress.

•  The yield strength is 

an important design 

 parameter for the 

 material.  

Necking

•  The cross-sectional 

area begins to decrease  

markedly in a localized  

region of the specimen.

•  The tension force 

required to produce 

additional stretch in the  

specimen decreases as  

the area is reduced.

•  Necking occurs in 

ductile materials, but not 

in brittle materials.

Elastic behavior

• In general, the initial relationship between stress and strain is linear.

•  Elastic strain is temporary, meaning that all strain is fully recovered upon removal of 

the stress.

• The slope of this line is called the elastic modulus or the modulus of elasticity.

Fracture stress  

•  The fracture stress is 

the engineering stress 

at which the specimen 

breaks into two pieces.    

FIGURE 3.16 Review of signifi cant features on the stress–strain diagram.
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The second measure is the reduction in area at the fracture surface. This value is also 

expressed as a percentage and is referred to as the percent reduction of area. It is calcu-

lated as

 Percent reduction of area 0

0

A A

A
f ( %)100�

�
 (3.3)

where A0 � original specimen cross-sectional area and Af � specimen cross-sectional area 

on the fracture surface.

Review of Signifi cant Features

The stress–strain diagram provides essential engineering design information that is 

 applicable to components of any shape or size. While each material has its particular char-

acteristics, several important features are found on stress–strain diagrams for materials 

commonly used in engineering applications. These features are summarized in Figure 3.16.

As discussed previously, the initial portion of the stress–strain diagram for most materials 

used in engineering structures is a straight line. The stress–strain diagrams for some mate-

rials, such as gray cast iron and concrete, show a slight curve even at very small stresses, 

but it is common practice to neglect the curvature and draw a straight line in order to aver-

age the data for the fi rst part of the diagram. The proportionality of load to defl ection was 

fi rst recorded by Robert Hooke, who observed in 1678, Ut tension sic vis (“As the stretch, 

so the force”). This relationship is referred to as Hooke’s Law. For normal stress � and 

normal strain � acting in one direction (termed uniaxial stress and strain), Hooke’s Law is 

written as

 E�� �  (3.4)

where E is the elastic modulus.

Hooke’s Law also applies to shear stress � and shear strain � ,

 
G���

 (3.5)

where G is called the shear modulus or the modulus of rigidity.

3.3 Hooke’s Law

A material loaded in one direction will undergo strains perpendicular to the direction of the 

load as well as parallel to it. In other words,

3.4 Poisson’s Ratio

• If a solid body is subjected to an axial tension, it contracts in the lateral directions.

• If a solid body is compressed, it expands in the lateral directions.

c03Mechanicalpropertiesofmaterials.indd Page 58  1/27/12  2:19 PM user-F393c03Mechanicalpropertiesofmaterials.indd Page 58  1/27/12  2:19 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



59
POISSON’S RATIOThis phenomenon is illustrated in Figure 3.17, where the deformations are greatly exagger-

ated. Experiments have shown that the relationship between lateral and longitudinal strains 

caused by an axial force remains constant, provided that the material remains elastic and is 

homogeneous and isotropic (as defi ned in Section 2.4). This constant is a property of the 

material, just like other properties such as the elastic modulus E. The ratio of the lateral or 

transverse strain (�lat or �t) to the longitudinal or axial strain (�long or �a) for a uniaxial state 

of stress is called Poisson’s ratio, after Simeon D. Poisson, who identifi ed the constant in 

1811. Poisson’s ratio is denoted by the Greek symbol � (nu) and is defi ned as follows:

 

�

�

�

�
lat

long

t

a
� � � ��

 
(3.6)

The ratio � � ��t ��a is valid only for a uniaxial state of stress (i.e., simple tension or 

 compression). The negative sign appears in Equation (3.6) because the lateral and longitu-

dinal strains are always of opposite signs for uniaxial stress (i.e., if one strain is elongation, 

the other strain is contraction).

Values vary for different materials, but for most metals, Poisson’s ratio has a value 

between 1/4 and 1/3. Because the volume of material must remain constant, the largest 

possible value for Poisson’s ratio is 0.5. Values approaching this upper limit are found only 

for materials such as rubber.

Relationship Between E, G, and �

Poisson’s ratio is related to the elastic modulus E and the shear modulus G by the formula

 G
E

2(1 )�
�

�
 (3.7)

P

P

Final shape

Initial shape

PP

Final shape

Initial shape

FIGURE 3.17 Lateral 

contraction and lateral expansion 

of a solid body subjected to 

axial forces.

EXAMPLE 3.1

A tension test was conducted on a 1.975-in.-wide by 0.375-in.-thick specimen of a Nylon 

plastic. A 4.000-in. gage length was marked on the specimen before load application. In 

the elastic portion of the stress–strain curve at an applied load of P � 6,000 lb, the elonga-

tion in the gage length was measured as 0.023 in., and the contraction in the bar width was 

measured as 0.004 in. Determine

(a) the elastic modulus E.

(b) Poisson’s ratio �.

(c) the shear modulus G.

Plan the Solution
(a)  From the load and the initial measured dimensions of the bar, the normal stress can 

be computed. The normal strain in the longitudinal (i.e., axial) direction �long can be 

 computed from the elongation in the gage length and the initial gage length. With 

these two quantities, the elastic modulus E can be calculated from Equation (3.4). 

(b)  From the contraction in the width and the initial bar width, the strain in the 

lateral (i.e., transverse) direction �lat can be computed. Poisson’s ratio can then be 

 computed from Equation (3.6). 

(c) The shear modulus can be calculated from Equation (3.7).

4.000 in.

1.975 in.
P

P

The Poisson effect exhibited by 

materials causes no additional 

stresses in the lateral direction 

unless the transverse deformation 

is inhibited or prevented in some 

manner.
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SOLUTION
(a) The normal stress in the plastic specimen is

�
6,000 lb

(1.975 in.)(0.375 in.)
8,101.27 psi� �

 The longitudinal strain is

�long
0.023 in.

4.000 in.
0.005750 in./in.��

 Therefore, the elastic modulus E is

 E
�

�

8,101.27 psi

0.005750 in./in.
1,408,916 psi 1,409,000 psi� � � �  Ans.

(b) The lateral strain is

�lat
0.004 in.

in.
0.002025 in./in.

1 975.
� � �

�

 From Equation (3.6), Poisson’s ratio can be computed as

 �
�

�
lat

long

0.002025 in./in.

0.005750 in./in.
0.352� � �

�
� �  Ans.

(c) The shear modulus G is computed from Equation (3.7) as

 
1,408,916 psi

2(1 0.352)
521,049 ps 221,000 psiG

E
2(1 )�

� � � �
� �

i 5  Ans.

Rigid bar ABC is supported by a pin at A and a 100-mm-wide 

by 6-mm-thick aluminum [E � 70 GPa; � � 22.5 � 10�6�°C; 

�  � 0.33] alloy bar at B. A strain gage affi xed to the surface of 

the aluminum bar is used to measure its longitudinal strain. 

Before load P is applied to the rigid bar at C, the strain gage 

measures zero longitudinal strain at an ambient temperature 

of 20°C. After load P is applied to the rigid bar at C and the 

temperature drops to �10°C, a longitudinal strain of �2,400 �� 

is measured in the aluminum bar. Determine

(a) the stress in member (1).

(b) the magnitude of load P.

(c)  the change in the width of the aluminum bar (i.e., the 

100-mm dimension).

Plan the Solution
This problem illustrates some misconceptions common in applying Hooke’s Law and 

 Poisson’s ratio, particularly when temperature change is a factor in the analysis.

EXAMPLE 3.2

1.5 m 1.0 m
A B C

(1)

P
1.3 m

Strain
gage

100 mm
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SOLUTION
(a)  Since the elastic modulus E and the longitudinal strain � are given in the problem, 

one might be tempted to compute the normal stress in aluminum bar (1) from 

Hooke’s Law [Equation (3.4)]:

(70 GPa) (2,400 )
1,000 MPa

1 GPa

1 m⎡
⎣
⎢

⎤
⎦
⎥E 111

mm/mm

1,000,000
168 MPa⎡

⎣
⎢

⎤
⎦
⎥�� � � ��

��
�

 This calculation is not correct for the normal stress in member (1). Why is it incorrect?

 From Equation (2.7), the total strain �total in an object includes a portion due to stress 

�	 and a portion due to temperature change �T. The strain gage affi xed to member (1) 

has measured the total strain in the aluminum bar as �total � �2,400 �� � 

�0.002400 mm/mm. In this problem, however, the temperature of member (1) has 

dropped 30°C before the strain measurement. From Equation (2.6), the strain caused 

by the temperature change in the aluminum bar is

�T T /( )22.5 10 °C ( 30°C) 0.000675 mm/mm–6� �� � � � � �

 Therefore, the strain caused by normal stress in member (1) is

total T� � ��� �

∴ total 0.002400 ( 0.000675

0
T mm/mm mm/mm)

..003075 mm/mm
� � ��

�

� � �

�

� �

 Using this strain value, the normal stress in member (1) can now be computed from 

Hooke’s Law:

 1 (70 GPa)(0.003075 ) 215.25 MPa 215 ME mm/mm PPa� � � �� �  Ans.

(b) The axial force in member (1) is computed from the normal stress and the bar area:

111
2215.25 (100 mm)(6 mm) 129,150 N( )� N/mm� � �F A

 Write an equilibrium equation for the sum of moments about joint A and solve for 

load P:

ΣM PA (1.5 m)(129,150 N) (2.5 m) 0� � �

 ∴P 77,490 N 77.5 kN� �  Ans.

(c)  The change in the bar width is computed by multiplying the lateral (i.e., transverse) 

strain �lat by the 100-mm initial width. To determine �lat, the defi nition of Poisson’s 

ratio [Equation (3.6)] is used:

�

�
lat

long
� ��     ∴�lat �long� ��

 Using the given value of Poisson’s ratio and the measured strain, �lat could be calcu-

lated as

(0.33)( ) 7922,400�lat �long� � � � � �� �� ��

 This calculation is not correct for the lateral strain in member (1). Why is it 
incorrect?
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 The Poisson effect applies only to strains caused by stresses (i.e., mechanical effects). 

When unrestrained, homogeneous, isotropic materials expand uniformly in all direc-

tions as they are heated (and contract uniformly as they cool). Consequently, thermal 

strains should not be included in the Poisson’s ratio calculation. For this problem, the 

lateral strain should be calculated as

(0.33)(0.003075 ( 0.000675 0.0mm/mm) m/m) 0016898 mm/mm�lat � � � �� �

 The change in the width of the aluminum bar is, therefore,

 width mm/mm( 0.0016898 )(100 mm) 0.1690 mm� � � � �  Ans.

Two blocks of rubber, each 80 mm long by 40 mm wide by 

20 mm thick, are bonded to a rigid support mount and to a 

movable plate (1). When a force of P � 2,800 N is applied to 

the assembly, plate (1) defl ects 8 mm horizontally. Determine 

the shear modulus G of the rubber used for the blocks.

Plan the Solution
Hooke’s Law expresses the relationship between shear stress and 

shear strain [Equation (3.5)]. The shear stress can be determined 

from the applied load P and the area of the rubber blocks that 

contact the movable plate (1). Shear strain is an angular measure, 

which can be determined from the horizontal defl ection of plate 

(1) and the thickness of the rubber blocks. Shear modulus G is 

computed from the shear stress divided by the shear strain.

SOLUTION
Consider a free-body diagram of movable plate (1). Each 

rubber block provides a shear force that opposes the applied 

load P. From equilibrium, the sum of forces in the horizontal 

direction is

ΣFx 2 0V� �� P

∴V (2,800 N) 1,400 N� � �P 2 2

Next, consider a free-body diagram of the upper rubber block in 

its defl ected position. The shear force V acts on a surface that is 

80 mm long and 40 mm wide. Therefore, the shear stress � in 

the rubber block is

�
1,400 N

(80 mm)(40 mm)
0.4375 MPa� �

The 8-mm horizontal defl ection causes the block to skew as 

shown. The angle �  (measured in radians) is the shear strain:

tan
8 mm

20 mm
� �     � � 0.3805 rad�

EXAMPLE 3.3

P

80 mm

40 mm

20 mm (1)

P
V

V (1)

V

V

8 mm

20 mm
�

(1)
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The shear stress �, the shear modulus G, and the shear strain � are related by 

Hooke’s Law:

G���

Therefore, the shear modulus G of the rubber used for the blocks is

 G
�

�

0.4375 MPa

0.3805 rad
1.150 MPa� � �  Ans.

FIGURE M3.1

M3.1 Three basic problems requiring the use of Hooke’s Law.

 MecMovies Exercises

P3.1 At the proportional limit, a 2-in. gage length of a 0.375-in.-

diameter alloy rod has elongated 0.0083 in. and the diameter has been 

reduced 0.0005 in. The total tension force on the rod was 4.75 kips. 

Determine the following properties of the material: 

(a) the modulus of elasticity

(b) Poisson’s ratio

(c) the proportional limit

P3.2 A solid circular rod with a diameter of d � 16 mm is shown 

in Figure P3.2. The bar is made of an aluminum alloy that has an 

elastic modulus of E � 72 GPa and Poisson’s of v � 0.33. When 

subjected to the axial load P, the diameter of the rod decreases by 

0.024 mm. Determine the magnitude of load P. 

d
P P

FIGURE P3.2

PROBLEMSPROBLEMS
P3.3 At an axial load of 22 kN, a 45-mm-wide by 15-mm-

thick polyimide polymer bar elongates 3.0 mm while the bar 

width contracts 0.25 mm. The bar is 200 mm long. At the 22-kN 

load, the stress in the polymer bar is less than its proportional 

limit. Determine

(a) the modulus of elasticity.

(b) Poisson’s ratio.

(c) the change in the bar thickness.

P3.4 A 0.75-in.-thick rectangular alloy bar is subjected to a ten-

sile load P by pins at A and B as shown in Figure P3.4/5. The width 

of the bar is w � 3.0 in. Strain gages bonded to the specimen mea-

sure the following strains in the longitudinal (x) and transverse (y) 

directions: �x � 840 �� and �y � �250 ��. 

(a) Determine Poisson’s ratio for this specimen.

(b)  If the measured strains were produced by an axial load of 

P � 32 kips, what is the modulus of elasticity for this 

specimen?
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P3.5 A 6-mm-thick rectangular alloy bar is subjected to a tensile 

load P by pins at A and B, as shown in Figure P3.4/5. The width of 

the bar is w � 30 mm. Strain gages bonded to the specimen mea-

sure the following strains in the longitudinal (x) and transverse (y) 

directions: �x � 900 �� and �y � �275 ��. 

(a) Determine Poisson’s ratio for this specimen.

(b)  If the measured strains were produced by an axial load of P � 

19 kN, what is the modulus of elasticity for this  specimen?

P3.6 A nylon [E � 2,500 MPa; � � 0.4] bar is subjected to an 

axial load that produces a normal stress of �. Before the load is ap-

plied, a line having a slope of 3:2 (i.e., 1.5) is marked on the bar as 

shown in Figure P3.6. Determine the slope of the line when � � 

105 MPa.

wy
x

P A
B

P

FIGURE P3.4/5

P3.7 A nylon [E � 360 ksi; � � 0.4] rod (1) having a diameter 

of d1 � 2.50 in. is placed inside a steel [E � 29,000 ksi; � � 0.29] 

tube (2) as shown in Figure P3.7. The inside diameter of the steel 

tube is d2 � 2.52 in. An external load P is applied to the nylon rod, 

compressing it. At what value of P will the space between the nylon 

rod and the steel tube be closed?

P3.8 A metal specimen with an original diameter of 0.500 in. 

and a gage length of 2.000 in. is tested in tension until fracture 

occurs. At the point of fracture, the diameter of the specimen is 

0.260 in. and the fractured gage length is 3.08 in. Calculate the duc-

tility in terms of percent elongation and percent reduction in area.

P3.9 A portion of the stress–strain curve for a stainless steel 

 alloy is shown in Figure P3.9. A 350-mm-long bar is loaded in ten-

sion until it elongates 2.0 mm, and then the load is removed. 

(a) What is the permanent set in the bar?

(b) What is the length of the unloaded bar?

(c) If the bar is reloaded, what will be the proportional limit? 

P3.10 The 16 by 22 by 25-mm rubber blocks shown in 

Figure P3.10 are used in a double U shear mount to isolate the 

vibration of a machine from its supports. An applied load of 

P � 285 N causes the upper frame to be defl ected downward by 

5 mm. Determine the shear modulus G of the rubber blocks.

P3.11 Two hard rubber blocks are used in an anti-vibration 

mount to support a small machine as shown in Figure P3.11. An 

applied load of P � 150 lb causes a downward defl ection of 

P

P

d2 d1

Nylon rod (1)

Steel tube (2)
FIGURE P3.7
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0.25 in. Determine the shear modulus of the rubber blocks. Assume 

a � 0.5 in., b � 1.0 in., and c � 2.5 in.

P3.12 Two hard rubber blocks [G � 350 kPa] are used in an 

anti-vibration mount to support a small machine as shown in 

Figure P3.12. Determine the downward defl ection that will occur 

for an applied load of P � 900 N. Assume a � 20 mm, 

b � 50 mm, and c � 80 mm.

P3.13 A load test on a 6-mm-diameter by 225-mm-long alumi-

num alloy rod found that a tension load of 4,800 N caused an elastic 

elongation of 0.52 mm in the rod. Using this result, determine the 

elastic elongation that would be expected for a 24-mm-diameter 

rod of the same material if the rod were 1.2 m long and subjected to 

a tension force of 37 kN.

P3.14 The stress–strain diagram for a particular stainless steel 

alloy is shown in Figure P3.14. A rod made from this material is 

initially 800 mm long at a temperature of 20°C. After a tension 

force is applied to the rod and the temperature is increased by 

200°C, the length of the rod is 804 mm. Determine the stress in the 

rod and state whether the elongation in the rod is elastic or inelas-

tic. Assume the coeffi cient of thermal expansion for this material 

is 18 � 10�6�°C. 

P3.15 In Figure P3.15, rigid bar ABC is supported by axial 

member (1), which has a cross-sectional area of 400 mm2, an elas-

tic modulus of E � 70 GPa, and a coeffi cient of thermal expansion 

of � � 22.5 � 10�6�°C. After load P is applied to the rigid bar and 

the temperature rises 40°C, a strain gage affi xed to member (1) 

measures a strain increase of 2,150 ��. Determine

(a) the normal stress in member (1). 

(b) the magnitude of applied load P. 

(c) the defl ection of the rigid bar at C. 

P3.16 A tensile test specimen of 1045 hot-rolled steel having a 

diameter of 0.505 in. and a gage length of 2.00 in. was tested to 

fracture. Stress and strain data obtained during the test are shown in 

Figure P3.16. Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.20% offset).

(e) the fracture stress.

(f)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 0.392 in.
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P3.17 A tensile test specimen of stainless steel alloy having a 

diameter of 0.495 in. and a gage length of 2.00 in. was tested to 

fracture. Stress and strain data obtained during the test are shown 

in Figure P3.17. Determine.

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.20% offset).

(e) the fracture stress.

(f)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 0.350 in.

P3.18 A bronze alloy specimen having a diameter of 12.8 mm 

and a gage length of 50 mm was tested to fracture. Stress and strain 

data obtained during the test are shown in Figure P3.18. Determine 

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.20% offset).

(e) the fracture stress.

(f)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 10.5 mm.

P3.19 An alloy specimen having a diameter of 12.8 mm and a 

gage length of 50 mm was tested to fracture. Load and deformation 

data obtained during the test are given. Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 11.3 mm.

Load (kN)
Change in 

Length (mm) Load (kN)
Change in 

Length (mm)

0 0

 7.6 0.02 43.8  1.50

 14.9 0.04 45.8  2.00

 22.2 0.06 48.3  3.00

 28.5 0.08 49.7  4.00

 29.9 0.10 50.4  5.00

 30.6 0.12 50.7  6.00

 32.0 0.16 50.4  7.00

 33.0 0.20 50.0  8.00

 33.3 0.24 49.7  9.00

 36.8 0.50 47.9 10.00

 41.0 1.00 45.1 fracture
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P3.20 A 1035 hot-rolled steel specimen with a diameter of 

0.500 in. and a 2.0-in. gage length was tested to fracture. Load 

and deformation data obtained during the test are given. 

Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 0.387 in.

Load (lb)
Change in 

Length (in.) Load (lb)
Change in 

Length (in.)

  0   0 12,540 0.0209

 2,690 0.0009 12,540 0.0255

 5,670 0.0018 14,930 0.0487

 8,360 0.0028 17,020 0.0835

11,050 0.0037 18,220 0.1252

12,540 0.0042 18,820 0.1809

13,150 0.0046 19,110 0.2551

13,140 0.0060 19,110 0.2968

12,530 0.0079 18,520 0.3107

12,540 0.0098 17,620 0.3246

12,840 0.0121 16,730 0.3339

12,840 0.0139 16,130 0.3385

15,900 fracture

P3.21 A 2024-T4 aluminum test specimen with a diameter 

of 0.505 in. and a 2.0-in. gage length was tested to fracture. 

Load and deformation data obtained during the test are given. 

Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 0.452 in.

Load (lb)
Change in 

Length (in.) Load (lb)
Change in 

Length (in.)

     0 0.0000 11,060 0.0139

 1,300 0.0014 11,500 0.0162

 2,390 0.0023 12,360 0.0278

 3,470 0.0032 12,580 0.0394

 4,560 0.0042 12,800 0.0603

 5,640 0.0051 13,020 0.0788

 6,720 0.0060 13,230 0.0974

 7,380 0.0070 13,450 0.1159

 8,240 0.0079 13,670 0.1391

 8,890 0.0088 13,880 0.1623

 9,330 0.0097 14,100 0.1994

 9,980 0.0107 14,100 0.2551

10,200 0.0116 14,100 0.3200

10,630 0.0125 14,100 0.3246

14,100 fracture

P3.22 A 1045 hot-rolled steel tension test specimen has a diam-

eter of 6.00 mm and a gage length of 25 mm. In a test to fracture, 

the stress and strain data below were obtained. Determine 

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g)  the true fracture stress if the fi nal diameter of the specimen at 

the location of the fracture was 4.65 mm.

Load (kN)
Change in 

Length (mm) Load (kN)
Change in 

Length (mm)

 0.00 0.00 13.22 0.29

 2.94 0.01 16.15 0.61

 5.58 0.02 18.50 1.04

 8.52 0.03 20.27 1.80

11.16 0.04 20.56 2.26

12.63 0.05 20.67 2.78

13.02 0.06 20.72 3.36

13.16 0.08 20.61 3.83

13.22 0.08 20.27 3.94

13.22 0.10 19.97 4.00

13.25 0.14 19.68 4.06

13.22 0.17 19.09 4.12

18.72 fracture

P3.23 A concentrated load P is supported by two bars as 

shown in Figure P3.23. Bar (1) is made of cold-rolled red brass 

[E � 16,700 ksi; � � 10.4 � 10−6 � �F] and has a cross-

sectional area of 0.225 in.2. Bar (2) is made of 6061-T6 aluminum 

[E � 10,000 ksi; � � 13.1 � 10 �6 � �F] and has a cross-sectional 

area of 0.375 in.2. After load P has been applied and the temperature 

of the entire assembly has increased by 50�F, the total strain in bar 

(1) is measured as 1,400 �� (elongation). Determine

(a) the magnitude of load P. 

(b) the total strain in bar (2).
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P3.24 The rigid bar AC in Figure P3.24 is supported by two 

axial bars (1) and (2). Both axial bars are made of bronze 

[E � 100 GPa; � � 18 � 10�6 � �C]. The cross-sectional area of 

bar (1) is A1 � 240 mm2 and the cross-sectional area of bar (2) is 

A2 � 360 mm2. After load P has been applied and the temperature 

of the entire assembly has increased by 30�C, the total strain in bar 

(2) is measured as 1,220 �� (elongation). Determine

(a) the magnitude of load P. 

(b) the vertical displacement of pin A.

P3.25 The rigid bar in Figure P3.25/26 is supported by axial bar 

(1) and by a pin connection at C. Axial bar (1) has a cross-sectional 

area of A1 � 275 mm2, an elastic modulus of E � 200 GPa, and a 

coeffi cient of thermal expansion of � � 11.9 � 10 �6 � �C. The pin at 

C has a diameter of 25 mm. After load P has been applied and the 

temperature of the entire assembly has been increased by 20�C, the 

total strain in bar (1) is measured as 925 �� (elongation). Determine

(a) the magnitude of load P. 

(b) the shear stress in pin C.

P3.26 The rigid bar in Figure P3.25/26 is supported by axial bar 

(1) and by a pin connection at C. Axial bar (1) has a cross-sectional 

area of A1 � 275 mm2, an elastic modulus of E � 200 GPa, and a 

coeffi cient of thermal expansion of � � 11.9 � 10 �6 � �C. The pin at 

C has a diameter of 25 mm. After load P has been applied and the 

temperature of the entire assembly has been decreased by 30�C, the 

total strain in bar (1) is measured as 925 �� (elongation). Determine

(a) the magnitude of load P. 

(b) the shear stress in pin C.

(1)

(2)

A C
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Design Concepts

CHAPTER 4

The design problems faced by engineers involve many considerations, such as function, 

safety, initial cost, life-cycle cost, environmental impacts, effi ciency, and aesthetics. In 

mechanics of materials, however, our interest focuses on three mechanical considerations: 

strength, stiffness, and stability. In addressing these concerns, a number of uncertainties 

must be considered and accounted for in a successful design.

The loads that act on structures or machines are generally estimated, and there may be 

substantial variation in these loads, such as the following:

• The rate of loading may differ from design assumptions.

•  There is uncertainty associated with the material used in a structure or machine. 

Since testing usually damages the material, the mechanical properties of the 

material cannot be evaluated directly, but rather are determined by testing 

specimens of a similar material. For a material such as wood, there may be 

substantial variation in the strength and stiffness of individual boards and 

timbers.

• Material strengths over time may change due to corrosion and other effects.

•  Environmental conditions such as temperature, humidity, and exposure to rain and 

snow may differ from design assumptions.

4.1 Introduction
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The forces that act on a structure or machine are called loads. The specifi c types of load 

that act on a structure or machine depend on the particular application. Several types of 

load that act on building structures are discussed next.

Dead Loads

Dead loads consist of the weight of various structural members and the weights of objects 

that are permanently attached to a structure. For a building, the self-weight of the structure 

includes items such as beams, columns, fl oor slabs, walls, plumbing, electrical fi xtures, 

permanent mechanical equipment, and the roof. The magnitude and location of these loads 

are unchanging throughout the lifetime of the structure.

In designing a structure, the size of each individual beam, fl oor, column, and other 

 component is unknown at the outset. An analysis of the structure must be performed before 

fi nal member sizes can be determined; however, the analysis must include the weight of the 

members. Consequently, it is often necessary to perform design calculations iteratively—

estimating the weight of various components; performing an analysis;  selecting appropri-

ate member sizes; and, if signifi cant differences are present, repeating the analysis with 

improved estimates for the member weights.

Although the self-weight of a structure is generally well defi ned, the dead load may be 

underestimated due to uncertainty of other dead load components such as the weight of 

permanent equipment, room partitions, roofi ng materials, fl oor coverings, fi xed service 

equipment, and other immovable fi xtures. Future modifi cations to the structure may also 

need to be considered. For instance, additional highway paving materials may be added at 

a future time to the deck of a bridge structure.

Live Loads

Live loads are loads in which the magnitude, duration, and location of the loading vary 

throughout the lifetime of the structure. They may be caused by the weight of objects tem-

porarily placed on the structure, moving vehicles or people, or natural forces. The live load 

on fl oors and decks is typically modeled as a uniformly distributed area loading that ac-

counts for items normally associated with the intended use of the space. For typical  offi ce 

and residential structures, these items include occupants, furnishings, and storage.

For structures such as bridges and parking garages, a concentrated live load (or loads) 

representing the weight of vehicles or other heavy items must be considered in addition to 

•  Although their chemical composition may be the same, the materials used in prototypes 

or test components may differ from those used in production components due to such 

factors as microstructure, size, rolling or forming effects, and surface fi nish.

•  Stresses may be created in a component during the fabrication process, and it is 

 possible that poor workmanship could diminish the strength of a design.

•  Models and methods used in analysis may oversimplify or incorrectly idealize a 

 structure and thereby inadequately represent its true behavior.

Textbook problems may convey the impression that analysis and design are a process of 

applying rigorous calculation procedures to perfectly defi ned structures and machines in 

order to obtain defi nitive results. In practice, however, design procedures must make 

 allowances for many factors that cannot be quantifi ed with great certainty.

4.2 Types of Loads

DESIGN CONCEPTS
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71
SAFETYthe distributed uniform area loading. In the analysis, the effects of such concentrated loads 

at various potentially critical locations must be investigated.

A load suddenly applied to a structure is termed impact. A crate dropped on the fl oor 

of a warehouse or a truck bouncing on uneven pavement creates a greater force in a struc-

ture than would normally occur if the load were applied slowly and gradually. Specifi ed 

live loads generally include an appropriate allowance for impact effects of normal use and 

traffi c. Special impact consideration may be necessary for structures supporting elevator 

machinery, large reciprocating or rotating machinery, and cranes.

By their nature, live loads are known with much less certainty than dead loads. Live 

loads vary in intensity and location throughout the lifetime of the structure. In a building, 

for example, unanticipated crowding of people in a space may occur on occasion, or per-

haps a space may be subjected to unusually large loads during renovation as furnishings or 

other materials are temporarily relocated.

Snow Load

In colder climates, snow load may be a signifi cant design consideration for roof elements. 

The magnitude and duration of snow loads cannot be known with great certainty. Further, 

the distribution of snow generally will not be uniform on a roof structure due to wind-blown 

drifting of snow. Large accumulations of snow often will occur near locations where a roof 

changes height, creating additional loading effects.

Wind Loads

Wind exerts pressure on a building in proportion to the square of its velocity. At any given 

moment, wind velocities consist of an average velocity plus a superimposed turbulence 

known as a wind gust. Wind pressures are distributed over a building’s exterior surfaces, 

both as positive pressures that push on walls or roof surfaces and as negative pressures (or 

suction) that uplift roofs and pull walls outward. Wind load magnitudes acting on structures 

vary with geographic location, heights above ground, surrounding terrain characteristics, 

building shape and features, and other factors. Wind is capable of striking a structure from 

any direction. Altogether, these characteristics make it very diffi cult to accurately predict 

the  magnitude and distribution of wind loading.

Engineers seek to produce objects that are suffi ciently strong to perform their intended 

function safely. To achieve safety in design with respect to strength, structures and ma-

chines are always designed to withstand loads above what would be expected under ordi-

nary conditions (termed overload). While this reserve capacity is needed to ensure safety 

in response to an extreme load event, it also allows the structure or machine to be used in 

ways not originally anticipated during design.

The crucial question, however, is “How safe is safe enough?” If a structure or machine 

does not have enough extra capacity, there is a signifi cant probability that an overload could 

cause failure, where failure is defi ned as breakage, rupture, or collapse. If too much reserve 

capacity is incorporated into the design of a component, the potential for failure may be slight, 

but the object may be unnecessarily bulky, heavy, or expensive to build. The best designs strike 

a balance between economy and a conservative, but reasonable, margin of safety against failure.

Two philosophies for addressing safety are commonly used in current engineering 

design practice for structures and machines. These two approaches are called allowable 
stress design and load and resistance factor design.

4.3 Safety
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The allowable stress design (ASD) method focuses on loads that exist at normal or typical 

conditions. These loads are termed service loads, and they consist of dead, live, wind, and 

other loads that are expected to occur while the structure is in service. In the ASD method, 

a structural element is designed so that elastic stresses produced by service loads do not 

exceed some fraction of the specifi ed minimum yield stress of the material—a stress 

limit that is termed the allowable stress (Figure 4.1). If stresses under ordinary condi-

tions are maintained at or below the allowable stress, a reserve capacity of strength will 

be available should an unanticipated overload occur, thus providing a margin of safety for 

the design.

The allowable stress used in design computations is computed by dividing the failure 

stress by a factor of safety (FS):

 
�

�
�

�
allow

failure
allow

failureor� �
FS FFS

 (4.1)

Failure may be defi ned in several ways. It may be that “failure” refers to an actual fracture 

of the component, in which case the ultimate strength of the material (as determined from 

the stress–strain curve) is used as the failure stress in Equation (4.1). Alternatively, failure 

may refer to an excessive deformation in the material associated with yielding that renders 

the component unsuitable for its intended function. In this situation, the failure stress in 

Equation (4.1) is the yield stress.

Factors of safety are established by groups of experienced engineers who write the 

codes and specifi cations used by other designers. The provisions of codes and specifi ca-

tions are intended to provide reasonable levels of safety without unreasonable cost. The 

type of failure anticipated as well as the history of similar components, the consequences 

of failure, and other uncertainties are considered in deciding on appropriate factors of 

safety for various situations. Typical factors of safety range from 1.5 to 3, although larger 

values may be found in specifi c applications.
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FIGURE 4.1 Allowable stress on the stress–strain curve.

4.4 Allowable Stress Design
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In some instances, engineers may need to assess the level of safety in an existing or a 

proposed design. For this purpose, the factor of safety may be computed as the ratio of the 

anticipated failure stress to the estimated actual stress:

 FS or FS
actual actual

� �
�

�

�

�
failure failure

 (4.2)

Factor-of-safety calculations need not be limited to stresses. The factor of safety may also 

be defi ned as the ratio between a failure-producing force and the estimated actual force— 

for instance,

 FS or FS
actual actual

� �
P
P V
failure failureV

 (4.3)

EXAMPLE 4.1

A load of 8.9 kN is applied to a 6-mm-thick steel plate, 

as shown. The steel plate is supported by a 10-mm-

diameter steel pin in a single shear connection at A and a 

10-mm-diameter steel pin in a double shear connection 

at B. The ultimate shear strength of the steel pins is 

280 MPa, and the ultimate bearing strength of the steel 

plate is 530 MPa. Determine

(a)  the factor of safety for pins A and B with respect to 

the ultimate shear strength.

(b)  the factor of safety with respect to the ultimate 

bearing strength for the steel plate at pin B.

Plan the Solution
From equilibrium, the reaction forces at pins A and B will be computed. In particular, the 

resultant force at B must be computed from the horizontal and vertical reactions at B. Once 

the pin forces have been determined, the pin shear stresses will be computed, taking into 

account whether the pin is used in a single or a double shear connection. The bearing stress 

in the plate at B is found from the resultant pin force at B and the product of the plate thick-

ness and the pin diameter. After these three stresses have been determined, the factors of 

safety with respect to the ultimate strengths will be computed for each consideration.

SOLUTION
From equilibrium, the reaction forces at pins A and B can be 

determined. Note: The pin at A rides in a slotted hole; therefore, 

it exerts only vertical force on the steel plate.

The reaction forces are shown on the sketch along with 

pertinent dimensions.

The resultant force exerted by pin B on the plate is

RB � � �( (6.293 kN) 12.741 kN) 14.210 kN2 2

Note: The resultant force should always be used in computing 

the shear stress in a pin or bolt.

45°30°

120 mm

8.9 kN

160 mm

C

B
A

6.293 kN

12.741 kN6.448 kN

160 mm 60 mm

103.923 mm

45°

45°

A B

C 6.293 kN

6.293 kN 8.9 kN
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(a)  The cross-sectional area of a 10-mm-diameter pin is Apin � 78.540 mm2. Since pin 

A is a single shear connection, its shear area AV is equal to the pin cross-sectional 

area Apin. The shear stress in pin A is found from the shear force VA that acts on the 

pin (i.e., the 6.448-kN reaction force) and AV:

�A
A

V

V

A
� � �

( )6.448 kN)(1,000 N/kN

78.540 mm
82.1 M

2
PPa

  Pin B is a double shear connection; therefore, the pin area subjected to shear stress AV 

is equal to twice the pin cross-sectional area Apin. The shear force VB that acts on the 

pin equals the resultant force at B:

�B
B

V

V

A
� � �

(14.210 kN)( )

2 78.540 mm
90

2

1,000 N/kN
..5 MPa

  By Equation (4.2), the pin factors of safety with respect to the 280 MPa ultimate shear 

strength are

    FS failure

actual
A � � �

�

�

280 MPa

82.1 MPa
3.41  FS

280 MPa

90.5 MPa
3.09

actual
B � � �

�

�
failure

 Ans.

(b)  The bearing stress at B occurs on the contact surface between the 10-mm-diameter 

pin and the 6-mm-thick steel plate. Although the actual stress distribution in the 

steel plate at this contact point is quite complex, the average bearing stress is 

customarily computed from the contact force and a projected area equal to the 

product of the pin diameter and the plate thickness. Therefore, the average bearing 

stress in the steel plate at pin B is computed as

�b
B

B

R

d t
� � �

(14.210 kN)(1,000 N/kN)

(10 mm)(6 mm)
2336.8 MPa

  The factor of safety of the plate with respect to the 530 MPa ultimate bearing 

strength is

 FSbearing
530 MPa

236.8 MPa
2.24� �  Ans.

A truss joint is shown in the sketch. Member (1) has a cross-sectional area of 

7.22 in.2 and member (2) has a cross-sectional area of 3.88 in.2. Both mem-

bers are A36 steel with a yield strength of 36 ksi. If a factor of safety of 1.5 

is required, determine the maximum load P that may be applied to the joint.

Plan the Solution
Since truss members are two-force members, two equilibrium equations 

can be written for the concurrent force system. From these equations, the 

unknown load P can be expressed in terms of member forces F1 and F2. 

An allowable stress can be determined from the yield strength of the steel 

and the specifi ed factor of safety. With the allowable stress and the cross-sectional 

area, the maximum allowable member force can be determined. However, it is not likely 

EXAMPLE 4.2

P

30°45°

x

y

(1) (2)
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y

F1 F2

P60°45°

Compute maximum P: Next, two possibilities must be investigated: Either member (1) con-

trols, or member (2) controls. First, assume that the allowable force in member (1) controls 

that both members will be stressed to their allowable limit. It is more probable that one 

member will control the design. Using the equilibrium results and the allowable member 

forces, the controlling member will be determined, and, in turn, the maximum load P can 

be  computed.

SOLUTION
Equilibrium
The free-body diagram (FBD) for the truss joint is shown. From the FBD, two equilibrium 

equations in terms of three unknowns—F1, F2, and P—can be written. Note: We will 

 assume that internal member forces F1 and F2 are tension forces (even though we may 

expect member (2) to be in compression).

 
F F F Px � � � � �1 2cos45° cos60° 0Σ  

(a)

 
F F Fy � � � �1 2sin45° 60°sin 0Σ  

(b)

From these two equations, expressions for the unknown load P can be derived in terms of 

member forces F1 and F2:

 P F� �cos45°
sin45°

sin60°
cos60° 1  (c)

 P F� � �
sin60°

sin 45°
cos45° cos60° 2  (d)

Allowable stress: The allowable normal stress in the steel members can be computed from 

Equation (4.1):

 �
�

allow FS
� � �Y 36 ksi

1.5
24 ksi  (e)

Allowable member force: The allowable stress can be used to calculate the allowable force 

in each member:

 F1,allow allow 1
2(24 ksi) 7.22 in. 173.28 ki� � ( ) �� A pps

 
(f)

 
F A2 2,allow allow

2(24 ksi) 3.88 in. 93.12 kip� � ( ) �� ss
 

(g)

Problem-Solving Tip: A common mistake at this point in the solution would be to 

compute P by substituting the two allowable forces into Equation (a). This approach, 

however, does not work because equilibrium will not be satisfi ed in Equation (b). 

Equilibrium must always be satisfi ed.
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 the design. Substitute the allowable force for member (1) into Equation (c) to compute the 

maximum load P that would be permitted:

 

P F F� � �cos45°
sin45°

sin60°
cos60° 1.115361 11,allow

(1.11536)(173.28 kips)�  
(h)

� �P 193.27 kips

Next, use Equation (d) to compute the maximum load P that would be permitted if mem-

ber (2) controls:

 

P F� �

� �

� ��
sin60°

1.36603
sin45°

cos45° cos60° 2 FF2,allow

(1.36603)(93.12 kips)  

(i)

� � �P 127.20 kips

Why is P negative in Equation (i), and, more important, how do we interpret this negative 
value? The allowable stress computed in Equation (e) made no distinction between 

tension or compression stress. Accordingly, the allowable member forces computed in 

Equations (f) and (g) were magnitudes only. These member forces could be tension (i.e., 

positive values) or compression (i.e., negative values). In Equation (i), a maximum load 

was computed as P � –127.20 kips. This implies that the load P acts in the –x direction, 

and this clearly is not what the problem intends. Therefore, we must conclude that allow-

able force in member (2) is actually a compression force:

 P � � � �(1.36603) ( 93.12 kips) 127.20 kips  ( j)

Compare the results from Equations (h) and (j) to conclude that the maximum load that 

may be applied to this truss joint is 

 P � 127.20 kips Ans.

Member forces at maximum load P: Member (2) has been shown to control the design; in other 

words, the strength of member (2) is the limiting factor or the most critical consideration. At 

the maximum load P, use Equations (c) and (d) to compute the actual member forces:

F1 � 114.05 kips(T)

and

F2 93.12 �� � kips 93.12 kips (C)

The actual normal stresses in the members are

1
1

1
27.22 in.

F

A

114.05 kips
15.80 ksi (T)� ���

and

2
2

2
23.88 in.

F

A

93.12 kips
24.0 ksi (C)� ��

�
�

Note: The normal stress magnitudes in both members are less than or equal to the 24-ksi 

allowable stress.
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The structure shown is used to support a distributed load of w � 15 kN/m. Each bolt at A, 

B, and C has a diameter of 16 mm, and each bolt is used in a double shear connection. The 

cross-sectional area of axial member (1) is 3,080 mm2.

The limiting stress in axial member (1) is 50 MPa, and the limiting stress in the bolts 

is 280 MPa. Determine the factors of safety with respect to the specifi ed limiting stresses 

for axial member (1) and bolt C.

 MecMovies Example M4.1 M4.1

Two steel plates are connected by a pair of splice plates with eight bolts, as shown. The 

ultimate strength of the bolts is 270 MPa. An axial tension load of P � 480 kN is trans-

mitted by the steel plates.

If a factor of safety of 1.6 with respect to failure by fracture is specifi ed, determine 

the minimum acceptable diameter of the bolts.

 MecMovies Example M4.2 M4.2

The structure shown supports a distributed load of w kN/m. The 16-mm-diameter bolts at 

A, B, and C are each used in double shear connections. The cross-sectional area of axial 

member (1) is 3,080 mm2.

The limiting normal stress in axial member (1) is 50 MPa, and the limiting stress 

in the bolts is 280 MPa. If a minimum factor of safety of 2.0 is required for all compo-

nents, determine the maximum allowable distributed load w that may be supported by 

the structure.

 MecMovies Example M4.3 M4.3
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FIGURE M4.1 FIGURE M4.3

FIGURE M4.2

M4.2 The single shear connection consists of a number of bolts, 

as shown. Given the bolt diameter and the ultimate strength of the 

bolts, determine the factor of safety for the connection for a speci-

fi ed tension load P.

M4.1 The structure shown supports a specifi ed distributed load. 

The limiting stresses for rod (1) and pins A, B, and C are given. 

Determine the axial force in rod (1), the resultant force in pin C, and 

the factors of safety with respect to the specifi ed limiting stresses for 

rod (1) and pins B and C.

M4.3 The structure shown supports an unspecifi ed load w. Lim-

iting stresses are given for rod (1) and the pins. For a specifi ed 

minimum factor of safety, determine the maximum load magnitude 

w that may be applied to the structure, as well as the stresses in the 

rod and pins at the maximum load w.

 MecMovies ExercisesMM
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P4.1 A stainless steel alloy bar 25-mm-wide by 16-mm-thick is 

subjected to an axial load of P � 145 kN. Using the stress–strain 

diagram given in Figure P4.1, determine

(a)  the factor of safety with respect to the yield strength defi ned 

by the 0.20% offset method.

(b) the factor of safety with respect to the ultimate strength.

PROBLEMSPROBLEMS

P4.3 A 14-kip load is supported by two bars, as shown in 

Figure P4.3. Bar (1) is made of cold-rolled red brass (�Y � 60 ksi) 

and has a cross-sectional area of 0.225 in.2. Bar (2) is made of 

6061-T6 aluminum (�Y � 40 ksi) and has a cross-sectional area of 

0.375 in.2. Determine the factor of safety with respect to yielding 

for each of the bars.

Upper scale

Lower scale

0.120
0.012

0.100
0.010

0.080
0.008

0.060
0.006

0.040
0.004

0.020
0.002

0.0
0.0

Strain (mm/mm)

200

400

1,200

600

800

1,000

0

St
re

ss
 (

M
Pa

)

P
P

FIGURE P4.1

35°
50°

14 kips

(1)

(2)

C

A

B

FIGURE P4.3

P4.2 Three bolts are used in the connection shown in Figure P4.2. 

The thickness of plate (1) is 18 mm. The ultimate shear strength 

of the bolts is 320 MPa, and the ultimate bearing strength of 

plate (1) is 350 MPa. Determine the minimum bolt diameter 

required to support an applied load of P � 180 kN if a minimum 

factor of safety of 2.5 is required with respect to both bolt shear 

and plate bearing failure.

P
2

P
2

P

t
(1)

FIGURE P4.2

P4.4 A steel bar is attached to a wood support beam with four 

22 mm diameter lag screws, as shown in Figure P4.4. The steel bar 

is 70-mm-wide by 6-mm-thick. For the steel bar, the yield strength 

is 250 MPa and the ultimate bearing strength is 350 MPa. The 

ultimate shear strength of the lag screws is 165 MPa. Factors of 

safety of 1.67 with respect to yield strength and 3.0 with respect to 

bearing strength are required for the bar. A factor of safety of 3.0 

with respect to the ultimate shear strength is required for the lag 

screws. Determine the allowable load P that can be supported by 

this connection. (Note: Consider only the gross cross-sectional area 

of the bar—not the net area.)

P

Support beam

Steel bar

FIGURE P4.4

P4.5 In Figure P4.5, member (1) is a steel bar with a cross-

sectional area of 1.35 in.2 and a yield strength of 50 ksi. Member 

(2) is a pair of 6061-T6 aluminum bars having a combined cross-

sectional area of 3.50 in.2 and a yield strength of 40 ksi. A factor of 

safety of 1.6 with respect to yield is required for both members. 

Determine the maximum allowable load P that may be applied to 

the structure. Report the factors of safety for both members at the 

allowable load.
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P4.6 The rigid structure ABD in Figure P4.6 is supported at B 

by a 35-mm-diameter tie rod (1) and at A by a 30-mm-diameter 

pin used in a single shear connection. The tie rod is connected at 

B and C by 24-mm-diameter pins used in double shear connec-

tions. Tie rod (1) has a yield strength of 250 MPa, and each of the 

pins has an ultimate shear strength of 330 MPa. A concentrated 

load of P � 50 kN acts as shown at D. Determine

(a) the normal stress in rod (1).

(b) the shearing stress in the pins at A and B.

(c)  the factor of safety with respect to the yield strength for tie rod (1).

(d)  the factor of safety with respect to the ultimate strength for the 

pins at A and B.

P4.8 In Figure P4.8, davit ABD is supported at A by a single 

shear pin connection and at B by a tie rod (1). The pin at A has a 

diameter of 1.25 in., and the pins at B and C are each 0.75-in.-

diameter pins. Tie rod (1) has an area of 1.50 in.2. The ultimate 

shear strength in each pin is 80 ksi, and the yield strength of the 

tie rod is 36 ksi. A concentrated load of 25 kips is applied as 

shown to the davit structure at D. Determine

(a) the normal stress in rod (1).

(b) the shearing stress in the pins at A and B.

(c)  the factor of safety with respect to the yield strength for tie 

rod (1).

(d)  the factor of safety with respect to the ultimate strength for the 

pins at A and B

P

65°
(1)

(2)

B

C

A

FIGURE P4.5

5.3 m 7.5 m

3.4 m

8 m
60°

A

B

C

D

P

(1)

FIGURE P4.6

FIGURE P4.7

B

A

12 ft 7 ft

A

B

C

D

25 kips

60°

9 ft

2 ft

(1)

Connection
details

FIGURE P4.8

P4.7 The bell-crank mechanism shown in Figure P4.7 is in equi-

librium for an applied load of F1 � 10 kN applied at A. Assume 

a � 300 mm, b � 150 mm, c � 100 mm, and � � 65°. The pin at 

B has a diameter of d � 12 mm and an ultimate shear strength of 

400 MPa. The bell crank and the support bracket each have an ulti-

mate bearing strength of 550 MPa. Determine

(a)  the factor of safety in pin B with respect to the ultimate shear 

strength.

(b)  the factor of safety of the bell crank at pin B with respect to the 

ultimate bearing strength.

(c)  the factor of safety in the support bracket with respect to the 

ultimate bearing strength.
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P4.9 The pin-connected structure is subjected to a load P, as shown 

in Figure P4.9. Inclined member (1) has a cross-sectional area of 

250 mm2 and a yield strength of 255 MPa. It is connected to rigid mem-

ber ABC with a 16-mm-diameter pin in a double shear connection at B. 

The ultimate shear strength of the pin material is 300 MPa. For inclined 

member (1), the minimum factor of safety with respect to the yield 

strength is FSmin � 1.5. For the pin connections, the minimum factor of 

safety with respect to the ultimate strength is FSmin � 3.0.

(a)  On the basis of the capacity of member (1) and pin B, determine 

the maximum allowable load P that may be applied to the 

structure.

(b)  Rigid member ABC is supported by a double shear pin 

 connection at A. Using FSmin � 3.0, determine the minimum 

pin diameter that may be used at support A.

Tie rod (1) has a yield strength of 340 MPa. A uniformly distributed 

load of w � 15 kN/m is applied to the beam as shown. A factor of 

safety of 3.0 is required for all components. Assume a � 700 mm, 

b � 900 mm, c � 300 mm, and d � 650 mm. Determine

(a)  the minimum diameter required for tie rod (1).

(b)  the minimum diameter required for the double shear pins at B 

and D.

(c)  the minimum diameter required for the double shear pin at C.

 P4.11 In Figure P4.11, rigid bar ABC is supported at A by a 

single shear pin connection and at B by a strut, which consists of 

two 2-in.-wide by 0.25-in.-thick steel bars. The pins at A, B, and D 

each have a diameter of 0.5 in. The yield strength of the steel bars 

in strut (1) is 36 ksi, and the ultimate shear strength of each pin is 

72 ksi. Determine the allowable load P that may be applied to the 

rigid bar at C if an overall factor of safety of 3.0 is required. Use 

L1 � 36 in. and L2 � 24 in.

P4.12 In Figure P4.12, rigid beam ABD is supported at A by a 

20-mm-diameter pin in a double shear connection and at B by a solid 

38-mm-diameter rod. Rod (1) is supported at B and C by 16-mm-

diameter pins in double shear connections. The yield strength of rod 

(1) is 340 MPa. The ultimate shear strength of each pin is 620 MPa. 

Assume a � 1.8 m, b � 0.9 m, c � 1.2 m, and d � 1.4 m. Determine 

the allowable distributed load w that may be applied to the rigid beam 

if an overall factor of safety of 2.5 is required.

1.8 m

1.4 m

2.3 m

(1)

B

C

D
A

P

FIGURE P4.9

a b
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D
(1)
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FIGURE P4.10

1L
2L

A B
C

D

P

(1)

FIGURE P4.11

ba c

d

w

A B

C

D

(1)

FIGURE P4.12

P4.10 Rigid beam ABC is supported as shown in Figure P4.10. 

The pin connections at B, C, and D are each double shear connec-

tions, and the ultimate shear strength of the pin material is 620 MPa. 
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P4.13 Beam AB is supported as shown in Figure P4.13. Tie rod 

(1) is attached at B and C with double shear pin connections, while 

the pin at A is attached with a single shear connection. The pins at 

A, B, and C each have an ultimate shear strength of 54 ksi, and tie 

rod (1) has a yield strength of 36 ksi. A concentrated load of P � 

16 kips is applied to the beam as shown. A factor of safety of 3.0 

is required for all components. Determine

(a) the minimum required diameter for tie rod (1).

(b)  the minimum required diameter for the double shear pins at B 

and C.

(c)  the minimum required diameter for the single shear pin at A.

(a) the minimum required diameter for the tie rod.

(b)  the minimum required diameter for the pin at B.

(c)  the minimum required diameter for the pin at A.

P4.15 Rigid bar ABC is subjected to a concentrated load P, as 

shown in Figure P4.15. Inclined member (1) has a cross-sectional 

area of A1 � 2.250 in.2 and is connected at ends B and D by 1.00-in.-

diameter pins in double shear connections. The rigid bar is sup-

ported at C by a 1.00-in.-diameter pin in a single shear connection. 

The yield strength of inclined member (1) is 36 ksi, and the ultimate 

strength of each pin is 60 ksi. For inclined member (1), the mini-

mum factor of safety with respect to the yield strength is FSmin � 

1.5. For the pin connections, the minimum factor of safety with 

respect to the ultimate strength is FSmin � 2.0. Determine the max-

imum load P that can be supported by the structure.
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FIGURE P4.15

P4.14 In Figure P4.14, the rigid member ABDE is supported at 

A by a single shear pin connection and at B by a tie rod (1). The tie 

rod is attached at B and C with double shear pin connections. The 

pins at A, B, and C each have an ultimate shear strength of 80 ksi, 

and tie rod (1) has a yield strength of 60 ksi. A concentrated load of 

P � 24 kips is applied perpendicular to DE, as shown. A factor of 

safety of 2.0 is required for all components. Determine

P4.16 Rigid bar ABC is supported by pin-connected axial 

member (1) and by a pin connection at C, as shown in Figure P4.16. 

A 6,300-lb concentrated load is applied to the rigid bar at A. 

Member (1) is a 2.75-in.-wide by 1.25-in.-thick rectangular bar 

made of steel with a yield strength of �Y � 36,000 psi. The pin at C 

has an ultimate shear strength of �U � 60,000 psi.

(a) Determine the axial force in member (1).

(b)  Determine the factor of safety in member (1) with respect to 

its yield strength.

(c)  Determine the magnitude of the resultant reaction force acting 

at pin C.

(d)  If a minimum factor of safety of FS � 3.0 with respect to the 

ultimate shear strength is required, determine the minimum 

diameter that may be used for the pin at C.
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A second common design philosophy is termed load and resistance factor design 
(LRFD). This approach is most widely used in the design of reinforced concrete, steel, 

and wood structures.

To illustrate the differences between the ASD and LRFD philosophies, consider the 

following example: Suppose that an engineer using ASD calculates that a certain member 

of a steel bridge truss will be subjected to a load of 100 kN. Using an appropriate factor 

of safety for this type of member—say, 1.6—the engineer properly designs the truss mem-

ber so that it can support a load of 160 kN. Since the member strength is greater than the 

load acting on it, the truss member successfully performs its intended function. However, 

we know that the load on the truss member will change throughout the lifetime of the 

structure. There will be many times when no vehicles are crossing the bridge, and conse-

quently, the member load will be much less than 100 kN. There may also be instances in 

which the bridge is completely fi lled with vehicles and the member load will be greater 

than 100 kN. The engineer has properly designed the truss member to support a load of 

160 kN, but suppose that the steel material was not quite as strong as expected or that 

stresses were created in the member during the construction process. It is possible, there-

fore, that the actual strength of the member could be, say, 150 kN rather than the expected 

strength of 160 kN. If the actual load on our hypothetical truss member exceeds 150 kN, 

the member will fail. The question is “How likely is it that this situation would occur?” 

The ASD approach cannot answer this question in any quantitative manner.

Design provisions in LRFD are based on probability concepts. Strength design proce-

dures in LRFD recognize that the actual loads acting on structures and the true strength of 

structural components (termed resistance in LRFD) are in fact random variables that cannot 

be known with complete certainty. With the use of statistics to characterize both the load and 

resistance variables, design procedures are developed so that properly designed components 

have an acceptably small, but quantifi able, probability of failure, and this probability of 

failure is consistent among structural elements (e.g., beams, columns, connections, etc.) of 

different materials (e.g., steel vs. wood vs. concrete) used for similar purposes.

Probability Concepts

To illustrate the concepts inherent in LRFD (without delving too deeply into probability 

theory), consider the aforementioned truss member example. Suppose that 1,000 truss bridges 

were investigated and that, in each of those bridges, a typical tension member was singled 

out. For that tension member, two load magnitudes were recorded. First, the service load 

effect used in the design calculations (i.e., the design tension force in this case) for a truss 

member was noted. For purposes of this illustration, this service load effect will be denoted 

as Q*. Second, the maximum tension load effect that acted on the truss member at any time 

throughout the entire lifetime of the structure was identifi ed. For each case, the maximum 

tension load effect is compared to the service load effect Q*, and the results are displayed 

on a histogram showing the frequency of occurrence of differing load levels (Figure 4.2). 

For example, in 128 out of 1,000 cases, the maximum tension load in the truss member was 

20 percent larger than the tension used in the design calculations.

For the same tension members, suppose that two strength magnitudes were recorded. 

First, the calculated member strength was noted. For purposes of this illustration, this de-

sign strength will be denoted as resistance R*. Second, the maximum tension strength actu-

ally available in the member was determined. This value represents the tension load that 

would cause the member to fail if it were tested to destruction. The maximum tension 

strength can be compared with the design resistance R*, and the results can be displayed on 

4.5 Load and Resistance Factor Design
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a histogram showing the frequency of occurrence of differing resistance levels (Figure 4.3). 

For example, in 210 out of 1,000 cases, the maximum tension strength in the truss member 

was 10 percent less than the nominal strength predicted by the design calculations.

A structural component will not fail as long as the strength provided by the component 

is greater than the effect caused by the loads. In LRFD, the general format for a strength 

design provision is expressed as

 R Qn i ni� Σ�� �  (4.4)

where � � resistance factor corresponding to the type of component (i.e., beam, column, 

connection, etc.), Rn � nominal component resistance (i.e., strength), �i � load factors 

corresponding to each type of load (i.e., dead load, live load, etc.), and Qni � nominal ser-

vice load effects (such as axial force, shear force, and bending moments) for each type of 

load. In general, the resistance factors � are less than 1 and the load factors �i are greater 

than 1. In nontechnical language, the resistance of the structural component is underrated 

(to account for the possibility that the actual member strength may be less than predicted), 

while the load effect on the member is overrated (to account for extreme load events pos-

sible because of the inherent variability in the loads).

Regardless of the design philosophy, a properly designed component must be stronger 

than the load effects acting on it. In LRFD, however, the process of establishing appropriate 

design factors considers member resistance R and load effect Q as random variables rather 

than quantities that are known exactly. Suitable factors for use in LRFD design equations, 

as typifi ed by Equation (4.4), are determined through a process that considers the relative 

positions of the member resistance distribution R (Figure 4.3) and the load effects distribu-

tion Q (Figure 4.2). Appropriate values of the � and �i factors are determined through a 

procedure known as code calibration using a reliability analysis in which the � and �i 

factors are chosen so that a specifi c target probability of failure is achieved. The design 

strength of members is based on the load effects; therefore, the design factors “shift” the 

resistance distribution to the right of the load distribution so that the strength is greater than 

the load effect (Figure 4.4).

To illustrate this concept, consider the data obtained from the 1,000-bridge example. 

The use of very small � factors and very large �i factors would ensure that all truss members 

are strong enough to withstand all load effects (Figure 4.4). This situation, however, would 

be overly conservative and might produce structures that are unnecessarily expensive.

The use of relatively large � factors and relatively small �i factors would create a re-

gion in which the resistance distribution R and the load distribution Q overlap (Figure 4.5), 

or, in other words, the member strength will be less than or equal to the load effect. From 

Figure 4.5, one would predict that 22 out of 1,000 truss members will fail. (Note: The truss 

members are properly designed. The failure discussed here is due to random variation rather 
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FIGURE 4.2 Histogram of load effects.
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85
LOAD AND RESISTANCE 

FACTOR DESIGN
Larger � factors combined with
smaller � factors place the strength
distribution R well beyond the load
distribution Q.  In this illustration,
the probability of failure is PF � 0.
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Even considering the inherent 
variability in load effects and 

member strengths, the 
weakest member in this 

example is strong enough to 
withstand the largest load 

effect if overly conservative
� and � factors are used. 

FIGURE 4.4 Overly conservative load and resistance factors produce designs with near-zero 

probability of failure.
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If the � and � factors used in 
the design process are not 

conservative enough, some 
properly designed members 

will still fail. In this example, 
the strength of 22 members is 
less than or equal to the load 

effect acting on them. 

Smaller � factors combined with 
larger � factors allow too much 
overlap between the strength 
distribution R and the load 
distribution Q.  The probability of 
failure shown here is PF � 0.022.

FIGURE 4.5 Unconservative load and resistance factors produce unacceptable probability of failure. 

than error or incompetence.) A probability of failure PF � 0.022 represents too much risk to 

be acceptable, particularly where public safety is directly concerned.

An appropriate combination of � and �i factors creates a small region of overlap 

between R and Q (Figure 4.6). From Figure 4.6, the probability of failure is 1 out of 1,000 

truss members, or PF � 0.001. This rate might represent an acceptable trade-off between 

risk and cost. (The value PF � 0.001 is known as a notional failure rate. The true failure 

rate is always much less, as engineering experience has shown over years of successful 

practice. In reliability analyses, often only the means and standard deviations of many 

variables can be estimated, and the true shape of the random variable distributions is generally 

not known. These and other considerations lead to higher predicted failure rates than actu-

ally occur in practice.)
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DESIGN CONCEPTS

Load Combinations

Loads that act on structures are inherently variable. Although the designer may make a 

reasonable estimate of the service loads that are expected to act on a structure, it is likely 

that the actual loads will differ from the service loads. Further, the range of variation 

 expected for each type of load is different. For example, live loads could be expected to 

vary more widely than dead loads. To account for load variability, LRFD multiplies each 

load type by specifi c load factors �i and sums the load components to obtain an ultimate 

load at which failure (i.e., rupture or collapse) is considered imminent. The structure or 

structural component is then proportioned so that the nominal strength �Rn of the compo-

nent is equal to or greater than the ultimate load U.

For example, the ultimate load U due to a combination of dead load D and live load L 

acting simultaneously on a structural steel component would be computed with the follow-

ing load factors:

 U Qi ni� � �� 1.2 1.6D LΣ  
(4.5)

The larger load factor �L � 1.6 associated with the live load L refl ects the greater uncer-

tainty inherent in this type of load compared with the dead load D, which is known with 

much greater certainty and, accordingly, has a smaller load factor of �D � 1.2.

Various possible load combinations must be checked, and each combination has a 

unique set of load factors. For example, the ultimate load U acting on a structural steel 

member due to a combination of dead load D, live load L, wind load W, and snow load S 

would be calculated as

 U Qi ni� � � � �� 1.2 1.3D W L S0.5 0.5Σ  (4.6)

While load factors are generally greater than 1, lesser load factors are appropriate for some 

types of loads when combinations of multiple load types are considered. This refl ects the 

low probability that extreme events in multiple load types would occur simultaneously. For 

example, it is not likely that the largest snow load would occur at the same moment as the 

extreme wind load and the extreme live load.

1 520

210

440

272

52

Frequency
distribution of
resistance R

3
22

58

121

190

222

180

128

55

20
1

Frequency
distribution
of load Q

Fr
eq

ue
nc

y

Load effect Q
Resistance R

1

Appropriate � and �  
factors produce designs 

that have only a very 
slight chance of failure.  
In this example, only 1 
out of 1,000 properly 

designed members will 
fail due to the variability 

inherent in Q and R.

Load factors � and resistance factors � are 
determined so that the strength distribution R 
and the load distribution Q overlap just 
slightly.  In this illustration, the probability 
of failure is PF � 0.001.

FIGURE 4.6 Appropriate load and resistance factors produce satisfactory probability of failure. 
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87
LOAD AND RESISTANCE 

FACTOR DESIGN 
Limit States

LRFD is based on a limit states philosophy. In this context, the term limit state is used to 

describe a condition under which a structure or some portion of the structure ceases to 

perform its intended function. Two general kinds of limit states apply to structures: 

strength limit states and serviceability limit states. Strength limit states defi ne safety 

with regard to extreme load events during which the overriding concern is the protection 

of human life from sudden or catastrophic structural failure. Serviceability limit states 

pertain to the satisfactory performance of structures under ordinary load conditions. These 

limit states include considerations such as excessive defl ections, vibrations, cracking, and 

other concerns that may have functional or economic consequences, but do not threaten 

public safety.

EXAMPLE 4.3

A rectangular steel plate is subjected to an axial dead load of 30 kips and a live load of 

48 kips. The yield strength of the steel is 36 ksi.

(a)  ASD Method: If a factor of safety of 1.5 with respect to yielding is required, 

determine the required plate cross-sectional area according to the ASD method.

(b)  LRFD Method: Determine the required plate cross-sectional area based on yielding 

of the gross section, using the LRFD method. Use a resistance factor of �t � 0.9 

and load factors of 1.2 and 1.6 for the dead and live loads, respectively.

Plan the Solution
A simple design problem illustrates how the two methods are used.

SOLUTION
(a) ASD Method
Determine the allowable normal stress from the specifi ed yield stress and the factor of 

safety:

�
�

allow FS

36 ksi

1.5
24 ksi�        � �Y

The service load acting on the tension member is the sum of the dead and live compo nents:

P D L� � � � �30 kips 48 kips 78 kips

The cross-sectional area required to support the service load is computed as

 A
P

� � �
�allow

23.25 in.
78 kips

24 ksi  Ans.

(b) LRFD Method
The factored load acting on the tension member is computed as

P D Lu � � � � �1 2 1 6. . 1.2 (30 kips) 1.6 (48 kips) 112.8 kipps

The nominal strength of the tension member is the product of the yield stress and the 

cross-sectional area:

P An Y� �
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The design strength is the product of the nominal strength and the resistance factor for this 

type of component (i.e., a tension member). The design strength must equal or  exceed the 

factored load acting on the member:

�t P Pn u�

Therefore, the cross-sectional area required to support the given loading is

t P A Pn t Y u� ��� �

 � � � �A
Pu

t Y� �

112.8 kips

0.9(36 ksi)
3.48 in.2 Ans.

P4.17 A rectangular steel plate is used as an axial member to 

support a dead load of 70 kips and a live load of 110 kips. The yield 

strength of the steel is 50 ksi.

(a)  Use the ASD method to determine the minimum cross-sectional 

area required for the axial member if a factor of safety of 1.67 

with respect to yielding is required.

(b)  Use the LRFD method to determine the minimum cross-sectional 

area required for the axial member based on yielding of the gross 

section. Use a resistance factor of � t � 0.9 and load factors of 

1.2 and 1.6 for the dead and live loads, respectively.

P4.18 A 20-mm-thick steel plate will be used as an axial mem-

ber to support a dead load of 150 kN and a live load of 220 kN. The 

yield strength of the steel is 250 MPa.

(a)  Use the ASD method to determine the minimum plate width b 

required for the axial member if a factor of safety of 1.67 with 

respect to yielding is required.

(b)  Use the LRFD method to determine the minimum plate width 

b required for the axial member based on yielding of the gross 

section. Use a resistance factor of � t � 0.9 and load factors 

of 1.2 and 1.6 for the dead and live loads, respectively.

PROBLEMSPROBLEMS
P4.19 A round steel tie rod is used as a tension member to sup-

port a dead load of 30 kips and a live load of 15 kips. The yield 

strength of the steel is 46 ksi.

(a)  Use the ASD method to determine the minimum diameter 

required for the tie rod if a factor of safety of 2.0 with respect 

to yielding is required.

(b)  Use the LRFD method to determine the minimum diameter 

required for the tie rod based on yielding of the gross section. 

Use a resistance factor of � t � 0.9 and load factors of 1.2 and 

1.6 for the dead and live loads, respectively.

P4.20 A round steel tie rod is used as a tension member to sup-

port a dead load of 190 kN and a live load of 220 kN. The yield 

strength of the steel is 320 MPa.

(a)  Use the ASD method to determine the minimum diameter 

required for the tie rod if a factor of safety of 2.0 with respect 

to yielding is required.

(b)  Use the LRFD method to determine the minimum diameter 

required for the tie rod based on yielding of the gross section. 

Use a resistance factor of � t � 0.9 and load factors of 1.2 and 

1.6 for the dead and live loads, respectively.
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In Chapter 1, the concept of stress was developed as a means of measuring the force distribu-

tion within a body. In Chapter 2, the concept of strain was introduced to describe the deforma-

tion produced in a body. Chapter 3 discussed the behavior of typical engineering materials 

and how this behavior can be idealized by equations that relate stress and strain. Of particu-

lar interest are materials that behave in a linear-elastic manner. For these materials, there is 

a proportional relationship between stress and strain, which can be idealized by Hooke’s 

Law. Chapter 4 discussed two general approaches to designing components and structures 

that perform their intended function while maintaining an appropriate margin of safety. In 

the remaining chapters of the book, these concepts will be employed to investigate a wide 

variety of structural members subjected to axial, torsional, and fl exural loadings.

The problem of determining forces and deformations at all points within a body sub-

jected to external forces is extremely diffi cult when the loading or geometry of the body is 

complicated. Therefore, practical solutions to most design problems employ what has 

become known as the mechanics of materials approach. With this approach, real structural 

elements are analyzed as idealized models subjected to simplifi ed loadings and restraints. The 

resulting solutions are approximate, since they consider only the effects that signifi cantly 

affect the magnitudes of stresses, strains, and deformations.

5.1 Introduction

Axial Deformation

CHAPTER 5

89
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90
AXIAL DEFORMATION

Consider a rectangular bar subjected to an axial compression force P (Figure 5.1). The bar is 

fi xed at its base, and the total force P is applied to the top of the bar in three equal  portions 

distributed as shown over a narrow region equal to one-fourth of the bar’s width. The magnitude 

of force P is such that the material behaves elastically; therefore, Hooke’s Law applies. The 

deformations of the bar are indicated by the grid lines shown. In particular, notice that the grid 

lines are distorted in the regions near force P and near the fi xed base. Away from these two 

regions, however, the grid lines are not distorted, remaining orthogonal and uniformly 

compressed in the direction of the applied force P.

Since Hooke’s Law applies, stress is proportional to strain (and, in turn, deforma-

tion). Therefore, stress will become more uniformly distributed throughout the bar as 

the distance from the load P increases. To illustrate the variation of stress with dis-

tance from P, the normal stresses acting in the vertical direction on Sections a–a, b–b, 

c–c, and d–d (see Figure 5.1) are shown in Figure 5.2. On Section a–a (Figure 5.2a), 

normal stresses directly under P are quite large, while stresses on the remainder of the 

cross section are very small. On Section b–b (Figure 5.2b), stresses in the middle of 

the bar are still pronounced, but stresses away from the middle are signifi cantly larger 

than those on Section a–a. Stresses are more uniform on Section c–c (Figure 5.2c). On 

Section d–d (Figure 5.2d), which is located below P at a distance equal to the bar 

width w, stresses are essentially constant across the width of the rectangular bar. This 

comparison shows that localized effects caused by a load tend to vanish as the distance 

from the load increases. In general, the stress distribution becomes nearly uniform at 

a distance equal to the bar width w from the end of the bar, where w is the largest lat-

eral dimension of the axial member (such as the bar width or the rod diameter). The 

maximum stress at this distance is only a few percent larger than the average stress.

In Figure 5.1, the grid lines are also distorted near the base of the axial bar because of 

the Poisson effect. The bar ordinarily would expand in width in response to the compres-

sion normal strain caused by P. The fi xity of the base prevents this expansion, and conse-

quently, additional stresses are created. Using an argument similar to that just given, we 

could show that this increase in stress becomes negligible at a distance of w above the base.
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d

P
Lines are 

distorted near 
force P.

Lines away from 
the ends remain 

orthogonal.

Lines near support 
are distorted due 
to Poisson effect.

Bar width w

FIGURE 5.1 Rectangular bar 

subjected to compression force.

More powerful computational methods derived from the theory of elasticity are 

available to analyze objects that involve complicated loading and geometry. Of these 

methods, the fi nite element method is the most widely used. Although the mechanics of 
materials approach presented here is somewhat less rigorous than the theory of elasticity 
approach, experience indicates that the results obtained from the mechanics of materials 

approach are quite satisfactory for a wide variety of important  engineering problems. 

One of the primary reasons for this is Saint-Venant’s Principle.
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FIGURE 5.2 Normal stress distributions on sections.

5.2 Saint-Venant’s Principle
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91
SAINT-VENANT’S PRINCIPLEThe increased normal stress magnitudes near P and near the fi xed base are examples 

of stress concentrations. Stress concentrations occur where loads are applied, and they 

also occur in the vicinity of holes, grooves, notches, fi llets, and other changes in shape that 

interrupt the smooth fl ow of stress through a solid body. Stress concentrations associated 

with axial loads will be discussed in more detail in Section 5.7, and stress concentrations 

associated with other types of loading will be discussed in subsequent chapters.

The behavior of strain near points of load application was discussed in 1855 by 

Barré de Saint-Venant (1797–1886), a French mathematician. Saint-Venant observed that 

localized effects disappeared at some distance from points of load application. Further-

more, he observed that the phenomenon was independent of the distribution of applied load 

as long as the resultant forces were “equipollent” (i.e., statically equivalent). This idea is 

known as Saint-Venant’s Principle and is widely used in engineering design.

Saint-Venant’s Principle is independent of the distribution of the applied load, pro-

vided that the resultant forces are equivalent. To illustrate this independence, consider the 

same axial bar as discussed before; however, in this instance, the force P is split into four 

equal portions and applied to the upper end of the bar, as shown in Figure 5.3. As in the 

previous case, the grid lines are distorted near the applied loads, but they become uniform 

at a moderate distance away from the point of load application. Normal stress distributions 

on Sections a–a, b–b, c–c, and d–d are shown in Figure 5.4. On Section a–a (Figure 5.4a), 

normal stresses directly under the applied loads are quite large, while stresses in the middle 

of the cross section are very small. As the distance from the load increases, the peak stresses 

diminish (Figure 5.4b; Figure 5.4c) until stresses become essentially uniform at Section d–d 

(Figure 5.4d), which is located below P at a distance equal to the bar width w.

To summarize, peak stresses (Figure 5.2a; Figure 5.4a) may be several times the average 

stress (Figure 5.2d; Figure 5.4d); however, the maximum stress diminishes rapidly as the dis-

tance from the point of load application increases. This observation is also generally true for 

most stress concentrations (such as holes, grooves, and fi llets). Thus, the complex localized 

stress distribution that occurs near loads, supports, or other stress concentrations will not sig-

nifi cantly affect stresses in a body at sections suffi ciently distant from them. In other words, 

localized stresses and deformations have little effect on the overall behavior of a body.

FIGURE 5.4 Normal stress distributions on sections.

a

b

c

d

a

b

c

d

a a

P
2
— P

2
— P

2
— P

2
— P

2
— P

2
— P

2
— P

2
—

a

b

c

d

a

b

c

d

b b

a

b

c

d

a

b

c

d

c c

a

b

c

d

a

b

c

dd d

w

w

(a) (b) (c) (d)

Expressions will be developed throughout the study of mechanics of materials for 

stresses and deformations in various members under various types of loadings. Ac-

cording to  Saint-Venant’s Principle, we can assert that these expressions are valid for 

entire members, with the exception of those regions very near load application points, 

supports, or abrupt changes in member cross section.
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FIGURE 5.3 Rectangular bar 

with a different, but equivalent, 

applied load distribution.
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FIGURE 5.5 Elongation of a 

prismatic axial member.

A member that is subjected to no 

moments and has forces applied 

at only two points is called a 

two-force member. For 

equilibrium, the line of action of 

both forces must pass through 

the two points where forces 

are applied.

A material of uniform 

composi tion is called a homo-
geneous material. The term 

prismatic describes a structural 

member that has a straight 

longitudinal axis and 

a constant cross section.

In Equation (5.3), a consistent sign convention is necessary to calculate the deformation 

� produced by an internal force F. The sign convention (Figure 5.6) for deformation is 

defi ned as follows:

•  A positive value of � indicates that the axial member gets longer; accordingly, 

a positive internal force F produces tension.

•  A negative value of � indicates that the axial member gets shorter (termed 

contraction). A negative internal force F produces compression.

F

�

�

F

FIGURE 5.6 Positive sign 

convention for internal force F 

and deformation �.

A three-segment compound axial member is shown in Figure 5.7a. To determine the 

overall deformation of this axial member, the deformations for each of the three segments 

5.3 Deformations in Axially Loaded Bars 

When a bar of uniform cross section is axially loaded by forces applied at the ends (two-

force member), the axial strain along the length of the bar is assumed to have a constant 

value. By defi nition, the deformation � (Figure 5.5) of the bar resulting from the axial force 

F may be expressed as � � �L. The stress in the bar is given by � � F/A, where A is the 

cross-sectional area. If the axial stress � does not exceed the proportional limit of the mate-

rial, Hooke’s Law may be applied to relate stress and strain: � � E�. Thus, the axial defor-

mation �  may be expressed in terms of stress or load as follows:

 �
�

� L L
E��  (5.1)

or

 
FL
AE��  (5.2)

The fi rst form [Equation (5.1)] frequently will prove to be convenient in elastic problems 

in which limiting axial stress and axial deformation are both specifi ed. The stress corre-

sponding to the specifi ed deformation can be obtained from Equation (5.1) and compared 

with the specifi ed allowable stress, the smaller of the two values then being used to com-

pute the unknown load or cross-sectional area. In general, Equation (5.1) is the preferred 

form when the problem involves a determination or comparison of stresses.

Equations (5.1) and (5.2) may be used only if the axial member

• is homogeneous (i.e., constant E),

• is prismatic (uniform cross-sectional area A), and

• has a constant internal force (i.e., loaded only by forces at its ends).

If the member is subjected to axial loads at intermediate points (i.e., points other than 

the ends) or if it consists of various cross-sectional areas or materials, the axial member 

must be divided into segments that satisfy the three requirements just listed. For compound 

axial members comprising of two or more segments, the overall deformation of the axial 

member can be determined by algebraically adding the segment deformations:

 
F L
A E

i i

i ii
�� ∑  (5.3)

Here, Fi , Li , Ai , and Ei are the internal force, length, cross-sectional area, and elastic mod-

ulus, respectively, for individual segments i of the compound axial member.

92

c05Axialdeformation.indd Page 92  1/24/12  7:48 PM user-F393c05Axialdeformation.indd Page 92  1/24/12  7:48 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



93
DEFORMATIONS IN AXIALLY 

LOADED BARS

are fi rst calculated individually. Then, the three deformation values are added together to 

give the overall deformation. The internal force Fi in each segment is determined from the 

free-body diagrams shown in Figure 5.7b–d.

For those cases in which the axial force or the cross-sectional area varies continu-

ously along the length of the bar (Figure 5.8a), Equations (5.1), (5.2), and (5.3) are not 

valid. In Section 2.2, the axial strain at a point for the case of nonuniform deformation 

was defi ned as � � d��dL. Thus, the increment of deformation associated with a dif-

ferential element of length dL � dx may be expressed as d� � � dx. If Hooke’s Law 

applies, the strain may again be expressed as � � ��E, where � � F(x)�A(x) and both 

the internal force F and the cross-sectional area A may be functions of position x along 

the bar (Figure 5.8b). Thus,

 d F x
A x E dx( )

( )��  (5.4)

Integrating Equation (5.4) yields the following expression for the total deformation of 

the bar:

 d
F x

A x E
dx

( )

( )
�� ��

L L

0 0
 (5.5)
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FIGURE 5.7 Compound axial member and associated free-body diagrams.

(a)  Three-segment 

axial member

(b)  FBD for 

segment (1)

(c)  FBD for 

segment (2)

(d)  FBD for 

segment (3)

FIGURE 5.8 Axial member with varying internal force and cross-sectional area.
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94
AXIAL DEFORMATION Equation (5.5) applies only to linear-elastic material (since Hooke’s Law was assumed). 

Equation (5.5) was derived under the assumption that the stress distribution was uniformly 

distributed over every cross section [i.e., � � F(x)�A(x)]. While this is true for prismatic bars, 

it is not true for tapered bars. However, Equation (5.5) gives acceptable results if the angle 

between the sides of the bar is small. For example, if the angle between the sides of the bar 

does not exceed 20°, there is less than a 3 percent difference between the results obtained 

from Equation (5.5) and the results obtained from more advanced elasticity methods.

A load of P � 50 kN is applied to a compound axial member. 

Segment (1) is a 20-mm-diameter solid brass [E � 100 GPa] rod. Seg-

ment (2) is a solid aluminum [E � 70 GPa] rod. Determine the mini-

mum diameter of the aluminum segment if the axial displacement of 

C relative to support A must not exceed 5 mm.

 MecMovies Example M5.3 M5.3MM

EXAMPLE 5.1

The compound axial member shown consists of a 

20-mm-diameter solid aluminum [E � 70 GPa] seg-

ment (1), a 24-mm-diameter solid aluminum segment 

(2), and a 16-mm-diameter solid steel [E � 200 GPa] 

segment (3). Determine the displacements of points 

B, C, and D relative to end A.

Plan the Solution
Free-body diagrams (FBD) will be drawn to expose the internal axial forces in each seg-

ment. With the use of the internal force and the cross-sectional area, the normal stress can 

be computed. The deformation of each segment can be computed from Equation (5.2), 

and Equation (5.3) will be used to compute the displacements of points B, C, and D rela-

tive to end A.

Nomenclature
Before we begin the solution, we will defi ne the terms used to discuss problems of this 

type. Segments (1), (2), and (3) will be referred to as axial members or simply members. 

Members are deformable. They either elongate or contract in response to their internal 

axial force. As a rule, the internal axial force in a member will be assumed to be tension. 

While this convention is not essential, it is often helpful to establish a repetitive solution 

procedure that can be applied as a matter of course in a variety of situations. Members are 

labeled by a number in parentheses, such as member (1), and deformations in a member 

are denoted as �1.

Points A, B, C, and D refer to joints. A joint is the connection point between compo-

nents (adjacent members in this example), or a joint may simply denote a specifi c location 

(such as joints A and D). Joints do not elongate or contract—they move, either in transla-

tion or in rotation. Therefore, a joint may be said to undergo displacement. (In other 

y

x
8 kN

12 kN

12 kN10 kN

10 kN

4 kN

2.0 m 2.5 m 3.0 m

A B C D

(1) (2) (3)
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contexts, a joint might also rotate or defl ect.) Joints 

are denoted by a capital letter. A joint displacement 

in the longitudinal direction is denoted by u and a 

subscript identifying the joint (e.g., uA).

SOLUTION
Equilibrium
Draw a FBD that exposes the internal axial force in 

member (1). Assume tension in member (1).

The equilibrium equation for this FBD is

x 1 kN�F F 4 0��Σ

� F1 4 4kN kN (T)� ��

Draw a FBD for member (2) and assume tension in 

member (2).

The equilibrium equation for this FBD is

2 10( )kN kN4 0��x 2�F F �Σ

F2 16 16kN kN (C)� ���

Similarly, draw a FBD for member (3) and assume 

tension in the member. Although two different free-

body diagrams are possible, the simpler FBD is 

shown.

The equilibrium equation for this FBD is

x 3 kNF F� �� � 8 0Σ

� F3 8 8kN kN (T)� ��

Before proceeding, plot the internal forces F1, F2, 

and F3 acting in the compound member. It is the 

internal forces, not the external forces applied at 

joints A, B, C, and D, that create deformations in 

the axial members.

y

x
N

12 kN

12 kN10 kN

10 kN

4 kN

2.0 m 2.5 m 3.0 m

A B C D

(1)
F1

y

x
N

12 kN

12 kN10 kN

10 kN

4 kN

2.0 m 2.5 m 3.0 m

A B C D

(2)(1)
F2

y

x
8 kN

12 kN

12 kN10 kN

10 kN

4

2.0 m 2.5 m 3.0 m

A B C D

(3)
F3

y

x
8 kN

12 kN

12 kN10 kN

10 kN

4 kN

A B C D

(1) (2) (3)

Tension

Compression

4 kN

–16 kN

8 kN

Axial force diagram for compound member.

Problem-Solving Tip: When cutting a FBD through an axial member, assume that 

the internal force is tension and draw the force arrow directed away from the cut 
surface. If the computed internal force value turns out to be a positive number, then the 

assumption of tension is confi rmed. If the computed value turns out to be a negative 

number, then the internal force is actually compression.

Force–Deformation Relationships
The relationship between the deformation of an axial member and its internal force is 

expressed by Equation (5.2):

FL
AE��

Since the internal force is assumed to be a tension force, the axial deformation is assumed 

to be an elongation. If the internal force is compression, use of a negative value for the 

internal force F in the preceding equation will produce a negative deformation, or in other 

words, a contraction.
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Compute the deformations in each of the three members. Member (1) is a 20-mm-

diameter solid aluminum rod; therefore, its cross-sectional area is A1 � 314.159 mm2.

1
1 1

1 1

4 2 0

31

F L
A E

( )( )( . )( )kN 1,000 N/kN m 1,000 mm/m

44 159 70
0 364

2. ( )( )
.

mm GPa 1,000 MPa/GPa
mm

( )
� �� �

Member (2) has a diameter of 24 mm; therefore, its cross-sectional area is 

A2 � 452.389 mm2.

2
2 2

2 2

16 2 5F L
A E

( )( )( . )( )kN 1,000 N/kN m 1,000 mm/m

4452 389 70
1 263

2. ( )( )
.

mm GPa 1,000 MPa/GPa
mm

( )
� � � �

�
�

The negative value of �2 indicates that member (2) contracts.

Member (3) is a 16-mm-diameter solid steel rod. Its cross-sectional area is 

A3 � 201.062 mm2.

3
3 3

3 3

8 3 0

20

F L
A E

( )( )( . )( )kN 1,000 N/kN m 1,000 mm/m

11 062 200
0 597

2. ( )( )
.

mm GPa 1,000 MPa/GPa
mm

( )
� � � �

Geometry of Deformations
Since the joint displacements of B, C, and D relative to joint A are desired, joint A will be 

taken as the origin of the coordinate system. How are the joint displacements related to 
the member deformations in the compound axial member? The deformation of an axial 

member can be expressed as the difference between the displacements of the member end 

joints. For example, the deformation of member (1) can be expressed as the difference 

between the displacement of joint A (i.e., the �x end of the member) and the displacement 

of joint B (i.e., the �x end of the member):

1 u uB A� � �

Similarly, for members (2) and (3),

2 u uC B� � �   3 u uD C� � �

Since the displacements are measured relative to joint A, defi ne the displacement of joint 

A as uA � 0. The preceding equations can be solved for the joint displacements in terms 

of the member elongations:

u u u u uB C B D C1 2 1 2 3 1 2 3� � � � � � � �� �� � � �� � ��

Using these expressions, we can now compute the joint displacements:

 uB 1 0 364 0 364. .mm mm�� � �

 uC 0 364 1 263 0 899 0 899. ( . ) . .mm mm mm mm1�� � � ��2�� � �

 

uD 1 2 3 0 364 1 263 0 597 0 302. ( . ) . .mm mm mm mm

←0 302. mm

� � �

�

� � � � � � � ��

 Ans.

A positive value for u indicates a displacement in the �x direction, and a negative u indi-

cates a displacement in the –x direction. Joint D moves to the left even though tension 

exists in member (3).

The nomenclature and sign conventions introduced in this example may seem 

unnecessary for such a simple problem. However, the calculation procedure established 

here will prove quite powerful as problems that are more complex are introduced, particu-

larly those problems that cannot be solved with statics alone.
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The roof and second fl oor of a building are supported by the column shown. The structural 

steel [E � 200 GPa] column has a constant cross-sectional area of 7,500 mm2. Determine 

the defl ection of joint C relative to foundation A.

 MecMovies Example M5.2 M5.2 

EXAMPLE 5.2

A steel [E � 30,000 ksi] bar of rectangular cross section consists of a uniform-width 

segment (1) and a tapered segment (2), as shown. The width of the tapered segment 

varies linearly from 2 in. at the bottom to 5 in. at the top. The bar has a constant thick-

ness of 0.50 in. Determine the elongation of the bar resulting from application of the 

30-kip load. Neglect the weight of the bar.

Plan the Solution
The elongation of uniform-width segment (1) may be determined from Equation (5.2). 

The tapered segment (2) requires the use of Equation (5.5). An expression for the 

varying cross-sectional area of segment (2) must be derived and used in the integral 

for the 75-in. length of the tapered segment.

SOLUTION
For the uniform-width segment (1), the deformation from Equation (5.2) is

1
1 1
1 1

30 25
2 0 5

F L
A E

( kips)( )
( )( . )(

in.
in. in. 30,0000 in.ksi) .0 0250� � � �

For tapered section (2), the width w of the bar varies linearly with position y. The cross-

sectional area in the tapered section can be expressed as

A y wt y2 2
3

75
0 5 1( ) ( ) ( . )in.

in.

in.
in. in. 0 02 2. y in.� � � ��

Since the weight of the bar is neglected, the force in the tapered segment is constant and 

simply equal to the 30-kip applied load. Integrate Equation (5.5) to obtain

 
2

2

2 275

0
2

2 275

0 1 30F

A y E
dy

F

E A y
dy

( ) ( )

kips

30,0000 ksi ( . )

1

1 0 0275

0

y
dy� � � �

�

 ( )0 001
1

0 02
1 0 022

0
75.

.
ln ( . )in.

in.
y 00 0458. in.� � �

75 in.

25 in.
2 in.

5 in.

P = 30 kips

(1)

(2)

x

y

A

B

C
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The total elongation of the bar is the sum of the segment elongations:

 uA 1 2 0 0250 0 0458 0 0708. . .in. in. in.� �� � � � �  Ans.

Note: If the weight of the bar had not been neglected, the internal force F in both uniform-

width segment (1) and tapered segment (2) would not have been constant, and Equation (5.5) 

would be required for both segments. To include the weight of the bar in the analysis, a function 

should be derived for each segment, expressing the change in internal force as a function of the 

vertical position y. The internal force F at any position y is the sum of a constant force equal to 

P and a varying force equal to the self-weight of the axial member below position y. The force 

due to self-weight will be a function that expresses the volume of the bar below any position 

y, multiplied by the specifi c weight of the material that the bar is made of. Since the internal 

force F varies with y, it must be included inside the integral in Equation (5.5).

M5.1 Use the axial deformation equation for three introductory 

problems.

 MecMovies ExercisesMM

FIGURE M5.1

FIGURE M5.2

M5.2 Apply the axial deformation concept to compound axial 

members.

P5.1 A steel [E � 200 GPa] rod with a circular cross section is 

7.5-m long. Determine the minimum diameter required if the rod 

must transmit a tensile force of 50 kN without exceeding an allow-

able stress of 180 MPa or stretching more than 5 mm.

P5.2 An aluminum [E � 10,000 ksi] control rod with a circular 

cross section must not stretch more than 0.25 in. when the tension 

PROBLEMSPROBLEMS
in the rod is 2,200 lb. If the maximum allowable normal stress in 

the rod is 12 ksi, determine

(a) the smallest diameter that can be used for the rod.

(b) the corresponding maximum length of the rod.

P5.3 A 12-mm-diameter steel [E � 200 GPa] rod (2) is con-

nected to a 30-mm-wide by 8-mm-thick rectangular aluminum 

98
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[E � 70 GPa] bar (1), as shown in Figure P5.3. Determine the force 

P required to stretch the assembly 10.0 mm.

P5.7 Aluminum [E � 70 GPa] member ABC supports a load of 

28 kN, as shown in Figure P5.7. Determine

(a) the value of load P such that the defl ection of joint C is zero.

(b) the corresponding defl ection of joint B.

P5.4 A rectangular bar of length L has a slot in the central half 

of its length, as shown in Figure P5.4. The bar has width b, thick-

ness t, and elastic modulus E. The slot has width b/3. If L � 

400 mm, b � 45 mm, t � 8 mm, and E � 72 GPa, determine the 

overall elongation of the bar for an axial force of P � 18 kN.

P5.5 An axial member consisting of two polymer bars is sup-

ported at C, as shown in Figure P5.5. Bar (1) has a cross-sectional 

area of 540 mm2 and an elastic modulus of 28 GPa. Bar (2) has 

a cross-sectional area of 880 mm2 and an elastic modulus of 

16.5 GPa. Determine the defl ection of point A relative to support C.

P5.6 The roof and second fl oor of a building are supported by 

the column shown in Figure P5.6. The column is a structural steel 

W10 � 60 wide-fl ange section [E � 29,000 ksi; A � 17.6 in.2]. 

The roof and fl oor subject the column to the axial forces shown. 

Determine

(a) the amount that the fi rst fl oor will defl ect.

(b) the amount that the roof will defl ect.

P5.8 A solid brass [E � 100 GPa] axial member is loaded and 

supported as shown in Figure P5.8. Segments (1) and (2) each have 

a diameter of 25 mm, and segment (3) has a diameter of 14 mm. 

Determine

(a) the deformation of segment (2).

(b) the defl ection of joint D with respect to the fi xed support at A.

(c) the maximum normal stress in the entire axial member.

FIGURE P5.3

(1) (2)

A B C

0.45 m 1.30 m

P

FIGURE P5.4

P P

L
2

L
4

L
4

b
3b

FIGURE P5.5

(1) (2)

A
B C

35 kN

50 kN

50 kN

0.85 m 1.15 m

FIGURE P5.6

(1)

(2)

A

B

C

115 kips

155 kips

16 ft

14 ft

FIGURE P5.7

P

(1)

(2)

A

B

C

28 kN

32-mm
diameter

50-mm
diameter

1.3 m

1.0 m

FIGURE P5.8

(1)

(2)

(3)

A

B

C

D

40 kN

14 kN

25 kN

1.8 m

1.2 m

1.6 m
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P5.9 A hollow steel [E � 30,000 ksi] tube (1) with an outside 

diameter of 2.75 in. and a wall thickness of 0.25 in. is fastened to a 

solid aluminum [E � 10,000 ksi] rod (2) that has a 2-in.-diameter 

and a solid 1.375-in.-diameter aluminum rod (3). The bar is loaded 

as shown in Figure P5.9. Determine

(a) the change in length of steel tube (1).

(b) the defl ection of joint D with respect to the fi xed support at A.

(c) the maximum normal stress in the entire axial assembly.

P5.10 A solid 5/8-in. steel [E � 29,000 ksi] rod (1) supports 

beam AB as shown in Figure P5.10. If the stress in the rod must 

not exceed 30 ksi and the maximum deformation in the rod must 

not exceed 0.25 in., determine the maximum load P that may be 

supported.

P5.11 A 1-in.-diameter by 16-ft-long cold-rolled bronze 

[E � 15,000 ksi and � � 0.320 lb/in.3] bar hangs vertically while 

suspended from one end. Determine the change in length of the bar 

due to its own weight.

P5.12 A homogeneous rod of length L and elastic modulus E is 

a truncated cone with a diameter that varies linearly from d0 at one 

end to 2d0 at the other end. A concentrated axial load P is applied 

to the ends of the rod as shown in Figure P5.12. Assume that the 

taper of the cone is slight enough for the assumption of a uniform 

axial stress distribution over a cross section to be valid.

(a)  Determine an expression for the stress distribution on an 

arbitrary cross section at x.

(b) Determine an expression for the elongation of the rod.

P5.13 Determine the extension, due to its own weight, of the 

conical bar shown in Figure P5.13. The bar is made of aluminum 

alloy [E � 10,600 ksi and � � 0.100 lb/in.3]. The bar has a 2-in. 

 radius at its upper end and a length of L � 20 ft. Assume that the 

taper of the bar is slight enough for the assumption of a uniform 

axial stress distribution over a cross section to be valid.

P5.14 The wooden pile shown in Figure P5.14 has a diame-

ter of 100 mm and is subjected to a load of P � 75 kN. Along 

the length of the pile and around its perimeter, soil supplies a 

constant frictional resistance of w � 3.70 kN/m. The length of 

the pile is L � 5.0 m and its elastic modulus is E � 8.3 GPa. 

Calculate

(a) the force FB needed at base of the pile for equilibrium.

(b) the magnitude of the downward displacement at A relative to B.

FIGURE P5.9

(1) (2) (3)

A B C D

34 kips 18 kips

25 kips

34 kips 18 kips

60 in. 40 in. 30 in.

FIGURE P5.10

A

B

C

12 ft
8 ft

16 ft

P

(1)

FIGURE P5.12

P

P

L

x

0d

0d2

B

A

L
w

P

FB

y

FIGURE P5.14FIGURE P5.13

y

x

L
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EXAMPLE 5.3

The assembly shown consists of rigid 

bar ABC, two fi ber-reinforced plastic 

(FRP) rods (1) and (3), and FRP post 

(2). The modulus of elasticity for the 

FRP is E � 18 GPa. Determine the ver-

tical defl ection of joint D relative to its 

initial position after the 30-kN load is 

applied.

Plan the Solution
The defl ection of joint D relative to its 

initial position must be computed. The 

defl ection of D relative to joint C is 

simply the elongation in member (3). 

The challenge in this problem, how-

ever, lies in computing the defl ection 

at C. The rigid bar will defl ect and 

rotate due to the elongation and con-

traction in members (1) and (2). To de-

termine the fi nal position of the rigid bar, we must fi rst compute the forces in the three 

axial members, using equilibrium equations. Then, Equation (5.2) can be used to compute 

the deformation in each member. A deformation diagram can be drawn to defi ne the re-

lationships between the rigid bar defl ections at A, B, and C. Then, the member deforma-

tions will be related to the rigid bar defl ections. Finally, the defl ection of joint D can be 

computed from the sum of the rigid bar defl ection at C and the elongation in member (3).

SOLUTION
Equilibrium
Draw a free-body diagram (FBD) of the rigid 

bar and write two equilibrium equations:

F F F F

M F F

y

B

�

� �

�� � �

�

1 2 3

1 3

0

2 4 1 8 0( . m) ( . m)

Σ

Σ

By inspection, F3 � P � 30 kN. Using this re-

sult, we can simultaneously solve the two equa-

tions to give F1 � 22.5 kN and F2 � –52.5 kN.

The three axial members are connected to the rigid beam by pins. Assume that 
member (1) is pinned to the foundation at F and member (2) is fi xed in the 
foundation at E.

F

A

B C

D

E

y

x
Rigid bar

2.4 m 1.8 m

(1) (2) (3)

P = 30 kN

2A = 1,500 mm2

3A = 500 mm2
1A = 500 mm2

3.0 m

3.6 m

A

B C

y

x
Rigid bar

2.4 m 1.8 m

(1) (2) (3)

F1 F2 F3

Many structures consist of more than one axially loaded member, and for these structures, 

axial deformations and stresses for a system of pin-connected deformable bars must be 

determined. The problem is approached through a study of the geometry of the deformed 

system, from which the axial deformations of the various bars in the system are obtained.

In this section, the analysis of statically determinate structures consisting of homoge-

neous, prismatic axial members will be considered. In analyzing these types of structures, 

begin with a free-body diagram showing all forces acting on the key elements of the struc-

ture. Then, investigate how the structure as a whole defl ects in response to the deformations 

that occur in the axial members.

5.4 Deformations in a System of Axially Loaded Bars

A homogeneous, prismatic 

member (a) is straight, (b) has 

a constant cross-sectional area, 

and (c) consists of a single 

material (i.e., one value of E).
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Force–Deformation Relationships
Compute the deformations in each of the three members.

 1
1

1 1

22 5 3 6F L
A E

1 ( . )( )( . m)(kN 1,000 N/kN 1,000 mm/m))

mm ( GPa)( )
. mm

500 18
9 00

2( ) 1,000 MPa/GPa
� � ��

2
2

2 2

52 5 3 6F L
A E

2 ( . kN)( )( . m)(1,000 N/kN 1,000 mm/mm

1,500 1,000 MPa/GPa

)

mm ( GPa)( )
. mm

2 18
7 00

( )
� � ��

�
�

The negative value of �2 indicates that member (2) contracts.

3
3

3 3

30 3 0

5

F L
A E

3 ( kN)( )( . m)( )1,000 N/kN 1,000 mm/m

000 18
10 00

2mm ( GPa)( )
. mm

( ) 1,000 MPa/GPa
� � � �

Geometry of Deformations
Sketch the fi nal defl ected shape of 

the rigid bar. Member (1) elon-

gates, so A will defl ect upward. 

Member (2) contracts, so B will 

defl ect downward. The defl ection 

of C must be determined. 

(Note: Joint defl ections trans-

verse to the rigid bar are denoted 

by v.)

The rigid bar defl ections at 

joints A, B, and C can be related 

by similar triangles:

v v v v
v v v v vA B C B

C A B B2 4 1 8

1 8

2 4
0 75

. m . m

. m

. m
. A B Bv v� � � �

�
� � �

� � ( ) ( )�

How are the rigid bar defl ections vA and vB shown on the sketch related to the member 
deformations �1 and �2? By defi nition, deformation is the difference between the initial 

and fi nal lengths of an axial member. Using the defl ected rigid bar sketch, we can defi ne 

the deformation in member (1) in terms of its initial and fi nal lengths:

1 1 1 1 9 00( ) �L L L v L v vA A Afinal initial . mm� �� � � � � �� �

Similarly, for member (2),

2 2 2 2 7 0( ) �L L L v L v vB B Bfinal initial ( . 00 7 00mm) . mm� � � � �� � � � � � � �� �

With these results, the magnitude of the rigid bar defl ection at C can now be computed:

v v v vC A B B( )0 75 0 75 9 00 7 00 7 00 1. . ( . mm . mm) . mm 9 00. mm� � � � � � �

The direction of the defl ection is shown on the deformation diagram; that is, joint C 

defl ects 19.00 mm downward.

Defl ection of D
The downward defl ection of joint D is the sum of the rigid bar defl ection at C and the 

elongation in member (3):

 v vD C 3 19 00 10 00 29 0. . . mmmm mm� � � ��� �  Ans.

F

A

B C

D
E

y

x
Rigid bar

2.4 m 1.8 m

1L

1L + vA
2L

2L – vB

vA

vB
vC
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The preceding examples considered structures consisting of parallel axial bars, 

making the geometry of deformation for the structure relatively straightforward to analyze. 

Suppose, for example, that one is interested in a structure in which the axial members are 

not parallel. The structure shown in Figure 5.9 consists of three axial members (AB, BC, 

and BD), which are connected to a common joint at B. In the fi gure, the solid lines represent 

the unstrained (i.e., unloaded) confi guration of the system and the dashed lines represent 

the confi gurations due to a force applied at joint B. From the Pythagorean theorem, the 

actual deformation in bar AB is

AB L y x L( )2 2� � � ��

Transposing the last term and squaring both sides gives

AB ABL L L Ly y x2 2 2 2 22 2� �� � � � � �

If the displacements are small (the usual case for stiff materials and 

elastic action), the terms involving the squares of the displacements 

may be neglected; hence, the deformation in bar AB is

AB y�

In a similar manner, the deformation in bar BD is

BD x�

The axial deformation of bar BC is

BC R x R y R( cos ) ( sin )2 2� � � � �� � �

Transposing the last term and squaring both sides gives

BC BCR R2 22� �� �

R Rx x R Ry y2 2 2 2 2 22 2cos cos sin sin� � � � �� � � � �

An assembly consists of three rods attached to rigid bar AB. Rod (1) is steel, and 

rods (2) and (3) are aluminum. The area and elastic modulus of each rod is noted 

on the sketch. A force of 80 kN is applied at D. Determine the vertical defl ections 

of points A, B, C, and D.

 MecMovies Example M5.4 

A

B

C

D

B

L

y

x

R

�

FIGURE 5.9 Axial structure with intersecting 

members.
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The second-degree displacement terms can be neglected since the displacements are small. 

Using the trigonometric identity sin2 � � cos2 � � 1, the deformation in member BC can be 

stated as

BC x ycos sin�� ��

or, in terms of the deformations of the other two bars,

BC BD ABcos sin�� � �� �

The geometric interpretation of this equation is indicated by the shaded 

right triangles in Figure 5.10.

The general conclusion that may be drawn from the preceding discus-

sion is that, for small displacements, the axial deformation in any bar may 

be assumed equal to the component of the displacement of one end of the 

bar (relative to the other end) taken in the direction of the unstrained orien-

tation of the bar. Rigid members of the system may change orientation or 

position, but they will not be deformed in any manner. For example, if bar 

BD of Figure 5.9 were rigid and subjected to a small upward rotation, point 

B could be assumed to be displaced vertically through a distance of y, and 

� BC would be equal to y sin �.FIGURE 5.10 Geometric interpretation of 

member deformations.

�

�

B

B

�AB

�BD

�AB
sin �

�BD
cos �

�BC

A tie rod (1) and a pipe strut (2) are used to support a 50-kN load, 

as shown. The cross-sectional areas are A1 � 650 mm2 for tie rod 

(1) and A2 � 925 mm2 for pipe strut (2). Both members are made 

of structural steel that has an elastic modulus of E � 200 GPa.

(a)  Determine the axial normal stresses in tie rod (1) and 

pipe strut (2).

(b) Determine the elongation or contraction of each member.

(c)  Sketch a deformation diagram that shows the displaced 

position of joint B.

(d)  Compute the horizontal and vertical displacements of joint B.

Plan the Solution
From a free-body diagram of joint B, the internal axial forces 

in members (1) and (2) can be calculated. The elongation 

(or contraction) of each member can then be computed from 

Equation (5.2). To determine the displaced position of joint B, 

the following approach will be used: We will imagine that the pin at joint B is temporar-

ily removed, allowing members (1) and (2) to deform either in elongation or contraction. 

Then, member (1) will be rotated about joint A, member (2) will be rotated about joint C, 

and the intersection point of these two members will be located. We will imagine that the 

pin at B is now reinserted in the joint at this location. The deformation diagram describ-

ing the preceding movements will be used to compute the horizontal and vertical dis-

placements of joint B.

SOLUTION
(a) Member Stresses
The internal axial forces in members (1) and (2) can be determined from equilibrium 

equations based on a free-body diagram of joint B. The sum of forces in the horizontal 

EXAMPLE 5.4

A B

C

(1)

(2)

1.25 m

1.15 m50 kN

x

y
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AXIAL DEFORMATION
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(x) direction can be written as

F F Fx 1 2 42 61 0cos . °Σ � � � �

and the sum of forces in the vertical (y) direction can be expressed as

F Fy 2 42 61 50 0sin . kN°Σ � � � �

�F2 73 85. kN� �

Backsubstituting this result into the previous equation gives

F1 54 36. kN�

The axial normal stress in tie rod (1) is

 1
1

1
2

254 36

650
83 63

F

A

( . kN) ( )

mm
. (T

1,000 N/kN
N/mm )) . MPa (T)83 6� � �� �  Ans.

and the axial normal stress in pipe strut (2) is

 2
2

2
2

273 85

925
79 84

F

A

( . kN) ( )

mm
. (C

1,000 N/kN
N/mm )) . MPa (C)79 8� � � � �  Ans.

(b) Member Deformations
The deformations in the members are determined from either Equation (5.1) or (5.2). The 

elongation in tie rod (1) is

 1
1 1

1

283 63 1 25( )L
E

. ( . m)( )N/mm 1,000 mm/m

200,000 NN/mm2
0 5227. mm

�
� � ��  Ans.

The length of inclined pipe strut (2) is

L2
2 21 25 1 15 1 70( . m) ( . m) . m� � �

and its deformation is

 2
2 2

2

279 84 1 70L
E

. ( . m)( ))( N/mm 1,000 mm/m

200,0000 N/mm2
0 6786. mm�

�
� � � �

�
 

Ans.

The negative sign indicates that member (2) contracts (i.e., gets shorter).

(c) Deformation Diagram
Step 1: To determine the displaced position of joint B, let us fi rst imagine that 

the pin at joint B is temporarily removed, allowing members (1) and (2) to deform 

freely by the amounts computed in part (b). Since joint A of the tie rod is fi xed to 

a support, it remains stationary. Thus, when tie rod (1) elongates by 0.5227 mm, 

joint B moves to the right, away from joint A to the displaced position B1.

Similarly, joint C of the pipe strut remains stationary. When member (2) 

contracts by 0.6782 mm, joint B of the pipe strut moves toward joint C, ending up in 

displaced position B2. These deformations are shown in the fi gure at the right.

Step 2: In the previous step, we imagined removing the pin at B and allowing each mem-

ber to deform freely, either elongating or contracting, as dictated by the internal forces 

acting in each member. In actuality, however, the two members are connected by pin B. The 

second step of this process requires fi nding the displaced position B� of the pin connecting 

tie rod (1) and pipe strut (2) that is consistent with member elongations � 1 and � 2.

F2

F1

50 kN

42.61°

B
(1)

(2)

B �1= 0.5227 mm

� 2
= –  0.

67
82

 m
m

1B

2B

42.61°
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B �1= 0.5227 mm

� 2
= –  0.

67
82

 m
m

1B

2B

42.61°

B

B �1= 0.5227 mm

� 2
= –  0.

67
82

 m
m

1B

2B

42.61°

B

137.39°

42.61°

B �1= 0.5227 mm

� 2
= –  0.

67
82

 m
m

1B

2B

42.61°

B

42.61°

a

b

Δx

Δy

Due to the axial deformations, both tie rod (1) and pipe strut (2) must 

rotate slightly if they are to remain connected at pin B. Tie rod (1) will pivot 

about stationary end A, and pipe strut (2) will pivot about stationary end C. 

If the rotation angles are small, the circular arcs that describe possible dis-

placed positions of joint B can be replaced by straight lines that are perpen-

dicular to the unloaded orientations of the members.

Consider the fi gure shown. As tie rod (1) rotates clockwise about station-

ary end A, joint B1 moves downward. If the rotation angle is small, the circular 

arc describing the possible displaced positions of joint B1 can be approxi-

mated by a line that is perpendicular to the original orientation of tie rod (1).

Similarly, as pipe strut (2) rotates clockwise about stationary end C, 

the circular arc describing the possible displaced positions of joint B2 can 

be approximated by a line that is perpendicular to the original orientation 

of member (2).

The intersection of these two perpendiculars at B � marks the fi nal 

displaced position of joint B.

Step 3: For the two-member structure considered here, the deformation dia-

gram forms a quadrilateral shape. The angle between member (2) and the x axis 

is 42.61°; therefore, the obtuse angle at B must equal 180° � 42.61° � 137.39°.

Since the sum of the four interior angles in a quadrilateral shape must 

equal 360° and since the angles at B1 and B2 are each 90°, the acute angle 

at B� must equal 360° � 90° � 90° � 137.39° � 42.61°.

Using this deformation diagram, the horizontal and vertical distances be-

tween initial joint position B and displaced joint position B� can be determined.

(d) Joint Displacement
The deformation diagram can now be analyzed to determine the location of 

B�, which is the fi nal position of joint B. By inspection, the horizontal 

translation �x of joint B is

 Δ x � � ��1 0 5227 0 523. mm . mm Ans.

Computation of the vertical translation �y requires several intermediate 

steps. From the deformation diagram, the distance labeled b is simply equal 

to the magnitude of deformation �2; therefore, b � ��2� � 0.6782 mm. The 

distance a is found from

cos .
. mm

42 61
0 5227

° �
a

� � �a ( . mm) cos . . mm0 5227 42 61 0 3847°

The vertical translation �y can now be computed as

sin .
( )

42 61° �
�a b

yΔ

� �
�

�
�Δy

a b( )

sin .

( . mm . mm)

sin .42 61

0 3847 0 6782

42 61° °
� 1 570. mm  Ans.

By inspection, joint B displaces downward to the right.
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P5.15 Rigid bar ABCD is loaded and supported as shown in 

Figure P5.15. Bars (1) and (2) are unstressed before the load P is 

applied. Bar (1) is made of bronze [E � 100 GPa] and has a cross-

sectional area of 520 mm2. Bar (2) is made of aluminum [E � 

70 GPa] and has a cross-sectional area of 960 mm2. After the load 

P is applied, the force in bar (2) is found to be 25 kN (in tension). 

Determine

(a) the stresses in bars (1) and (2).

(b) the vertical defl ection of point A.

(c) the load P.

(1)

(2)

A B DC

1.1 m 0.5 m0.4 m

0.6 m

0.8 m
P

FIGURE P5.15

P5.16 In Figure P5.16, aluminum [E � 70 GPa] links (1) and 

(2) support rigid beam ABC. Link (1) has a cross-sectional area of 

300 mm2, and link (2) has a cross-sectional area of 450 mm2. For 

an applied load of P � 55 kN, determine the rigid beam defl ection 

at point B.

(1)

(2)

A C

P

B
1,400 mm 800 mm

4,000 mm

2,500 mm

FIGURE P5.16

P5.17 Rigid bar ABC is supported by bronze rod (1) and alumi-

num rod (2), as shown in Figure P5.17. A concentrated load P is 

applied to the free end of aluminum rod (3). Bronze rod (1) has an 

elastic modulus of E1 � 15,000 ksi and a diameter of d1 � 0.50 in. 

Aluminum rod (2) has an elastic modulus of E2 � 10,000 ksi and 

PROBLEMSPROBLEMS
a diameter of d2 � 0.75 in. Aluminum rod (3) has a diameter of 

d3 � 1.0 in. The yield strength of the bronze is 48 ksi, and the yield 

strength of the aluminum is 40 ksi.

(a)  Determine the magnitude of load P that can safely be applied to 

the structure if a minimum factor of safety of 1.67 is required.

(b)  Determine the defl ection of point D for the load determined 

in part (a).

(c)  The pin used at B has an ultimate shear strength of 54 ksi. If a 

factor of safety of 3.0 is required for this double shear pin 

connection, determine the minimum pin diameter that can be 

used at B.

(1)

(2)

(3)

A C

P

B

D

2.5 ft 1.5 ft

6 ft

8 ft

3 ft

Bronze

Aluminum

Aluminum

FIGURE P5.17

P5.18 The truss shown in Figure P5.18 is constructed from three 

aluminum alloy members, each having a cross-sectional area of 

A � 850 mm2 and an elastic modulus of E � 70 GPa. Assume that 

a � 4.0 m, b � 10.5 m, and c � 6.0 m. Calculate the horizontal dis-

placement of roller B when the truss supports a load of P � 12 kN.

A B

P

C

a b

c

y

x

FIGURE P5.18
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P5.19 The rigid beam in Figure P5.19 is supported by links (1) 

and (2), which are made from a polymer material [E � 16 GPa]. 

Link (1) has a cross-sectional area of 400 mm2, and link (2) has a 

cross-sectional area of 800 mm2. Determine the maximum load P 

that may by applied if the defl ection of the rigid beam is not to 

exceed 20 mm at point C.

(1)

(2)

A B

P

C

600 mm 300 mm

1,250 mm

1,000 mm

Rigid beam

FIGURE P5.19

P5.20 The pin-connected assembly shown in Figure P5.20 

consists of solid aluminum [E � 70 GPa] rods (1) and (2) and solid 

steel [E � 200 GPa] rod (3). Each rod has a diameter of 16 mm. 

Assume that a � 2.5 m, b � 1.6 m, and c � 0.8 m. If the normal 

stress in any rod may not exceed 150 MPa, determine

(a) the maximum load P that may be applied at A.

(b) the magnitude of the resulting defl ection at A.

a b

c

c

P

A B

C

D

(1)

(2)

(3)

FIGURE P5.20

P5.21 A tie rod (1) and a pipe strut (2) are used to support 

a load of P � 25 kips, as shown in Figure P5.21. Pipe strut (2) 

has an outside diameter of 6.625 in. and a wall thickness of 

0.280 in. Both the tie rod and the pipe strut are made of structural 

steel with a modulus of elasticity of E � 29,000 ksi and a yield 

strength of �Y � 36 ksi. For the tie rod, the minimum factor of 

safety with respect to yield is 1.5 and the maximum allowable 

axial elongation is 0.30 in. Assume that a � 21 ft, b � 9 ft, and 

c � 27 ft.

(a)  Determine the minimum diameter required to satisfy both 

constraints for tie rod (1).

(b)  Draw a deformation diagram showing the fi nal position of 

joint B.

a

b

c

P

(1)

(2)

A

B

C

FIGURE P5.21

P5.22 Two axial members are used to support a load of 

P � 72 kips, as shown in Figure P5.22. Member (1) is 12-ft long, it 

has a cross-sectional area of A1 � 1.75 in.2, and it is made of struc-

tural steel [E � 29,000 ksi]. Member (2) is 16-ft long, it has a 

cross-sectional area of A2 � 4.50 in.2, and it is made of an aluminum 

alloy [E � 10,000 ksi].

(a) Compute the normal stress in each axial member.

(b) Compute the deformation of each axial member.

(c)  Draw a deformation diagram showing the fi nal position of 

joint B.

(d) Compute the horizontal and vertical displacements of 

joint B.

P

55°
(1)

(2)

B

C

A

FIGURE P5.22
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In many simple structures and mechanical systems constructed with axially loaded mem-

bers, it is possible to determine the reactions at supports and the internal forces in the indi-

vidual members by drawing free-body diagrams and solving equilibrium equations. Such 

structures and systems are classifi ed as statically determinate.

For other structures and mechanical systems, the equations of equilibrium alone are not 

suffi cient for the determination of axial forces in the members and reactions at supports. In 

other words, there are not enough equilibrium equations to solve for all of the unknowns in 

the system. These structures and systems are termed statically indeterminate. Structures of 

this type can be analyzed by supplementing the equilibrium equations with additional equa-

tions involving the geometry of the deformations in the members of the structure or system. 

The general solution process can be organized into a fi ve-step procedure:

Step 1 — Equilibrium Equations: Equations expressed in terms of the unknown axial 

forces are derived for the structure on the basis of equilibrium considerations.

Step 2 — Geometry of Deformation: The geometry of the specifi c structure is evalu-

ated to determine how the deformations of the axial members are related.

Step 3 — Force–Deformation Relationships: The relationship between the internal 

force in an axial member and its corresponding elongation is expressed by Equation (5.2).

Step 4 — Compatibility Equation: The force–deformation relationships are substi-

tuted into the geometry-of-deformation equation to obtain an equation that is based on 

the structure’s geometry, but expressed in terms of the unknown axial forces.

Step 5 — Solve the Equations: The equilibrium equations and the compatibility equa-

tion are solved simultaneously to compute the unknown axial forces.

The use of this procedure to analyze a statically indeterminate axial structure is illustrated 

in the next example.

5.5 Statically Indeterminate Axially Loaded Members

In engineering literature, 

force–deformation 
relationships are also called 

constitutive relationships 

since these relationships 

idealize the physical properties 

of the material—in other words, 

the constitution of the material.

As discussed in Chapters 1 and 2, it is convenient to use the notion of a rigid element to 

develop axial deformation concepts. A rigid element (such as a bar, a beam, or a plate) 

represents an object that is infi nitely strong and does not deform in any way. While it 

may translate or rotate, a rigid element does not stretch, compress, skew, or bend.

EXAMPLE 5.5

A 1.5-m-long rigid beam ABC is supported by three axial members, as shown in the fi gure 

that follows. A concentrated load of 220 kN is applied to the rigid beam directly under B.

The axial members (1) connected at A and at C are identical aluminum alloy 

[E � 70 GPa] bars each having a cross-sectional area of A1 � 550 mm2 and a length of 

L1 � 2 m. Member (2) is a steel [E � 200 GPa] bar with a cross-sectional area of 

A2 � 900 mm2 and a length of L2 � 2 m. All members are connected with simple pins.

If all three bars are initially unstressed, determine

(a)  the normal stresses in the aluminum and steel bars, and

(b)  the defl ection of the rigid beam after application of the 220-kN load.

Plan the Solution
A free-body diagram (FBD) of rigid beam ABC will be drawn, and from this sketch, equi-

librium equations will be derived in terms of the unknown member forces F1 and F2. 
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220 kN

0.75 m 0.75 m

(1) (1)(2)

A B C

D E F

2 m 2 m

220 kN

0.75 m 0.75 m

A B C

(1) (1)(2)

F2F1 F1

Since the axial members and the 220-kN load are 
arranged symmetrically relative to midpoint B of the 
rigid beam, the forces in the two aluminum bars (1) 
must be identical. The internal forces in the axial 
members are related to their deformations by Equation 
(5.2). Because members (1) and (2) are connected to 
rigid beam ABC, they are not free to deform indepen-
dently of each other. Based on this observation and 
considering the symmetry of the structure, we can as-
sert that the deformations in members (1) and (2) must 
be equal. This fact can be combined with the relation-
ship between member force and deformation [Equa-
tion (5.2)] to derive another equation, which is ex-
pressed in terms of the unknown member forces F1 
and F2. This equation is called a compatibility equa-
tion. The equilibrium and compatibility equations can 
be solved simultaneously to calculate the member 
forces. After F1 and F2 have been determined, the 
normal stresses in each bar and the defl ection of rigid 
beam ABC can be calculated.

SOLUTION
Step 1 — Equilibrium Equations: A FBD of
     rigid beam ABC is shown. From the overall sym-

metry of the structure and the loads, we know that 
the forces in members AD and CF must be iden-
tical; therefore, we will denote the internal forces 
in each of these members as F1. The internal force 
in member BE will be denoted F2.

From this FBD, equilibrium equations can
    be written for (a) the sum of forces in the vertical 

direction (i.e., the y direction) and (b) the sum of moments about joint A:

 F F Fy 2 220 01 2 kN� � � �Σ  (a)

 M F FA ( . m) ( . m) ( . m) ( kN)1 5 0 75 0 75 220 01 2 �� � �Σ  (b)

Two unknowns appear in these equations (F1 and F2), and at fi rst glance it seems as 
though we should be able to solve them simultaneously for F1 and F2. However, if 
Equation (b) is divided by 0.75 m, then Equations (a) and (b) are identical. Conse-
quently, a second equation that is independent of the equilibrium equation must be 
derived in order to solve for F1 and F2.

Step 2 — Geometry of Deformation: By symmetry, we know that rigid beam ABC 
must remain horizontal after the 220-kN load is applied. Consequently, joints A, B, and 
C must all displace downward by the same amount: vA � vB � vC. How are these rigid 
beam joint displacements related to member deformations �1 and �2? Since the mem-
bers are connected directly to the rigid beam (and there are no other considerations 
such as gaps or clearances in the pin connections),

 v v vA C B1 2and ��� ��  (c)
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Step 3 — Force–Deformation Relationships: We know that the elongations in 

an axial member can be expressed by Equation (5.2). Therefore, the relationship 

between internal axial force and member deformation can be expressed for each 

member as

 1
1 1

1 1
2

2 2

2 2

F L

A E

F L

A E
and �� � �  (d)

Step 4 — Compatibility Equation: The force–deformation relationships [Equation 

(d)] can be substituted into the geometry-of-deformation equation [Equation (c)] to 

obtain a new equation, which is based on deformations, but expressed in terms of the 

unknown member forces F1 and F2:

 v v v
F L

A E

F L

A EA B C� � �1 1

1 1

2 2

2 2
 

(e)

Step 5 — Solve the Equations: From compatibility equation (e), derive an 

expression for F1:

 F F
L

L

A

A

E

E
F1 2

2

1

1

2

1

2
2

2

2

2

2

550

900

70
� ��

( )

( )

( m)

( m)

mm

mm

( GGPa)

( GPa)
.

200
0 2139 2F  (f)

Substitute Equation (f) into Equation (a) and solve for F1 and F2:

ΣF F F F2y � � �� �2 2(0.2139 F2) 220 kN1 2

� � �F F2 1154 083 32 958. kN and . kN

The normal stress in aluminum bars (1) is

 �1
1

1
2550

59 9� ��
F
A

32,958 N

mm
. MPa (T) Ans.

and the normal stress in steel bar (2) is

 �2
2

2
2900

171 2� � �
F
A

154,083 N

mm
. MPa (T) Ans.

From Equation (c), the defl ection of the rigid beam is equal to the deformation of the 

axial members. Since both members (1) and (2) elongate the same amount, either term 

in Equation (d) can be used.

     �1
1 1

1 1 550
� � �

( )
F L
A E

( N)( mm)

mm2

32,958 2,000

70,000 N/mmm2
1 712

( )
. mm

Therefore, the rigid beam defl ection is vA � vB � vC � �1 � 1.712 mm. Ans.

By inspection, the rigid beam defl ects downward.
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The fi ve-step procedure demonstrated in the previous example provides a versatile 

method for the analysis of statically indeterminate structures. Additional problem-

solving considerations and suggestions for each step of the process are discussed in the 

table that follows.

Solution Method for Statically Indeterminate Axial Structures

Step 1 Equilibrium Equations Draw one or more free-body diagrams (FBDs) for the structure, focusing on the 

joints that connect the members. Joints are located wherever (a) an external force 

is applied, (b) the cross-sectional properties (such as area or diameter) change, 

(c) the material properties (i.e., E) change, or (d) a member connects to a rigid 

element (such as a rigid bar, beam, plate, or fl ange). Generally, FBDs of reaction 

joints are not useful.

Write equilibrium equations for the FBDs. Note the number of unknowns 

involved and the number of independent equilibrium equations. If the number of 

unknowns exceeds the number of equilibrium equations, a deformation equation 

must be written for each extra unknown.

Comments:

•  Label the joints with capital letters and label the members with numbers. This 

simple scheme can help you to clearly recognize effects that occur in members 

(such as deformations) and effects that pertain to joints (such as defl ections of 

rigid elements).

•  As a rule, when cutting a FBD through an axial member, assume that the 
internal member force is tension. The consistent use of tension internal forces 

along with positive deformations (in Step 2) proves quite effective for many 

situations, particularly those where temperature change is a consideration. 

Temperature change will be discussed in Section 5.6.

Step 2 Geometry of Deformation This step is distinctive to statically indeterminate problems. The structure or 

system should be studied to assess how the deformations of the axial members 

are related to each other. Most of the statically indeterminate axial structures fall 

into one of three general confi gurations:

1. Coaxial or parallel axial members.

2. Axial members connected end-to-end in series.

3. Axial members connected to a rotating rigid element.

Characteristics of these three categories are discussed in more detail shortly.

Step 3 Force–Deformation Relationships The relationship between internal force and deformation in axial member i is 

expressed by

�i
i i

i i

F L
A E

�

As a practical matter, writing down force–deformation relationships for the axial 

members at this stage of the solution is a helpful routine. These relationships will 

be used to construct the compatibility equation(s) in Step 4.

Step 4 Compatibility Equation The force–deformation relationships (from Step 3) are incorporated into the 

geometric relationship of member deformations (from Step 2) to derive a new 

equation, which is expressed in terms of the unknown member forces. Together, 

the compatibility and equilibrium equations provide suffi cient information to 

solve for the unknown variables.

Step 5 Solve the Equations The compatibility equation and the equilibrium equation(s) are solved 

simultaneously. While conceptually straightforward, this step requires careful 

attention to calculation details such as sign conventions and unit consistency.
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STATICALLY INDETERMINATE 
AXIALLY LOADED MEMBERS

Successful application of the fi ve-step solution method depends in no small part on 

the ability to understand how axial deformations are related in a structure. The table that 

follows highlights three common categories of statically indeterminate structures, which 

comprise axial members. For each general category, possible geometry-of-deformation 

equations are discussed.

Geometry of Deformations for Typical Statically Indeterminate Axial Structures

Equation Form Comments Typical Problems

1. Coaxial or parallel axial members.

� �1 2�

� �

� �

1 2

1 2

� �

� �

gap

gap

Problems in this category include 

side-by-side plates, a tube with a 

fi lled core, a concrete column with 

embedded reinforcing steel, and 

three parallel rods symmetrically 

connected to a rigid bar.

The deformation of each axial 

member must be the same unless 

there is a gap or clearance in the 

connections.

If there is a gap, then the 

deformation of one member 

equals the deformation of the 

other member plus the gap 

distance.

2. Axial members connected end-to-end in series.

� �1 2 0� �

� �1 2 constant� �

Problems in this category include 

two or more members connected 

end-to-end.

If there are no gaps or clearances 

in the confi guration, the member 

deformations must sum to zero; or 

in other words, an elongation in 

member (1) is accompanied by an 

equal contraction in member (2).

If there is a gap or clearance 

between the two members or if 

the supports move as the load is 

applied, then the sum of the 

member deformations equals the 

specifi ed distance.

(1)

(2)
A

B

P

600 mm

2 mm
(1)

(2)
(1)

A

B

1.2 m

360 kN

(1)
(2)

(1)

A B C

P

2.4 m
1.8 m

6 in.

Brass shell (1)

(2) Ceramic core

(1) (2)

A B C

0.04-in. gap

32 in. 44 in.

3 in. 2 in.

(2)

(1)

A

B

C

12 ft

2 ft

0.08 in.

P
2—

P
2—

(1)

(2)

A

B

C

P500 mm

900 mm

(1) (2)

A B C

120 in. 144 in.

30 kips

30 kips
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Equation Form Comments Typical Problems

3. Axial members connected to a rotating rigid element.

� �1 2

a b
�

� �1 2

a b
� �

� �1 2�
�

gap

a b

Problems in this category feature 

a rigid bar or a rigid plate to 

which the axial members are 

attached.

The rigid element is pinned 

so that it rotates about a fi xed 

point. Since the axial members 

are attached to the rotating 

element, their deformations are 

constrained by the geometry of 

the defl ected rigid bar position. 

The relationship between member 

deformations can be found from 

the principle of similar  triangles.

If both members elongate or both 

members contract as the rigid bar 

rotates, the fi rst equation form is 

obtained.

If one member elongates while 

the other member contracts as the 

rigid bar rotates, the geometry-of-

deformation equation takes the 

second form.

If there is a gap or clearance in a 

joint, then the geometry-of-

deformation equation takes the 

third form.

(1)
(2)

A B DC

P

54 in. 54 in. 24 in.

120 in.

80 in.

(1)

(2)

A

B

C

D

P

1,500 mm

1,000 mm

425 mm

425 mm

(1)

(2)

A B C

P

D

30 in.

40 in.

36 in. 48 in. 14 in.

32 in.

12 in.
15 in.

P

80 in.
20 in.

A

B C

(1)

(2)

A steel pipe (1) is attached to an aluminum pipe (2) at fl ange B. Both steel pipe (1) and 

aluminum pipe (2) are attached to rigid supports at A and C, respectively.

Member (1) has a cross-sectional area 

of A1 � 3,600 mm2, an elastic modulus of 

E1 � 200 GPa, and an allowable normal 

stress of 160 MPa. Member (2) has a cross-

sectional area of A2 � 2,000 mm2, an elastic 

modulus of E2 � 70 GPa, and an allowable 

normal stress of 120 MPa. Determine the 

maximum load P that can be applied to fl ange 

B without exceeding either allowable stress.

EXAMPLE 5.6

(1) (2)

A B
C

1.8 m 1.4 m

P
2
—

P
2
—
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Plan the Solution
Consider a free-body diagram (FBD) of fl ange B, and write the equilibrium equation 

for the sum of forces in the x direction. This equation will have three unknowns: F1, F2, 

and P.

Determine the geometry-of-deformation equation and write the force–deformation 
relationships for members (1) and (2). Substitute the force–deformation relationships into 

the geometry-of-deformation equation to obtain the compatibility equation. Then, use the 

allowable stress and area of member (1) to compute a value for P. Repeat this procedure, 

using the allowable stress and area of member (2), to compute a second value for P. Choose 

the smaller of these two values as the maxi-

mum force P that can be applied to fl ange B.

SOLUTION
Step 1 — Equilibrium Equations: The 

free-body diagram for joint B is shown. 

Notice that tension internal forces are 

assumed in both member (1) and mem-

ber (2) [even though one would expect to fi nd that member (1) would actually be in 

compression].

The equilibrium equation for joint B is simply

 ΣF F F Px � � � �2 1 0  (a)

Step 2 — Geometry of Deformation: Since the compound axial member is attached 

to rigid supports at A and C, the overall deformation of the structure must be zero. In 

other words,

 
� �1 2� � 0

 (b)

Step 3 — Force–Deformation Relationships: Write generic force–deformation 

relationships for the members:

 � �1
1 1

1 1
2

2 2

2 2
� �

F L
A E

F L
A E

and  (c)

Step 4 — Compatibility Equation: Substitute Equations (c) into Equation (b) to ob-

tain the compatibility equation:

 
F L
A E

F L
A E

1 1

1 1

2 2

2 2
� � 0  (d)

Step 5 — Solve the Equations: First, we will substitute for F2 in Equation (a). To 

accomplish this, solve Equation (d) for F2:

 
F F

L
L

A
A

E
E2 1

1

2

2

1

2

1

� �  (e)

 Substitute Equation (e) into Equation (a) to obtain

� � � � � �F
L
L

A
A

E
E

F F
L
L

A
A

E
E

P1
1

2

2

1

2

1
1 1

1

2

2

1

2

1

1

F1 F2(1) (2)

B

P
2
—

P
2
—

c05Axialdeformation.indd Page 115  02/05/12  9:37 PM user-F391c05Axialdeformation.indd Page 115  02/05/12  9:37 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



116

There are still two unknowns in this equation; consequently, another equation is necessary 

to obtain a solution. Let F1 equal the force corresponding to the allowable stress in mem-

ber (1) �allow,1 and solve for the applied load P. (Note: The negative sign attached to F1 

can be omitted here since we are interested only in the magnitude of load P.)

�allow,1
2N/mm 3,60A

L
L

A
A

E
E1

1

2

2

1

2

1

1 160� � ( ) 00 mm
1.8

1.4

2,000

3,600
2( ) 70

2000
1�

 � � � �(576,000 N)[1.25] 720,000 N 720 kN P

Repeat this process for member (2). Rearrange Equation (e) to obtain an expression 

for F1:

 

F F
L
L

A
A

E
E1 2

2

1

1

2

1

2
� �

 
(f )

Substitute Equation (f) into Equation (a) to obtain

F F
L
L

A
A

E
E

F
L
L

A
A

E
E

P2 2
2

1

1

2

1

2
2

2

1

1

2

1

2

1� � � �

Let F2 equal the allowable force, and solve for the corresponding applied force P:

�allow,2
2N/mm 2,00A

L
L

A
A

E
E2

2

1

1

2

1

2

1 120� � ( ) 00 mm
3,600

2,000
2( ) �1

1 4

1 8

20.

.

00

70

 
� � � �(240,000 N)[5.0] 1,200,000 N 1,200 kN P

Therefore, the maximum load P that can be applied to the fl ange at B is P � 720 kN.

 Ans.

A steel rod (1) is attached to a steel post (2) at fl ange B. A downward load of 110 kN is ap-

plied to fl ange B. Both rod (1) and post (2) are attached to rigid supports at A and C, respec-

tively. Rod (1) has a cross-sectional area of 800 mm2 and an elastic modulus of 200 GPa. 

Post (2) has a cross-sectional area of 1,600 mm2 and an elastic modulus of 200 GPa.

(a) Compute the normal stress in rod (1) and post (2).

(b) Compute the defl ection of fl ange B.

 MecMovies Example M5.5MM
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An aluminum tube (1) encases a brass core (2). The two components are bonded  together 

to form an axial member that is subjected to a downward force of 30 kN. Tube (1) has an 

outer diameter of D � 30 mm and an inner diameter of d � 22 mm. The elastic modulus of 

the aluminum is 70 GPa. The brass core (2) has a diameter of d � 22 mm and an elastic 

modulus of 105 GPa. Compute the normal stresses in tube (1) and core (2).

 MecMovies Example M5.6MM

Rigid bar AD is pinned at A and supported by bars (1) and (2) at B and 

C, respectively. Bar (1) is aluminum and bar (2) is brass. A concen-

trated load P � 36 kN is applied to the rigid bar at D. Compute the 

normal stress in each bar and the downward defl ection of the rigid bar 

at D.

 MecMovies Example M5.7MM

Structures with a Rotating Rigid Bar

Problems involving a rotating rigid element can be particularly diffi cult. For these struc-

tures, a deformation diagram should be drawn at the outset. This diagram is essential to 

obtaining the correct geometry-of-deformation equation. In general, draw the deformation 

diagram, assuming tension in the internal members. MecMovies Example M5.7 illustrates 

problems of this type.

Some structures with rotating rigid bars have opposing members; that is, one member 

is elongated, while the other member is compressed. Figure 5.11 illustrates the subtle dif-

ference between these two types of confi guration.
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For the structure with two tension members (Figure 5.11a), the geometry of deforma-

tions in terms of joint defl ections vB and vC is found by similar triangles (Figure 5.11b):

v
x

v
x

B

B

C

C
�

From Figure 5.11c, the member deformations � 1 and � 2 are related to the joint defl ections 

vB and vC by

� �1 1 1 1� � � �( ) � � � �L L L v L v vB B Bfinal initial

and

 � �2 2 2 2� � � �( ) � � � �L L L v L v vC C Cfinal initial  (5.6)

(1) (2)

A B C D

xB

xC

P

FIGURE 5.11a Confi guration with two tension members.

(1) (2)

A B C D

xB

xC

vB
vC

P

FIGURE 5.11b Deformation diagram.

(1) (2)

A B C D

vB
vC

xB

xC

1L + vB
1L

2L + vC

2L

FIGURE 5.11c Showing member deformations.
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STATICALLY INDETERMINATE 
AXIALLY LOADED MEMBERS

Therefore, the geometry-of-deformation equation can be written in terms of member 

deformations as

 
� �1 2

x xB C
�  (5.7)

For the structure with two opposing axial members (Figure 5.11d), the geometry-of-deforma-

tion equation in terms of joint defl ections vB and vC is the same as previously (Figure 5.11e):

v
x

v
x

B

B

C

C
�

From Figure 5.11f, the member deformations � 1 and � 2 are related to the joint defl ections 

vB and vC by

 � �1 1 1 1� � � �( ) � � � �L L L v L v vB B Bfinal initial

and

 � �2 2 2 2� � � �( ) � � � � � �L L L v L v vC C Cfinal initial
  (5.8)

Note the subtle difference between Equations (5.6) and Equations (5.8). The geometry-of- 

deformation equation for the opposing members confi guration in terms of member defor-

mations is, therefore, as shown:

 

� �1 2

x xB C
� �

 
(5.9)

FIGURE 5.11d Confi guration with opposing members.

(1)

(2)

A B C D

xB

xC

P

FIGURE 5.11e Deformation diagram.

(1)

(2)

A B C D

xB

xC

vB
vC

P
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AXIAL DEFORMATION

An equilibrium equation and the corresponding deformation equation must be 

compatible; that is, when a tensile force is assumed for a member in a free-body dia-

gram, a tensile deformation must be indicated for the same member in the deformation 

diagram. In the confi gurations shown here, internal tension forces have been assumed 

for all axial members. For the structure shown in Figure 5.11d, the displacement of the 

rigid bar at C (Figure 5.11e), however, corresponds to contraction of axial member (2). 

As shown in Equations (5.8), this condition produces a negative sign for � 2, and as a 

result, the geometry-of-deformation equation in Equation (5.9) is slightly different 

from the geometry-of-deformation equation found for the structure with two tension 

members [Equation (5.7)].

Rigid bar structures with opposing axial members are analyzed in MecMovies 

 Examples M5.8 and M5.9.

A pin-connected structure is loaded and supported as shown. Member ABCD is 

a rigid bar that is horizontal before the load P is applied. Members (1) and (2) are 

aluminum [E � 70 GPa], with cross-sectional areas of A1 � A2 � 160 mm2. 

Member (1) is 900 mm in length, and member (2) is 1,250 mm. A load of P � 35 kN 

is applied to the structure at D.

(a) Calculate the axial forces in members (1) and (2).

(b) Compute the normal stress in members (1) and (2).

(c) Compute the downward defl ection of the rigid bar at D.

 MecMovies Example M5.8MM

(1)

(2)

A B C D

vB
vC

xB

xC

1L + vB
1L

2L – vC

2L

FIGURE 5.11f Showing member deformations.
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An aluminum bar (2) is to be connected to a brass post (1). When the two 

axial members were installed, however, it was discovered that 

there was a 1/16-in. gap between fl ange B and the brass post. The brass 

post (1) has a cross-sectional area of A1 � 0.60 in.2 and an elastic 

modulus of E1 � 16,000 ksi. The aluminum bar (2) has properties of 

A2 � 0.20 in.2 and E2 � 10,000 ksi.

If bolts are inserted through the fl ange at B and tightened until the 

gap is closed, how much stress will be induced in each of the axial 

members?

 MecMovies Example M5.10MM

Rigid bar ABCD is pinned at C and supported by bars (1) and (2) at 

A and D, respectively. Bar (1) is aluminum and bar (2) is bronze. 

A concentrated load P � 80 kN is applied to the rigid bar at B. Compute 

the normal stress in each bar and the downward defl ection of the 

rigid bar at A.

 MecMovies Example M5.9MM

M5.5 A composite axial structure consists of two rods joined 

at fl ange B. Rods (1) and (2) are attached to rigid supports at A 

and C, respectively. A concentrated load P is applied to fl ange B 

in the direction shown. Determine the internal forces and normal 

stresses in each rod. Also, determine the defl ection of fl ange B in 

the x direction.

M5.6 A composite axial structure consists of a tubular shell (1) 

bonded to length AB of a continuous solid rod that extends from A 

to C, which is labeled (2) and (3). A concentrated load P is applied 

to the free end C of the rod in the direction shown. Determine 

the internal forces and normal stresses in shell (1) and core (2) 

(i.e., between A and B). Also, determine the defl ection in the x 

 direction of end C relative to support A.

 MecMovies ExercisesMM

FIGURE M5.5 FIGURE M5.6
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M5.7 Determine the internal forces and normal stresses in bars 

(1) and (2). Also, determine the defl ection of the rigid bar in the x 

direction at C.

M5.8 Determine the internal forces and normal stresses in bars 

(1) and (2). Also, determine the defl ection of the rigid bar in the x 

direction at C.

FIGURE M5.7 FIGURE M5.8

P5.23 The 200 � 200 � 1,200-mm oak [E � 12 GPa] block (2) 

shown in Figure P5.23 is reinforced by bolting two 6 � 200 � 

1,200 mm steel [E � 200 GPa] plates (1) to opposite sides of 

the block. A concentrated load of 360 kN is  applied to a rigid cap. 

Determine

(a) the normal stresses in the steel plates (1) and the oak block (2).

(b) the shortening of the block when the load is applied.

PROBLEMSPROBLEMS
P5.24 Two identical steel [E � 200 GPa] pipes, each with a 

cross-sectional area of 1,475 mm2, are attached to unyielding 

supports at the top and bottom, as shown in Figure P5.24/25. At 

fl ange B, a concentrated downward load of 120 kN is applied. 

Determine

(a) the normal stresses in the upper and lower pipes.

(b) the defl ection of fl ange B.

P5.25 Solve Problem 5.24 if the lower support in Figure P5.24/25 

yields and displaces downward 1.0 mm as the load P is applied.

(1)

(2)

(1)

A

B

1.2 m

360 kN

FIGURE P5.23

(1)

(2)

A

B

C

3.7 m

3.0 m

120 kN

FIGURE P5.24/25
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P5.26 A composite bar is fabricated by brazing aluminum alloy 

[E � 10,000 ksi] bars (1) to a center brass [E � 17,000 ksi] bar (2), 

as shown in Figure P5.26. Assume that w � 1.25 in., a � 0.25 in., 

and L � 40 in. If the total axial force carried by the two aluminum 

bars must equal the axial force carried by the brass bar, calculate 

the thickness b required for brass bar (2).

P5.30 A load of P � 100 kN is supported by a structure consist-

ing of rigid bar ABC, two identical solid bronze [E � 100 GPa] 

rods, and a solid steel [E � 200 GPa] rod as shown in Figure P5.30. 

Each of the bronze rods (1) has a diameter of 20 mm and is 

symmetrically positioned relative to the center rod (2) and the 

applied load P. Steel rod (2) has a diameter of 24 mm. All bars are 

unstressed before the load P is applied; however, there is a 3-mm 

clearance in the bolted connection at B. Determine

(a) the normal stresses in the bronze and steel rods.

(b) the downward defl ection of rigid bar ABC.

P5.29 The concrete [E � 29 GPa] pier shown in Figure P5.28/29 

is reinforced by four steel [E � 200 GPa] reinforcing rods. If the 

pier is subjected to an axial force of 670 kN, determine the required 

diameter D of each rod so that 20% of the total load is carried by 

the steel.

a

a

b

L

P

P

Aluminum (1)

Brass (2)

Aluminum (1)

w

FIGURE P5.26

P5.27 An aluminum alloy [E � 10,000 ksi] pipe with a cross-

sectional area of A1 � 4.50 in.2 is connected at fl ange B to a steel 

[E � 30,000 ksi] pipe with a cross-sectional area of A2 � 3.20 in.2. 

The assembly (shown in Figure P5.27) is connected to rigid sup-

ports at A and C. For the loading shown, determine

(a) the normal stresses in aluminum pipe (1) and steel pipe (2).

(b) the defl ection of fl ange B.

P5.28 The concrete [E � 29 GPa] pier shown in Figure P5.28/29 

is reinforced by four steel [E � 200 GPa] reinforcing rods, each 

having a diameter of 19 mm. If the pier is subjected to an axial load 

of 670 kN, determine

(a) the normal stress in the concrete and in the steel reinforcing rods.

(b) the shortening of the pier.

(1) (2)

A B
C

160 in. 220 in.

45 kips

45 kips

FIGURE P5.27

FIGURE P5.28/29

250 mm

250 mm

1.5 m

670 kN

(1)

(2)

(1)

A B C

P

3.0 m
1.5 m

FIGURE P5.30
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P5.31 Two steel [E � 30,000 ksi] pipes (1) and (2) are connected 

at flange B, as shown in Figure P5.31. Pipe (1) has an outside dia-

meter of 6.625 in. and a wall thickness of 0.28 in. Pipe (2) has an 

outside diameter of 4.00 in. and a wall thickness of 0.226 in. If the 

normal stress in each steel pipe must be limited to 18 ksi, determine

(a)  the maximum downward load P that may be applied at fl ange B.

(b) the defl ection of fl ange B at the load that you determined in 

part (a).

rod (2) has an outside diameter of 20 mm. The normal stress in the 

aluminum rod must be limited to 160 MPa, and the normal stress in 

the bronze rod must be limited to 110 MPa. Determine

(a)  the maximum downward load P that may be applied at 

fl ange B.

(b) the defl ection of fl ange B at the load that you determined in 

part (a).

P5.33 A pin-connected structure is supported as shown in 

Figure P5.33/34. Member ABCD is rigid and horizontal before 

load P is applied. Bar (1) is made of brass [E � 17 � 106 psi], and 

it has a length of L1 � 3.5 ft. Bar (2) is made of an aluminum alloy 

[E � 10 � 106 psi]. Bars (1) and (2) each have cross-sectional 

areas of 0.40 in.2. Assume that a � 3.0 ft, b � 4.0 ft, c � 1.0 ft, 

and P � 4,000 lb. Determine the maximum length L2 that can be 

used for bar (2) if the normal stress developed in bar (1) must not 

exceed ½ of the normal stress in bar (2); that is, �1 	 0.5�2.

P5.34 A pin-connected structure is supported as shown in 

Figure P5.33/34. Member ABCD is rigid and horizontal before 

load P is applied. Bar (1) is made of brass [�Y � 18,000 psi; E � 

17 � 106 psi], and it has a length of L1 � 8.0 ft. Bar (2) is made 

of an aluminum alloy [�Y � 40,000 psi; E � 10 × 106 psi] , and it 

has a length of L2 � 5.5 ft. Bars (1) and (2) each have cross-

sectional areas of 0.75 in.2. Assume that a � 4.0 ft, b � 6.0 ft, and 

c � 1.5 ft. If the minimum factor of safety required for bars (1) 

and (2) is 2.50, calculate the maximum load P that can be applied 

to the rigid bar at D.

P5.35 The pin-connected structure shown in Figure P5.35/36 

consists of a rigid beam ABCD and two supporting bars. Bar (1) is a 

bronze alloy [E � 105 GPa] with a cross-sectional area of A1 � 

290 mm2. Bar (2) is an aluminum alloy [E � 70 GPa] with a cross-

sectional area of A2 � 650 mm2. If a load of P � 30 kN is applied at 

B, determine

(a) the normal stresses in both bars (1) and (2).

(b) the downward defl ection of point A on the rigid bar.

(1)

(2)

A

B

C

P

16 ft

10 ft

FIGURE P5.31

P5.32 A solid aluminum [E � 70 GPa] rod (1) is connected to a 

solid bronze [E � 100 GPa] rod at fl ange B as shown in Figure P5.32. 

Aluminum rod (1) has an outside diameter of 35 mm, and bronze 

(1)

(2)

A

B

C

P175 mm

340 mm

FIGURE P5.32

a b c
P

(1)
(2)

1L
2L

A B C D

FIGURE P5.33/34
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P5.39 A load P is supported by a structure consisting of 

rigid bar BDF and three identical 15-mm-diameter steel [E � 

200 GPa] rods, as shown in Figure P5.39. Use a � 2.5 m, 

b � 1.5 m, and L � 3 m. For a load of P � 75 kN, determine

(a) the tension force produced in each rod.

(b) the vertical defl ection of the rigid bar at B.

P5.36 The pin-connected structure shown in Figure P5.35/36 

consists of a rigid beam ABCD and two supporting bars. Bar (1) is 

a bronze alloy [E � 105 GPa] with a cross-sectional area of A1 � 

290 mm2. Bar (2) is an aluminum alloy [E � 70 GPa] with a cross-

sectional area of A2 � 650 mm2. All bars are unstressed before the 

load P is applied; however, there is a 3-mm clearance in the pin 

connection at A. If a load of P � 85 kN is applied at B, determine

(a) the normal stresses in both bars (1) and (2).

(b) the downward defl ection of point A on the rigid bar.

(1)

(2)

A B

C D

P
1,600 mm

2,250 mm

480 mm

1,150 mm 650 mm

FIGURE P5.35/36

P5.37 A pin-connected structure is supported as shown in 

Figure P5.37/38. Bar (1) is made of brass [�Y � 330 MPa; E � 

105 GPa]. Bar (2) is made of an aluminum alloy [�Y � 275 MPa; 

E � 70 GPa]. Bars (1) and (2) each have cross-sectional areas of 

225 mm2. Member ABCD is rigid. If the minimum factor of safety 

required for bars (1) and (2) is 2.50, calculate the maximum load P 
that can be applied to the rigid bar at A.

P5.38 A pin-connected structure is supported as shown in 

Figure P5.37/38. Bar (1) is made of brass [E � 105 GPa], and bar (2) 

is made of an aluminum alloy [E � 70 GPa]. Bars (1) and (2) each 

have cross-sectional areas of 375 mm2. Rigid bar ABCD is supported 

by a pin in a double-shear connection at B. If the allowable shear 

stress for pin B is 130 MPa, calculate the minimum allowable dia-

meter for the pin at B when P � 42 kN.

(1)

(2)

A B

C

D

P

400 mm

260 mm720 mm

430 mm

880 mm

FIGURE P5.37/38

L

a a

A

B

C

D

E

F

(1) (3)(2)

b

P
FIGURE P5.39

P5.40 A uniformly-distributed load w is supported by a struc-

ture consisting of rigid bar BDF and three rods, as shown in 

Figure P5.40. Rods (1) and (2) are 15-mm diameter stainless steel 

rods, each with an elastic modulus of E � 193 GPa and a yield 

strength of �Y � 250 MPa. Rod (3) is a 20-mm-diameter bronze 

rod that has an elastic modulus of E � 105 GPa and a yield strength 

of �Y � 330 MPa. Use a � 1.5 m and L � 3 m. If a minimum fac-

tor of safety of 2.5 is specifi ed for the normal stress in each rod, 

calculate the maximum distributed load magnitude w that may be 

supported.

L

a 2a

A

B

C

D

E

F

w

(1) (3)(2)

FIGURE P5.40
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P5.41 The pin-connected structure shown in Figure P5.41 con-

sists of two cold-rolled steel [E � 30,000 ksi] bars (1) and a bronze 

[E � 15,000 ksi] bar (2) that are connected at pin D. All three 

bars have cross-sectional areas of 0.375 in.2. A load of P � 11 kips 

is applied to the structure at pin D. Using a � 3 ft and b � 5 ft, 

calculate

(a) the normal stresses in bars (1) and (2).

(b) the downward displacement of pin D.

A B C

D

(1) (1)
(2)

b

P

a a

FIGURE P5.41

P5.42 The pin-connected structure shown in Figure P5.42 

consists of a rigid bar ABC, a steel bar (1), and a steel rod (2). The 

cross-sectional area of bar (1) is A1 � 0.5 in.2, and its length is 

L1 � 24 in. The diameter of rod (2) is d2 � 0.375 in., and its length 

is L2 � 70 in. Assume that E � 30,000 ksi for both axial members. 

Using a � 18 in., b � 32 in., c � 20 in., and P � 7 kips, determine

(a) the normal stresses in bar (1) and rod (2).

(b) the defl ection of pin C from its original position.

a

1L

c

P

2L
b

A

B C

(1)

(2)

FIGURE P5.42

P5.43 Links (1) and (2) support rigid bar ABCD shown in 

Figure P5.43. Link (1) is bronze [�Y � 330 MPa; E � 105 GPa], 

with a cross-sectional area of A1 � 300 mm2 and a length of 

L1 � 720 mm. Link (2) is cold-rolled steel [�Y � 430 MPa; E � 

210 GPa], with a cross-sectional area of A2 � 200 mm2 and a length 

of L2 � 940 mm. A factor of safety of 2.5 with respect to yield is 

specifi ed for the normal stresses in links (1) and (2). Furthermore, 

the maximum horizontal displacement of the rigid bar at end D may 

not exceed 2.0 mm. Calculate the magnitude of the maximum load 

P that can be applied to the rigid bar at D. Use a � 420 mm, b � 

420 mm, and c � 510 mm.

1L

2L

c

b

a

P

A

B

C

D

(1)

(2)

FIGURE P5.43

P5.44 A 4.5-m-long aluminum tube (1) is to be connected to a 

2.4-m-long bronze pipe (2) at B. When put in place, however, a gap 

of 8 mm exists between the two members as shown in Figure P5.44. 

Aluminum tube (1) has an elastic modulus of 70 GPa and a cross-

sectional area of 2,000 mm2. Bronze pipe (2) has an elastic modulus 

of 100 GPa and a cross-sectional area of 3,600 mm2. If bolts are 

inserted in the fl anges and tightened so that the gap at B is closed, 

determine

(a) the normal stresses produced in each of the members.

(b) the fi nal position of fl ange B with respect to support A.

(2)

(1)

A

B

C

4.5 m

2.4 m

8 mm

FIGURE P5.44
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P5.45 The assembly shown in Figure P5.45 consists of a steel 

[E1 � 30,000 ksi; A1 � 1.25 in.2] rod (1), a rigid bearing plate B 

that is securely fastened to rod (1), and a bronze [E2 � 15,000 ksi; 

A2 � 3.75 in.2] post (2). The yield strengths of the steel and bronze 

are 62 ksi and 75 ksi, respectively. A clearance of 0.125 in. exists 

between the bearing plate B and bronze post (2) before the assem-

bly is loaded. After a load of P � 65 kips is applied to the bearing 

plate, determine

(a) the normal stresses in bars (1) and (2).

(b)  the factors of safety with respect to yield for each of the 

members.

(c) the vertical displacement of bearing plate B.

(2)

(1)

A

B

C

14 ft

3 ft

0.125 in.

P
2
— P

2
—

FIGURE P5.45

P5.46 In Figure P5.46, the cutaway view shows a solid alumi-

num alloy [L2 � 600 mm; A2 � 707 mm2; E2 � 70 GPa] rod (2) 

within a closed-end bronze [L1 � 610 mm; A1 � 1,206 mm2; E1 � 

100 GPa] tube (1). Before the load P is applied, there is a clearance 

of 2 mm between the rod fl ange at B and the tube closure at A. After 

load P is applied, rod (2) stretches enough so that fl ange B contacts

the closed end of the tube at A. If the load applied to the lower end 

of the aluminum rod is P � 230 kN, calculate 

(a) the normal stress in tube (1).

(b) the elongation of tube (1).

P5.47 A 0.5-in.-diameter steel [E � 30,000 ksi] bolt (1) is 

placed in a copper tube (2), as shown in Figure P5.47. The copper 

[E � 16,000 ksi] tube has an outside diameter of 1.00 in., a wall 

thickness of 0.125 in., and a length of L � 8.0 in. Rigid washers, 

each with a thickness of t � 0.125 in., cap the ends of the copper 

tube. The bolt has 20 threads per inch. This means that each time 

the nut is turned one complete revolution, the nut advances 0.05 in. 

(i.e., 1/20 in.). The nut is hand-tightened on the bolt until the 

bolt, nut, washers, and tube are just snug, meaning that all slack 

has been removed from the assembly, but no stress has yet been 

induced. What stresses are produced in the bolt and in the tube if 

the nut is tightened an additional quarter turn past the snug-tight 

condition?

L tt

Bolt (1)

Tube (2)

Rigid washerRigid washer

FIGURE P5.47

P5.48 A hollow steel [E = 30,000 ksi] tube (1) with an outside 

diameter of 3.50 in. and a wall thickness of 0.216 in. is fastened to 

a solid 2-in.-diameter aluminum [E = 10,000 ksi] rod. The assem-

bly is attached to unyielding supports at the left and right ends and 

is loaded as shown in Figure P5.48. Determine

(a) the stresses in all parts of the axial structure.

(b) the defl ections of joints B and C.

17 kips

17 kips

13 kips

13 kips

(1) (2) (3)

A B
C D

4 ft 5 ft 5 ft

FIGURE P5.48FIGURE P5.46

(1)

(2)

A

C

B

P

2 mm

600 mm

Support

Flange

610 mm

Cross section

15 mm
29 mm

35 mm

(1)
(2)
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A 20-mm-diameter steel [E � 200 GPa; � � 12.0 � 10�6/°C] rod 

is held snugly between rigid walls, as shown. Calculate the 

temperature drop �T at which the shear stress in the 15-mm-

diameter bolt becomes 70 MPa.

 MecMovies Example M5.11MM

As discussed in Section 2.4, a temperature change ΔT creates normal strains in a material:

 � �T T� �  (5.10)

Over the length L of an axial member, the deformation resulting from a temperature 

change is

 � � �T T L TL� � �  (5.11)

If an axial member is allowed to freely elongate or contract, temperature change by itself 

does not create stress in a material. However, substantial stresses can result in an axial 

member if elongation or contraction is inhibited.

Force–Temperature–Deformation Relationship

The relationship between internal force and axial deformation developed in Equation (5.2) 

can be enhanced to include the effects of temperature change:

 � �� �
FL
AE

TL�  (5.12)

The deformation of a statically determinate axial member can be computed from Equation 

(5.12) since the member is free to elongate or contract in response to a change in tem-

perature. In a statically indeterminate axial structure, however, the deformation due to 

temperature changes may be constrained by supports or other components in the structure. 

Restrictions of this sort inhibit the elongation or contraction of a member, causing normal 

stresses to develop. These stresses are often referred to as thermal stresses, even though 

temperature change by itself causes no stress.

5.6 Thermal Effects on Axial Deformation

c05Axialdeformation.indd Page 128  1/24/12  7:00 PM user-F393c05Axialdeformation.indd Page 128  1/24/12  7:00 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



129

Incorporating Temperature Effects in Statically 
Indeterminate Structures

In Section 5.5, a fi ve-step procedure for analyzing statically indeterminate axial structures 

was outlined. Temperature effects can be easily incorporated into this procedure by using 

Equation (5.12) to defi ne the force–temperature–deformation relationships for the axial 

members, instead of Equation (5.2). With the fi ve-step procedure, analysis of indeterminate 

structures involving temperature change is no more diffi cult conceptually than those prob-

lems without thermal effects. The addition of the � �TL term in Equation (5.12) does in-

crease the computational diffi culty, but the overall procedure is the same. In fact, it is the 

more challenging problems, such as those involving temperature change, in which the 

advantages and potential of the fi ve-step procedure are most evident.

It is essential that Equation (5.12) be consistent, meaning that a positive internal force 

F (i.e., tension force) and a positive �T should produce a positive member deformation 

(i.e., an elongation). The need for consistency explains the emphasis on assuming an inter-

nal tension force in all axial members, even if, intuitively, one might anticipate that an axial 

member should act in compression.

A rigid bar ABC is pinned at A and supported by a steel wire at B. 

Before weight W is attached to the rigid bar at C, the rigid bar is 

horizontal. After weight W is attached and the temperature of the 

assembly has been increased by 50°C, careful measurements 

reveal that the rigid bar has defl ected downward 2.52 mm at point 

C. Determine

(a) the normal strain in wire (1).

(b) the normal stress in wire (1).

(c) the magnitude of weight W.

 MecMovies Example M5.12MM

An aluminum bar (1) is attached to steel post (2) at rigid fl ange B. Bar (1) and post (2) are 

initially stress free when they are connected to the fl ange at a temperature of 20°C. The 

aluminum bar (1) has a cross-sectional area of A1 � 200 mm2, a modulus of elasticity of 

E1 � 70 GPa, and a coeffi cient of thermal expansion of �1 � 23.6 � 10�6/°C. The steel 

post (2) has properties of A2 � 450 mm2, E2 � 200 GPa, and � 2 � 12.0 � 10�6/°C. Deter-

mine the normal stresses in members (1) and (2) and the defl ection at fl ange B after the 

temperature increases to 75°C.

 MecMovies Example M5.13MM
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An aluminum rod (1) [E � 70 GPa; � � 

22.5 � 10�6/°C] and a brass rod (2) [E � 

105 GPa; � � 18.0 � 10�6/°C] are con-

nected to rigid supports, as shown. The cross-

sectional areas of rods (1) and (2) are 2,000 

mm2 and 3,000 mm2, respectively. The tem-

perature of the structure will increase.

(a)  Determine the temperature increase 

that will close the initial 1-mm gap 

between the two axial members.

(b)  Compute the normal stress in each rod if 

the total temperature increase is �60°C.

Plan the Solution
First, we must determine whether the temperature increase will cause suffi cient elongation 

to close the 1-mm gap. If the two axial members come into contact, the problem becomes 

statically indeterminate and the solution will proceed with the fi ve-step procedure outlined 

in Section 5.5. To maintain consistency in the force–temperature–deformation relationships, 

tension will be assumed in both members (1) and (2) even though it is apparent that both 

members will be compressed because of the temperature increase. Accordingly, the values 

obtained for the internal axial forces F1 and F2 should be negative.

SOLUTION
(a)  The axial elongation in the two rods due solely to a temperature increase can be 

expressed as

� � � �1 1 1 2 2,T TTL TL� �� �and 2,

If the two rods are to touch at B, the sum of the elongations in the rods must equal 

1 mm:

� � � �1 2 1 1 2 2 1, ,T T TL TL� � � �� � mm

Solve this equation for ΔT:

22.5 10 °C (900 mm) 18.0 10 °C (600 mm)6 6�( ) � �( ) �– –� �T T 1 mmm
 � ��T 32 2. °C Ans.

(b)  Given that a temperature increase of 32.2°C closes the 1-mm gap, a larger 

temperature increase (i.e., 60°C in this instance) will cause the aluminum and brass 

rods to compress each other since the rods are prevented from expanding freely by 

the supports at A and C.

Step 1 — Equilibrium Equations: Con

     sider a free-body diagram (FBD) of joint 

B after the aluminum and brass rods have 

come into contact. The sum of forces in 

the horizontal direction consists exclu-

sively of the internal member forces.

ΣF F F F Fx � � � � �2 1 1 20

EXAMPLE 5.7

A B C

(1) (2)

1 mm

900 mm 600 mm

F1 F2(1) (2)

A B C
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Step 2 — Geometry of Deformation: Since the compound axial member is attached 

to rigid supports at A and C, the overall elongation of the structure can be no more than 

1 mm. In other words,

 � �1 2 1� � mm  (a)

Step 3 — Force–Temperature–Deformation Relationships: Write the force–

temperature–deformation relationships for the two members:

 � � � �1
1 1

1 1
1 1 2

2 2

2 2
2 2� � � �

F L
A E

TL
F L
A E

TL� �and  (b)

Step 4 — Compatibility Equation: Substitute Equations (b) into Equation (a) to 

obtain the compatibility equation:

 
F L
A E

TL
F L
A E

TL1 1

1 1
1 1

2 2

2 2
2 2 1� � � �� �� � mm  (c)

Step 5 — Solve the Equations: Substitute F2 � F1 (from the equilibrium equation) 

into Equation (c) and solve for the internal force F1:

 F
L

A E
L

A E
TL TL1

1

1 1

2

2 2
1 1 2 21� � � �mm � �� �  (d)

In computing the value for F1, pay close attention to the units, making sure that they 

are consistent:

F1 2

900 mm

mm mm2 22,000 70,000 N/mm

600 mm

3,000 1( )( )
�

( ) 005,000 N/mm

mm °C °C

2

. ( )(

( )

� � �( )�1 22 5 10 606 9900 18 0 10 60 6006mm °C °C mm) . ( )( )� �( )�

 

 
(e)

Therefore,

F1 103 560 103 6� � � �, N . kN

The normal stress in rod (1) is

 �1
1

1

103 560
51 8 51 8� �

�
� � �

F
A

, N

mm
. MPa . MPa (C)

22,000
 Ans.

and the normal stress in rod (2) is

 �2
2

2

34 5 34 5� �
�

� � �
F
A

103,560

3,000

N

mm
. MPa . MPa (C)

2
 Ans.
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A pin-connected structure is loaded and supported as shown. 

Member BCDF is a rigid plate. Member (1) is a steel [E � 200 GPa; 

A1 � 310 mm2; � � 11.9 � 10�6/°C] bar, and member (2) is an 

aluminum [E � 70 GPa; A2 � 620 mm2; � � 22.5 � 10�6/°C] bar. 

A load of 6 kN is applied to the plate at F. If the temperature 

increases by 20°C, compute the normal stresses in members (1) 

and (2).

Plan the Solution
The fi ve-step procedure for solving indeterminate problems will 

be used. Since the rigid plate is pinned at C, it will rotate about C. 

A deformation diagram will be sketched to show the relationship 

between the rigid plate defl ections at joints B and D, based on the 

assumption that the plate rotates clockwise about C. The joint 

defl ections will be related to the deformations � 1 and � 2, which 

will lead to a compatibility equation expressed in terms of the 

member forces F1 and F2.

SOLUTION
Step 1 — Equilibrium Equations:

ΣM F FC � � � �1 2100 300 6 350 0( mm) ( mm) ( kN)( mm)  (a)

Step 2 — Geometry of Deformation: Sketch the defl ected 

     position of the rigid plate. Since the plate is pinned at C, the 

plate will rotate about C. The relationship between the defl ec-

tions of joints B and D can be expressed by similar triangles:

                      
v vB D

100 300mm mm
�    (b)

 How are the deformations in members (1) and (2)  related to 
the joint defl ections at B and D?

EXAMPLE 5.8

A rectangular bar 30 mm wide and 24 mm thick made of aluminum 

[E � 70 GPa; � � 23.0 � 10�6�°C] and two rectangular copper 

[E � 120 GPa; � � 16.0 � 10�6�°C] bars 30 mm wide and 12 mm 

thick are connected by two smooth 11-mm-diameter pins. When the 

pins are initially inserted into the bars, both the copper and aluminum 

bars are stress free. After the temperature of the assembly has in-

creased by 65°C, determine

(a) the internal axial force in the aluminum bar.

(b) the normal strain in the copper bars.

(c) the shear stress in the 11-mm-diameter pins.

 MecMovies Example M5.14MM

100 mm

300 mm

A
B

C

D
E

F

400 mm

500 mm 350 mm

(1)

(2)

6 kN

100 mm

300 mm

B

C

D

F

350 mm

(1)

(2)
6 kN

F2

F1

Cx

yC
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100 mm

300 mm

A
B

C

DE

F

2L

vD2L – vD

1L vB

1L + vB

(1)

(2)

6 kN

(Note: Deflections shown 
greatly exaggerated.)

By defi nition, the deformation in a member is the differ-

ence between its fi nal length (i.e., after the load is applied 

and the temperature is increased) and its initial length. For 

member (1), therefore,

 
�

�

1 1 1

1

� � � �( ) � �

� �

L L L v L v

v
B B

B

final initial
 (c)

Similarly, for member (2),

 
2 2 2

2

( )

�

L L L v L v

v
D D

D

final initial�

�

� � �

� �

� � � �
 (d)

Substitute the results from Equations (c) and (d) into Equa-

tion (b) to obtain

 
1 2

100 300mm mm
� �

� �  (e)

Step 3 — Force–Temperature–Deformation Relationships: Write the general 

force–temperature–deformation relationships for the two axial members:

 1
1 1
1 1

2
2 2
2 2

F L
A E

F L
A Eand1 1TL 22 2TL�� � �� �� �� �  (f)

Step 4 — Compatibility Equation: Substitute the force–temperature–deformation 

relationships from Equation (f) into Equation (e) to obtain the compatibility equation:

 
1

100

1

300
1 1

1 1
1 1

2 2

2 2mm mm

F L
A E

TL
F L
A E 22 2TL� � � �� �� �  (g)

This equation is derived from information about the defl ected position of the structure 

and expressed in terms of the two unknown member forces F1 and F2.

Step 5 — Solve the Equations: Rearrange the compatibility equation [Equation (g)], 

grouping the terms that include F1 and F2 on the left-hand side of the equation:

 
F L

A E
F L

A E
1 1

1 1
2 2

2 2100 300
1

100
1

( mm) ( mm) mm 3300 mm1 1TL 22 2TL� � � �� �� �  (h)

Equilibrium equation (a) can be rearranged in the same manner:

 F F1 2100 300 6 350( mm) ( mm) ( kN)( mm)��  (i)
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Equations (h) and (i) can be solved simultaneously in several ways. The hand solution 

here will use the substitution method. Solve Equation (i) for F2:

 F F
2

1 100 6 350
300

( mm) ( kN)( mm)
mm�

�
 (j)

Substitute this expression into Equation (h) and collect terms with F1 on the left-hand 

side of the equation:

F L
A E

F L
A E

1 1

1 1

1 2

2 2100

100 00

300( mm)

( mm)

( mm)

mm 3
�

1

100

1

300
6

350

300mm mm
( kN)

mm

mm

L
A E

2

2 2300( mm)1 1TL 22 2TL� � � �� �� �

Simplifying and solving for F1 gives

F1 2

500

100 310

400mm

( ( () )mm) mm

( ) ( m
2200,000 N/mm

1/3 mm)

( ( (mm) ) )mm2 2300 620 70,000 N/mm
�

1

100
11 9 10 20 5006

mm
. ( )( mm))( °C °C� � ��

1

300
22 5 10 20 4006

mm
. ( ) ()( mm)°C °C� ��

( N)
mm

mm

mm

( ( () )mm) mm2
6,000

350

300

400

300 620 770,000 N/mm2
�

Therefore,

F1 17 328 8 17 33 17 33, . N . kN . kN (C)� � � ��

Backsubstitution into Equation (j) gives

F2 12 7812,776.3 12.78 (C)N kN . kN� � � ��

The normal stresses in members (1) and (2) can now be determined:

 1
1
1 310 55 9 55 9F

A
17,328.8 N

mm . MPa . MPa (C)2� � � ��
�

�  

Ans.

 2
2
2 620 20 6 20 6F

A
12,776.3 N

mm . MPa . MPa (C)2� � �� �
�

�  

Note: The deformation of member (1) can be computed as

500

310

( N

( ) ( )
) ( mm)

mm2

17,328.8

2000,000 N/mm21
1 1

1 1

F L
A E 1 1TL�� �

�
���

11 9 10 20 5006. ( )(( ) mm)°C °C� ��

� � � � �0 1397 0 1190 0 0207. mm . mm . mm
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A brass link and a steel rod have the dimensions shown at 

a temperature of 20°C. The steel rod is cooled until it fi ts 

freely into the link. The temperature of the entire link-

and-rod assembly is then warmed to 40°C. Determine

(a) the fi nal normal stress in the steel rod.

(b) the deformation of the steel rod.

 MecMovies Example M5.15MM

M5.13 A composite axial structure consists of two rods joined at 

fl ange B. Rods (1) and (2) are attached to rigid supports at A and C, 

respectively. A concentrated load P is applied to fl ange B in the di-

rection shown. Determine the internal forces and normal stresses in 

each rod after the temperature changes by the indicated ΔT. Also, 

determine the defl ection of fl ange B in the x direction.

After the load P is applied, the temperature of all three rods is 

raised by the indicated ΔT. Determine

(a) the internal force in rod (1).

(b) the normal stress in rod (2).

(c) the normal strain in rod (1).

(d) the downward defl ection of the rigid bar at B.

 MecMovies ExercisesMM

FIGURE M5.13

FIGURE M5.14
M5.14 A rigid horizontal bar ABC is supported by three vertical 

rods as shown. The system is stress free before the load is applied. 

and the deformation of member (2) is

400

620

( N)( mm)

mm( )( )2

12,776.3

700,000 N/mm22
2 2

2 2

F L
A E 22 2TL� �

�
� ���

22 5 10 20 4006. (( ) )( mm)°C °C� ��

 0 1178 0 1800 0 0622. mm . mm . mm� ���

Contrary to our initial assumption in the deformation diagram, member (1) actually contracts 

and member (2) elongates. This outcome is explained by the elongation caused by the 

temperature increase. The rigid plate actually rotates counterclockwise about C.
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P5.49 A 22-mm-diameter steel [E � 200 GPa; � � 11.9 � 

10�6/°C] bolt is used to connect two rigid parts of an assembly, as 

shown in Figure P5.49. The bolt length is a � 150 mm. The nut is 

hand-tightened until it is just snug (meaning that there is no slack 

in the assembly, but there is no axial force in the bolt) at a tem-

perature of T � 40°C. When the temperature drops to T � �10°C, 

determine

(a) the clamping force that the bolt exerts on the rigid parts.

(b) the normal stress in the bolt.

(c) the normal strain in the bolt.

a

FIGURE P5.49

P5.50 A 25-mm-diameter by 3.5-m-long steel rod (1) is 

stress free after being attached to rigid supports as shown in 

Figure P5.50/51. At A, a 16-mm-diameter bolt is used to connect 

the rod to the support. Determine the normal stress in steel rod (1) 

and the shear stress in bolt A after the temperature drops 60°C. Use 

E � 200 GPa and � � 11.9 � 10�6/°C.

P5.51 A 0.875-in.-diameter by 15-ft-long steel rod (1) is 

stress free after being attached to rigid supports. A clevis-and-

bolt connection as shown in Figure P5.50/51 connects the rod 

with the support at A. The normal stress in the steel rod must be 

limited to 18 ksi, and the shear stress in the bolt must be limited 

to 42 ksi.  Assume that E � 29,000 ksi and � � 6.6 � 10�6/°F, 

and determine

(a)  the temperature decrease that can be safely accommodated by 

rod (1) on the basis of the allowable normal stress.

(b)  the minimum required diameter for the bolt at A, using the 

temperature decrease found in part (a).

(1)

A B

FIGURE P5.50/51

PROBLEMSPROBLEMS
P5.52 A steel [E � 29,000 ksi and � � 6.6 � 10�6/°F] rod 

containing a turnbuckle has its ends attached to rigid walls. During 

the summer when the temperature is 82°F, the turnbuckle is tight-

ened to produce a stress in the rod of 5 ksi. Determine the stress in 

the rod in the winter when the temperature is 10°F.

P5.53 A high-density polyethylene [E � 120 ksi and � � 78 � 

10�6/°F] block (1) is positioned in a fi xture, as shown in Figure P5.53. 

The block is 2-in. by 2-in. square by 32-in.-long. At room temperature, 

a gap of 0.10 in. exists between the block and the rigid support at B. 

Determine

(a)  the normal stress in the block caused by a temperature 

increase of 100°F.

(b) the normal strain in block (1) at the increased temperature.

(1)

A

B
0.10 in.

32 in.

FIGURE P5.53

P5.54 The assembly shown in Figure P5.54 consists of a brass 

shell (1) fully bonded to a ceramic core (2). The brass shell 

[E � 115 GPa; � � 18.7 � 10�6/°C] has an outside diameter of 

50 mm and an inside diameter of 35 mm. The ceramic core [E � 

290 GPa; � � 3.1 � 10�6/°C] has a diameter of 35 mm. At a tem-

perature of 15°C, the assembly is unstressed. Determine the largest 

temperature increase that is acceptable for the assembly if the 

normal stress in the longitudinal direction of the brass shell must 

not exceed 80 MPa.

Brass shell (1)

(2) Ceramic core

200 mm

FIGURE P5.54
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P5.55 At a temperature of 60°F, a 0.04-in. gap exists between 

the ends of the two bars shown in Figure P5.55. Bar (1) is an alumi-

num alloy [E � 10,000 ksi; � � 0.32; � � 12.5 � 10�6/°F] bar with 

a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel 

[E � 28,000 ksi; � � 0.12; � � 9.6 � 10�6/°F] bar with a width of 

2 in. and a thickness of 0.75 in. The supports at A and C are rigid. 

Determine

(a)  the lowest temperature at which the two bars contact each 

other.

(b)  the normal stress in the two bars at a temperature of 

250°F.

(c) the normal strain in the two bars at 250°F.

(d)  the change in width of the aluminum bar at a temperature 

of 250°F.

(1) (2)

A B C

0.04-in. gap

32 in. 44 in.

3 in. 2 in.

FIGURE P5.55

P5.56 An aluminum alloy cylinder (2) is clamped between rigid 

heads by two steel bolts (1), as shown in Figure P5.56. The steel 

[E � 200 GPa; � � 11.7 � 10−6/°C] bolts have a diameter of 16 mm. 

The aluminum alloy [E � 70 GPa; � � 23.6 � 10−6/°C] cylinder 

has an outside diameter of 150 mm and a wall thickness of 5 mm. 

Assume that a � 600 mm and b � 700 mm. If the temperature of this 

assembly changes by �T � 50°C, determine

(a) the normal stress in the aluminum cylinder.

(b) the normal strain in the aluminum cylinder.

(c) the normal strain in the steel bolts.

b

(1)

(1)

(2)

a

c

c

FIGURE P5.56

P5.57 Rigid bar BCD is supported by a single steel [�Y � 

430 MPa; E � 200 GPa; � � 11.7 � 10�6/°C] rod and two identi-

cal aluminum [�Y � 275 MPa; E � 70 GPa; � � 23.6 � 10�6/°C] 

rods, as shown in Figure P5.57. Steel rod (1) has a diameter of 

18 mm and a length of a � 3.0 m. Each aluminum rod (2) has a 

diameter of d2 � 25 mm and a length of b � 1.5 m. If a factor of 

safety of 2.5 is specifi ed for the normal stress in each rod, deter-

mine the maximum temperature decrease that is allowable for this 

assembly.

(1)

(2)

(2)

A

B

C

D

E

F

a b

250 mm

250 mm

FIGURE P5.57

P5.58 The pin-connected structure shown in Figure P5.58 

consists of a rigid bar ABC, a solid bronze [E � 100 GPa; � � 

16.9 � 10�6/°C] rod (1), and a solid aluminum alloy [E � 70 GPa; 

� � 22.5 � 10�6/°C] rod (2). Bronze rod (1) has a diameter of 

24 mm, and aluminum rod (2) has a diameter of 16 mm. The bars 

are unstressed when the structure is assembled at 25°C. After 

assembly, the temperature of rod (2) is decreased by 40°C, while the 

temperature of rod (1) remains constant at 25°C. Determine the 

normal stresses in both rods for this condition.

(1)

(2)

A

B C

500 mm

250 mm

200 mm

350 mm

FIGURE P5.58

P5.59 Rigid bar ABC is supported by two identical solid bronze 

[E � 100 GPa; � � 16.9 � 10�6/°C] rods, and a solid steel 

[E � 200 GPa; � � 11.9 � 10�6/°C] rod as shown in Figure P5.59. 

The bronze rods (1) each have a diameter of 16 mm, and they are 

symmetrically positioned relative to the center rod (2) and the 
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applied load P. Steel rod (2) has a diameter of 20 mm. The bars 

are unstressed when the structure is assembled at 30°C. When the 

temperature decreases to �20°C, determine

(a) the normal stresses in the bronze and steel rods.

(b) the normal strains in the bronze and steel rods.

(1) (2) (1)

A B C

0.35 m

FIGURE P5.59

P5.60 A steel [E � 30,000 ksi; � � 6.6 � 10�6/°F] pipe col-

umn (1) with a cross-sectional area of A1 � 5.60 in.2 is connected 

at fl ange B to an aluminum alloy [E � 10,000 ksi; � � 12.5 � 

10�6/°F] pipe (2) with a cross-sectional area of A2 � 4.40 in.2. 

The assembly (shown in Figure P5.60) is connected to rigid 

supports at A and C. It is initially unstressed at a temperature of 

90°F.

(a)  At what temperature will the normal stress in steel pipe (1) be 

reduced to zero?

(b)  Determine the normal stresses in steel pipe (1) and aluminum 

pipe (2) when the temperature reaches �10°F.

(1) (2)

A B
C

120 in. 144 in.

30 kips

30 kips

FIGURE P5.60

P5.61 A load P will be supported by a structure consisting of 

a rigid bar ABCD, a polymer [E � 2,300 ksi; � � 2.9 � 10�6/°F] 

bar (1), and an aluminum alloy [E � 10,000 ksi; � � 12.5 � 

10�6/°F] bar (2) as shown in Figure P5.61. Each bar has a cross-

sectional area of 2.00 in.2. The bars are unstressed when the 

structure is assembled at 30°F. After a concentrated load of 

P � 26 kips is applied and the temperature is increased to 100°F, 

determine

(a) the normal stresses in bars (1) and (2).

(b) the vertical defl ection of joint D.

FIGURE P5.61

(2)

(1)

DCA B

P

2.5 ft 3 ft 1.5 ft

8 ft

6 ft

P5.62 A cylindrical bronze sleeve (2) is held in compression 

against a rigid machine wall by a high-strength steel bolt (1), as 

shown in Figure P5.62. The steel [E � 200 GPa; � � 11.7 � 

10�6/
C] bolt has a diameter of 25 mm. The bronze [E � 105 GPa; 

� � 22.0 � 10�6/
C] sleeve has an outside diameter of 75 mm, a 

wall thickness of 8 mm, and a length of L � 350 mm. The end of 

the sleeve is capped by a rigid washer with a thickness of t � 5 mm. 

At an initial temperature of T1 � 8°C, the nut is hand-tightened on 

the bolt until the bolt, washers, and sleeve are just snug, meaning 

that all slack has been removed from the assembly, but no stress has 

yet been induced. If the assembly is heated to T2 � 80°C, calculate 

(a) the normal stress in the bronze sleeve.

(b) the normal strain in the bronze sleeve.

Lt

Bolt (1)

Sleeve (2)

Rigid machine wall

FIGURE P5.62

P5.63 The pin-connected structure shown in Figure P5.63 

consists of a rigid bar ABCD and two axial members. Bar (1) is 

138
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steel [E � 200 GPa; � � 11.7 � 10−6/°C], with a cross-sectional 

area of A1 � 400 mm2. Bar (2) is an aluminum alloy [E � 70 GPa; 

� � 22.5 � 10−6/°C], with a cross-sectional area of A2 � 400 mm2. 

The bars are unstressed when the structure is assembled. After a 

concentrated load of P � 36 kN is applied and the temperature is 

increased by 25°C, determine

(a) the normal stresses in bars (1) and (2). 

(b) the defl ection of point D on the rigid bar.

(1)

(2)

A

B

C D

36 kN

900 mm

720 mm

350 mm

600 mm

FIGURE P5.63

P5.64 The pin-connected structure shown in Figure P5.64 con-

sists of two cold-rolled steel [E � 30,000 ksi; � � 6.5 � 10�6/°F] 

bars (1) and a bronze [E � 15,000 ksi; �  � 12.2 � 10�6/°F] bar 

(2) that are connected at pin D. All three bars have cross-sectional 

areas of 1.250 in.2. Assume an initial geometry of a � 10 ft and 

b � 18 ft. A load of P � 34 kips is applied to the structure at pin D, 

and the temperature increases by 60°F. Calculate

(a) the normal stresses in bars (1) and (2).

(b) the downward displacement of pin D.

A B C

D

(1) (1)
(2)

b

P

a a

FIGURE P5.64

P5.65 Rigid bar ABCD is loaded and supported as shown in 

Figure P5.65. Bar (1) is made of bronze [E � 100 GPa; � � 16.9 � 

10−6/°C] and has a cross-sectional area of 400 mm2. Bar (2) is 

made of aluminum [E � 70 GPa; � � 22.5 � 10−6/°C] and has a 

cross-sectional area of 600 mm2. Bars (1) and (2) are initially un-

stressed. After the temperature has increased by 40°C, determine

(a) the stresses in bars (1) and (2).

(b) the vertical defl ection of point A.

(1)

(2)

A B DC

1 m 1 m2 m

0.84 m

0.92 m

FIGURE P5.65

P5.66 Three rods of different materials are connected and 

placed between rigid supports at A and D, as shown in Figure 

P5.66/67. Properties for each of the three rods are given in the ac-

companying table. The bars are initially unstressed when the struc-

ture is assembled at 70°F. After the temperature has been increased 

to 250°F, determine

(a) the normal stresses in the three rods.

(b) the force exerted on the rigid supports.

(c) the defl ections of joints B and C relative to rigid support A.

Aluminum (1) Cast Iron (2) Bronze (3)

L1 � 10 in. L2 � 5 in. L3 � 7 in.

A1 � 0.8 in.2 A2 � 1.8 in.2 A3 � 0.6 in.2

E1 � 10,000 ksi E2 � 22,500 ksi E3 � 15,000 ksi

�1 � 12.5 � 10−6/°F �2 � 7.5 � 10−6/°F �3 � 9.4 � 10−6/°F

P5.67 Three rods of different materials are connected and placed 

between rigid supports at A and D, as shown in Figure P5.66/67. 

c05Axialdeformation.indd Page 139  1/24/12  7:01 PM user-F393c05Axialdeformation.indd Page 139  1/24/12  7:01 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



140

Properties for each of the three rods are given in the accompanying 

table. The bars are initially unstressed when the structure is assem-

bled at 20°C. After the temperature has been increased to 100°C, 

determine

(1)
(2)

(3)

A DB C

1L 2L 3L

Cast iron
Aluminum Bronze

FIGURE P5.66/67

(a) the normal stresses in the three rods.

(b) the force exerted on the rigid supports.

(c) the defl ections of joints B and C relative to rigid support A.

Aluminum (1) Cast Iron (2) Bronze (3)

L1 � 440 mm L2 � 200 mm L3 � 320 mm 

A1 � 1,200 mm2 A2 � 2,800 mm2 A3 � 800 mm2

E1 � 70 GPa E2 � 155 GPa E3 � 100 GPa

�1 � 22.5 � 10−6/°C �2 � 13.5 � 10−6/°C �3 � 17.0 � 10−6/°C

1 Adapted from Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed. (New York: John Wiley & 

Sons, Inc., 1997).

In the preceding sections, it was assumed that the average stress, as determined by the 

expression � � P�A, is the signifi cant or critical stress. While this is true for many prob-

lems, the maximum normal stress on a given section may be considerably greater than the 

average normal stress, and for certain combinations of loading and material, the maximum 

rather than the average normal stress is the more important consideration. If there exists in 

the structure or machine element a discontinuity that interrupts the stress path (called a 

stress trajectory), the stress at the discontinuity may be considerably greater than the aver-

age stress on the section (termed the nominal stress). This is termed a stress concentration 

at the discontinuity. The effect of stress concentration is illustrated in Figure 5.12, in which 

a type of discontinuity is shown in the upper fi gure and the approximate distribution of 

normal stress on a transverse plane is shown in the accompanying lower fi gure. The 

ratio of the maximum stress to the nominal stress on the section is known as the stress-
concentration factor K. Thus, the expression for the maximum normal stress in an axially 

loaded member becomes

 
max nomK�� �  (5.13)

Curves, similar to those shown in Figures 5.13, 5.14, and 5.15,1 can be found in nu-

merous design handbooks. It is important that the user of such curves (or tables of 

factors) ascertain whether the factors are based on the gross or net section. In this book, 

the stress-concentration factors K are to be used in conjunction with the nominal stresses 

produced at the minimum or net cross-sectional area, as shown in Figure 5.12.

The K factors shown in Figures 5.13, 5.14, and 5.15 are based on the stresses at the net 

section.

5.7 Stress Concentrations

A stress trajectory is a line that 

is parallel to the maximum 

normal stress everywhere.
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FIGURE 5.12 Typical stress trajectories and normal stress distributions for fl at bars with 

(a) notches, (b) a centrally located hole, and (c) shoulder fi llets.

FIGURE 5.13 Stress-concentration factors K for a fl at bar with opposite U-shaped notches.
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AXIAL DEFORMATION

The case of a small circular hole in a wide plate under uniform unidirectional tension 

(Figure 5.16) offers an excellent illustration of localized stress redistribution. The theory of 

elasticity solution is expressed in terms of a radial stress �r, a tangential stress ��, and a 

shearing stress �r �, as shown in Figure 5.16. The equations are
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FIGURE 5.14 Stress-concentration factors K for a fl at bar with a centrally located circular hole.
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FIGURE 5.15 Stress-concentration factors K for a fl at bar with shoulder fi llets.
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STRESS CONCENTRATIONS

On the boundary of the hole (at r � a) these equations reduce to

r 0

1 2 2

0

( cos )

r

�

� �

�

� �

�

�

� �

�

At � � 0°, the tangential stress ��   � 3�, where � is the uniform tensile stress in the plate 

in regions far removed from the hole. Thus, the stress-concentration factor associated with 

this type of discontinuity is 3.

The localized nature of a stress-concentration can be evaluated by considering the 

distribution of the tangential stress ��   along the x axis (� � 0°). Here,

2
32

2

4

4

a
r

a
r2

�
�

� � ��

At a distance r � 3a (i.e., one hole diameter from the hole boundary), this equation yields 

��  � 1.074�. Thus, the stress that began as three times the nominal stress at the boundary 

of the hole has decayed to a value only 7 percent greater than the nominal at a distance of 

one diameter from the hole. This rapid decay is typical of the redistribution of stress in the 

neighborhood of discontinuity.

For a ductile material, stress concentration associated with static loading does not 

cause concern, because the material will yield in the region of high stress. With the redis-

tribution of stress that accompanies this local yielding, equilibrium will be attained and no 

harm done. However, if the load is an impact or repeated load, instead of a static load, the 

material may fracture. Also, if the material is brittle, even a static load may cause fracture. 

Therefore, in the case of impact or repeated load on any material, or static loading on a 

brittle material, the presence of stress concentration must not be ignored.

In addition to geometric considerations, specifi c stress-concentration factors also 

depend on the type of loading. In this section, stress-concentration factors pertaining to 

x

y

Uniform tension stress �

Uniform tension stress �

�

�r�r��
�

r

2a

FIGURE 5.16 Circular hole in a wide plate subjected to uniform unidirectional tension.
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AXIAL DEFORMATION axial loading have been discussed. Stress-concentration factors for torsion and bending 

will be discussed in subsequent chapters.

PROBLEMSPROBLEMS
P5.68 The machine part shown in Figure P5.68 is 3/8-in.-thick 

and is made of cold-rolled 18-8 stainless steel. (See Appendix D 

for properties.) Determine the maximum safe load P if a factor of 

safety of 2.5 with respect to failure by yield is specifi ed.

P5.69 The machine part shown in Figure P5.69 is 12-mm thick 

and is made of SAE 4340 heat-treated steel. (See Appendix D for 

properties.) The holes are centered in the bar. Determine the maxi-

mum safe load P if a factor of safety of 3.0 with respect to failure 

by yield is specifi ed.

PP

4.0 in. 2.0 in.

0.5-in. radius

1.25-in.-diameter hole

FIGURE P5.68

PP
35 mm100 mm

10-mm-diameter

FIGURE P5.69

The machine part shown is 20-mm thick and is made of C86100 

bronze. (See Appendix D for properties.) Determine the maximum 

safe load P if a factor of safety of 2.5 with respect to failure by 

yield is specifi ed.

SOLUTION
The yield strength of C86100 bronze is 331 MPa. (See Appendix D 

for properties.) The allowable stress, based on a factor of safety of 

2.5, is 331/2.5 � 132.4 MPa. The maximum stress in the machine 

part will occur either in the fi llet between the two sections or on the boundary of the 

circular hole.

At the Fillet
D
d

r
d

90
60 1 5 15

60 0 25mm
mm . and mm

mm .� � � �

From Figure 5.15, K � 1.73. Thus,

P
A

K
allow min

2. ( mm)

.
,

132 4 60

1 73
91

N/mm (2( ) 0 mm)
8838 91 8N . kN

�
� � � �

At the Hole d
D

27
90 0 3mm

mm .� �

From Figure 5.14, K � 2.36. Thus,

P
A

K
allow net

2. (( ) mm )( mm)

.

132 4 90 27 20

2 36

N/mm mm
70 688 70 7, N . kN

�
� � � �

�

Therefore,

 Pmax . kN70 7�  Ans.

EXAMPLE 5.9

PP

90 mm 60 mm

15-mm radius

27-mm-diameter hole
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P5.70 A 100-mm-wide by 8-mm-thick steel bar is transmitting 

an axial tensile load of 3,000 N. After the load is applied, a 4-mm-

diameter hole is drilled through the bar, as shown in Figure P5.70. 

The hole is centered in the bar.

(a)  Determine the stress at point A (on the edge of the hole) in the 

bar before and after the hole is drilled.

(b)  Does the axial stress at point B on the edge of the bar increase 

or decrease as the hole is drilled? Explain.

P5.71 The machine part shown in Figure P5.71 is 90-mm-wide by 

12-mm-thick and is made of 2014-T4 aluminum. (See Appendix D 

for properties.) The hole is centered in the bar. Determine the maxi-

mum safe load P if a factor of safety of 1.50 with respect to failure by 

yield is specifi ed.

PP

4 mm

100 mm
A

B

FIGURE P5.70

PP

30 mm50 mm

20 mm

20 mm
10-mm
radius
(typical)

FIGURE P5.71

P5.73 The machine part shown in Figure P5.73 is 10-mm thick, 

is made of AISI 1020 cold-rolled steel (see Appendix D for proper-

ties), and is subjected to a tensile load of P � 45 kN. Determine the 

minimum radius r that can be used between the two sections if a 

factor of safety of 2 with respect to failure by yield is specifi ed. 

Round the minimum fi llet radius up to the nearest 1-mm multiple.

P5.74 The 0.25-in.-thick bar shown in Figure P5.74 is made of 

2014-T4 aluminum (see Appendix D for properties) and will be 

subjected to an axial tensile load of P � 1,500 lbs. A 0.5625-in.-

diameter hole is located on the centerline of the bar. Determine the 

minimum safe width D for the bar if a factor of safety of 2.5 with 

respect to failure by yield must be maintained.

PP

120 mm60 mm

10 mm

10 mm

16-mm radius
(typical)

10-mm
radius
(typical)

15-mm-diameter hole

FIGURE P5.72

PP

80 mm40 mm

r

FIGURE P5.73

PP

0.5625 in. D

FIGURE P5.74

P5.72 The machine part shown in Figure P5.72 is 8-mm-thick and 

is made of AISI 1020 cold-rolled steel. (See Appendix D for proper-

ties.) Determine the maximum safe load P if a factor of safety of 

3 with respect to failure by yield is specifi ed.

P5.75 The stepped bar with a circular hole, shown in Figure 

P5.75, is made of annealed 18-8 stainless steel. The bar is 12-mm 

thick and will be subjected to an axial tensile load of P � 70 kN. 

The normal stress in the bar is not to exceed 150 MPa. To the near-

est millimeter, determine

(a) the maximum allowable hole diameter d.

(b) the minimum allowable fi llet radius r.

PP

130 mm 100 mm

Minimum fillet
radius r

Maximum hole
diameter d

FIGURE P5.75
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Torque is a moment that tends to twist a member about its longitudinal axis. In the design of 

machinery (and some structures), the problem of transmitting a torque from one plane to a 

parallel plane is frequently encountered. The simplest device for accomplishing this function 

is called a shaft. Shafts are commonly used to connect an engine or a motor to a pump, com-

pressor, axle, or similar device. Shafts connecting gears and pulleys are a common application 

involving torsion members. Most shafts have circular cross sections, either solid or tubular. A 

modifi ed free-body diagram of a typical device is shown in Figure 6.1. The weight and bear-

ing reactions are not shown on this modifi ed diagram, since they do not contribute useful in-

formation to the torsion problem. The resultant of the electromagnetic forces applied to the 

armature A of the motor is a moment that is resisted by the resultant of the bolt forces (another 

moment) acting on the fl ange coupling B. The circular shaft (1) transmits the torque from the 

armature to the coupling. The torsion problem is concerned with the determination of stresses 

in shaft (1) and the deformation of the shaft. For the elementary analysis developed in this 

book, shaft segments such as the segment between transverse planes a–a and b–b in Figure 6.1 

will be considered. By limiting the analysis to shaft segments such as this, the complicated 

states of stress that occur at the locations of the torque-applying components (i.e., armature 

and fl ange coupling) can be avoided. Recall that Saint-Venant’s Principle states that the 

effects introduced by attaching the armature and coupling to the shaft will cease to be evident 

in the shaft at a distance of approximately one shaft diameter from these components.

6.1 Introduction

Torsion

147

6CHAPTER 
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TORSION

In 1784, C. A. Coulomb, a French engineer, experimentally developed the  relationship 

between the applied torque and the angle of twist for circular bars.1 A. Duleau, another 

French engineer, in a paper published in 1820, analytically derived the same relationship 

by making the assumptions that a plane section before twisting remains plane after twist-
ing and that a radial line on the cross section remains plane after twisting. Visual exami-

nation of twisted models indicates that these assumptions are apparently correct for either 

solid or hollow circular sections (provided that the hollow section is circular and sym-

metrical with respect to the axis of shaft), but incorrect for any other shape. For example, 

compare the distortions evident in the two prismatic rubber shaft models shown in 

Figure 6.2. Figures 6.2a and 6.2b show a circular rubber shaft before and after an external 

torque T is  applied to its ends. When torque T is applied to the end of the round shaft, the 

circular cross sections and longitudinal grid lines marked on the shaft deform into the pat-

tern shown in  Figure 6.2b. Each longitudinal grid line is twisted into a helix that intersects 

the circular cross sections at equal angles. The length of the shaft and its radius remain 

unchanged. Each cross section remains plane and undistorted as it rotates with respect to 

a

a

b

b

Electromagnetic
forces Armature

Flange
coupling

Bolt
forces

B

A

FIGURE 6.1 Modifi ed free-body diagram of a typical electric motor shaft.

Torsion of noncircular shapes 

produces warping, in which 

planar cross sections before 

application of the loading 

become nonplanar, or warped, 

after a torque is applied.

1 From S.P. Timoshenko, History of Strength of Materials (New York: McGraw-Hill, 1953).

(a)

(b)

(c)

(d)

T T

TT

FIGURE 6.2 Torsional deformations illustrated by rubber models with circular (a, b) and square 

(c, d) cross sections.
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TORSIONAL SHEAR STRAINan adjacent cross section. Figures 6.2c and 6.2d show a square rubber shaft before and 

after an external torque T is applied to its ends. Plane cross sections in Figure 6.2c before 

the torque is applied do not remain plane after T is applied (Figure 6.2d). The behavior 

exhibited by the square shaft is characteristic of all but circular sections; therefore, the 

analysis that follows is valid only for solid or hollow circular shafts.

L

xA

B

c

(a) Undeformed shaft

FIGURE 6.3 Prismatic shaft 

subjected to pure torsion.

x

xA

B

T

�

�

(b)  Deformed shaft in response to 

torque T

FIGURE 6.4b Torsional 

deformation of shaft segment.

FIGURE 6.4a Shaft segment 

of length Dx.

x

x

c

�

Consider a long, slender shaft of length L and radius c that is fi xed at one end, as shown 

in Figure 6.3a. When an external torque T is applied to the free end of the shaft at B, the 

shaft deforms as shown in Figure 6.3b. All cross sections of the shaft are subjected to the 

same internal torque T; therefore, the shaft is said to be in pure torsion. Longitudinal 

lines in Figure 6.3a are twisted into helixes as the free end of the shaft rotates through an 

angle �. This angle of rotation is known as the angle of twist. The angle of twist changes 

along the length L of the shaft. For a prismatic shaft, the angle of twist will vary linearly 

between the ends of the shaft. The twisting deformation does not distort cross sections 

of the shaft in any way, and the overall shaft length remains constant. As discussed in 

Section 6.1, the following assumptions can be applied to torsion of shafts that have 

circular—either solid or hollow—cross sections:

•  A plane section before twisting remains plane after twisting. In other words, circular 

cross sections do not warp as they twist.

•  Cross sections rotate about and remain perpendicular to the longitudinal axis of 

the shaft.

•  Each cross section remains undistorted as it rotates relative to neighboring cross 

sections. In other words, the cross section remains circular and there is no strain in 

the plane of the cross section. Radial lines remain straight and radial as the cross 

section rotates.

•  The distances between cross sections remains constant during the twisting 

deformation. In other words, no axial strain occurs in a round shaft as it twists.

To help us investigate the deformations that occur during twisting, a short segment Dx of 

the shaft shown in Figure 6.3 is isolated in Figure 6.4a. The shaft radius is c; however, for 

more generality, an interior cylindrical portion at the core of the shaft will be examined 

(Figure 6.4b). The radius of this core portion is denoted by �, where 0 , � # c. As the shaft 

twists, the two cross sections of the segment rotate about the x axis, and line element CD 

on the undeformed shaft is twisted into helix C9D9. The angular difference between the 

rotations of the two cross sections is equal to D�. This angular difference creates a shear 

strain �  in the shaft. The shear strain �  is equal to the angle between line elements C9D9 
and C9D0, as shown in Figure 6.4b. The value of the angle �  is given by

tan D D
x
�

�
�

�
�

The distance D9D0 can also be expressed by the arc length �D�, which gives

tan x�
� ��

�
�

6.2 Torsional Shear Strain

x

x

�DC

C�

D�

D� O
�

�

�

�
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TORSION If the strain is small, tan �  ¯ � ; therefore,

x� � �
�

�

�

As the length Dx of the shaft segment decreases to zero, the shear strain becomes

 
d
dx� � �
�

 (6.1)

The quantity d�ydx is the angle of twist per unit length. Note that Equation (6.1) is 

linear with respect to the radial coordinate �; therefore, the shear strain at the shaft cen-

terline (i.e., � 5 0) is zero, while the largest shear strain occurs for the largest value of 

� (i.e., � 5 c), which occurs on the outermost surface of the shaft.

 max c d
dx� �
�

 (6.2)

Equations (6.1) and (6.2) can be combined to express the shear strain at any radial coordi-

nate �  in terms of the maximum shear strain.

 c max� ��
�

�
 (6.3)

Further, note that these equations are valid for elastic or inelastic action and for homogeneous 

or heterogeneous materials, provided that the strains are not too large (i.e., tan �  ¯ � ). 

Problems and examples in this book will be assumed to satisfy this requirement.

2 In keeping with the notation presented in Section 1.5, the shear stress �� should actually be designated �x� to 

indicate that it acts on the x face in the direction of increasing �. However, for the elementary theory of torsion of 

circular sections discussed in this book, the shear stress on any transverse plane always acts perpendicular to the 
radial direction at any point. Consequently, the formal double-subscript notation for shear stress is not needed for 

accuracy and can be omitted here.

max

max
c

�

�

�

�

��

�

FIGURE 6.5 Linear variation 

of shear stress intensity as a 

function of radial coordinate �.

��

��

��

��

�

FIGURE 6.6 Shear stresses 

act on both cross-sectional and 

longitudinal planes.

If the assumption is now made that Hooke’s Law applies, then the shear strain �  can be related 

to the shear stress � by the relationship � 5 G� [Equation (3.5)], where G is the shear modulus 

(also called the modulus of rigidity). This assumption is valid if the shear stresses remain 

below the proportional limit for the shaft material. Using Hooke’s Law, Equation (6.3) can be 

expressed in terms of � to give the relationship between the shear stress �� at any radial coordi-

nate � and the maximum shear stress �max, which occurs on the outermost surface of the shaft 

(i.e., � 5 c)2:

 
c max��

�
� �  (6.4)

As with the shear strain, shear stress in a circular shaft increases linearly in intensity as the 

radial distance � from the centerline of the shaft increases. The maximum shear stress in-

tensity occurs on the outermost surface of the shaft. The variation in shear stress magnitude 

is illustrated in Figure 6.5. Furthermore, shear stress never acts solely on a single sur-
face. Shear stress on a cross-sectional surface is always accompanied by an equal 
magnitude shear stress acting on a longitudinal surface, as depicted in Figure 6.6.

The relationship between the torque T transmitted by a shaft and the shear stress �� 

developed internally in the shaft must be developed. Consider a very small portion dA of a 

cross-sectional surface (Figure 6.7). In response to torque T, shear stresses �� are developed 

on the surface of the cross section on area dA, which is located at a radial distance of � from 

6.3 Torsional Shear Stress
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the longitudinal axis of the shaft. The resultant shear force dF acting on the small element is 

given by the product of the shear stress �� and the area dA. The force dF produces a moment 

dM about the shaft centerline O, which can be expressed as dM 5 � dF 5 �(�� dA). The 

resultant moment produced by the shear stress about the shaft centerline is found by inte-

grating dM over the cross-sectional area:

dM dA
A

� � ��

If Equation (6.4) is substituted into this equation, the result is

dM
c

dA
c

dA
A A

max max 2� �� � �
� �

Since �max and c do not vary with dA, these terms can be moved outside of the integral. 

Furthermore, the sum of all elemental moments dM must equal the torque T to satisfy equi-

librium; therefore,

 T dM
c

dA
A

max 2� � �
�

 
(a)

The integral in Equation (a) is called the polar moment of inertia, J:

 J dA
A

2� �  
(b)

Substituting Equation (b) into Equation (a) gives a relationship between the torque T and the 

maximum shear stress �max:

 T
c
max J�

�
 (c)

Alternatively, expressed in terms of the maximum shear stress,

 max
Tc

J
��  (6.5)

If Equation (6.4) is substituted into Equation (6.5), a more general relationship can be obtained 

for the shear stress �� at any radial distance � from the shaft centerline:

 
T

J
�

�
��  (6.6)

Equation (6.6), for which Equation (6.5) is a special case, is known as the elastic torsion 
formula. In general, the internal torque T in a shaft or shaft segment is obtained from a 

free-body diagram and an equilibrium equation. Note: Equations (6.5) and (6.6) apply only 

for linearly elastic action in homogeneous and isotropic materials.

Polar Moment of Inertia J

The polar moment of inertia J for a solid circular shaft is

 J r d
2 32

4 4� �
� �

 (6.7)

where r 5 radius and d 5 diameter. For a hollow circular shaft, the polar moment of inertia 
J is given by

 J R r D d
2 32

4 4 4 4� � � ��
� �

 (6.8)

where R 5 outside radius, r 5 inside radius, D 5 outside diameter, and d 5 inside diameter.

dF dA
dA

O
T

��

�

FIGURE 6.7 Calculating the 

resultant moment produced by 

torsion shear stress.

The polar moment of inertia is 

also known as the polar second 

moment of area.

Typically, J has units of in.4 
in the U.S. Customary System 

and mm4 in SI.

TORSIONAL SHEAR STRESS

MecMovies 6.2 presents an 

animated derivation of the elastic 

torsion formula.
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FIGURE 6.8a Shaft subjected to 

pure torsion.
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FIGURE 6.8b Differential 

element at point A on the shaft.
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FIGURE 6.8c FBD of a wedge-shaped 

portion of the differential element.
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The elastic torsion formula [Equation (6.6)] can be used to calculate the maximum shear 

stress produced on a transverse section in a circular shaft by a torque. It is necessary to es-

tablish whether the transverse section is a plane of maximum shear stress and whether there 

are other signifi cant stresses induced by torsion. For this study, the stresses at point A in the 

shaft of Figure 6.8a will be analyzed. Figure 6.8b shows a differential element taken from 

the shaft at A as well as the shear stresses acting on transverse and longitudinal planes. The 

stress �xy may be determined by means of the elastic torsion formula, and �yx 5 �xy. 

(See Section 1.6.) If the equations of equilibrium are applied to the free-body diagram of 

Figure 6.8c, the following results are obtained:

F dA dA dAt nt xy yx( cos )cos ( sin )sin 0� � � �� � � �� � �Σ

We then have

 nt xy xy( )cos sin cos2 2 2� � �� � �� � �  (6.9)

and

ΣF dA dA dAn n xy yx( cos )sin ( sin )cos 0� � � ��� �� � � �

from which it follows that

 n xy xy2 2sin cos sin� � ��� �� �  (6.10)

These results are shown in the graph of Figure 6.9, from which it is apparent that the 

maximum shear stress occurs on transverse and longitudinal diametral planes (i.e., lon-

gitudinal planes that include the centerline of the shaft). The graph also shows that the 

maximum normal stresses occur on planes oriented at 458 with the axis of the shaft and 

perpendicular to the surface of the shaft. On one of these planes (� 5 458 in Figure 6.8b), 

the normal stress is tension, and on the other (� 5 1358), the normal stress is compres-

sion. Furthermore, the maximum magnitudes for both � and � are equal. Therefore, the 

maximum shear stress given by the elastic torsion formula is also numerically equal 

to the maximum normal stress that occurs at a point in a circular shaft subjected to 

pure torsion.

6.4 Stresses on Oblique Planes
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Any of the stresses discussed in the preceding paragraph may be signifi cant in a par-

ticular problem. Compare, for example, the failures shown in Figure 6.10. In Figure 6.10a, 

the steel axle of a truck split longitudinally. One would expect this type of failure to occur 

also in a shaft of wood with the grain running longitudinally. In Figure 6.10b, the compres-

sion stress caused the thin-walled aluminum alloy tube to buckle along one 458 plane, while 

the tensile stress caused tearing on the other 458 plane. Buckling of thin-walled tubes (and 

other shapes) subjected to torsional loading is a matter of great importance to the designer. 

In Figure 6.10c, tensile normal stresses caused the gray cast iron shaft to fail in tension—

typical of any brittle material subjected to torsion. In Figure 6.10d, the low-carbon steel 

failed in shear on a plane that is almost transverse—a typical failure for ductile material. The 

reason the fracture in Figure 6.10d did not occur on a transverse plane is that, under the large 

plastic twisting deformation before rupture (note the spiral lines indicating elements origi-

nally parallel to the axis of the bar), longitudinal elements were subjected to axial tensile 

loading. This axial loading was induced because the testing machine grips would not permit 

the torsion specimen to shorten as the elements were twisted into spirals. This axial tensile 

stress (not shown in Figure 6.8) changes the plane of maximum shear stress from a trans-

verse to an oblique plane (resulting in a warped surface of rupture).3

FIGURE 6.10 Photos of actual shaft failures.

(a)

(b)

(c)

(d)

xy

xy–

0° 45° 90° 135° 180°
Angle

Stress

nnt
�

� �

�

FIGURE 6.9 Variation of normal and shear stresses with angle � on the surface of a shaft.

Buckling is a stability failure. 

The phenomenon of stability 

failure is discussed in Chapter 16.

3 The tensile stress is not entirely due to the grips, because the plastic deformation of the outer elements of the bar 

is considerably greater than that of the inner elements. This results in a spiral tensile stress in the outer elements 

and a similar compressive stress in the inner elements.

STRESSES ON OBLIQUE PLANES
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MecMovies 6.2 presents an 

animated derivation of the angle 

of twist relationship.

If the shear stresses in a shaft are below the proportional limit of the shaft material 

(i.e., elastic action), then Hooke’s Law, � 5 G�, relates shear stress and shear strain in the 

torsion member. The relationship between the shear stress in a shaft at any radial coordi-

nate � and internal torque T is given by Equation (6.6):

 p
T
J

��
�

 (6.6)

The shear strain is related to the angle of twist per unit length by Equation (6.1):

 
d
dx

�� �
�

 (6.1)

Equations (6.6) and (6.1) can be substituted into Hooke’s Law,

G
T
J

G
d
dx
�

� ���
�

�� �

to express the angle of twist per unit length in terms of the torque T:

 
d

dx

T

JG

�
�  (6.11)

To obtain the angle of twist for a specifi c shaft segment, Equation (6.11) can be integrated 

with respect to the longitudinal coordinate x over the length L of the segment:

d
T
JG

dx
L

� �

If the shaft is homogeneous (i.e., constant G) and prismatic (meaning constant diameter 

and, in turn, constant J ), and if the shaft has a constant internal torque T, then the angle of 
twist � in the shaft can be expressed as

 
TL

JG
� �  (6.12)

The units of � are radians in both SI and the U.S. Customary System.

Alternatively, Hooke’s Law and Equations (6.1), (6.2), (6.5), and (6.6) can be com-

bined to give additional angle of twist relationships:

 
L L

G

L

cG
max� � � �

�� �

� �

� �
 (6.13)

These relationships are often useful in dual-specifi cation problems such as those in which 

limiting values of � and � are both specifi ed.

To reiterate, Equations (6.12) and (6.13) may be used to compute the angle of twist � 
only if the torsional member

• is homogeneous (i.e., constant G),

• is prismatic (i.e., constant diameter and, in turn, constant J), and

• has a constant internal torque T.

6.5 Torsional Deformations
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TORSION SIGN CONVENTIONSIf a torsion member is subjected to external torques at intermediate points (i.e., points 

other than the ends) or if it consists of various diameters or materials, the torsion member 

must be divided into segments that satisfy the three requirements just listed. For compound 

torsion members comprising two or more segments, the overall angle of twist can be deter-

mined by algebraically adding the segment twist angles:

 

T L

J G
i i

i ii

� � ∑  (6.14)

Here, Ti, Li, Gi, and Ji are the internal torque, length, shear modulus, and polar moment of 

inertia, respectively, for individual segments i of the compound torsion member.

The amount of twist in a shaft (or a structural element) is frequently a key consideration 

in design. The angle of twist � determined from Equations (6.12) and (6.13) is applicable for 

a constant-diameter shaft segment that is suffi ciently removed from sections where pulleys, 

couplings, or other mechanical devices are attached (so that Saint-Venant’s  Principle is 

applicable). However, for practical purposes, it is customary to neglect local distortion at all 

connections and compute twist angles as though there were no discontinuities.

Rotation Angles

It is often necessary to determine angular displacements at particular points in a compound 

torsional member or within a system of several torsional members. For example, the proper 

operation of a system of shafts and gears may require that the angular displacement at a 

specifi c gear not exceed a limiting value. The term angle of twist pertains to the torsional 

deformation in shafts or shaft segments. The term rotation angle is used when referring to 

the angular displacement at a specifi c point in the torsion system or at rigid components, 

such as pulleys, gears, couplings, and fl anges.

•  Curl the fi ngers of your right hand in the direction that the moment tends to rotate. 

The direction that your right thumb points indicates the direction of the double-

headed vector arrow.

•  Conversely, point your right-hand thumb in the direction of the double-headed 

vector arrow, and the fi ngers of your right hand curl in the direction that the 

moment tends to rotate.

A consistent sign convention is very helpful to us when we analyze torsion members and 

assemblies of torsion members. The sign conventions that follow will be used for

• internal torque in shafts or shaft segments,

• angles of twist in shafts or shaft segments, and

• rotation angles of specifi c points or rigid components.

Internal Torque Sign Convention

Moments in general, and internal torques specifi cally, are conveniently represented by a 

double-headed vector arrow. This convention is based on the right-hand rule:

6.6 Torsion Sign Conventions
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TORSION A positive internal torque T in a shaft or other torsion member tends to rotate in a 

right-hand rule sense about the outward normal to an exposed section. In other words, an 

internal torque is positive if the right-hand thumb points outward away from the sectioned 

surface when the fi ngers of the right hand are curled in the direction that the internal torque 

tends to rotate. This sign convention is illustrated in Figure 6.11.

Angle of Twist Sign Convention

The sign convention for angles of twist is consistent with the internal torque sign conven-

tion. A positive angle of twist � in a shaft or other torsion member acts in a right-hand rule 

sense about the outward normal to an exposed section. In other words,

•  At an exposed section of the torsion member, curl the fi ngers of your right hand in 

the direction of the twisting deformation.

•  If your right-hand thumb points outward, away from the sectioned surface, the angle 

of twist is positive.

This sign convention is illustrated in Figure 6.12.

FIGURE 6.13 Sign convention for rotation angles.

x

y

��

�

Rotation Angle Sign Convention

Let the longitudinal axis of a shaft be defi ned as the x axis. A positive rotation angle acts in 

a right-hand rule sense about the positive x axis. For this sign convention, an origin must 

be defi ned for the coordinate system of the torsion member. If two parallel shafts are con-

sidered, then the two positive x axes should extend in the same direction. This sign conven-

tion is illustrated in Figure 6.13.

Outwardnormal

Outwardnormal ��

��

FIGURE 6.12 Sign convention for angles of twist.

FIGURE 6.11 Sign convention for internal torque.

Outwardnormal
Outwardnormal

T
T�

�MecMovies 6.3 presents an 

animation of the sign conventions 

used for internal torque, shaft 

element twist angles, and 

rotation angle.
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EXAMPLE 6.2

A 500-mm-long solid steel [G 5 80 GPa] shaft is being designed to transmit a 

torque of T 5 20 N-m. The maximum shear stress in the shaft must not exceed 

70 MPa, and the angle of twist must not exceed 38 in the 500-mm length. Deter-

mine the minimum diameter d required for the shaft.

Plan the Solution
The elastic torsion formula [Equation (6.5)] and the angle of twist equation [Equation (6.12)] 

will be rearranged to solve for the minimum diameter required to satisfy each consider-

ation. The larger of the two diameters will dictate the minimum diameter d that can be 

used for the shaft.

157

EXAMPLE 6.1

A hollow circular steel shaft with an outside diameter of 1.50 in. and a wall 

thickness of 0.125 in. is subjected to a pure torque of 140 lb-ft. The shaft is 

90 in. long. The shear modulus of the steel is G 5 12,000 ksi. Determine

(a) the maximum shear stress in the shaft.

(b) the magnitude of the angle of twist in the shaft.

Plan the Solution
The elastic torsion formula [Equation (6.5)] will be used to compute the maximum shear 

stress, and the angle of twist equation [Equation (6.12)] will be used to determine the 

angle of twist in the hollow shaft.

SOLUTION
The polar moment of inertia J for the hollow shaft will be required for these calculations. 

The shaft has an outside diameter of D 5 1.50 in. and a wall thickness of t 5 0.125 in. 

The inside diameter d of the shaft is d 5 D 2 2t 5 1.50 in. 2 2(0.125 in.) 5 1.25 in. The 

polar moment of inertia for the hollow shaft is

J
32 32

1 50 1 25 0 257324 4 4 4D d ( . ) ( . ) .in. in. 55 4in.� � � � �
� �

(a) The maximum shear stress is computed from the elastic torsion formula

 Tc

J

( )( . )( )

.

140 1 50 12

0 257325

lb-ft in./2 in./ft

in..4
4 896 5 4 900, . psi , psi� � � ��  Ans.

(b) The angle of twist magnitude in the 90-in.-long shaft is

 
( ) )(

TL
JG

( )( )( )

.

140 90 12

0 257325 4

lb-ft in. in./ft

in. 12,000,000 lb/in.
rad

2
0 0490.� � ��  Ans.

x

y

90 in.

A

B

140 lb-ft

T
T
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SOLUTION
The elastic torsion formula relates shear stress and torque:

Tc

J
��

In this instance, the torque and the allowable shear stress are known for the shaft. Rear-

range the elastic torsion formula, putting the known terms on the right-hand side of the 

equation:

J

c

T
�

�

Express the left-hand side of this equation in terms of the shaft diameter d:

32

2 16

4
3( ) d

d
d

T
� �

�

� �

Now solve for the minimum diameter that will satisfy the 80 MPa allowable shear stress limit:

d
T3

2

16 16 20

70( )
( )( )N-m 1,000 mm/m

N/mm
1,455.13309 mm3� � �

� ��

d 11 33. mm��

The angle of twist in the shaft must not exceed 38 in a 500-mm length. Rearrange the 

angle of twist equation so that the polar moment of inertia J is isolated on the left-hand 

side of the equation:

TL
JG

J
TL
G

� ��
�

�

Express the polar moment of inertia in terms of the diameter d, and solve for the minimum 

diameter that will satisfy the 38 limit:

d
TL

G
4 32 32 20 500( )( mm)( )N-m 1,000 mm/m

80,000 N/mmm ° rad 180°
24,317.084

2 ( )
mm

3
4� � �

� � �� ( ) ( )

d 12 49. mm��

Based on these two calculations, the minimum diameter that is acceptable for the shaft is 

d $ 12.49 mm. Ans.

EXAMPLE 6.3

A compound shaft consists of a solid aluminum segment (1) and a 

hollow steel segment (2). Segment (1) is a solid 1.625-in.-diameter 

aluminum shaft with an allowable shear stress of 6,000 psi and a 

shear modulus of 4 3 106 psi. Segment (2) is a hollow steel shaft 

with an outside diameter of 1.25 in., a wall thickness of 0.125 in., 

an allowable shear stress of 9,000 psi, and a shear modulus of 11 3 

106 psi. In addition to the allowable shear stresses, specifi cations 

require that the rotation angle at the free end of the shaft must not 

exceed 28. Determine the magnitude of the largest torque T that 

may be applied to the compound shaft at C.

158

16 in. 25 in.

x

y

A B C

(1) (2)
T
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16 in. 25 in.

x

y

A B C

(1) (2)
T

B C

T

1T

16 in. 25 in.

x

y

A B C

(1) (2)
T

C

T

2T

Plan the Solution
To determine the largest torque T that can be applied at C, we must 

consider the maximum shear stresses and the angles of twist in both 

shaft segments.

SOLUTION
The internal torques acting in segments (1) and (2) can be easily 

determined from free-body diagrams cut through each segment.

Cut a free-body diagram through segment (2) and include 

the free end of the shaft. A positive internal torque T2 is assumed 

to act in segment (2). The following equilibrium equation is 

obtained:

M T T T Tx 2 20Σ � � � ��

Repeat the process with a free-body diagram cut through segment 

(1) that includes the free end of the shaft. From this free-body dia-

gram, a similar equilibrium equation is obtained:

M T T T Tx 1 10Σ � � � ��

Therefore, the internal torque in both segments of the shaft is equal to the external torque 

applied at C.

Shear Stress
In this compound shaft, the diameters and allowable shear stresses in segments (1) and (2) 

are known. The elastic torsion formula can be rearranged to solve for the allowable torque 

that may be applied to each segment.

T
J

c
T

J

c1
1 1

1
2

2 2

2
� �

� �

Segment (1) is a solid 1.625-in.-diameter aluminum shaft. The polar moment of inertia for 

this segment is

J1
4 4

32
1 625 0 684563( . ) .in. in.� �

�

Use this value along with the 6,000 psi allowable shear stress to determine the allowable 

torque T1:

 T
J

c1
1 1

1

40 684563

1 625 2(
( )

)
( psi) .

.

6,000 in.

in.
5,,055.2 lb-in.� �	

�
 (a)

Segment (2) is a hollow steel shaft with an outside diameter of D 5 1.25 in. and a wall 

thickness of t 5 0.125 in. The inside diameter d of this segment is d 5 D 2 2t 5 

1.25 in. 2 2(0.125 in.) 5 1.00 in. The polar moment of inertia for segment (2) is

J2
4 4 4

32
1 25 1 00 0 141510( . ) ( . ) .in. in. in.� � �

�

Use this value along with the 9,000 psi allowable shear stress to determine the allowable 

torque T2:

 T
J

c2
2 2

2

40 141510

1 25 2(
( )

)
( ) .

.

9,000 psi in.

in.
2,0037.7 lb-in.� �

�
	  (b)
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Rotation Angle at C
The angles of twists in segments (1) and (2) can be expressed as

1
1 1

1 1
2

2 2

2 2

T L

J G

T L

J G
� �� �

The rotation angle at C is the sum of these two angles of twist:

C
T L

J G

T L

J G1 2
1 1

1 1

2 2

2 2

� � �� � ��

Consequently, since T1 5 T2 5 T, it follows that

C T
L

J G
L

J G
1

1 1

2

2 2

� � �

Solving for external torque T gives

T
L

J G

L

J G
1

1 1

2

2 2

C�
	

�

 

( ) ( )

(2 ( )°) rad 180°
in.

in. (4,000,000 psi4

16
0 684563. ))

in.
0.141510 in. (11,000,000 psi)4

25
	

�

�

 
(c)

1 593 6, . lb-in.�

External Torque T
Compare the three torque limits obtained in Equations (a), (b), and (c). On the basis of 

these results, the maximum external torque that can be applied to the shaft at C is

 T 1,594 lb-in. lb-ft132 8.� �  Ans.

EXAMPLE 6.4

A solid steel [G 5 80 GPa] shaft of variable diameter is subjected to the torques shown. 

Segment (1) of the shaft has a 36-mm diameter, segment (2) has a 30-mm diameter, and 

segment (3) has a 25-mm diameter. The bearing shown allows the shaft to turn freely. 

Additional bearings have been omitted for clarity.

(a)  Determine the internal torque in segments (1), (2), and (3) 

of the shaft. Plot a diagram showing the internal torques in 

all segments of the shaft. Use the sign convention presented 

in Section 6.6.

(b)  Compute the maximum shear stress magnitude in each 

segment of the shaft.

(c)  Determine the rotation angles along the shaft measured 

at gears B, C, and D relative to fl ange A. Plot a diagram 

showing the rotation angles at all points on the shaft.

0.85 m 1.00 m 0.70 m

x

y

A B C D

(1) (2) (3)

900 N-m
600 N-m

250 N-m
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Plan the Solution
The internal torques in the three shaft segments will be determined 

from free-body diagrams and equilibrium equations. The elastic 

torsion formula [Equation (6.5)] will be used to compute the max-

imum shear stress in each segment once the internal torques are 

known. The angle of twist equations [Equations (6.12) and (6.14)] 

will be used to determine the twisting in individual shafts as well 

as the rotation angles at gears B, C, and D.

SOLUTION
Equilibrium
Consider a free-body diagram that cuts through shaft segment (3) 

and includes the free end of the shaft. A positive internal torque 

T3 is assumed to act in segment (3). The equilibrium equation 

obtained from this free-body diagram gives the internal torque in 

segment (3) of the shaft:

ΣM Tx � � �250 03N-m

� �T3 250 N-m

Similarly, the internal torque in segment (2) is found from an 

equilibrium equation obtained from a free-body diagram that 

cuts through segment (2) of the shaft. A positive internal torque 

T2 is assumed to act in segment (2).

ΣM Tx � � � �250 600 02N-m N-m

� � �T2 350 N-m

And for segment (1),

ΣM Tx � � � � �250 600 900 01N-m N-m N-m

� �T1 550 N-m

A torque diagram is produced by plotting these three results.

Polar Moments of Inertia
The elastic torsion formula will be used to compute the maxi-

mum shear stress in each shaft segment. For this calculation, the 

polar moments of inertia must be computed for each segment. 

Segment (1) is a solid 36-mm-diameter shaft. The polar moment 

of inertia for this shaft segment is

J1
4 4

32
164 895 9� �

�
(36 mm) mm, .

Shaft segment (2), which is a solid 30-mm-diameter shaft, has 

a polar moment of inertia of

J2
4 4

32
79 521 6� �

�
(30 mm) mm, .

The polar moment of inertia for shaft segment (3), which is a 

solid 25-mm-diameter shaft, has a value of

J3
4 4

32
38 349 5� �

�
(25 mm) mm, .

0.85 m 1.00 m 0.70 m

x

y

x
D

900 N-m
600 N-m

250 N-m
600 N m600 N m

900 N-m900 N-m

3T (3)

0.85 m 1.00 m 0.70 m

x

y 900 N-m
600 N m

xC D

2T (2)

600 N-m
250 N-m

0.85 m 1.00 m 0.70 m

x

y 900 N-m
600 N m

xB C D

900 N-m
600 N-m

250 N-m
1T (1)

0.85 m 1.00 m 0.70 m

x

y

A B C D

(1) (2) (3)

900 N-m 600 N-m 250 N-m

550 N-m

�350 N-m

250 N-m

Internal torque diagram for compound shaft.
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Shear Stresses
The maximum shear stress magnitude in each segment can be calculated with the use of 

the elastic torsion formula:

 �1
1 1

1

550
� �

T c
J

( N-m)(36 mm 2)(1,000 mm/m)

164,895.9 mmm
MPa

4
� 60 0.  Ans.

 �2
2 2

2

50
� �

T c
J

(3 N-m)(30 mm 2)(1,000 mm/m)

79,521.6 mm44
MPa� 66 0.  Ans.

 �3
3 3

3

250
� �

T c
J

( N-m)(25 mm 2)(1,000 mm/m)

38,349.5 mm44
MPa� 81 5.  Ans.

Angles of Twist
Before rotation angles can be determined, the angles of twist in each segment must be 

determined. In the preceding calculation, the sign of the internal torque was not consid-

ered because only the magnitude of the shear stress was desired. For the angle of twist 

calculations here, the sign of the internal torque must be included.

  �1
1 1

1 1

50
� �

T L
J G

(5 N-m)(850 mm)(1,000 mm/m)

164,895.9 mmm 80,000 N/mm
rad

4 2( )( )
� 0 035439.

  �2
2 2

2 2

350
� �

�T L
J G

( N-m)(1,000 mm)(1,000 mm/m)

79,521..6 mm 80,000 N/mm
rad

4 2( )( )
� �0 055017.

  �3
3 3

3 3

50
� �

T L
J G

(2 N-m)(700 mm)(1,000 mm/m)

38,349.5 mmm 80,000 N/mm
rad

4 2( )( )
� 0 057041.

Rotation Angles
The angles of twist can be defi ned in terms of the rotation angles at the ends of each segment:

� � � � � � � � �1 2 3� � � � � �B A C B D C

The origin of the coordinate system is located at fl ange A. We will arbitrarily defi ne the 

rotation angle at fl ange A to be zero (�A 5 0). The rotation angle at gear B can be calculated 

from the angle of twist in segment (1):
� � �1 � �B A

� � � � �

� �

� � �B A 1 0 0 035439

0 035439 0 0354

.

. .

rad

rad rad

Similarly, the rotation angle at C is determined from the angle of 

twist in segment (2) and the rotation angle of gear B:

� � �2 � �C B

� � � � � �

� �

� � �C B 2 0 035439 0 055017

0 019578

. .

.

rad ( rad)

raad rad� �0 01958.

Finally, the rotation angle at gear D is

� � �3 � �D C

� �

� ��D

0 037464.

� � � ��3 0 019578 0 057041. .rad r ad

rad 00 0375. rad

�C

A plot of the rotation angle results can be added to the torque 

diagram to give a complete report for the three-segment shaft.

0.85 m 1.00 m 0.70 m

x

y

A B C D

(1) (2) (3)

900 N-m 600 N-m 250 N-m

550 N-m

�350 N-m

250 N-m

Internal torque diagram for compound shaft.
0.0354 rad

�0.01958 rad

0.0375 rad

Rotation angle diagram for compound shaft.
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Determine the torque T that causes a maximum shearing stress of 50 MPa in the hollow 

shaft. The outside diameter of the shaft is 40 mm, and the wall thickness is 5 mm.

 MecMovies Example M6.4

Determine the minimum permissible diameter for a solid shaft subjected to a torque of 

5 kN-m. The allowable shear stress for the shaft is 65 MPa.

 MecMovies Example M6.5 
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A single torque of T 5 50 N-m is applied to a compound torsion mem-

ber. Segment (1) is a 32-mm-diameter solid brass [G 5 37 GPa] rod. 

Segment (2) is a solid aluminum [G 5 26 GPa] rod. Determine the 

minimum diameter of the aluminum segment if the rotation angle at C 

relative to the support A must not exceed 38.

 MecMovies Example M6.6

�

A solid circular driveshaft connects a motor to gears B and C. The 

torque on gear B is 600 N-m, and the torque on gear C is 200 N-m, 

acting in the directions shown. The driveshaft is steel [G 5 66 MPa] 

with a diameter of 25 mm.

(a) Determine the maximum shear stress in shafts (1) and (2).

(b) Determine the rotation angle of C with respect to A.

 MecMovies Example M6.7 
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 MecMovies Example M6.8 

The solid steel [G � 80 GPa] shaft between coupling A and gear B has 

a diameter of 35 mm. Between gears B and C, the diameter of the solid 

shaft is reduced to 25 mm. At gear B, a 20 N-m concentrated torque is 

applied to the shaft in the direction indicated. A concentrated torque TC 

will be applied at gear C. If the total angle of rotation at C is not to 

exceed 1�, determine the magnitude of torque TC that can be applied in 

the direction shown.

FIGURE M6.1

M6.1 Ten basic torsion problems involving internal torques, 

shear stress, and angles of twist for a multisegment shaft.

 MecMovies ExercisesMM

P6.1 A solid circular steel shaft having an outside diameter of 

d � 0.75 in. is subjected to a pure torque of T � 650 lb-in. Deter-

mine the maximum shear stress in the shaft.

P6.2 A hollow aluminum shaft with an outside diameter of 

80 mm and a wall thickness of 5 mm has an allowable shear stress 

of 75 MPa. Determine the maximum torque T that may be applied 

to the shaft.

P6.3 A hollow steel shaft with an outside diameter of 100 mm 

and a wall thickness of 10 mm is subjected to a pure torque of 

T � 5,500 N-m.

(a) Determine the maximum shear stress in the hollow shaft.

(b)  Determine the minimum diameter of a solid steel shaft for 

which the maximum shear stress is the same as in part (a) for 

the same torque T.

P6.4 A compound shaft consists of two pipe segments. Seg-

ment (1) has an outside diameter of 200 mm and a wall thickness 

of 10 mm. Segment (2) has an outside diameter of 150 mm and a 

wall thickness of 10 mm. The shaft is subjected to torques TB � 

42 kN-m and TC � 18 kN-m, which act in the directions shown in 

Figure P6.4/5. Determine the maximum shear stress magnitude in 

each shaft segment.

PROBLEMSPROBLEMS

x

y

A

B
C

BT

CT(1)

(2)

FIGURE P6.4/5

P6.5 A compound shaft consists of two pipe segments. Segment 

(1) has an outside diameter of 10.750 in. and a wall thickness of 

0.365 in. Segment (2) has an outside diameter of 6.625 in. and a wall 

thickness of 0.280 in. The shaft is subjected to torques TB � 

60 kip-ft and TC � 24 kip-ft, which act in the directions shown in 

Figure P6.4/5. Determine the maximum shear stress magnitude in 

each shaft segment.

P6.6 A compound shaft (Figure P6.6/7) consists of brass seg-

ment (1) and aluminum segment (2). Segment (1) is a solid brass 

shaft with an outside diameter of 0.625 in. and an allowable 

shear stress of 6,000 psi. Segment (2) is a solid aluminum shaft 

with an outside diameter of 0.50 in. and an allowable shear stress 
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x

y

A

B

C

D

(1)

(2)

(3)

110 N-m

160 N-m

330 N-m

380 N-m

FIGURE P6.9

P6.10 The solid steel rod (1) shown in Figure P6.10 has an al-

lowable shear stress of 18 ksi. The brass tube (2) has an allowable 

shear stress of 6 ksi. The outside diameter of the tube is D2 � 1.50 in., 

and its wall thickness is t2 � 0.125 in. The tube is attached to a 

fi xed plate at C, and both the rod and the tube are welded to a rigid 

end plate at B. Calculate

(a)  the largest torque T that can be applied at the upper end of the 

steel rod if the allowable shear stress in tube (2) is not to be 

exceeded. 

(b)  the corresponding minimum diameter d1 required for steel 

rod (1).

T

t2

d1

D2

Fixed plate

Rod (1)

Tube (2)

End plate

A

B

C

FIGURE P6.10

P6.11 A solid circular steel shaft having an outside diameter of 

35 mm is subjected to a pure torque of T � 640 N-m. The shear 

modulus of the steel is G � 80 GPa. Determine

(a) the maximum shear stress in the shaft.

(b) the magnitude of the angle of twist in a 1.5-m length of shaft.

P6.12 A solid stainless steel [G � 12,500 ksi] shaft that is 72 in. 

long will be subjected to a pure torque of T � 900 lb-in. Determine 

the minimum diameter required if the shear stress must not exceed 

8,000 psi and the angle of twist must not exceed 5�. Report both the 

maximum shear stress � and the angle of twist � at this minimum 

diameter.

P6.13 A hollow steel [G � 12,000 ksi] shaft with an outside 

diameter of 3.50 in. will be subjected to a pure torque of 

of 9,000 psi. Determine the magnitude of the largest torque TC 

that may be applied at C.

CT

A

B

C

(1)

(2)

FIGURE P6.6/7

P6.7 A compound shaft (Figure P6.6/7) consists of brass seg-

ment (1) and aluminum segment (2). Segment (1) is a solid brass 

shaft with an allowable shear stress of 60 MPa. Segment (2) is a 

solid aluminum shaft with an allowable shear stress of 90 MPa. If a 

torque of TC � 23,000 N-m is applied at C, determine the minimum 

required diameter of

(a) the brass shaft and 

(b) the aluminum shaft.

P6.8 A solid 0.75-in.-diameter shaft is subjected to the torques 

shown in Figure P6.8. The bearings shown allow the shaft to turn 

freely. 

(a)  Plot a torque diagram showing the internal torque in 

segments (1), (2), and (3) of the shaft. Use the sign conven-

tion presented in Section 6.6.

(b) Determine the maximum shear stress magnitude in the shaft.

x

y

A

B

C

D

10 lb-ft
50 lb-ft

70 lb-ft

30 lb-ft

(1)

(2)

(3)

FIGURE P6.8

P6.9 A solid constant-diameter shaft is subjected to the torques 

shown in Figure P6.9. The bearings shown allow the shaft to turn 

freely.

(a)  Plot a torque diagram showing the internal torque in segments 

(1), (2), and (3) of the shaft. Use the sign convention 

presented in Section 6.6.

(b)  If the allowable shear stress in the shaft is 80 MPa, determine 

the minimum acceptable diameter for the shaft.
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T � 3,750 lb-ft. Determine the maximum inside diameter d that can 

be used if the shear stress must not exceed 8,000 psi and the angle 

of twist must not exceed 3� in an 8-ft length of shaft. Report both 

the maximum shear stress � and the angle of twist � for this maxi-

mum inside diameter.

P6.14 A compound shaft (Figure P6.14) consists of brass seg-

ment (1) and aluminum segment (2). Segment (1) is a solid brass 

[G � 5,600 ksi] shaft with an outside diameter of 1.75 in. and an 

allowable shear stress of 9,000 psi. Segment (2) is a solid alumi-

num [G � 4,000 ksi] shaft with an outside diameter of 1.25 in. 

and an allowable shear stress of 12,000 psi. The maximum rota-

tion angle at the upper end of the compound shaft must be limited 

to �C � 4�. Determine the magnitude of the largest torque TC that 

may be applied at C.

12 in.

18 in.

CT

A

B

C

(1)

(2)

FIGURE P6.14

P6.15 A simple torsion-bar spring is shown in Figure P6.15. The 

shear stress in the steel [G � 80 GPa] shaft is not to exceed 70 MPa, 

and the vertical defl ection of joint D is not to exceed 10 mm when 

a load of P � 11 kN is applied. Neglect the bending of the shaft and 

assume that the bearing at C allows the shaft to rotate freely. Deter-

mine the minimum diameter required for the shaft. Use dimensions 

of a � 1,400 mm, b � 600 mm, and c � 175 mm.

a

b

c

P

D

C

BA

FIGURE P6.15

P6.16 The mechanism shown in Figure P6.16 is in equilibrium 

for an applied load of P � 20 kN. Specifi cations for the mecha-

nism limit the shear stress in the steel [G � 80 GPa] shaft BC to 

70 MPa, the shear stress in bolt A to 100 MPa, and the vertical 

defl ection of joint D to a maximum value of 25 mm. Assume that 

the bearings allow the shaft to rotate freely. Using L � 1,200 mm, 

a � 110 mm, and b � 210 mm, calculate

(a) the minimum diameter required for shaft BC.

(b) the minimum diameter required for bolt A.

a

b

L

P

D

C

B

A

Bolt

Bearings

FIGURE P6.16

P6.17 A solid 1.50-in.-diameter steel [G � 12,000 ksi] shaft is 

subjected to torques TB � 250 lb-ft, TC � 300 lb-ft, and TD � 

130 lb-ft, acting in the directions shown in Figure P6.17. Assume 

a � 48 in., b � 72 in., and c � 36 in.

(a)  Prepare a diagram that shows the internal torque and the maxi-

mum shear stress in segments (1), (2), and (3) of the shaft. 

Use the sign convention presented in Section 6.6.

(b)  Determine the rotation angle of pulley C with respect to the 

support at A.

(c)  Determine the rotation angle of pulley D with respect to the 

support at A.

x

y

A
B

C
D

(1)
(2)

(3)

a
b

c

CT
DT

BT

FIGURE P6.17

P6.18 A solid steel [G � 80 GPa] shaft of variable diameter is 

subjected to the torques shown in Figure P6.18. The diameter of the 

shaft in segments (1) and (3) is 50 mm, and the diameter of the shaft 

in segment (2) is 80 mm. The bearings shown allow the shaft to turn 

freely. Calculate

(a) the maximum shear stress in the compound shaft.

(b) the rotation angle of pulley D with respect to pulley A.
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0.70 m

0.70 m
1.80 m

y

1,200 N-m 4,500 N-m

2,800 N-m
500 N-m

x

A
B

C
D

(1)
(2)

(3)

FIGURE P6.18

P6.19 A compound shaft drives several pulleys, as shown in 

Figure P6.19. Segments (1) and (2) of the compound shaft are hol-

low aluminum [G � 4,000 ksi] tubes, which have an outside diam-

eter of 3.00 in. and a wall thickness of 0.125 in. Segments (3) and 

(4) are solid 1.50-in.-diameter steel [G � 12,000 ksi] shafts. The 

bearings shown allow the shaft to turn freely. Calculate

(a) the maximum shear stress in the compound shaft.

(b) the rotation angle of fl ange C with respect to pulley A.

(c) the rotation angle of pulley E with respect to pulley A.

x

y

A
B

C

E
D

650 lb-ft
825 lb-ft

270 lb-ft

95 lb-ft

(1)
(2)

(3)
(4)

72 in.

36 in.

54 in.

54 in.

FIGURE P6.19

P6.20 Figure P6.20 shows a cutaway view of an assembly in 

which a solid steel [G � 80 GPa] rod (1) is fi tted inside of a brass 

[G � 44 GPa] tube (2). The tube is attached to a fi xed plate at C, and 
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both the rod and the tube are welded to a rigid end plate at B. The 

rod diameter is d1 � 30 mm. The outside diameter of the tube is 

D2 � 50 mm, and its wall thickness is t2 � 3 mm. Using a � 600 mm, 

b � 400 mm, and T � 500 N-m, calculate

(a)  the maximum shear stresses in both rod (1) and tube (2).

(b)  the rotation angle at A.

P6.21 A compound shaft (Figure P6.21) consists of an alumi-

num alloy [G � 26 GPa] tube (1) and a solid bronze [G � 45 GPa] 

shaft (2). Tube (1) has a length of L1 � 900 mm, an outside diam-

eter of D1 � 35 mm, and a wall thickness of t1 � 4 mm. Shaft (2) 

has a length of L2 � 1,300 mm and a diameter of d2 � 25 mm. If an 

external torque of TB � 420 N-m acts at pulley B in the direction 

shown, calculate the torque TC required at pulley C so that the rota-

tion angle of pulley C relative to A is zero.

x

yz

A

B

C

BT

CT

(1)

(2)

2L

1L

FIGURE P6.21

P6.22 The copper pipe shown in Figure P6.22 has an outside 

diameter of 3.50 in. and a wall thickness of 0.313 in. The pipe is 

subjected to a uniformly distributed torque of t � 90 lb-ft/ft along its 

entire length. Using a � 2.5 ft, b � 4 ft, and c � 8 ft, calculate

(a) the shear stress at A on the outer surface of the pipe.

(b) the shear stress at B on the outer surface of the pipe.

x

B

A

c

b
a

t

C
FIGURE P6.22

P6.23 The solid shaft shown in Figure P6.23 is subjected to a 

uniformly distributed torsional loading t � 7 kN-m/m and a con-

centrated external torque TD � 2,500 N-m. Determine the minimum 

b

a

T

t2

d1

D2

Fixed plate

Rod (1)

Tube (2)

End plate

A

B

C

FIGURE P6.20
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required diameter of the shaft if the allowable shear stress for the 

material is 100 MPa. Use a 5 0.5 m, b 5 1.2 m, and c 5 0.3 m.

x
C

D

DT

A
B

c

b

a

t

t

FIGURE P6.23

P6.24 Figure P6.24 shows a 50-mm-diameter solid shaft made 

of aluminum [G 5 70 GPa] that is subjected to a uniformly distrib-

uted torsional loading of t 5 4.2 kN-m/m and two concentrated 

external torques: TC 5 5.0 kN-m and TD 5 2.3 kN-m. Using a 5 

1.3 m, b 5 0.4 m, and c 5 0.9 m, calculate

(a) the angle of twist in shaft segment AB.

(b)  the rotation angle �D at the free end of the shaft.

x

C

D

DT

TC
A

B

c

b

a

t

FIGURE P6.24

P6.25 A 5-m-long solid bronze [G 5 45 GPa] shaft must carry 

a uniformly distributed torsional loading of 35 kN-m/m along its 

full length. The angle of twist of the shaft is limited to 0.05 rad, 

and the maximum allowable shear stress is limited to 120 MPa. 

What is the minimum diameter required for the shaft?

B

A

x�

x

2T

1T

BR

AR

AN Number of teeth
on gear A

BN Number of teeth
on gear B

(2)

(1)

�

�

FIGURE 6.14 Basic gear 

 assembly.

(2)

(1)

B

A

x

2T

1T

F
FBR

AR

x�

FIGURE 6.15 Free-body 

 diagrams of gears A and B.
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Gears are a fundamental component found in many types of mechanisms and devices—

particularly those devices that are driven by motors or engines. Gears are used for many 

purposes, such as

• transmitting torque from one shaft to another,

• increasing or decreasing torque in a shaft,

• increasing or decreasing the rate of rotation of a shaft,

• changing the rotation direction of two shafts, and

•  changing rotational motion from one orientation to another; for instance, changing 

rotation about a horizontal axis to rotation about a vertical axis.

Furthermore, since gears have teeth, shafts connected by gears are always synchronized 

exactly with one another.

A basic gear assembly is shown in Figure 6.14. In this assembly, torque is transmitted 

from shaft (1) to shaft (2) by means of gears A and B, which have radii of RA and RB, re-

spectively. The number of teeth on each gear is denoted by NA and NB. Positive internal 

torques T1 and T2 are assumed in shafts (1) and (2). For clarity, bearings necessary to sup-

port the two shafts have been omitted. This confi guration will be used to illustrate basic 

relationships involving torque, rotation angle, and rotation speed in torsion assemblies 

with gears.

Torque

To illustrate the relationship between the internal torques in shafts (1) and (2), free-body 

diagrams of each gear are shown in Figure 6.15. If the system is to be in equilibrium, then 

each gear must satisfy equilibrium. Consider the free-body diagram of gear A. The internal 

torque T1 acting in shaft (1) is transmitted directly to gear A. This torque causes gear A to 

rotate counterclockwise. As gears A and B rotate, the teeth of gear B exert a force on gear 

A that acts tangential to both gears. This force, which opposes the rotation of gear A, is 

6.7 Gears in Torsion Assemblies
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denoted by F. A moment equilibrium equation about the x axis gives the relationship 

between T1 and F for gear A:

 ΣM T F R F
T
Rx A

A
� � � � �1

10  (a)

Next, consider the free-body diagram of gear B. If the teeth of gear B exert a force F on gear 

A, then the teeth of gear A must exert on gear B a force that is equal in magnitude, but acts 

in the opposite direction. This force causes gear B to rotate clockwise. A moment equilib-

rium equation about the x9 axis gives

 ΣM F R Tx B� � � � �2 0  (b)

If the expression for F determined in Equation (a) is substituted into Equation (b), then the 

torque T2 required to satisfy equilibrium can be expressed in terms of torque T1:

 � � � � � �
T
R

R T T T
R
RA

B
B

A

1
2 2 10  (c)

The magnitude of T2 is related to T1 by the ratio of the gear radii. Since the two gears rotate 

in opposite directions, however, the sign of T2 is opposite from the sign of T1.

Gear Ratio. The ratio RByRA in Equation (c) is called the gear ratio, and this ratio is 

the key parameter that dictates relationships between shafts connected by gears. The gear 

ratio in Equation (c) is expressed in terms of the gear radii; however, this parameter can 

also be expressed in terms of gear diameters or gear teeth.

The diameter D of a gear is simply two times its radius R. Accordingly, the gear ratio 

in Equation (c) could also be expressed as DByDA, where DA and DB are the diameters of 

gears A and B, respectively.

For two gears to interlock properly, the teeth on both gears must be the same size. In other 

words, the arclength of a single tooth, which is termed the pitch p, must be the same for both 

gears. The circumference C of gears A and B can be expressed either in terms of gear radius,

C R C RA A B B� �2 2� �

or in terms of the pitch p and the number of teeth N on the gear,

C pN C pNA A B B� �

The circumference expressions for each gear can be equated and solved for the pitch p on 

each gear:

p
R

N
p

R
N

A

A

B

B
� �

2 2� �

Moreover, since the tooth pitch p must be the same for both gears,

R
R

N
N

B

A

B

A
�

In summary, the gear ratio between any two gears A and B can be expressed equivalently 

by either gear radii, gear diameters, or numbers of gear teeth:

 Gear ratio� � �
R
R

D
D

N
N

B

A

B

A

B

A

 (d)
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GEARS IN TORSION ASSEMBLIES

MecMovies 6.9 presents an 

animation that illustrates basic 

gear relationships for torque, 

rotation angle, rotation speed, 

and power transmission.
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170
TORSION Rotation Angle. When gear A turns through an angle of �A as shown in Figure 6.16, 

the arclength sA along the perimeter of gear A is sA 5 RA�A. Similarly, the arclength sB 

along the perimeter of gear B is sB 5y RB�B. Since the teeth on each gear must be the same 

size, the arclengths that are turned by the two gears must be equal in magnitude. The two 

gears, however, turn in opposite directions. If sA and sB are equated and rotation in the op-

posite direction is accounted for, then the rotation angle �A can be expressed as

 R R
R
RA A B B A

B

A
B� � � �� � � � �  (e)

Note: The term RByRA in Equation (e) is simply the gear ratio; therefore,

 � �A B� �(Gear ratio)  (f )

Rotation Speed. Rotation speed � is the rotation angle � turned by the gear in a unit 

of time; therefore, the rotation speeds of two interlocked gears are related in the same man-

ner as described for rotation angles.

 
	 	A B� �(Gear ratio)

 
(g)

FIGURE 6.16 Rotation angles 

for gears A and B.

B

A

x

A

B

(2)

(1)

�

x�

�

EXAMPLE 6.5

Two solid steel [G 5 80 GPa] shafts are connected by the gears 

shown. Shaft (1) has a diameter of 35 mm, and shaft (2) has a 

diameter of 30 mm. Assume that the bearings shown allow free 

rotation of the shafts. If a 315 N-m torque is applied at gear D, 

determine

(a) the maximum shear stress magnitudes in each shaft.

(b) the angles of twist �1 and �2.

(c) the rotation angles �B and �C of gears B and C, respectively.

(d) the rotation angle of gear D.

Plan the Solution
The internal torque in shaft (2) can easily be determined from a 

free-body diagram of gear D; however, the internal torque in shaft (1) will be dictated by the 

ratio of gear sizes. Once you have determined the internal torques in both shafts, calculate 

the angles of twist in each shaft, paying particular attention to the signs of the twist angles. 

The twist angle in shaft (1) will dictate how much gear B rotates, which in turn will dictate 

the rotation angle of gear C. The rotation angle of gear D will depend upon the rotation 

angle of gear C and the angle of twist in shaft (2).

SOLUTION
Equilibrium
Consider a free-body diagram that cuts through shaft (2) and includes gear D. A positive 

internal torque will be assumed in shaft (2). From this free-body diagram, a moment 

equilibrium equation about the x 9 axis can be written to determine the internal torque T2 

in shaft (2).

 ΣM T Tx � � � � � �315 0 315N-m N-m2 2  (a)

Next, consider a free-body diagram that cuts through shaft (2) and includes 

gear C. Once again, a positive internal torque will be assumed in shaft (2). The teeth of 

850 mm

600 mm

x

y x�

A
B

C
D

(2)

(1)

315 N-m42 teeth

54 teeth

D
x�

315 N-m

2T
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gear B exert a force F on the teeth of gear C. If the radius of gear C is denoted by RC, 

a moment equilibrium equation about the x9 axis can be written as

 
ΣM T F R F

T
Rx C

C
� � � � � �2 0 2

 
(b)

A free-body diagram of gear B that cuts through shaft (1) is shown. A positive internal 

torque T1 is assumed to act in shaft (1). If the teeth of gear B exert a force F on the 

teeth of gear C, then equilibrium requires that the teeth of gear C exert an equal mag-

nitude force in the opposite direction on the teeth of gear B. With the radius of gear B 

denoted by RB, a moment equilibrium equation about the x axis can be written as

 ΣM T F R T F Rx B B� � � � � � �1 10  (c)

The internal torque in shaft (2) is given by Equation (a). The internal torque in shaft 

(1) can be determined by substituting Equation (b) into Equation (c):

T F R
T
R

R T
R
RB

C
B

B

C
1 � � � � � �2

2

The gear radii RB and RC are not known. However, the ratio RB/RC is simply the gear ratio 

between gears B and C. Since the teeth on both gears must be the same size in order for 

the gears to mesh properly, the ratio of teeth on each gear is equivalent to the ratio of gear 

radii. Consequently, the torque in shaft (1) can be expressed in terms of NB and NC, the 

number of teeth on gears B and C, respectively:

T T
R
R

T
N
N

B

C

B

C
1 (315 N-m)

54 teeth

42 teeth
� � � � � � � �2 2 405 NN-m

Shear Stresses
The maximum shear stress magnitude in each shaft will be calculated from the elastic tor-

sion formula. The polar moments of inertia for each shaft will be required for this calcula-

tion. Shaft (1) is a solid 35-mm-diameter shaft, which has a polar moment of inertia of

J1
4 4

32
147 324� �

�
(35 mm) mm,

Shaft (2) is a solid 30-mm-diameter shaft, which has a polar moment of inertia of

J2
4 4

32
79 552� �

�
(30 mm) mm,

To calculate the maximum shear stress magnitudes, the absolute values of T1 and T2 will 

be used. The maximum shear stress magnitude in the 35-mm-diameter shaft (1) is

 �1
1 1

1

405
� �

T c
J

( N-m)(35 mm 2)(1,000 mm/m)

147,324 mm4
� 48 1. MPa  Ans.

and the maximum shear stress magnitude in the 30-mm-diameter shaft (2) is

 �2
2 2

2

315
� � �

T c
J

( N-m)(30 mm 2)(1,000 mm/m)

79,552 mm4
559 4. MPa  Ans.

Angles of Twist
The angles of twist must be calculated with the signed values of T1 and T2. Shaft (1) is 600 mm 

long, and its shear modulus is G 5 80 GPa 5 80,000 MPa. The angle of twist in this shaft is

�1
1 1

1 1

405
� �

�T L
J G

( N-m)(600 mm)(1,000 mm/m)

147,324 mmm 80,000 N/mm
rad rad

4 2( )( )
� � � �0 020618 0 0206. .

 Ans.

C

(2) 2T

CN 42 teeth

F
CR

�

x

B

(1)

1T

BN 54 teeth

BR

F

�
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�
�
� �

 MecMovies Example M6.13 

Two solid steel [G 5 80 GPa] shafts are connected by the gears shown. The 

diameter of each shaft is 35 mm. A torque T 5 685 N-m is applied to the 

system at D. Determine

(a) the maximum shear stress in each shaft.

(b) the angle of rotation at D.

B

C

CN 42 teeth

BN 54 teeth

B�

C�
CR

BR

�

�

Shaft (2) is 850 mm long; therefore, its angle of twist is

�2
2 2

2 2
� �

T L
J G

(315 N-m)(850 mm)(1,000 mm/m)

79,522 mm4( )( )
� �

80,000 N/mm
rad rad

2
0 042087 0 0421. .  Ans.

Rotation Angles of Gears B and C
The rotation of gear B is equal to the angle of twist in shaft (1):

 � �B � � � � �1 rad rad0 020618 0 0206. .  Ans.

Note: From the sign convention for rotation angles described in Section 6.6 and illus-

trated in Figure 6.13, a negative rotation angle for gear B indicates that gear B rotates 

clockwise, as shown in the fi gure to the left.

The rotation angles of gears B and C are related because the arclengths associated 

with the respective rotations must be equal. Why? Because the gear teeth are interlocked. 

The gears turn in opposite directions, however. In this instance, gear B turns clockwise, 

which causes gear C to rotate in a counterclockwise direction. This change of rotation 

direction is accounted for in the calculations by a negative sign, so that

R RC C B B� �� �

where RB and RC are the radii of gears B and C, respectively. Using this relationship, we 

can express the rotation angle of gear C as

� �C
B

C
B

R
R

� �

However, the ratio RB/RC is simply the gear ratio between gears B and C, and this ratio 

can be equivalently expressed in terms of NB and NC, the number of teeth on gears 

B and C, respectively:

� �C
B

C
B

N
N

� �

Therefore, the rotation angle of gear C is

     � �C
B

C
B

N
N

� � � � � �
54 teeth

42 teeth
0 020618 0 0265( rad). . 009 0 0265rad rad� .  Ans.

Rotation Angle of Gear D
The rotation angle of gear D is equal to the rotation angle of gear C plus the twist that 

occurs in shaft (2):
   � � �D C� � � � � �2 0 026509 0 042087 0 068596 0. . . .rad rad rad 00686 rad  Ans.
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 MecMovies Exercises

M6.9 Six multiple-choice questions concerning torque, rotation 

angle, and rotation speed of gears.

M6.11 Six basic calculations involving three shafts connected 

by gears.

FIGURE M6.9

FIGURE M6.10

M6.10 Six basic calculations involving two shafts connected by 

gears.

FIGURE M6.11

FIGURE M6.12

M6.12 Five basic twist and rotation angle calculations involving 

two shafts connected by gears.

PROBLEMSPROBLEMS
6.26 A torque of TD 5 450 N-m is applied to gear D of the gear 

train shown in Figure P6.26. The bearings shown allow the shafts to 

rotate freely.

(a)  Determine the torque TA required for equilibrium of the 

system.

(b)  Assume that shafts (1) and (2) are solid 30-mm-diameter steel 

shafts. Determine the magnitude of the maximum shear 

stresses acting in each shaft.

(c)  Assume that shafts (1) and (2) are solid steel shafts, which 

have an allowable shear stress of 60 MPa. Determine the 

minimum diameter required for each shaft.

FIGURE P6.26

AT 450 N-m

A

B

C

D

(1)

(2)

150-mm
diameter

90-mm
diameter
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P6.27 The gear train system shown in Figure P6.27 includes 

shafts (1) and (2), which are solid 20-mm-diameter steel shafts. The 

allowable shear stress of each shaft is 50 MPa. The bearings shown 

allow the shafts to rotate freely. Determine the maximum torque TD 

that can be applied to the system without exceeding the allowable 

shear stress in either shaft.

P6.28 In the gear system shown in Figure P6.28/29, the motor 

applies a torque of 220 N-m to the gear at A. A torque of TC 5 

400 N-m is removed from the shaft at gear C, and the remaining 

torque is removed at gear D. Segments (1) and (2) are solid 40-mm-

diameter steel [G 5 80 GPa] shafts, and the bearings shown allow 

free rotation of the shaft. Calculate

(a) the maximum shear stress in segments (1) and (2) of the shaft.

(b) the rotation angle of gear D relative to gear B.

FIGURE P6.27

DT

A

B

C
D

(1)

(2)80-mm
diameter

200-mm
diameter

FIGURE P6.30

A B C

AT TC

1L 2L

(1) (2)

FIGURE P6.31/32

ET

A

B

C

D E

(1)

(2)

24
teeth

72 teeth
30 teeth

60 teeth

FIGURE P6.28/29

DT

CT

A

B

C
D

(1)

(2)
300-mm
diameter

100-mm
diameter

1 m

1.5 m

P6.29 In the gear system shown in Figure P6.28/29, the motor 

applies a torque of 400 N-m to the gear at A. A torque of TC 5 700 N-m 

is removed from the shaft at gear C, and the remaining torque is 

removed at gear D. Segments (1) and (2) are solid steel [G 5 80 GPa] 

shafts, and the bearings shown allow free rotation of the shaft.

(a)  Determine the minimum permissible diameters for segments 

(1) and (2) of the shaft if the maximum shear stress must not 

exceed 40 MPa.

(b)  If the same diameter is to be used for segments (1) and (2), 

determine the minimum permissible diameter that can be used 

for the shaft if the maximum shear stress must not exceed 

40 MPa and the rotation angle of gear D relative to gear B 

must not exceed 3.08.

P6.30 A motor provides a torque of 4,300 N-m to gear B of the 

system shown in Figure P6.30. Gear A takes off 2,800 N-m from 

shaft (1), and gear C takes off the remaining torque. Both shafts (1) 

and (2) are solid and made of steel [G 5 80 GPa]. The shaft lengths 

are L1 5 3.0 m and L2 5 1.8 m, respectively. If the angle of twist in 

each shaft must not exceed 3.08, calculate the minimum diameter 

required for each shaft.

P6.31 In the gear system shown in Figure P6.31/32, the motor ap-

plies a torque of 600 N-m to the gear at A. Shafts (1) and (2) are solid 

shafts, and the bearings shown allow free rotation of the shafts. 

(a) Determine the torque TE provided by the gear system at gear E. 

(b)  If the allowable shear stress in each shaft must be limited to 

70 MPa, determine the minimum permissible diameter for 

each shaft.

174

P6.32 In the gear system shown in Figure P6.31/32, a torque of 

TE 5 720 lb-ft is delivered at gear E. Shaft (1) is a solid 1.50-in.-

diameter shaft, and shaft (2) is a solid 2.00-in.-diameter shaft. The 

bearings shown allow free rotation of the shafts. Calculate

(a)  the torque provided by the motor to gear A.

(b) the maximum shear stresses in shafts (1) and (2).
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P6.33 Two solid 2.00-in.-diameter steel shafts are connected 

by the gears shown in Figure P6.33. The shaft lengths are L1 5 10 ft 

and L2 5 18 ft. Assume that the shear modulus of both shafts is 

G 5 12,000 ksi and that the bearings shown allow free rotation of 

the shafts. If the gear at D is rotated through an angle of 68, what 

is the maximum shear stress in each shaft?

P6.34 Two solid steel shafts are connected by the gears shown in 

Figure P6.34/35. The design requirements for the system specify 

that (1) both shafts must have the same diameter, (2) the maximum 

shear stress in each shaft must be less than 6,000 psi, and (3) the 

rotation angle of gear D must not exceed 38. Determine the mini-

mum required diameter of the shafts if the torque applied at gear D 

is TD 5 345 lb-ft. The shaft lengths are L1 5 10 ft and L2 5 8 ft. 

Assume that the shear modulus of both shafts is G 5 12,000 ksi and 

that the bearings shown allow free rotation of the shafts.

175

FIGURE P6.33

1L
2L

DT

A

B

C D

(1)

(2)

54 teeth

30 teeth

6.8 Power Transmission

One of the most common uses for a circular shaft is transmission of power from motors or 

engines to devices and components. Power is defi ned as the work performed in a unit of 

time. The work W done by a constant magnitude torque T is equal to the product of the 

torque T and the angle � through which the torque rotates:

 W T� �  (6.15)

Power is the rate at which the work is done. Therefore, Equation (6.15) can be differenti-

ated with respect to time t to give an expression for the power P transmitted by a shaft 

subjected to a constant torque T:

 P
dW
dt

T
d
dt

� �
�

 (6.16)

The rate of change of the angular displacement d�ydt is the rotational speed or angular 

velocity �. Therefore, the power P transmitted by a shaft is a function of the torque magni-

tude T in the shaft and its rotational speed �,

 P T� 	  (6.17)

where � is measured in radians per second.

1L
2L

DT

A

B

C D

(1)

(2)

48 teeth

72 teeth

FIGURE P6.34/35

P6.35 Two solid 2.50-in.-diameter steel shafts are connected by 

the gears shown in Figure P6.34/35. The shaft lengths are L1 5 16 ft 

and L2 5 12 ft. Assume that the shear modulus of both shafts is G 5 

12,000 ksi and that the bearings shown allow free rotation of the 

shafts. If the torque applied at gear D is TD 5 1,800 lb-ft, determine

(a)  the internal torques T1 and T2 in the two shafts.

(b)  the angles of twist �1 and �2 .

(c) the rotation angles �B and �C of gears B and C.

(d) the rotation angle of gear D.
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TORSION Power Units

In SI, an appropriate unit for torque is N-m. The corresponding SI unit for power is termed 

a watt:

P T� � � � �	 (N-m)(rad/s)
N-m

s
watt W1 1

In U.S. Customary Units, torque is often measured in lb-ft, and thus the corresponding 

power unit is

P T� � �	 ( lb-ft)(rad/s)
lb-ft

s

In U.S. practice, power is typically expressed in terms of horsepower (hp), which has the 

following conversion factor:

 1 550hp
lb-ft

s
�  (6.18)

Rotational Speed Units

The rotational speed � of a shaft is commonly expressed either as frequency f or as revolu-

tions per minute (rpm). Frequency f is the number of revolutions per unit of time. The 

standard unit of frequency is the hertz (Hz), which is equal to one revolution per second 

(s21). Since a shaft turns through an angle of 2	 radians in one revolution (rev), the rota-

tional speed � can be expressed in terms of frequency f measured in Hz:

	
�

�� �
f

f
rev

s

rad

rev
rad/s

2
2

Accordingly, Equation (6.17) can be written in terms of frequency f (measured in Hz) as

 P T fT� �	 �2  (6.19)

Another common measure of rotational speed is revolutions per minute (rpm). The rota-

tional speed � can be expressed in terms of revolutions per minute n as

	
�

�
n rev

min

rad

rev

min

s

2 1

60
�

2

60

�n
rad/s

Equation (6.17) can be written in terms of rpm n as

 P T
nT

� �	
�2

60
 (6.20)

EXAMPLE 6.6

A solid 0.75-in.-diameter steel shaft transmits 7 hp at 3,200 rpm. Determine the maxi-

mum shear stress magnitude produced in the shaft.

Plan the Solution
The power transmission equation [Equation (6.17)] will be used to calculate the torque in 

the shaft. The maximum shear stress in the shaft can then be calculated from the elastic 

torsion formula [Equation (6.5)].

SOLUTION
Power P is related to torque T and rotation speed � by the relationship P 5 T�. 

Since information about the power and rotation speed is given, this relationship can be 
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 rearranged to solve for the unknown torque T. The conversion factors required in this 

process, however, can be confusing at fi rst.

T
P /(7 hp)[550 ( lb-ft) /s 1 hp]

(3,200 rev/min)
2 rad
11 rev

min
60 s

3,850 ( lb-ft) /s
1 3335.1032 rad/s

lb-ft11 4890.
	 �

� � � �

The polar moment of inertia for a solid 0.75-in.-diameter shaft is

J
32

0 03106314 4(0.75 in.) in..
�

� �

Therefore, the maximum shear stress produced in the shaft is

 
Tc
J

( lb-ft)(0.75 in./2)(12 in./ft)

0.0310

11 4890.

6631 in.
1,664 psi

4
� ��� Ans.

A 2-m-long hollow steel [G 5 75 GPa] shaft has an outside diameter of 

75 mm and an inside diameter of 65 mm. If the maximum shear stress 

in the shaft must be limited to 50 MPa and the angle of twist must be 

limited to 18, determine the maximum power that can be transmitted by 

this shaft when it is rotating at 600 rpm.

 MecMovies Example M6.16

�
�

�
�

�
�

�
�

A motor shaft is being designed to transmit 40 kW of power at 900 rpm. If the shear-

ing stress in the shaft must be limited to 75 MPa, determine

(a) the minimum diameter required for a solid shaft.

(b)  the minimum outside diameter required for a hollow shaft if the shaft inside 

diameter is assumed to be 80 percent of its outside diameter.

 MecMovies Example M6.17 

The motor shown supplies 15 hp at 1,800 rpm at A. Shaft (1) is a solid 

0.75-in.-diameter shaft, and shaft (2) is a solid 1.50-in.-diameter shaft. 

Both shafts are made of steel [G 5 12,000 ksi]. The bearings shown permit 

free rotation of the shafts. Determine

(a) the maximum shear stress produced in each shaft.

(b)  the rotation angle of gear D with respect to fl ange A.

 MecMovies Example M6.18 

�
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EXAMPLE 6.7

DT

A

B

C

D

(1)

(2)

30 teeth

48 teeth

Two solid 25-mm-diameter steel shafts are connected by the gears 

shown. A motor supplies 20 kW at 15 Hz to the system at A. The 

bearings shown permit free rotation of the shafts. Determine

(a) the torque available at gear D.

(b)  the maximum shear stress magnitudes in each shaft.

Plan the Solution
The torque in shaft (1) can be calculated from the power trans-

mission equation. The torque in shaft (2) can then be deter-

mined from the gear ratio. Once the torques are known, the 

maximum shear stress magnitudes will be determined from the 

elastic torsion formula.

SOLUTION
The torque in shaft (1) can be calculated from the power transmission equation. The 

power supplied by the motor is 20 kW, or

P (20 kW)
1,000 W

kW
20,000 W 20,000

N-m

s1
� � �

The motor rotates at 15 Hz. This rotation speed must be converted to units of rad/s:

�15
15 2

94 2Hz
rev

s

rad

1 rev
. 44778

rad

s
� �	

�

The torque in shaft (1) is therefore

T
P

1 94 24778
212 2066

20,000 N-m/s

rad/s
N-m

.
.� � �

	

The torque in shaft (2) will be increased because gear C is larger than gear B. Use the 

number of teeth on each gear to establish the gear ratio, and compute the torque magni-

tude in shaft (2) as

 T2
48

30
339 53(212.2066 N-m)

teeth

teeth
. 006 N-m� �  

Note: Only the torque magnitude is needed in this instance; consequently, the absolute 

value of T2 is computed here.

The torque available at gear D in this system is therefore TD 5 340 N-m. Ans.

Shear Stresses
The polar moment of inertia for the solid 25-mm-diameter shafts is

J
32

4 4(25 mm) 38,349.5 mm� �
�

The maximum shear stress magnitudes in each segment can be calculated by the elastic 

torsion formula:

 
1

1 1

1

212 2066T c
J

( N-m)(25 mm/2) (1,000 mm/m)

38,34

.

99.5 mm
MPa

4
69 2.� � ��  Ans.

 
2

2 2

2

339 5306T c
J

( N-m)(25 mm/2) (1,000 mm/m)

38,34

.

99.5 mm
MPa

4
110 7.� � ��  Ans.
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FIGURE M6.15

M6.15 Six basic calculations involving power transmission in 

three shafts connected by gears.

 MecMovies Exercises

M6.14 Six basic calculations involving power transmission in 

two shafts connected by gears.

FIGURE M6.14

179

PROBLEMSPROBLEMS
P6.36 The driveshaft of an automobile is being designed to 

transmit 180 hp at 3,500 rpm. Determine the minimum diameter 

required for a solid steel shaft if the allowable shear stress in the 

shaft is not to exceed 6,000 psi.

P6.37 A solid 20-mm-diameter bronze shaft transmits 11 kW at 

25 Hz to the propeller of a small sailboat. Determine the maximum 

shear stress produced in the shaft.

P6.38 A tubular steel shaft is being designed to transmit 225 kW 

at 1,700 rpm. The maximum shear stress in the shaft must not 

exceed 30 MPa. If the outside diameter of the shaft is D 5 75 mm, 

determine the minimum wall thickness for the shaft.

P6.39 A solid 3-in.-diameter bronze [G 5 6,000 ksi] shaft is 7 ft 

long. The allowable shear stress in the shaft is 8 ksi, and the angle 

of twist must not exceed 0.03 rad. Determine the maximum horse-

power that this shaft can deliver

(a) when rotating at 150 rpm.

(b) when rotating at 540 rpm.

P6.40 A tubular steel [G 5 80 GPa] shaft with an outside diameter 

of D 5 100 mm and a wall thickness of t 5 6 mm must not twist more 

than 0.05 rad in a 7-m length. Determine the maximum power that the 

shaft can transmit at 375 rpm.

P6.41 A hollow titanium [G 5 43 GPa] shaft has an outside 

diameter of D 5 50 mm and a wall thickness of t 5 1.25 mm. The 

maximum shear stress in the shaft must be limited to 150 MPa. 

Determine

(a)  the maximum power that can be transmitted by the shaft if the 

rotation speed must be limited to 20 Hz.

(b)  the magnitude of the angle of twist in a 700-mm length of the 

shaft when 30 kW is being transmitted at 8 Hz.

P6.42 A tubular steel [G 5 80 GPa] shaft is being designed to 

transmit 150 kW at 30 Hz. The maximum shear stress in the shaft 

must not exceed 80 MPa, and the angle of twist is not to exceed 68 

in a 4-m length. Determine the minimum permissible outside diam-

eter if the ratio of the inside diameter to the outside diameter is 0.80.

P6.43 A tubular aluminum alloy [G 5 4,000 ksi] shaft is being 

designed to transmit 400 hp at 1,500 rpm. The maximum shear 

stress in the shaft must not exceed 6 ksi, and the angle of twist is not 

to exceed 58 in an 8-ft length. Determine the minimum permissible 

outside diameter if the inside diameter is to be three-fourths of the 

outside diameter.

P6.44 The impeller shaft of a fl uid agitator transmits 28 kW at 

440 rpm. If the allowable shear stress in the impeller shaft must be 

limited to 80 MPa, determine

(a)  the minimum diameter required for a solid impeller shaft.

(b)  the maximum inside diameter permitted for a hollow impeller 

shaft if the outside diameter is 40 mm.

(c)  the percent savings in weight realized if the hollow shaft is 

used instead of the solid shaft. (Hint: The weight of a shaft is 

proportional to its cross-sectional area.)

P6.45 A pulley with a diameter of D 5 8 in. is mounted on a shaft 

with a diameter of d 5 1.25 in. as shown in Figure P6.45. Around the 

pulley is a belt having tensions of F1 5 120 lb and F2 5 480 lb. If the 

shaft turns at 180 rpm, calculate

(a) the horsepower being transmitted by the shaft.

(b) the maximum shear stress in the shaft.

F2

F1

d

Pulley

Shaft

D

FIGURE P6.45
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P6.46 A conveyor belt is driven by an 8-hp motor turning at 

1,500 rpm. Through a series of gears that reduce the speed, the 

motor drives the belt drum shaft at a speed of 10 rpm. If the allow-

able shear stress is 8,000 psi and both shafts are solid, calculate

(a) the required diameter of the motor shaft.

(b) the required diameter of the belt drum shaft.

P6.47 A solid steel [G 5 80 GPa] shaft with a diameter of 40 mm 

and a length of 1.8 m transmits 30 kW of power from an electric 

motor to a compressor. If the allowable shear stress is 60 MPa and 

the allowable angle of twist is 1.58, what is the slowest allowable 

speed of rotation?

P6.48 A 1.50-in.-diameter solid bronze [G 5 6,500 ksi] shaft is 

used to transmit 15 hp. The length of the shaft is 42 in. If the allow-

able shear stress is 6,000 psi and the allowable angle of twist is 2.58, 
calculate the slowest permissible speed of rotation in Hz.

P6.49 A motor supplies 200 kW at 6 Hz to fl ange A of the shaft 

shown in Figure P6.49/50. Gear B transfers 125 kW of power to 

operating machinery in the factory, and the remaining power in the 

shaft is transferred by gear D. Shafts (1) and (2) are solid aluminum 

[G 5 28 GPa] shafts that have the same diameter and an allowable 

shear stress of � 5 40 MPa. Shaft (3) is a solid steel [G 5 80 GPa] 

shaft with an allowable shear stress of � 5 55 MPa. Determine

(a)  the minimum permissible diameter for aluminum shafts 

(1) and (2).

(b) the minimum permissible diameter for steel shaft (3).

(c)  the rotation angle of gear D with respect to fl ange A if the 

shafts have the minimum permissible diameters as determined 

in (a) and (b).

0.4 m
0.8 m

0.8 m

A
B C

D

BT

DT

(1)
(2)

(3)

FIGURE P6.49/50

P6.50 A motor supplies 60 kW at 5 Hz to fl ange A of the shaft 

shown in Figure P6.49/50. Gear B transfers 40 kW of power to op-

erating machinery in the factory, and the remaining power in the 

shaft is transferred by gear D. Shafts (1) and (2) are solid 65-mm-

diameter aluminum [G 5 28 GPa] shafts, and shaft (3) is a solid 

40-mm-diameter steel [G 5 80 GPa] shaft. Calculate

(a)  the maximum shear stress in the aluminum shafts.

(b)  the maximum shear stress in the steel shaft.

(c)  the rotation angle of gear D with respect to fl ange A.

P6.51 A motor supplies suffi cient power to the system shown in 

Figure P6.51/52 so that gears C and D provide torques of TC 5 

800 N-m and TD 5 550 N-m, respectively, to machinery in a factory. 

Power shaft segments (1) and (2) are hollow steel tubes with an outside 

diameter of D 5 60 mm and an inside diameter of d 5 50 mm. If the 

power shaft [i.e., segments (1) and (2)] rotates at 40 rpm, determine

(a) the maximum shear stress in power shaft segments (1) and (2).

(b)  the power (in kW) that must be provided by the motor as well 

as the rotation speed (in rpm).

(c) the torque applied to gear A by the motor.

DT

CT

A

B

C

D

(1)

(2)

72 teeth

24 teeth

FIGURE P6.51/52

P6.52 A motor supplies 9 kW to the system shown in Figure 

P6.51/52. Sixty-fi ve percent of the power supplied by the motor is 

taken off by gear C, and the remaining 35 percent of the power is 

taken off by gear D. Power shaft segments (1) and (2) are hollow steel 

tubes with an outside diameter of D 5 60 mm and an inside diameter of 

d 5 50 mm. If the allowable shear stress for the steel tubes is 55 MPa, 

calculate the slowest permissible rotation speed for the motor.

P6.53 A motor supplies 25 hp at 6 Hz to gear A of the drive system 

shown in Figure P6.53/54. Shaft (1) is a solid 2.25-in.-diameter alumi-

num [G 5 4,000 ksi] shaft with a length of L1 5 16 in. Shaft (2) is a 

solid 1.5-in.-diameter steel [G 5 12,000 ksi] shaft with a length of 

L2 5 12 in. Shafts (1) and (2) are connected at fl ange C, and the bear-

ings shown permit free rotation of the shaft. Determine

(a) the maximum shear stress in shafts (1) and (2).

(b) the rotation angle of gear D with respect to gear B.

DT

A

B

C

D

(1)

(2)
24 teeth

60 teeth

1L

2L

FIGURE P6.53/54

P6.54 A motor supplies 15 hp to gear A of the drive system 

shown in Figure P6.53/54. Shaft (1) is a solid 2.25-in.-diameter 

aluminum [G 5 4,000 ksi] shaft with a length of L1 5 16 in. and 

an allowable shear stress of 6,000 psi. Shaft (2) is a solid 1.5-in.- 

diameter steel [G 5 12,000 ksi] shaft with a length of L2 5 12 in. 
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and an allowable shear stress of 8,000 psi. In addition to designat-

ing the allowable shear stresses, specifi cations require that the 

rotation angle of gear D with respect to gear B must not exceed 28. 
Shafts (1) and (2) are connected at fl ange C, and the bearings 

shown permit free rotation of the shaft. What is the slowest rota-

tion speed that is permissible for the motor?

P6.55 The system shown in Figure P6.55/56 is required to provide 

a torque of TD 5 700 lb-in. at a speed of 4 Hz. Shafts (1) and (2) are to 

be solid steel shafts with an allowable shear stress of 6,000 psi. The 

bearings shown permit free rotation of the shafts. Calculate

(a)  the power that must be provided by the motor.

(b)  the minimum diameter required for shaft (1).

DT

A

B

C

D

(1)

(2)

30 teeth

48 teeth

FIGURE P6.55/56

P6.56 The motor shown in Figure P6.55/56 supplies 12 kW at 

15 Hz at A. The bearings shown permit free rotation of the shafts.

(a)  Shaft (2) is a solid 35-mm-diameter steel shaft. Determine the 

maximum shear stress produced in shaft (2).

(b)  If the shear stress in shaft (1) must be limited to 40 MPa, 

determine the minimum acceptable diameter for shaft (1) if a 

solid shaft is used.

P6.57 The motor shown in Figure P6.57/58 supplies 9 kW at 

15 Hz at A. Shafts (1) and (2) are each solid 25-mm-diameter steel 

[G 5 80 GPa] shafts with lengths of L1 5 900 mm and L2 5 1,200 

mm, respectively. The bearings shown permit free rotation of the 

shafts. Determine

(a) the maximum shear stress produced in shafts (1) and (2).

(b) the rotation angle of gear D with respect to fl ange A.

1L

2L

DT

A

B

C

D

(1)

(2)

54 teeth

36 teeth

FIGURE P6.57/58

P6.58 The motor shown in Figure P6.57/58 turns shaft (2) at 

2 Hz. Shafts (1) and (2) are each solid 1-in.-diameter steel [G 5 

12,000 ksi] shafts with lengths of L1 5 32 in. and L2 5 45 in., re-

spectively. The bearings shown permit free rotation of the shafts. 

If the rotation angle of gear D with respect to fl ange A must not 

exceed 38, what is the maximum power that is permissible for the 

motor?

P6.59 The gear train shown in Figure P6.59 transmits power 

from a motor to a machine at E. The motor turns at a frequency of 

50 Hz. The diameter of solid shaft (1) is 25 mm, the diameter of 

solid shaft (2) is 32 mm, and the allowable shear stress for each 

shaft is 60 MPa. Determine

(a) the maximum power that can be transmitted by the gear train.

(b) the torque provided at gear E.

(c) the rotation speed of gear E (in Hz).

ET

A

B

C

D E

(1)

(2)

24 teeth

72 teeth
30 teeth

60 teeth

FIGURE P6.59

P6.60 The motor supplies 110 kW of power to line shaft ABC 

shown in Figure P6.60, turning gears A, B, and C at 6 Hz. Gear A 
removes PA 5 70 kW of power from the line shaft, and gear C re-

moves the remainder. The shaft lengths are L1 5 7 m and L2 5 4 m. 

Assume that the shear modulus of both shafts is G 5 80 GPa and 

that the bearings shown allow free rotation of the shafts. Specifi ca-

tions call for the same-diameter solid steel shaft to be used for both 

shafts (1) and (2). If the allowable shear stress is 40 MPa and the 

allowable angle of twist in each shaft is 48, determine the minimum 

diameter that can be used for line shaft ABC.

A B C

AP PC

1L 2L

(1) (2)

FIGURE P6.60
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In many simple mechanical and structural systems subjected to torsional loading, it is 

possible to determine the reactions at supports and the internal torques in the individual 

members by drawing free-body diagrams and solving equilibrium equations. Such tor-

sional systems are classifi ed as statically determinate.

For many mechanical and structural systems, the equations of equilibrium alone are 

not suffi cient for the determination of internal torques in the members and reactions at sup-

ports. In other words, there are not enough equilibrium equations to solve for all of the 

unknowns in the system. These structures and systems are termed statically indetermi-
nate. We can analyze structures of this type by supplementing the equilibrium equations 

with additional equations involving the geometry of the deformations in the members of 

the structure or system. The general solution process can be organized into a fi ve-step pro-

cedure analogous to the procedure developed for statically indeterminate axial structures in 

Section 5.5:

Step 1 — Equilibrium Equations: Equations expressed in terms of the unknown inter-

nal torques are derived for the system on the basis of equilibrium considerations.

Step 2 — Geometry of Deformation: The geometry of the specifi c system is evalu-

ated to determine how the deformations of the torsion members are related.

Step 3 — Torque–Twist Relationships: The relationships between the internal torque 

in a member and its corresponding angle of twist are expressed by Equation (6.12).

Step 4 — Compatibility Equation: The torque–twist relationships are substituted into 

the geometry-of-deformation equation to obtain an equation that is based on the struc-

ture’s geometry, but expressed in terms of the unknown internal torques.

Step 5 — Solve the Equations: The equilibrium equations and the compatibility equa-

tion are solved simultaneously to compute the unknown internal torques.

The use of this procedure to analyze a statically indeterminate torsion system is illustrated 

in the next example.

6.9 Statically Indeterminate Torsion Members

EXAMPLE 6.8

A compound shaft consists of two solid shafts that are con-

nected at fl ange B and securely attached to rigid walls at A 

and C. Shaft (1) is a 3.00-in.-diameter solid aluminum [G � 

4,000 ksi] shaft that is 60 in. long. Shaft (2) is a 2.00-in.-

diameter solid bronze [G � 6,500 ksi] shaft that is 40 in. 

long. If a concentrated torque of 32 kip-in. is applied to 

fl ange B, determine

(a) the maximum shear stress magnitudes in shafts (1) and (2).

(b) the rotation angle of fl ange B relative to support A.

Plan the Solution
The solution begins with a free-body diagram at fl ange B. The equilibrium equation 

obtained from this free-body diagram reveals that the compound shaft is statically 

indeterminate. We can obtain the additional information needed to solve the problem 

by considering the relationship between the angles of twist in the aluminum and 

bronze segments of the shaft.

60 in. 40 in.

x

y

A B C

(1) (2)

32 kip-in.
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SOLUTION
Step 1 — Equilibrium Equation: Draw a free-body diagram 

of fl ange B. Assume positive internal torques in shaft 

segments (1) and (2). [See the sign convention detailed in 

Section 6.6.] From this free-body diagram, the following 

moment equilibrium equation can be obtained:

 M T Tx 1 2 32 0kip-in.� � � � �Σ
 (a)

There are two unknowns in Equation (a): T1 and T2. Consequently, statics alone does 

not provide enough information for this problem to be solved. To obtain another 

relationship involving the unknown torques T1 and T2, we will next consider the 

general relationship between the twist angles in the compound shaft.

Step 2 — Geometry of Deformation: The next question is, “How are the angles of 

twist in the two shaft segments related?” The compound shaft is attached to rigid walls 

at A and C; therefore, the twisting that occurs in shaft segment (1) plus the twisting in 

shaft segment (2) cannot result in any net rotation of the compound shaft. In other 

words, the sum of these angles of twist must equal zero:

 1 2 0� �� �  (b)

Step 3 — Torque–Twist Relationships: The angles of twists in shaft segments (1) 

and (2) can be expressed by the angle of twist equation [Equation (6.12)]. Angle of 

twist equations can be written for both segment (1) and segment (2):

 
1

1 1

1 1
2

2 2

2 2

T L

J G

T L

J G
� �� �

 
(c)

Step 4 — Compatibility Equation: The torque–twist relationships [Equation (c)] 

can be substituted into the geometry-of-deformation equation [Equation (b)] to obtain 

a new relationship between the unknown torques T1 and T2:

 

T L

J G

T L

J G
1 1

1 1

2 2

2 2

0� �

 
(d)

Notice that this relationship is not based on equilibrium, but rather on the relationship 

between deformations that occur in the compound shaft. This type of equation is 

termed a compatibility equation.

Step 5 — Solve the Equations: Two equations have been developed in terms of the 

internal torques T1 and T2:

 M T Tx 1 2 32 0kip-in.� � � � �Σ  (a)

 

T L

J G

T L

J G
1 1

1 1

2 2

2 2

0� �
 

(d)

These two equations must be solved simultaneously for us to determine the torques 

in each shaft segment. The compatibility equation [Equation (d)] can be rearranged to 

solve for internal torque T2:

T T
L

J G
J G

L
T

L
L2 1

1

1 1

2 2

2
1

1

2

J
J

G
G

2

1

2

1
� � � �

60 in. 40 in.

x

y

B

32 kip-in.

2T1T
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Substitute this result into the equilibrium equation [Equation (a)]:

T T
L
L

J
J

G
G1 1

1

2

2

1

2

1

32 0kip-in.� � � �

Then solve for the internal torque T1:

 

T
L
L

J
J

G
G

1
1

2

2

1

2

1

32

1

kip-in.
�

�

 

(e)

Polar moments of inertia for the aluminum and bronze shaft segments are needed for this 

calculation. Aluminum segment (1) is a solid 3.00-in.-diameter shaft that is 60 in. long 

and has a shear modulus of 4,000 ksi. The polar moment of inertia for segment (1) is

      

J1
4 4

32
7 952156(3.00 in.) in..� �

�

Bronze segment (2) is a solid 2.00-in.-diameter shaft that is 40 in. long and has a shear 

modulus of 6,500 ksi. Its polar moment of inertia is

 
J2

4 4

32
1 570796(2.00 in.) in..� �

�

The internal torque T1 is computed by substitution of all values into Equation (e):

T1
32

1
60 1 570796

kip-in.
in.

40 in.
in.

7

4.
..952156 in.

6,500 ksi
4,000 ksi4

32
21 600

kip-in.

1.481481
kip-in..� � �

�

Internal torque T2 can be found by backsubstitution into Equation (a):

T T2 1 32 21 600 32 10 400kip-in. kip-in. kip-in.. . kkip-in.� � � � � �

Shear Stresses
Since the internal torques are now known, the maximum shear stress magnitudes can be 

calculated for each segment from the elastic torsion formula [Equation (6.5)]. In calculat-

ing the maximum shear stress magnitude, only the absolute value of the internal torque 

is used. In segment (1), the maximum shear stress magnitude in the 3.00-in.-diameter 

aluminum shaft is

 1
1 1

1

21 600T c
J

( kip-in.)(3.00 in./2)

7.952156 in.

.
44

ksi4 07.� � ��
 

Ans.

The maximum shear stress magnitude in the 2.00-in.-diameter bronze shaft segment (2) is

 2
2 2

2

10 400T c
J

( kip-in.)(2.00 in./2)

1.570796 in.

.
44

ksi6 62.� � ��  Ans.

Rotation Angle of Flange B
The angle of twist in shaft segment (1) can be expressed as the difference between the 

rotation angles at the 1x and −x ends of the segment:

1 B A� �� � �
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The fi ve-step procedure demonstrated in the previous example provides a versatile 

method for the analysis of statically indeterminate torsion structures. Additional problem-

solving considerations and suggestions for each step of the process are discussed in the 

table that follows.

Solution Method for Statically Indeterminate Torsion Systems

Step 1 Equilibrium 

Equations

Draw one or more free-body diagrams (FBDs) for the structure, focusing on the joints, which 

connect the members. Joints are located wherever (a) an external torque is applied, (b) the cross-

sectional properties (such as the diameter) change, (c) the material properties (i.e., G) change, or 

(d) a member connects to a rigid element (such as a gear, pulley, support, or fl ange). Generally, 

FBDs of reaction joints are not useful.

Write equilibrium equations for the FBDs. Note the number of unknowns involved and the 

number of independent equilibrium equations. If the number of unknowns exceeds the number of 

equilibrium equations, a deformation equation must be written for each extra unknown.

Comments:

•  Label the joints with capital letters, and label the members with numbers. This simple scheme 

can help you clearly recognize effects that occur in members (such as angles of twist) and 

 effects that pertain to joints (such as rotation angles of rigid elements).

•  As a rule, when cutting a FBD through a torsion member, assume that the internal torque is 
positive, as detailed in Section 6.6. The consistent use of positive internal torques along with 

positive angles of twist (in Step 3) proves quite effective for many situations.

Step 2 Geometry of

Deformation

This step is distinctive to statically indeterminate problems. The structure or system should be 

studied to assess how the deformations of the torsion members are related to each other. Most of 

the statically indeterminate torsion systems can be categorized as either

1. systems with coaxial torsion members, or

2. systems with torsion members connected end to end in series.

Step 3 Torque-Twist 

Relationships

The relationships between internal torque and angle of twist in a torsion member is expressed by

i
i i

i i

T L

J G
��

As a practical matter, writing down torque–twist relationships for the torsion members is a helpful 

routine at this stage of the calculation procedure. These relationships will be used to construct the 

compatibility equation(s) in Step 4.

Step 4 Compatibility

Equation

The torque–twist relationships (from Step 3) are incorporated into the geometric relationship of 

member angles of twist (from Step 2) to derive a new equation, which is expressed in terms of the 

unknown internal torques. Together, the compatibility and equilibrium equations provide suffi cient 

information to solve for the unknown variables.

Step 5 Solve the 

Equations

The compatibility equation and the equilibrium equation(s) are solved simultaneously. While 

conceptually straightforward, this step requires careful attention to calculation details such as sign 

conventions and unit consistency.

185

Since the shaft is rigidly fi xed to the wall at A, �A 5 0. The rotation angle of fl ange B, 

therefore, is simply equal to the angle of twist in shaft segment (1). Note: The proper sign 

of the internal torque T1 must be used in the angle of twist calculation.

B
T L
J G1

1 1

1 1

(21.600 kip-in.)(60 in.)

7.952156 in.. (4,000 ksi)
rad rad

4( )
0 040744 0 0407. .� � � � �� �  Ans.
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TORSION

Geometry of Deformations for Typical Statically Indeterminate Torsion Systems

Equation Form Comments Typical Problems

1. Coaxial torsion members.

1 2�� � Problems in this category include a 

tube surrounding an inner shaft. The 

angles of twist for both torsional 

members must be identical for this 

type of system.

2. Torsion members connected end to end in series.

1 2 0� �� �

1 2 constant� �� �

Problems in this category include 

two or more members connected 

end to end.

If there are no gaps or clearances in 

the confi guration, the member angles 

of twist must sum to zero.

If there is a misfi t between two 

members or if the supports move as 

the torque or torques are applied, 

then the sum of the member angles 

of twist equals the specifi ed angular 

rotation.

Successful application of the fi ve-step solution method depends on the ability to 

understand how twisting deformations are related in a system. The table that follows pre-

sents considerations for two common categories of statically indeterminate torsion systems. 

For each general category, possible geometry-of-deformation equations are discussed.

T
T

(1)
(2)

A

B

450 mm

360 mm

T
T

(1)

(2)

A

B

12 in.

12 in.

20 in.

(1)

(2)
(3)

(4)

A
B

C
D

400 lb-ft

400 lb-ft

6 in. 8 in.

x

y

z
A

B C
(1)

(2)

BT

x

y

z
A

B

D

C

(1)

(2)

(3)

30 in.

22 in.

18 in.

BT

x

y

z

A

B

D

C

(1)

(2)

(3)400 mm

325 mm

325 mm

BT

CT
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A composite shaft consists of a hollow aluminum [G 5 26 GPa] shaft (1) bonded to 

a hollow bronze [G 5 38 GPa] shaft (2). The outside diameter of shaft (1) is 50 mm, 

and the inside diameter is 42 mm. The outside diameter of shaft (2) is 42 mm, and the 

inside diameter is 30 mm. A concentrated torque of T 5 1,400 N-m is applied to the 

composite shaft at the free end B. Determine

(a)  the torques T1 and T2 developed in the aluminum and bronze shafts.

(b) the maximum shear stresses �1 and �2 in each shaft.

(c) the angle of rotation of end B.

 MecMovies Example M6.19 

A composite shaft consists of a hollow steel [G 5 75 GPa] shaft 

(1) connected to a solid brass [G 5 40 GPa] shaft (2) at fl ange B. 

The outside diameter of shaft (1) is 50 mm, and the inside 

diameter is 40 mm. The outside diameter of shaft (2) is 50 mm. A 

concentrated torque of T 5 1,000 N-m is applied to the composite 

shaft at fl ange B. Determine

(a) the torques T1 and T2 developed in the steel and brass shafts.

(b) the maximum shear stresses �1 and �2 in each shaft.

(c) the angle of rotation of fl ange B.

 MecMovies Example M6.20 

EXAMPLE 6.9

A composite shaft assem-

bly consists of an inner 

stainless steel [G 5 12,500 

ksi] core (2) connected by 

rigid plates at A and B to 

the ends of a brass [G 5 

5,600 ksi] tube (1). The 

cross-sectional dimensions 

of the assembly are shown. 

The allowable shear stress of the brass tube (1) is 12 ksi, and the allowable shear stress of 

the stainless steel core (2) is 18 ksi. Determine the maximum torque T that can be applied 

to the composite shaft.

x

T

T

(1)

(2)
B

A

2.50 in.

2.75 in.
1.50 in.

(1)

(2)

Cross-sectional dimensions.
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Plan the Solution
A free-body diagram cut through the assembly will expose the internal 

torques in the tube and the core. Since there are two internal torques and 

only one equilibrium equation, the assembly is statically indeterminate. 

The tube and the core are attached to rigid end plates; therefore, as the 

assembly twists, both the tube and the core will twist by the same amount. 

This relationship will be used to derive a compatibility equation in terms of the un-

known internal torques. Information about the allowable shear stresses will then be 

used to determine which of the two components controls the torque capacity of the 

composite shaft assembly.

SOLUTION
Step 1 — Equilibrium Equation: Cut a free-body diagram through the assembly around 

rigid end plate A. From this free-body diagram, the following equilibrium equation can 

be obtained:

 M T T Tx 1 2 0� � � � �Σ  (a)

Since there are three unknowns—T1, T2, and external torque T—this assembly is 

statically indeterminate.

Step 2 — Geometry of Deformation: The tube and the core are both attached to 

rigid end plates. Therefore, when the assembly is twisted, both components must twist 

the same amount:

 1 2�� �  (b)

Step 3 — Torque–Twist Relationships: The angles of twists in tube (1) and core (2) 

can be expressed as

 
1

1 1
1 1

2
2 2
2 2

T L
J G

T L
J G� �� �

 
(c)

Step 4 — Compatibility Equation: Substitute the torque–twist relationships [Equa-

tion (c)] into the geometry-of-deformation equation [Equation (b)] to obtain the 

compatibility equation:

 

T L
J G

T L
J G

1 1
1 1

2 2
2 2

�

 
(d)

Step 5 — Solve the Equations: Two equations have been derived in terms of the 

three unknown torques (T1, T2, and external torque T). Additional information is 

needed to solve for the unknown torques.

Allowable Shear Stresses
The maximum shear stress in the tube and in the core will be determined by the elastic 

torsion formula. Since allowable shear stresses are specifi ed for both components, the 

elastic torsion formula can be written for each component and rearranged to solve for the 

torque. For brass tube (1),

 
1

1 1

1
1

1 1

1

�
T c
J

T
J

c
� ��

�

 
(e)

2T

1T

(1)

(2)

T

A
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and for stainless steel core (2),

 
2

2 2

2
2

2 2

2

T c
J

T
J

c
�� ��

�

 
(f )

Substitute Equations (e) and (f) into the compatibility equation [Equation (d)] and simplify:

T L
J G T L

J G1
1

1 1
2

2
2 2

�

1 1
1

1
1 1

2 2
2

2
2 2

J
c

L
J G

J
c

L
J G�

� �

 

1 1
1 1

2 2
2 2

L
c G

L
c G�

� �

 
(g)

Note: Equation (g) is simply Equation (6.13) written for tube (1) and core (2). Since the 

tube and the core are both the same length, Equation (g) can be simplifi ed to

 
1

1 1
2

2 2c G c G�
� �

 (h)

We cannot know beforehand which component will control the capacity of the torsional 

assembly. Let us assume that the maximum shear stress in the stainless steel core (2) will 

control; that is, �2 5 18 ksi. In that case, the corresponding shear stress in brass tube (1) 

can be calculated from Equation (h):

1 2
1

2

1

2

c
c

G
G

(18 ksi)
2.75 in./2

1.50 in./2

5,600 ksi

12,500 ksi
14 784 12. ksi ksi N.G.� � �� � 


This shear stress exceeds the 12-ksi allowable shear stress for the brass tube. Therefore, 

our initial assumption is proved incorrect—the maximum shear stress in the brass tube 

actually controls the torque capacity of the assembly.

Equation (h) is rearranged to solve for �2, given that the allowable shear stress of the 

brass tube is �1 5 12 ksi:

2 1
2

1

2

1

c
c

G
G

(12 ksi)
1.50 in./2

2.75 in./2

12,500 ksi

5,600 ksi
14 610 18. ksi ksi O.K.� � �� � �

Allowable Torques
On the basis of the compatibility equation, we now know the maximum shear stresses that 

will be developed in each of the components. From these shear stresses, we can determine 

the torques in each component by using Equations (e) and (f ).

The polar moments of inertia for each component are required. For the brass tube (1),

J1
4 4 4

32
1 779801(2.75 in.) (2.50 in.) in..� � �

�

and for the stainless steel core (2),

J2 4 4
32 0 497010(1.50 in.) in..� �
�
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A composite shaft consists of a hollow steel [G 5 75 GPa] shaft (1) 

connected to a solid bronze [G 5 38 GPa] shaft (2) at fl ange B. The 

outside diameter of shaft (1) is 80 mm, and the inside diameter is 

65 mm. The outside diameter of shaft (2) is 80 mm. The allowable 

shear stresses for the steel and bronze materials are 90 MPa and 

50 MPa, respectively. Determine

(a) the maximum torque T that can be applied to fl ange B.

(b)  the stresses �1 and �2 developed in the steel and bronze shafts.

(c) the angle of rotation of fl ange B.

 MecMovies Example M6.21 

A composite shaft consists of a hollow aluminum [G 5 26 GPa] shaft (1) bonded to 

a hollow bronze [G 5 38 GPa] shaft (2) at fl ange B. The outside diameter of shaft 

(1) is 50 mm, and the inside diameter is 42 mm. The outside diameter of shaft (2) is 

42 mm, and the inside diameter is 30 mm. The allowable shear stresses for the alu-

minum and bronze materials are 85 MPa and 100 MPa, respectively. Determine

(a) the maximum torque T that can be applied to the free end B.

(b) the stresses �1 and �2 developed in the shafts.

(c) the angle of rotation of end B.

 MecMovies Example M6.22 

From Equation (e), the allowable internal torque in brass tube (1) can be calculated as

T
J

c1
1 1

1

12
15 533

( )( ksi) 1.779801 in.

2.75 in./2

4
. kkip-in.� � �

�

and from Equation (f), the corresponding internal torque in the stainless steel core (2) is

T
J

c2
2 2

2

14 610
9

( )( ksi) 0.497010 in.

1.50 in./2

4.
.6682 kip-in.� � �

�

Substitute these results in the equilibrium equation [Equation (a)] to determine the mag-

nitude of the external torque T that may be applied to the composite shaft assembly:

 T T T1 2 15 533 9 682 25 2. . .kip-in. kip-in. kip-in.� � � � �  Ans.
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A composite shaft consists of a hollow stainless steel [G 5 

86 GPa] shaft (1) connected to a solid bronze [G 5 38 GPa] shaft (2) 

at fl ange B. The outside diameter of shaft (1) is 75 mm, and the inside 

diameter is 55 mm. The outside diameter of shaft (2) is 75 mm. A 

concentrated torque T will be applied to the composite shaft at fl ange 

B. Determine

(a)  the maximum magnitude of the concentrated torque T if the 

angle of rotation at fl ange B cannot exceed 38.
(b) the maximum shear stresses �1 and �2 in each shaft.

 MecMovies Example M6.23 

EXAMPLE 6.10

A torque of 18 kip-in. acts on gear C of the assembly shown. 

Shafts (1) and (2) are solid 2.00-in.-diameter steel shafts, and 

shaft (3) is a solid 2.50-in.-diameter steel shaft. Assume that 

G 5 12,000 ksi for all shafts. The bearings shown allow free rota-

tion of the shafts. Determine

(a)  the maximum shear stress magnitudes in shafts (1), 

(2), and (3).

(b) the rotation angle of gear E.

(c) the rotation angle of gear C.

Plan the Solution
A torque of 18 kip-in. is applied to gear C. This torque is trans-

mitted by shaft (2) to gear B, causing it to rotate and, in turn, twist 

shaft (1). The rotation of gear B also causes gear E to rotate, which causes shaft (3) to 

twist. Therefore, the torque of 18 kip-in. on gear C will produce torques in all three shafts. 

The rotation angle of gear B will be dictated by the angle of twist in shaft (1). Similarly, 

the rotation angle of gear C will be dictated by the angle of twist in shaft (3). Furthermore, 

the relative rotation of gears B and E will be a function of the gear ratio. These relation-

ships will be considered in analyzing the internal torques produced in the three shafts. 

Once the internal torques are known, the maximum shear stresses, twist angles, and 

rotation angles can be determined.

SOLUTION
Step 1 — Equilibrium Equations: Consider a free-body diagram that cuts 

through shaft (2) and includes gear C. A positive internal torque will be assumed 

in shaft (2). From this free-body diagram, a moment equilibrium equation about 

the x axis can be written to determine the internal torque T2 in shaft (2).

 M T Tx �18 0 182 2kip-in. kip-in.� � � �Σ  
(a)

36 in.

24 in.

x�

y

xA B
C

D
E

(2)

(3)

(1)

18 kip-in.40 teeth

60 teeth

C
x

18 kip-in.

2T (2)
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Next, consider a free-body diagram that cuts through shafts (1) and (2) and 

includes gear B. Once again, positive internal torque will be assumed in shafts (1) 

and (2). The teeth of gear E exert a force F on the teeth of gear B. If the radius of 

gear B is denoted by RB, a moment equilibrium equation about the x axis can be 

written as

 M T T F Rx B2 1 0� � � �Σ  (b)

Next, consider a free-body diagram that cuts through shaft (3) and includes gear 

E as shown. A positive internal torque T3 is assumed to act in shaft (3). Since the 

teeth of gear E exert a force F on the teeth of gear B, equilibrium requires that the 

teeth of gear B exert an equal magnitude force in the opposite direction on the teeth 

of gear E. With the radius of gear E denoted by RE, a moment equilibrium equation 

about the x9 axis can be written as

 
M T F R F

T
Rx E

E
�3

30� � � � � �Σ �

 
(c)

The results of Equations (a) and (c) can be substituted into Equation (b) to give

 
T T F R

T
R

RB
E

B1 2
318 18kip-in. kip-in.. T

R
R

B

E
3� � � � � � �

 

The gear radii RB and RE are not known. However, the ratio RB /RE is simply the gear 

ratio between gears B and E. Since the teeth on both gears must be the same size in 

order for the gears to mesh properly, the ratio of teeth on each gear is equivalent to the 

ratio of gear radii. Consequently, the torque in shaft (1) can be expressed in terms of 

NB and NE, the number of teeth on gears B and E, respectively:

 
T T N

N
B
E

1 318 kip-in.� �
 

(d)

Equation (d) summarizes the results of the equilibrium considerations, but there are 

still two unknowns in this equation: T1 and T3. Consequently, this problem is statically 

indeterminate. To solve the problem, an additional equation must be developed. This 

second equation will be derived from the relationship between the angles of twist in 

shafts (1) and (3).

Step 2 — Geometry of Deformation: The rotation of gear B is equal to the angle of 

twist in shaft (1):

 B 1�� �
 

Similarly, the rotation of gear E is equal to the angle of twist in shaft (3):

 E 3�� �
 

However, since the gear teeth mesh, the rotation angles for gears B and E are not 

independent. The arclengths associated with the respective rotations must be equal, 

but the gears turn in opposite directions. The relationship between gear rotations can 

be stated as

B

(2)(1)
2T1T

BN 40 teeth

BR
F

�

x�

E

(3)

3T

EN 60 teeth

RE

F

�
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R RB B E E� �� �

where RB and RE are the radii of gears B and E, respectively. Since the gear rotation 

angles are related to the shaft angles of twist, this relationship can be expressed as

 R RB E1 3� �� �  (e)

Step 3 — Torque–Twist Relationships: The angles of twists in shafts (1) and (3) can 

be expressed as

 
1

1 1
1 1

3
3 3
3 3

T L
J G

T L
J G� �� �

 

(f )

Step 4 — Compatibility Equation: Substitute the torque–twist relationships 

[Equation (f)] into the geometry-of-deformation equation [Equation (e)] to 

obtain

R T L
J G R T L

J GB E
1 1
1 1

3 3
3 3

� �

which can be rearranged and expressed in terms of the gear ratio NB
�NE:

 

N
N

T L
J G

T L
J G

B
E

1 1
1 1

3 3
3 3

� �

 
(g)

Note: The compatibility equation has two unknowns: T1 and T3. This equation can be 

solved simultaneously with the equilibrium equation [Equation (d)] to calculate the 

internal torques in shafts (1) and (3).

Step 5 — Solve the Equations: Solve for internal torque T3 in Equation (g):

T T
N
N

L
L

J
J

G
G

B

E
3 1

1

3

3

1

3

1
� �

Then substitute this result into Equation (d):

 
T T N

N
B
E

1 318 kip-in.� �

 18 1
1

3

3

1

kip-in. T
N
N

L
L

J
J

GB

E

33

1G
N
N

B

E
� � �

 

18 1

2
1

3

3

1

kip-in. T
N
N

L
L

J
J

B

E

G
G

3

1
� �

Group the T1 terms to obtain

 

T
N
N

L
L

J
J

B

E
1

2
1

3

3

1

1
GG
G

3

1

18 kip-in.��

 

(h)

Polar moments of inertia for the shafts are needed for this calculation. Shaft (1) is 

a solid 2.00-in.-diameter shaft, and shaft (3) is a solid 2.50-in.-diameter shaft. The 

E

B

EN 60 teeth

E�

B�BR

RE

BN 40 teeth�

�
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polar moments of inertia for these shafts are

J1 4 4
32 1 570796(2.00 in.) in..� �
�

J3 4 4
32 3 834952(2.50 in.) in..� �
�

Both shafts have the same length, and both have the same shear modulus. Therefore, 

Equation (h) reduces to

T1 1
40

60

teeth

teeth
(1)

3.834952 in.

1.5

2 4

770796 in.
(1) (2.085070)

4
T1 18 kkip-in.���

From this equation, the internal torque in shaft (1) is computed as T1 5 8.6328 kip-in. 

Backsubstitute this result into Equation (d) to fi nd that the internal torque in shaft (3) 

is T3 5 214.0508 kip-in.

Shear Stresses
The maximum shear stress magnitudes in the three shafts can now be calculated from the 

elastic torsion formula:

 
1

1 1

1

8 6328T c
J

( kip-in.)(2.00 in./2)

1.570796 in.

.
44

ksi5 50.� � ��
 

Ans.

 

2
2 2

2

18
11

T c
J

( kip-in.)(2.00 in./2)

1.570796 in.4
..46 ksi� � ��

 

Ans.

 

3
3 3

3

14 0508T c
J

( kip-in.)(2.50 in./2)

3.834952 in

.

..
ksi

4
4 58.� � ��

 

Ans.

Since only the shear stress magnitudes are required here, the absolute value of T3 is 

used.

Rotation Angle of Gear E
The rotation angle of gear E is equal to the angle of twist in shaft (3):

T L
J G

3 3

3 3

14 0508( k

( )
ip-in.)(24 in.)

3.834952

.

iin. (12,000 ksi)
rad rad

4
0 007328 0 00733. .E 3� � �

�
� � � �� �

 

Ans.

Rotation Angle of Gear C
The rotation angle of gear C is equal to the rotation angle of gear B plus the additional 

twist that occurs in shaft (2):

C B 2� �� � �

The rotation angle of gear B is equal to the angle of twist in shaft (1):

T L
J G

1 1

1 1

(8.6328 kip-in.)(24 in.)

1.570796 in.. (12,000 ksi)
rad

4
0 010992.B 1� � � �� �

( )

Note: The rotation angle of gear B can also be found from the rotation angle of gear E:

B
E
B

E
N
N

60
40 ( rad) rad0 007328 0 010992. .� � � � � �� �
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The angle of twist in shaft (2) is

2
2 2

2 2

T L
J G

(18 kip-in.)(36 in.)

1.570796 in. (124 ,,000 ksi)
rad0 034377.� � ��

( )

Therefore, the rotation angle of gear C is

 C B 2 0 010992 0 034377 0 045369 0. . . .rad rad rad 00454 rad� � � � � �� � �  Ans.

�An assembly of two solid brass [G 5 44 GPa] shafts connected by 

gears is subjected to a concentrated torque of 240 N-m, as shown. 

Shaft (1) has a diameter of 20 mm, while the diameter of shaft (2) 

is 16 mm. Rotation at the lower end of each shaft is prevented. 

Determine the maximum shear stress in shaft (2) and the rotation 

angle at A.

 MecMovies Example M6.24 

FIGURE M6.20FIGURE M6.19

M6.20 A composite torsion member consists of two solid shafts 

joined at fl ange B. Shafts (1) and (2) are attached to rigid supports 

at A and C, respectively. A concentrated torque T is applied to 

fl ange B in the direction shown. Determine the internal torques and 

shear stresses in each shaft. Also, determine the rotation angle of 

fl ange B.

 MecMovies Exercises

M6.19 A composite torsion member consists of a tubular shell 

(1) bonded to length AB of a continuous solid shaft that extends 

from A to C, which is labeled (2) and (3). A concentrated torque T 

is applied to free end C of the shaft in the direction shown. Deter-

mine the internal torques and shear stresses in shell (1) and core 

(2) (i.e., between A and B). Also, determine the rotation angle at 

end C.

c06Torsion.indd Page 195  1/27/12  10:29 AM user-F393c06Torsion.indd Page 195  1/27/12  10:29 AM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



M6.21 A composite torsion member consists of two solid shafts 

joined at fl ange B. Shafts (1) and (2) are attached to rigid supports 

at A and C, respectively. Using the allowable shear stresses indi-

cated on the sketch, determine the maximum torque T that may be 

applied to fl ange B in the direction shown. Determine the maxi-

mum shear stress in each shaft and the rotation angle of fl ange B at 

the maximum torque.

FIGURE M6.21

196

PROBLEMSPROBLEMS
P6.61 A hollow circular cold-rolled bronze [G1 � 6,500 ksi] 

tube (1) with an outside diameter of 1.75 in. and an inside diam-

eter of 1.25 in. is securely bonded to a solid 1.25-in.-diameter 

cold-rolled stainless steel [G2 � 12,500 ksi] core (2) as shown in 

Figure P6.61/62. The allowable shear stress of tube (1) is 27 ksi, 

and the allowable shear stress of core (2) is 60 ksi. Determine

(a)  the allowable torque T that can be applied to the tube-and-

core assembly.

(b)  the corresponding torques produced in tube (1) and core (2).

(c)  the angle of twist produced in a 10-in. length of the assembly 

by the allowable torque T.

P6.64 A composite assembly consisting of a steel [G � 80 GPa] 

core (2) connected by rigid plates at the ends of an aluminum 

[G � 28 GPa] tube (1) is shown in Figure P6.63a/64a. The cross-

sectional dimensions of the assembly are shown in Figure P6.63b/64b. 

The allowable shear stress of aluminum tube (1) is 90 MPa, and the 

allowable shear stress of steel core (2) is 130 MPa. Determine

(a) the allowable torque T that can be applied to the composite shaft.

(b)  the corresponding torques produced in tube (1) and core (2).

(c)  the angle of twist produced by the allowable torque T.

P6.65 The composite shaft shown in Figure P6.65/66 consists 

of a bronze sleeve (1) securely bonded to an inner steel core (2). 

The bronze sleeve has an outside diameter of 35 mm, an inside 

diameter of 25 mm, and a shear modulus of G1 � 45 GPa. The 

solid steel core has a diameter of 25 mm and a shear modulus of 

G2 � 80 GPa. The allowable shear stress of sleeve (1) is 

180 MPa, and the allowable shear stress of core (2) is 150 MPa. 

Determine

FIGURE P6.61/62

T
T

(1)
(2)

P6.62 An assembly consisting of a hollow cold-rolled bronze 

[G1 � 6,500 ksi] tube (1) and a solid 1.75-in.-diameter cold-rolled 

stainless steel [G2 � 12,500 ksi] core (2) is shown in Figure P6.61/

62. The tube and the core are securely bonded together, and an 

external torque T is applied to the assembly. The inside diameter of 

tube (1) is the same as the diameter of core (2); that is, d1 � 1.75 in.  

If the bronze tube is intended to carry at least 1.5 times as much 

torque as the stainless steel core, what is the minimum outside diam-

eter required for the tube?

P6.63 A composite assembly consisting of a steel [G � 80 GPa] 

core (2) connected by rigid plates at the ends of an aluminum [G � 

28 GPa] tube (1) is shown in Figure P6.63a/64a. The cross-sectional 

dimensions of the assembly are shown in Figure P6.63b/64b. If a torque 

of T � 1,100 N-m is applied to the composite assembly, determine

(a)  the maximum shear stress in the aluminum tube and in the 

steel core.

(b) the rotation angle of end B relative to end A.

FIGURE P6.63a/64a Tube-and-Core Composite Shaft.

T

T

(1)

(2)

A

B

300 mm

FIGURE P6.63b/64b Cross-Sectional Dimensions.

40 mm
50 mm

20 mm

(1)

(2)
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(a)  the allowable torque T that can be applied to the composite shaft.

(b)  the corresponding torques produced in sleeve (1) and core (2).

(c)  the rotation angle of end B relative to end A that is produced 

by the allowable torque T.

P6.66 The composite shaft shown in Figure P6.65/66 consists of 

a bronze sleeve (1) securely bonded to an inner steel core (2). The 

bronze sleeve has an outside diameter of 35 mm, an inside diameter of 

25 mm, and a shear modulus of G1 � 45 GPa. The solid steel core has 

a diameter of 25 mm and a shear modulus of G2 � 80 GPa. The 

composite shaft is subjected to a torque of T � 900 N-m. Determine

(a)  the maximum shear stresses in the bronze sleeve and the steel 

core.

(b)  the rotation angle of end B relative to end A.

P6.67 The composite shaft shown in Figure P6.67/68 consists of 

two steel pipes that are connected at fl ange B and securely attached 

to rigid walls at A and C. Steel pipe (1) has an outside diameter of 

168 mm and a wall thickness of 7 mm. Steel pipe (2) has an outside 

diameter of 114 mm and a wall thickness of 6 mm. Both pipes are 

3 m long and have a shear modulus of 80 GPa. If a concentrated 

torque of 20 kN-m is applied to fl ange B, determine

(a)  the maximum shear stress magnitudes in pipes (1) and (2).

(b)  the rotation angle of fl ange B relative to support A.

to fl ange B. If the internal torque in pipe (1) must be no more than 

twice as large as the internal torque in pipe (2), what is the minimum 

wall thickness required for pipe (2)?

P6.69 The composite shaft shown in Figure P6.69 consists of a 

solid brass segment (1) and a solid aluminum segment (2) that are 

connected at fl ange B and securely attached to rigid supports at 

A and C. Brass segment (1) has a diameter of 1.00 in., a length of 

L1 � 15 in., a shear modulus of 5,600 ksi, and an allowable shear 

stress of 8 ksi. Aluminum segment (2) has a diameter of 0.75 in., a 

length of L2 � 20 in., a shear modulus of 4,000 ksi, and an allow-

able shear stress of 6 ksi. Determine

(a)  the allowable torque TB that can be applied to the composite 

shaft at fl ange B.

(b)  the magnitudes of the internal torques in segments (1) and (2).

(c)  the rotation angle of fl ange B that is produced by the allowable 

torque TB.

P6.70 The composite shaft shown in Figure P6.70 consists of a 

solid brass segment (1) and a solid aluminum segment (2) that are 

connected at fl ange B and securely attached to rigid walls at 

A and C. Brass segment (1) has a diameter of 18 mm, a length of 

L1 � 235 mm, and a shear modulus of 39 GPa. Aluminum segment 

(2) has a diameter of 24 mm, a length of L2 � 165 mm, and a shear 

modulus of 28 GPa. If a concentrated torque of 270 N-m is applied to 

fl ange B, determine

(a)  the maximum shear stress magnitudes in segments (1) and (2).

(b)  the rotation angle of fl ange B relative to support A.

197

FIGURE P6.65/66

360 mm

T

T

(1)

(2)

A

B

FIGURE P6.67/68

x

y

z
A

B
C

(1)
(2)

3 m
3 m

20 kN-m

15 in.
20 in.

x

y

z
A

B
C

(1)
(2)

BT

FIGURE P6.69

FIGURE P6.70

x

y

z
A

B

C

(1)

(2)

235 mm

165 mm

270 N-m

P6.68 The composite shaft shown in Figure P6.67/68 consists of 

two steel pipes that are connected at fl ange B and securely attached 

to rigid walls at A and C. Steel pipe (1) has an outside diameter of 

168 mm and a wall thickness of 7 mm. Steel pipe (2) has an outside 

diameter of 114 mm.  Both pipes are 3 m long and have a shear 

modulus of 80 GPa. A concentrated torque of 20 kN-m is applied 
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P6.71 The composite shaft shown in Figure P6.71/72 consists of 

a stainless steel tube (1) and a brass tube (2) that are connected at 

fl ange B and securely attached to rigid supports at A and C. Stain-

less steel tube (1) has an outside diameter of 2.25 in., a wall thick-

ness of 0.250 in., a length of L1 5 40 in., and a shear modulus of 

12,500 ksi. Brass tube (2) has an outside diameter of 3.500 in., a 

wall thickness of 0.219 in., a length of L2 5 20 in., and a shear 

modulus of 5,600 ksi. If a concentrated torque of TB 5 42 kip-in. is 

applied to fl ange B, determine

(a) the maximum shear stress magnitudes in tubes (1) and (2).

(b) the rotation angle of fl ange B relative to support A.

brass segment at fl ange C. The assembly is securely fastened to 

rigid supports at A and D. Stainless steel tubes (1) and (2) have an 

outside diameter of 3.50 in., a wall thickness of 0.120 in., a shear 

modulus of G 5 12,500 ksi, and an allowable shear stress of 30 ksi. 

The solid brass segment (3) has a diameter of 2.00 in., a shear 

modulus of G 5 5,600 ksi, and an allowable shear stress of 18 ksi. 

Determine the maximum permissible magnitude for the concen-

trated torque TB.

P6.75 The torsional assembly of Figure P6.75a consists of a 

solid 75-mm-diameter bronze [G 5 45 GPa] segment (1) securely 

connected at fl ange B to solid 75-mm-diameter stainless steel [G 5 

86 GPa] segments (2) and (3). The fl ange at B is secured by four 

14-mm-diameter bolts, which are each located on a 120-mm-diameter 

bolt circle (Figure P6.75b). The allowable shear stress of the bolts 

is 90 MPa, and friction effects in the fl ange can be neglected for this 

analysis. Determine

(a)  the allowable torque TC that can be applied to the assembly 

at C without exceeding the capacity of the bolted fl ange 

connection. 

(b) the maximum shear stress magnitude in bronze segment (1). 

(c)  the maximum shear stress magnitude in stainless steel 

segments (2) and (3).

P6.72 The composite shaft shown in Figure P6.71/72 consists 

of a solid stainless steel shaft (1) and a brass tube (2) that are con-

nected at fl ange B and securely attached to rigid supports at 

A and C. Stainless steel shaft (1) has a diameter of 2.25 in., a 

length of L1 5 40 in., and a shear modulus of 12,500 ksi. Brass 

tube (2) has an outside diameter of 3.500 in., a wall thickness of 

0.219 in., and a shear modulus of 5,600 ksi. A concentrated torque 

of TB 5 60 kip-in. is applied to fl ange B. If the shear stresses in 

both (1) and (2) are to be equal in magnitude, what is the length L2 

required for tube (2)?

P6.73 The torsional assembly of Figure P6.73/74 consists of a 

cold-rolled stainless steel tube connected to a solid cold-rolled 

brass segment at fl ange C. The assembly is securely fastened to 

rigid supports at A and D. Stainless steel tube (1) and (2) has an 

outside diameter of 3.50 in., a wall thickness of 0.120 in., and a 

shear modulus of G 5 12,500 ksi. The solid brass segment (3) has 

a diameter of 2.00 in. and a shear modulus of G 5 5,600 ksi. A 

concentrated torque of TB 5 6 kip-ft is applied to the stainless steel 

pipe at B. Determine

(a)  the maximum shear stress magnitude in the stainless steel 

tube.

(b)  the maximum shear stress magnitude in brass segment (3).

(c)  the rotation angle of fl ange C.

P6.74 The torsional assembly of Figure P6.73/74 consists of a 

cold-rolled stainless steel tube connected to a solid cold-rolled 
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z
A

B

D

C

(1)

(2)
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400 mm
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400 mm
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FIGURE P6.71/72
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42 in.

30 in.
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FIGURE P6.73/74

FIGURE P6.75a
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P6.76 The torsional assembly shown in Figure P6.76/77 con-

sists of solid 2.50-in.-diameter aluminum [G 5 4,000 ksi] seg-

ments (1) and (3) and a central solid 3.00-in.-diameter bronze 

[G 5 6,500 ksi] segment (2). Concentrated torques of TB 5 T0 and 

TC 5 2T0 are applied to the assembly at B and C, respectively. If 
T0 5 20 kip-in., determine

(a)  the maximum shear stress magnitude in aluminum segments 

(1) and (3).

(b) the maximum shear stress magnitude in bronze segment (2).

(c) the rotation angle of joint C.

(a)  the maximum shear stress magnitude in bronze tube segments 

(1) and (3).

(b)  the maximum shear stress magnitude in aluminum 

segment (2).

(c) the rotation angle of joint C.

P6.79 The torsional assembly shown in Figure P6.78/79 con-

sists of a solid 60-mm-diameter aluminum [G 5 28 GPa] segment 

(2) and two bronze [G 5 45 GPa] tube segments (1) and (3), each 

of which has an outside diameter of 75 mm and a wall thickness of 

5 mm. If concentrated torques of TB 5 6 kN-m and TC 5 10 kN-m 

are applied in the directions shown, determine

(a)  the maximum shear stress magnitude in bronze tube segments 

(1) and (3).

(b)  the maximum shear stress magnitude in aluminum 

segment (2).

(c) the rotation angle of joint C.

P6.80 A solid 1.50-in.-diameter brass [G 5 5,600 ksi] shaft 

[segments (1), (2), and (3)] has been stiffened between B and C by 

the addition of a cold-rolled stainless steel tube (4) (Figure P6.80a). 

The tube (Figure P6.80b) has an outside diameter of 3.50 in., a wall 

thickness of 0.12 in., and a shear modulus of G 5 12,500 ksi. The 

tube is attached to the brass shaft by means of rigid fl anges welded 

to the tube and to the shaft. (The thickness of the fl anges can be 

x

y

z

A

B

D

C

(1)

(2)

(3)

12 in.

12 in.

24 in.

T0

2T0

FIGURE P6.76/77

B

120 mm

y

z

14-mm-
diameter

bolts

FIGURE P6.75b Flange B Bolts

P6.77 The torsional assembly shown in Figure P6.76/77 

consists of solid 2.50-in.-diameter aluminum [G 5 4,000 ksi] seg-

ments (1) and (3) and a central solid 3.00-in.-diameter bronze 

[G 5 6,500 ksi] segment (2).  Concentrated torques of TB 5 T0 and 

TC 5 2T0 are applied to the assembly at B and C, respectively. If the 

rotation angle at joint C must not exceed 38, determine

(a)  the maximum magnitude of T0 that may be applied to 

the assembly.

(b)  the maximum shear stress magnitude in aluminum segments 

(1) and (3).

(c) the maximum shear stress magnitude in bronze segment (2).

P6.78 The torsional assembly shown in Figure P6.78/79 con-

sists of a solid 60-mm-diameter aluminum [G 5 28 GPa] segment 

(2) and two bronze [G 5 45 GPa] tube segments (1) and (3), each 

of which has an outside diameter of 75 mm and a wall thickness of 

5 mm. If concentrated torques of TB 5 9 kN-m and TC 5 9 kN-m 

are applied in the directions shown, determine

FIGURE P6.78/79
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(a)  the maximum shear stress magnitude in shaft (1).

(b)  the maximum shear stress magnitude in shaft segment (3).

(c)  the rotation angle of gear E.

(d)  the rotation angle of gear C.

P6.83 The gear assembly shown in Figure P6.82/83 is sub-

jected to a torque of TC 5 1,100 lb-ft. Shafts (1) and (2) are solid 

1.625-in.-diameter aluminum shafts, and shaft (3) is a solid 2.00-in.-

diameter aluminum shaft. Assume that L 5 20 in. and G 5 4,000 ksi. 

Determine

(a)  the maximum shear stress magnitude in shaft (1).

(b)  the maximum shear stress magnitude in shaft segment (3).

(c)  the rotation angle of gear E.

(d)  the rotation angle of gear C.

P6.84 A torque of TC 5 460 N-m acts on gear C of the assembly 

shown in Figure P6.84/85. Shafts (1) and (2) are solid 35-mm-diameter 

aluminum shafts, and shaft (3) is a solid 25-mm-diameter aluminum 

shaft. Assume that L 5 200 mm and G 5 28 GPa. Determine

(a)  the maximum shear stress magnitude in shaft (1).

(b)  the maximum shear stress magnitude in shaft segment (3).

(c)  the rotation angle of gear E.

(d)  the rotation angle of gear C.

P6.85 A torque of TC 5 40 kip-in. acts on gear C of the as-

sembly shown in Figure P6.84/85. Shafts (1) and (2) are solid 

2.00-in.-diameter stainless steel shafts, and shaft (3) is a solid 

neglected for this analysis.) If a torque of 400 lb-ft is applied to the 

shaft as shown in Figure P6.80a, determine

(a)  the maximum shear stress magnitude in segment (1) of the 

brass shaft.

(b)  the maximum shear stress magnitude in segment (2) of the 

brass shaft (i.e., between fl anges B and C ).

(c)  the maximum shear stress magnitude in the stainless steel 

tube (4).

(d)  the rotation angle of end D relative to end A.

P6.81 A solid 60-mm-diameter cold-rolled brass [G 5 39 GPa] 

shaft that is 1.25 m long extends through and is completely 
bonded to a hollow aluminum [G 5 28 GPa] tube as shown 

in Figure P6.81. Aluminum tube (1) has an outside diameter of 

90 mm, an inside diameter of 60 mm, and a length of 0.75 m. Both 

the brass shaft and the aluminum tube are securely attached to the 

wall support at A. When the two torques shown are applied to the 

composite shaft, determine

(a)  the maximum shear stress magnitude in aluminum tube (1).

(b)  the maximum shear stress magnitude in brass shaft segment (2).

(c)  the maximum shear stress magnitude in brass shaft segment (3).

(d)  the rotation angle of joint B.

(e)  the rotation angle of joint C.

200

0.12 in.
3.50 in.1.50 in.

(4)

(2)

FIGURE P6.80b Cross Section Through Tube
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8 kN-m

FIGURE P6.81

P6.82 The gear assembly shown in Figure P6.82/83 is subjected 

to a torque of TC 5 140 N-m. Shafts (1) and (2) are solid 20-mm-

diameter steel shafts, and shaft (3) is a solid 25-mm-diameter steel 

shaft. Assume that L 5 400 mm and G 5 80 GPa. Determine

L
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1.75-in.-diameter stainless steel shaft. Assume that L � 8 in. and 

G � 12,500 ksi. Determine

(a)  the maximum shear stress magnitude in shaft (1).

(b)  the maximum shear stress magnitude in shaft segment (3).

(c)  the rotation angle of gear E.

(d)  the rotation angle of gear C.

P6.86 The steel [G � 12,000 ksi] pipe shown in Figure P6.86/87 

is fi xed to the wall support at C. The bolt holes in the fl ange at A were 

supposed to align with mating holes in the wall support; however, an 

angular misalignment of 4� was found to exist. To connect the pipe to 

its supports, a temporary installation torque T �B must be applied at B 

to align fl ange A with the mating holes in the wall support. The out-

side diameter of the pipe is 3.50 in., and its wall thickness is 0.216 in.

(a)  Determine the temporary installation torque T�B that must be 

applied at B to align the bolt holes at A.

(b)  Determine the maximum shear stress � initial in the pipe after 

the bolts are connected and the temporary installation torque 

at B is removed.

(c)  If the maximum shear stress in the pipe shaft must not exceed 

12 ksi, determine the maximum external torque TB that can be 

applied at B after the bolts are connected.

P6.87 The steel [G � 12,000 ksi] pipe shown in Figure P6.86/87 

is fi xed to the wall support at C. The bolt holes in the fl ange at A 

were supposed to align with mating holes in the wall support; how-

ever, an angular misalignment of 4� was found to exist. To connect 

the pipe to its supports, a temporary installation torque T�B must be 

applied at B to align fl ange A with the mating holes in the wall sup-

port. The outside diameter of the pipe is 2.875 in., and its wall 

thickness is 0.203 in.

(a)  Determine the temporary installation torque T�B that must be 

applied at B to align the bolt holes at A.

(b)  Determine the maximum shear stress �initial in the pipe after 

the bolts are connected and the temporary installation torque 

at B is removed.

(c)  Determine the magnitude of the maximum shear stress in 

segments (1) and (2) if an external torque of TB � 80 kip-in. is 

applied at B after the bolts are connected.
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(1)
(2)

A
B

C

BT

FIGURE P6.86/87

The full shaft diameter D at the 

discontinuity is termed the major 
diameter. The reduced shaft 

diameter d at the discontinuity is 

termed the minor diameter.

6.10  Stress Concentrations in Circular Shafts 
Under Torsional Loadings

In Section 5.7, it was shown that the introduction of a circular hole or other geometric dis-

continuity into an axially loaded member causes a signifi cant increase in the magnitude of 

the stress in the immediate vicinity of the discontinuity. This phenomenon, called stress 

concentration, also occurs for circular shafts under torsional forms of loading.

Previously in this chapter, the maximum shear stress in a circular shaft of uniform 

cross section and made of a linearly elastic material was given by Equation (6.5):

 max
Tc
J��  (6.5)

In the context of stress concentrations in circular shafts, this stress is considered a nominal 
stress, meaning that it gives the shear stress in regions of the shaft that are suffi ciently 

 removed from shaft discontinuities. Shear stresses become much more intense near abrupt 

changes in shaft diameter, and Equation (6.5) does not predict the maximum stresses near 

shaft discontinuities such as grooves or fi llets. The maximum shear stress at discontinuities 

is expressed in terms of a stress-concentration factor K, which is defi ned by

 K max
nom

�
�

�
 (6.21)

In this relationship, �nom is the stress given by Tc�J for the minimum diameter of the shaft 

(termed the minor diameter) at the discontinuity.

c06Torsion.indd Page 201  02/05/12  9:54 PM user-F391c06Torsion.indd Page 201  02/05/12  9:54 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



202
TORSION

Stress-concentration factors K for circular shafts with U-shaped grooves and for stepped 

circular shafts are shown in Figures 6.17 and 6.18, respectively.4 For both types of discontinu-

ity, stress-concentration factors K depend upon (a) the ratio Dyd of the major diameter D to the 

minor diameter d and (b) the ratio ryd of the groove or fi llet radius r to the minor diameter d. 

An examination of Figures 6.17 and 6.18 suggests that a generous fi llet radius r should be used 

wherever a change in shaft diameter occurs. Equation (6.21) can be used to determine local-

ized maximum shear stresses as long as the value of �max does not exceed the proportional limit 

of the material.

FIGURE 6.17 Stress-concentration factors K for a circular shaft with a U-shaped groove.
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4 Adapted from Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed. (New York: John Wiley & 

Sons, Inc., 1997).

FIGURE 6.18 Stress-concentration factors K for a stepped shaft with shoulder fi llets.
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STRESS CONCENTRATIONS 

IN CIRCULAR SHAFTS UNDER 
TORSIONAL LOADINGS

Stress concentrations also occur at other features commonly found in circular shafts, 

such as oil holes and keyways used for attaching pulleys and gears to the shaft. Each of 

these discontinuities requires special consideration during the design process.

EXAMPLE 6.11

A stepped shaft has a 3-in. diameter for one-half of its length and a 

1.5-in. diameter for the other half. If the maximum shear stress in the 

shaft must be limited to 8,000 psi when the shaft is transmitting a 

torque of 4,400 lb-in., determine the minimum fi llet radius r needed at 

the junction between the two portions of the shaft.

Plan the Solution
The maximum shear stress produced in the smaller diameter (i.e., minor 

diameter) segment of the shaft will be determined. From this shear stress and the 

allowable shear stress, the maximum allowable stress-concentration factor K can be 

determined. With the allowable K and the other parameters of the shaft, Figure 6.18 can 

be used to determine the minimum permissible fi llet radius.

SOLUTION
The maximum shear stress produced by the 4,400 lb-in. torque in the minor diameter 

shaft segment is

nom
4

(4,400 lb-in.)(0.75 in.)

(1.5 in.)

Tc

J
32

6 6, 339 7. psi� � ��
�

Since the maximum shear stress in the fi llet between the two portions of the shaft must be 

limited to 8,000 psi, the maximum permissible value for the stress-concentration factor K, 

based on the nominal shear stress in the minor diameter section, is

K Kmax

nom

8,000 psi

6,639.7 psi
1 20.� � ��

�

�

The stress-concentration factor K depends on two ratios: Dyd and ryd. For the 3-in.-diameter 

shaft with the 1.5-in.-diameter reduced section, the ratio Dyd 5 (3.00 in.)y(1.50 in.) 5 2.00. 

From the curves in Figure 6.18, a ratio ryd 5 0.238 together with a ratio Dyd 5 2.00 will 

produce a stress-concentration factor K 5 1.20. Thus, the minimum permissible radius for 

the fi llet between the two portions of the shaft is

 
r
d

r0 238 0 238 0 357. . .(1.50 in.) in.� � ��  Ans.

PROBLEMSPROBLEMS
P6.88 A stepped shaft with a major diameter of D 5 1.375 in. 

and a minor diameter of d 5 1.00 in. is subjected to a torque of 

500 lb-in. A fi llet with a radius of r 5 3/16 in. is used to transition 

from the major diameter to the minor diameter. Determine the maxi-

mum shear stress in the shaft. 

P6.89 A stepped shaft with a major diameter of D 5 20 mm and 

a minor diameter of d 5 16 mm is subjected to a torque of 

25 N-m. A full quarter-circular fi llet having a radius of r 5 2 mm is 

used to transition from the major diameter to the minor diameter.  

Determine the maximum shear stress in the shaft. 

3 in.
1.50 in.

4,400 lb-in.r
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P6.90 A fi llet with a radius of 1/2 in. is used at the junction in a 

stepped shaft where the diameter isreduced from 8.00 in. to 6.00 in. 

Determine the maximum torque that the shaft can transmit if the 

maximum shear stress in the fi llet must be limited to 5 ksi. 

P6.91 A stepped shaft with a major diameter of D 5 2.50 in.

and a minor diameter of d 5 1.25 in. is subjected to a torque 

of 1,200 lb-in. If the maximum shear stress must not exceed 4,000 psi, 

determine the minimum radius r that may be used for a fi llet at the 

junction of the two shaft segments. The fi llet radius must be chosen 

as a multiple of 0.05 in. 

P6.92 A fi llet with a radius of 16 mm is used at the junction in a 

stepped shaft where the diameter is reduced from 200 mm to 150 mm. 

Determine the maximum torque that the shaft can transmit if the max-

imum shear stress in the fi llet must be limited to 55 MPa.

P6.93 A stepped shaft with a major diameter of D 5 50 mm and 

a minor diameter of d 5 32 mm is subjected to a torque of 210 N-m. 

If the maximum shear stress must not exceed 40 MPa, determine 

the minimum radius r that may be used for a fi llet at the junction of 

the two shaft segments. The fi llet radius must be chosen as a mul-

tiple of 1 mm. 

P6.94 A stepped shaft has a major diameter of D 5 2.00 in. and 

a minor diameter of d 5 1.50 in.  A fi llet with a 0.25-in. radius is 

used to transition between the two shaft segments.  The maximum 

shear stress in the shaft must be limited to 9,000 psi. If the shaft 

rotates at a constant angular speed of 800 rpm, determine the maxi-

mum power that may be delivered by the shaft. 

P6.95 A stepped shaft has a major diameter of D 5 100 mm and 

a minor diameter of d 5 75 mm.  A fi llet with a 10-mm radius is 

used to transition between the two shaft segments. The maximum 

shear stress in the shaft must be limited to 60 MPa. If the shaft 

rotates at a constant angular speed of 500 rpm, determine the maxi-

mum power that may be delivered by the shaft.

P6.96 A 2.00-in.-diameter shaft contains a 1/2-in.-deep U-shaped 

groove that has a 1/4-in. radius at the bottom of the groove. The shaft 

must transmit a torque of T 5 720 lb-in. Determine the maximum 

shear stress in the shaft.

P6.97 A semicircular groove with a 6-mm radius is required in 

a 50-mm-diameter shaft. If the maximum allowable shear stress in 

the shaft must be limited to 40 MPa, determine the maximum 

torque that can be transmitted by the shaft.

P6.98 A 40-mm-diameter shaft contains a 10-mm-deep U-shaped 

groove that has a 6-mm radius at the bottom of the groove. The max-

imum shear stress in the shaft must be limited to 60 MPa. If the shaft 

rotates at a constant angular speed of 22 Hz, determine the maximum 

power that may be delivered by the shaft.

P6.99 A 1.25-in.-diameter shaft contains a 0.25-in.-deep U-shaped 

groove that has a 1/8-in. radius at the bottom of the groove. The maxi-

mum shear stress in the shaft must be limited to 12,000 psi. If the shaft 

rotates at a constant angular speed of 6 Hz, determine the maximum 

power that may be delivered by the shaft.

5 A complete discussion of the theory is presented in various books, such as Mathematical Theory of Elasticity, 

I. S. Sokolnikoff, 2nd. ed. (New York: McGraw-Hill, 1956): 109–134.

Prior to 1820, the year that A. Duleau published experimental results to the contrary, it was 

thought that the shear stresses in any torsionally loaded member were proportional to the 

distance from its longitudinal axis. Duleau proved experimentally that this is not true for 

rectangular cross sections. An examination of Figure 6.19 will verify Duleau’s conclusion. 

If the stresses in the rectangular bar were proportional to the distance from its axis, the 

maximum stress would occur at the corners. However, if there a stress of any magnitude 

at the corner, as indicated in Figure 6.19a, it could be resolved into the components 

indicated in Figure 6.19b. If these components existed, the two components shown by the 

blue arrows would also exist. These last components cannot exist, since the surfaces on 

which they are shown are free boundaries. Therefore, the shear stresses at the corners of 

the rectangular bar must be zero.

The fi rst correct analysis of the torsion of a prismatic bar of noncircular cross section 

was published by Saint-Venant in 1855; however, the scope of this analysis is beyond the 

elementary discussions of this book.5 The results of Saint-Venant’s analysis indicate that, 

in general, every section will warp (i.e., not remain plane) when twisted except for members 
with circular cross sections.

6.11 Torsion of Noncircular Sections
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TORSION OF NONCIRCULAR 

SECTIONS

For the case of the rectangular bar shown in Figure 6.2d, the distortion of the small 

squares is greatest at the midpoint of a side of the cross section and disappears at the 

corners. Since this distortion is a measure of shear strain, Hooke’s Law requires that the 

shear stress be largest at the midpoint of a side of the cross section and zero at the corners. 

Equations for the maximum shear stress and angle of twist for a rectangular section ob-

tained from Saint-Venant’s theory are

 
max

T

a b2
��

�
 (6.22)

 
TL

a bG3
��

�
 (6.23)

where a and b are the lengths of the short and long sides of the rectangle, respectively. 

The numerical constants � and � can be obtained from Table 6.1.6

Table 6.1 Table of Constants for Torsion 
of a Rectangular Bar

Ratio b/a � �

 1.0  0.208  0.1406

 1.2  0.219  0.166

 1.5  0.231  0.196

 2.0  0.246  0.229

 2.5  0.258  0.249

 3.0  0.267  0.263

 4.0  0.282  0.281

 5.0  0.291  0.291

 10.0  0.312 0.312

`  0.333 0.333

FIGURE 6.19 Torsional shear stresses for a rectangular bar.

T

T

dA�

Free boundaries

Shear stress � 
resolved into 
components

(b)

(a)

� 0�

� 0�

6 See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (New York: McGraw-Hill, 1969): Section 109.
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Narrow Rectangular Cross Sections

In Table 6.1, we observe that values for � and � are equal for b/a � 5. For aspect ratios 

b/a � 5, the coeffi cients � and � that respectively appear in Equations (6.22) and (6.23) 

can be calculated from the following equation:

 1�0.630� �� � 3
1

b
a

 (6.24)

As a practical matter, an aspect ratio b/a � 21 is suffi ciently large so that values of 

� � � � 0.333 can be used to calculate maximum shear stresses and deformations 

in narrow rectangular bars within an accuracy of 3 percent. Accordingly, equations 

for the maximum shear stress and angle of twist in narrow rectangular bars can be 

expressed as

 �max
3T
a2b

�  (6.25)

and

 3TL
a3bG

��  (6.26)

The absolute value of the maximum shear stress in a narrow rectangular bar occurs 

on the edge of the bar in the middle of the long side. For a thin-walled member of uni-

form thickness and arbitrary shape, the maximum shear stress and the shear stress dis-

tribution are equivalent to those quantities in a rectangular bar with a large b/a ratio. 

Thus, Equations (6.25) and (6.26) can be used to compute the maximum shear stress 

and the angle of twist for thin-walled shapes such as those shown in Figure 6.20. For use 

in these equations, the length a is taken as the thickness of the thin-walled shape. The 

length b is equal to the length of the thin-walled shape as measured along the centerline of 

the wall.

206
TORSION

FIGURE 6.20 Equivalent narrow rectangular sections with shear stress distribution.

TT

a

a
bb

�max
3T
a2b

�

�max
3T
a2b

�
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EXAMPLE 6.12

The two rectangular polymer bars shown are each subjected to a 

torque of T � 2,000 lb-in. For each bar, determine

(a) the maximum shear stress.

(b)  the rotation angle at the free end if each bar has a length of 

12 in. Assume that G � 500 ksi for the polymer material.

Plan the Solution
The aspect ratio b�a for each bar will be computed. Based on this 

ratio, constants � and � will be determined from Table 6.1. The 

maximum shear stress and rotation angles will be computed from 

Equations (6.22) and (6.23), respectively.

SOLUTION
For bar (a), the long side of the bar is b � 2.50 in. and the short side is a � 1.00 in.; 

therefore, b�a � 2.5. From Table 6.1, � � 0.258 and � � 0.249.

The maximum shear stress produced in bar (a) by a torque of T � 2,000 lb-in. is

 max 2

2,000 lb-in.

(0.258) (1.00 in.) (2.50 in.

T

a b2 ))
3,100 psi� � ��

�
 Ans.

and the angle of twist for a 12-in.-long bar is

 
TL

a bG3

(2,000 lb-in.)(12 in.)

(0.249)(1.00 in.)3 ((2.50 in.)(500,000 psi)
rad0 0771.� � ��

�
 Ans.

For bar (b), the long side of the bar is b � 1.875 in. and the short side is a � 1.25 in.; 

therefore, b�a � 1.5. From Table 6.1, � � 0.231 and � � 0.196.

The maximum shear stress produced in bar (b) by a torque of T � 2,000 lb-in. is

 
max 2

2,000 lb-in.

(0.231)(1.25 in.) (1.875 in

T

a b2 ..)
psi2 960,� � ��

�
 Ans.

and the angle of twist for a 12-in.-long bar is

 
TL

a bG3

(2,000 lb-in.)(12 in.)

(0.196)(1.25 in.)3((1.875 in.)(500,000 psi)
rad0 0669.� � ��

�
 Ans.

1.00 in.

2.50 in.

1.875 in.

1.25 in.

(a)

(b)

T

T

6.12 Torsion of Thin-Walled Tubes: Shear Flow

The elementary torsion theory presented in Sections 6.1, 6.2, and 6.3 is limited to circular 

sections; however, one class of noncircular sections can be readily analyzed by elementary 

methods. These shapes are thin-walled tubes such as the one illustrated in Figure 6.21a, 

which represents a noncircular section with a wall of variable thickness (i.e., t varies).

A useful concept associated with the analysis of thin-walled sections is shear fl ow q, 

defi ned as internal shearing force per unit of length of the thin section. Typical units for q 

are pounds per inch or newtons per meter. In terms of stress, q equals � � t � 1 (i.e., unity), 

where � is the average shear stress across the thickness t.
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First, we will demonstrate that the shear fl ow on a cross section is constant even 

though the wall thickness of the section may vary. Figure 6.21b shows a block cut from the 

member of Figure 6.21a between A and B. Since the member is subjected to pure torsion, 

the shear forces V1, V2, V3, and V4 alone are necessary and suffi cient for equilibrium (i.e., no 

normal forces are involved). Summing forces in the x direction gives

V V1 3�

or

q dx q dx1 3�

from which
q q1 3�

and, since q 5 � 3 t,
 1 3t tA B�� �  (a)

The shear stresses at point A on the longitudinal and transverse planes have the same mag-

nitude; likewise, the shear stresses at point B have the same magnitude on the longitudinal 

and transverse planes. Consequently, Equation (a) may be written as

A A B Bt t�� �

or

q qA B�

which demonstrates that the shear fl ow on a cross section is constant even though the wall 

thickness of the section varies. Since q is constant over a cross section, the largest average 

shear stress will occur where the wall thickness is the smallest.
Next, an expression relating torque and shear stress will be developed. Consider the 

force dF acting through the center of a differential length of perimeter ds, as shown in 

Figure 6.22. The differential moment produced by dF about the origin O is simply � 3 dF, 

where � is the mean radial distance from the perimeter element to the origin. The internal 

torque equals the resultant of all of the differential moments; that is,

T dF q ds q ds( ) ( )� � �� � �

This integral may be diffi cult to evaluate by formal calculus; however, the quantity � ds is 

twice the area of the triangle shown shaded in Figure 6.22, which makes the integral equal 

x

y

z

A

B

dx

T

T

t(a)

B

A

tB

tA

dx

1V

2V

3V

4V

(b)

FIGURE 6.21 Shear fl ow in thin-walled tubes.

FIGURE 6.22 Deriving 

relationship between internal 

torque and shear stress in 

thin-walled section.

ds

dF    q ds

y

z O

Median
line

dA
�

�

Note that the shear fl ow and the 

shear stress always act tangent 

to the wall of the tube.
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to twice the area Am enclosed by the median line. In other words, Am is the mean area 

enclosed within the boundary of the tube wall centerline. The resulting expression relates 

torque T and shear fl ow q:

 T q Am( )2�  (6.27)

Or, in terms of stress,

 
T

A tm2
��  (6.28)

where � is the average shear stress across the thickness t (and tangent to the perimeter). 

The shear stress determined by Equation (6.28) is reasonably accurate when t is relatively 

small. For example, in a round tube with a diameter-to-wall-thickness ratio of 20, the 

stress as given by Equation (6.28) is 5 percent less than that given by the torsion formula. 

It must be emphasized that Equation (6.28) applies only to “closed” sections—that is, sec-

tions with a continuous periphery. If the member were slotted longitudinally (e.g., see 

Figure 6.23), the resistance to torsion would be diminished considerably from that of the 

closed section.

209
TORSION OF THIN-WALLED 

TUBES: SHEAR FLOW

FIGURE 6.23 Thin-walled 

shape with an “open” cross 

section.

EXAMPLE 6.13

T100 mm

3 mm

50 mm 2 mm

Cross-sectional dimensions.

A rectangular box section of aluminum alloy has 

outside dimensions of 100 mm by 50 mm. The plate 

thickness is 2 mm for the 50-mm sides and 3 mm for 

the 100-mm sides. If the maximum shear stress must 

be limited to 95 MPa, determine the maximum 

torque T that can be applied to the section.

Plan the Solution
The maximum shear stress will occur in the thin-

nest plate. From the allowable shear stress, the 

shear fl ow in the thinnest plate will be calculated. Next, the area A enclosed by the 

median line (see Figure 6.22) of the section wall will be calculated. Finally, the maximum 

torque will be computed from Equation (6.27).

SOLUTION
The maximum shear stress will occur in the thinnest plate; therefore, the critical shear 

fl ow q is

q t ( )95 N/mm (2 mm) N/mm2 190� � ��

The area enclosed by the median line is

Am (100 mm mm)(50 mm mm) 4,606 mm22 3� � � �

Finally, the torque that can be transmitted by the section is computed from 

Equation (6.27):

 T q Am2 (190 N/mm)( ) 4,606 mm 1,750,280 N-mm 122 ,,750 N-m� � � �( ) ( )  Ans.
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P6.101 A torque of magnitude T 5 270 N-m is applied to each 

of the bars shown in Figure P6.100/101. If the allowable shear 

stress is specifi ed as �allow 5 70 MPa, determine the minimum 

required dimension b for each bar.

P6.102 The bars shown in Figure P6.102/103 have equal cross-

sectional areas, and they are each subjected to a torque of T 5 

160 N-m. Determine

(a) the maximum shear stress in each bar.

(b)  the rotation angle at the free end if each bar has a length of 

300 mm. Assume that G 5 28 GPa.

P6.103 The allowable shear stress for each bar shown in Figure 

P6.102/103 is 75 MPa. Determine

(a) the largest torque T that may be applied to each bar.

(b)  the corresponding rotation angle at the free end if each bar has 

a length of 300 mm. Assume that G 5 28 GPa.

P6.104 A solid circular rod having diameter D is to be replaced 

by a rectangular tube having cross-sectional dimensions D 3 2D 

(which are measured to the wall centerlines of the cross section 

shown in Figure P6.104). Determine the required minimum thick-

ness tmin of the tube so that the maximum shear stress in the tube 

will not exceed the maximum shear stress in the solid bar.

P6.105 A 24-in.-wide by 0.100-in.-thick by 100-in.-long steel 

sheet is to be formed into a hollow section by being bent through 

3608 and having the long edges welded (i.e., butt-welded) together. 

Assume a cross-sectional medial length of 24 in. (no stretching of 

the sheet due to bending). If the maximum shear stress must be 

limited to 12 ksi, determine the maximum torque that can be car-

ried by the hollow section if

(a) the shape of the section is a circle.

(b) the shape of the section is an equilateral triangle.

(c) the shape of the section is a square.

(d)  the shape of the section is a rectangle measuring 8 3 4 in.

P6.106 A 500-mm-wide by 3-mm-thick by-2 m-long aluminum 

sheet is to be formed into a hollow section by being bent through 

3608 and having the long edges welded (i.e., butt-welded) together. 

Assume a cross-sectional medial length of 500 mm (no stretching 

of the sheet due to bending). If the maximum shear stress must be 

limited to 75 MPa, determine the maximum torque that can be car-

ried by the hollow section if

(a) the shape of the section is a circle.

(b) the shape of the section is an equilateral triangle.

(c) the shape of the section is a square.

(d)  the shape of the section is a rectangle measuring 150 3 100 mm.

P6.107 A torque of T 5 150 kip-in. will be applied to the hol-

low thin-walled aluminum alloy section shown in Figure P6.107. If 

the maximum shear stress must be limited to 10 ksi, determine the 

minimum thickness required for the section. (Note: The dimensions 

shown are measured to the wall centerline.)

FIGURE P6.100/101

b b

2bb

b
(a)

(b)

(c)

T

T

T

210

FIGURE P6.102/103

50 mm

15 mm

25 mm

30 mm

(a)

(b)

T

T

FIGURE P6.104

2D

t

D tD

FIGURE P6.107

3 in. 3 in.8 in.

PROBLEMSPROBLEMS
P6.100 A torque of magnitude T 5 1.5 kip-in. is applied to each 

of the bars shown in Figure P6.100/101. If the allowable shear 

stress is specifi ed as �allow 5 8 ksi, determine the minimum required 

dimension b for each bar. 
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P6.109 A torque of T 5 100 kip-in. will be applied to the hol-

low thin-walled aluminum alloy section shown in Figure P6.109. If 

the section has a uniform thickness of 0.100 in., determine the mag-

nitude of the maximum shear stress developed in the section. 

(Note: The dimensions shown are measured to the wall centerline.)

P6.111 A cross section of the leading edge of an airplane wing 

is shown in Figure P6.111. The enclosed area is 82 in.2. Sheet 

thicknesses are shown on the diagram. For an applied torque of 

T 5 100 kip-in., determine the magnitude of the maximum shear 

stress developed in the section. (Note: The dimensions shown are 

measured to the wall centerline.)

P6.112 A cross section of an airplane fuselage made of alumi-

num alloy is shown in Figure P6.112. For an applied torque of 

T 5 1,250 kip-in. and an allowable shear stress of � 5 7.5 ksi, de-

termine the minimum thickness of the sheet (which must be con-

stant for the entire periphery) required to resist the torque. (Note: 
The dimensions shown are measured to the wall centerline.)E

211

P6.108 A torque of T 5 2.5 kN-m will be applied to the hollow 

thin-walled aluminum alloy section shown in Figure P6.108. If the 

maximum shear stress must be limited to 50 MPa, determine the 

minimum thickness required for the section. (Note: The dimensions 

shown are measured to the wall centerline.)

FIGURE P6.108

100 mm

FIGURE P6.109

10 in.

P6.110 A torque of T 5 2.75 kN-m will be applied to the hol-

low thin-walled aluminum alloy section shown in Figure P6.110. If 

the section has a uniform thickness of 4 mm, determine the magni-

tude of the maximum shear stress developed in the section. (Note: 
The dimensions shown are measured to the wall centerline.)

FIGURE P6.110

150 mm 25 mm

9 in.

A

B

0.064 in.

0.050 in.

FIGURE P6.111

FIGURE P6.112

20 in.

15 in.

15 in.
A

B C

D

30 in.
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Equilibrium of Beams

CHAPTER 7

The term transverse refers to 

loads and sections that are 

perpendicular to the longitudinal 

axis of the member.

The behavior of slender structural members subjected to axial loads and to torsional 

loadings was discussed in Chapters 5 and 6, respectively. This chapter begins the consider-

ation of beams, one of the most common and important components used in structural and 

mechanical applications. Beams are usually long (compared with their cross-sectional 

 dimensions), straight, prismatic members that support loads, which act perpendicular to the 

longitudinal axis of the member. They resist transverse applied loads by a combination of 

internal shear force and bending moment.

Types of Supports

Beams are normally classifi ed by the manner in which they are supported. Figure 7.1 

shows graphic symbols used to represent three types of supports:

•  Figure 7.1a shows a pin support. A pin support prevents translation in two orthogo-

nal directions. For beams, this means that displacements parallel to the longitudinal 

axis of the beam (i.e., the x direction in Figure 7.1a) and perpendicular to the longitu-

dinal axis (i.e., the y direction in Figure 7.1a) are restrained at the supported joint. 

While translation is restrained by a pin support, rotation of the joint is permitted. In 

Figure 7.1a, the beam is free to rotate about the z axis, and reaction forces act on the 

beam in the x and y directions.

7.1 Introduction

213
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214
•  Figure 7.1b shows a roller support. A roller support prevents translation perpendicular 

to the longitudinal axis of the beam (i.e., the y direction in Figure 7.1b); however, the 

joint is free to translate in the x direction and to rotate about the z axis. Unless 

specifi cally stated otherwise, a roller support should be assumed to prevent joint 

displacement both in the �y and �y directions. The roller support in Figure 7.1b 

provides a reaction force to the beam in the y direction only.

•  Figure 7.1c shows a fi xed support. A fi xed support prevents both translation and 

rotation at the supported joint. The fi xed support shown in Figure 7.1c provides 

reaction forces to the beam in the x and y directions as well as a reaction moment in 

the z direction. This type of support is sometimes called a moment connection.

Figure 7.1 shows symbols that represent three types of supports commonly associated with 

beams. It is important to keep in mind that these symbols are simply graphic shorthand used 

to easily communicate the beam support conditions. Actual pin, roller, and fi xed supports 

may take many confi gurations. Figure 7.2 shows one possibility for each type of connection.

One type of pin support is shown in Figure 7.2a. In this connection, three bolts are used 

to attach the beam to a small component called a clip angle, which in turn is bolted to the 

vertical supporting member (called a column). The bolts prevent the beam from moving 

either horizontally or vertically. Strictly speaking, the bolts also provide some resistance 

against rotation at the joint. Since the bolts are located close to the middle of the beam, 

however, they are not capable of fully restraining rotation at the connection. This type of 

connection permits enough rotation so that the joint is classifi ed as a pin connection.

Figure 7.2b shows one type of roller connection. The bolts are inserted into slotted 

holes in a small plate called a shear tab. Since the bolts are in slots, the beam is free to 

defl ect in the horizontal direction, but it is restrained from defl ecting either upward or 

downward. Slotted holes are sometimes used to facilitate the construction process, making 

it easier for heavy beams to be quickly attached to columns.

Figure 7.2c shows a welded steel moment connection. Notice that extra plates are 

welded to the top and bottom surfaces of the beam and that these plates are connected di-

rectly to the column. These extra plates prevent the beam from rotating at the joint.

Types of Statically Determinate Beams

Beams are further classifi ed by the manner in which the supports are arranged. Figure 7.3 

shows three common statically determinate beams. Figure 7.3a shows a simply supported 

FIGURE 7.2 Examples of actual beam supports.

While this connection 
restrains deflection, it 

does not provide 
enough resistance to 
completely prevent 

rotation.

Column

Beam

Clip angle

 (a) Pin support

The slotted bolts 
restrain vertical 
deflection, but 
allow the beam 

to move 
horizontally.

Column

Beam

Shear tab with slots

 (b) Roller support

Deflection is 
restrained and 

rotation of the joint 
is prevented by the 

extra plates attached 
to the top and 

bottom flanges.

Column

Beam

Extra plates welded 
directly to column

 (c) Fixed support

x

y

A

Ay

Ax

 (a) Pin support

x

y

A

Ay

 (b) Roller support

x

y

A

Ay

Ax

MA

 (c) Fixed support

FIGURE 7.1 Types of supports.
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SHEAR AND MOMENT 

IN BEAMS
beam (also called a simple beam). A simply supported beam has a pin support at one end 

and a roller support at the opposite end. Figure 7.3b shows a variation of the simply 

supported beam in which the beam continues across the support in what is termed an 
overhang. In both cases, the pin and roller supports provide three reaction forces for the 

simply supported beam: a horizontal reaction force at the pin and vertical reaction forces at 

both the pin and the roller. Figure 7.3c shows a cantilever beam. A cantilever beam has a 

fi xed support at one end only. The fi xed support provides three reactions to the beam: hori-

zontal and vertical reaction forces and a reaction moment. These three unknown reaction 

forces can be determined from the three equilibrium equations (i.e., ΣFx � 0, ΣFy � 0, and 

ΣM � 0) available for a rigid body.

Types of Loads

Several types of loads are commonly supported by beams (Figure 7.4). Loads focused 

on a small length of the beam are called concentrated loads. Loads from columns or 

from other members, as well as support reaction forces, are typically represented by 

concentrated loads. Concentrated loads may also represent wheel loads from vehicles 

or forces applied by machinery to the structure. Loads that are spread along a portion 

of the beam are termed distributed loads. Distributed loads that are constant 

in magnitude are termed uniformly distributed loads. Examples of uni-

formly distributed loads include the weight of a concrete fl oor slab or the 

forces created by wind. In some instances, the load may be linearly distrib-
uted, which means that the distributed load, as the term implies, changes 

linearly in magnitude over the span of the loading. Snow, soil, and fl uid pres-

sure are examples of considerations that can create linearly distributed loads. 

A beam may also be subjected to concentrated moments, which tend to 

bend and rotate the beam. Concentrated moments are most often created by 

other members that connect to the beam.

FIGURE 7.3 Types of statically 

determinate beams.

x
A B

y

  (a) Simple supported beam

A CB

  (b) Simple beam with overhang

A B

 (c) Cantilever beam

FIGURE 7.4 Symbols used for 

various types of loads.

Uniformly
distributed

load

Linearly
distributed

load

Concentrated
moment

Concentrated
load

To determine the stresses created by applied loads, it is fi rst necessary to determine the 

internal shear force V and the internal bending moment M acting in the beam at any point 

of interest. The general approach for fi nding V and M is illustrated in Figure 7.5. In this 

fi gure, a simply supported beam with an overhang is subjected to two concentrated loads 

P1 and P2 as well as to a uniformly distributed load w. A free-body diagram is obtained by 

cutting a section at a distance of x from pin support A. The cutting plane exposes an internal 

shear force V and an internal bending moment M. If the beam is in equilibrium, then any 

portion of the beam that we consider must also be in equilibrium. Consequently, the free 

body with shear force V and bending moment M must satisfy equilibrium. Thus, equilib-

rium considerations can be used to determine values for V and M acting at location x.

Because of the applied loads, beams develop internal shear forces V and bending 

moments M that vary along the length of the beam. For us to properly analyze the stresses 

produced in a beam, we must determine V and M at all locations along the beam span. 

These results are typically plotted as a function of x in what is known as a shear-force 
and bending-moment diagram. These diagrams summarize all shear forces and bend-

ing moments along the beam, making it straightforward to identify the maximum and 

minimum values for both V and M. These extreme values are required to calculate the 

largest stresses.

7.2 Shear and Moment in Beams

c07EquilibriumofBeams.indd Page 215  2/9/12  7:32 AM user-F393c07EquilibriumofBeams.indd Page 215  2/9/12  7:32 AM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



216
EQUILIBRIUM OF BEAMS

Since many different loads may act on a beam, functions describing the variation of 

V(x) and M(x) may not be continuous throughout the entire beam span. Because of this, 

shear-force and bending-moment functions must be determined for a number of intervals 

along the beam. In general, intervals are delineated by

(a) the locations of concentrated loads, concentrated moments, and support reactions or

(b) the span of distributed loads.

The examples that follow illustrate how shear-force and bending-moment functions 

can be derived for various intervals by the use of equilibrium considerations.

Sign Conventions for Shear-Force and Bending-Moment Diagrams. Before deriv-

ing internal shear-force and bending-moment functions, we must develop a consistent sign 

convention. These sign conventions are illustrated in Figure 7.6.

x

CB

2P
w

y

A

1P

V

M

a

a

xAy

x

y

A CB

1P 2P
w

FIGURE 7.5 Method of sections applied to beams.

+M

–M

Negative M
bends

beam slice
downward into

a “frown”

Positive M
bends

beam slice
upward into

a “smile”

–V

+V

Negative V
rotates

beam slice
counterclockwise

Positive V
rotates

beam slice
clockwise

FIGURE 7.7 Sign conventions 

for V and M shown on beam slice.

A positive internal shear force V

• acts downward on the right-hand face of a beam.

• acts upward on the left-hand face of a beam.

A positive internal bending moment M

• acts counterclockwise on the right-hand face of a beam.

• acts clockwise on the left-hand face of a beam.

These sign conventions can also be expressed by the directions of V and M that act on 

a small slice of the beam. This alternative statement of the V and M sign conventions is 

illustrated in Figure 7.7.

A positive internal shear force V causes a beam element to rotate clockwise.
A positive internal bending moment M bends a beam element concave upward.

A shear-force and bending-moment diagram will be created for each beam by plotting 

shear-force and bending-moment functions. To ensure consistency among the functions, it 

is very important that these sign conventions are observed.

+M

+V

+V

FIGURE 7.6 Sign conventions 

for internal shear force V and 

bending moment M.
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EXAMPLE 7.1

Draw the shear-force and bending-moment diagrams for the 

simply supported beam shown.

Plan the Solution
First, determine the reaction forces at pin A and roller C. Then, 

consider two intervals along the beam span: between A and B, 

and between B and C. Cut a section in each interval and draw the 

appropriate free-body diagram (FBD), showing the unknown in-

ternal shear force V and internal bending moment M acting on 

the exposed surface. Write the equilibrium equations for each 

FBD, and solve them for functions describing the variation of V 

and M with location x along the span. Plot these functions to 

complete the shear-force and bending-moment diagrams.

SOLUTION
Support Reactions
Since this beam is symmetrically supported and symmetrically loaded, the reaction forces 

must also be symmetric. Therefore, each support exerts an upward force equal to P�2. 

Since no applied loads act in the x direction, the horizontal reaction force at pin support 

A is zero.

Shear and Moment Functions
In general, the beam will be sectioned at an arbitrary distance x from pin support A and 

all forces acting on the free body will be shown, including the unknown internal shear 

force V and internal bending moment M acting on the exposed surface.

Interval 0 � x � L�2: The beam is cut on section a–a, which is located at an arbitrary 

distance x from pin support A. An unknown shear force V and an unknown bending 

moment M are shown on the exposed surface of the beam. Note that positive directions 

are assumed for both V and M. (See Figure 7.6 for sign conventions.)

Since no forces act in the x direction, the equilibrium equation ΣFx � 0 is trivial. The 

sum of forces in the vertical direction yields the following function for V:

 ΣF
P

V V
P

y � � � � �
2

0
2  (a)

The sum of moments about section a–a gives the following function for M:

 Σ M
P

x M M
P

xa a� � � � � � �
2

0
2

 (b)

These results show that the internal shear force V is constant and the inter-

nal bending moment M varies linearly in the interval 0 � x � L�2.

Interval L�2 � x � L: The beam is cut on section b–b, which is located at 

an arbitrary distance x from pin support A. Section b–b, however, is located 

beyond B where the concentrated load P is applied. As before, an unknown 

shear force V and an unknown bending moment M are shown on the 

exposed surface of the beam and positive directions are assumed for both V 

and M.

y

x

A CB

P

2
L—

2
L—

A

x

V

M

a

a

2
P—

A

P

x

V

M

b

b

2
P—

2
L—

2
L—–x
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The sum of forces in the vertical direction yields the follow-

ing function for V:

 ΣF
P

P V V
P

y � � � � � � �
2

0
2

  (c)

The equilibrium equation for the sum of moments about sec-

tion b–b gives the following function for M:

 
ΣM P x

L P
x M

M
P

x
PL

b b� � � � � �

� � � �

2 2
0

2 2

 
(d)

Again, the internal shear force V is constant and the internal       

bending moment M varies linearly in the interval L�2 � x � L.

Plot the Functions
Plot the functions given in Equations (a) and (b) for the inter-

val 0 � x � L�2, and the functions defi ned by Equations (c) 

and (d) for the interval L�2 � x � L, to create the shear-force 

and bending-moment diagram shown.

The maximum internal shear force is Vmax � �P�2. The 

maximum internal bending moment is Mmax � PL�4, and it 

occurs at x � L�2.

Notice that the concentrated load causes a discontinuity 

at its point of application. In other words, the shear-force dia-

gram “jumps” by an amount equal to the magnitude of the 

concentrated load. The jump in this case is downward, which 

is the same direction as the concentrated load P.

y

x

A CB

P

V

–

M

PL
4

2
L—

2
L—

2
P—

2
P—

2
P—

2
P—

y

x

A CB

0M

2
L—

2
L—

y

x

A CB

0M

Ay yC
2
L—

2
L—

EXAMPLE 7.2

Draw the shear-force and bending-moment diagrams for the 

simple beam shown.

Plan the Solution
The solution process outlined in Example 7.1 will be used to 

derive V and M functions for this beam.

SOLUTION
Support Reactions
A FBD of the beam is shown. The equilibrium equations are

 

Σ

Σ

F A C

M M C L

y y y

A y

� � �

� � � �

0

00

From these equations, the beam reactions are

C
M

L
A

M

Ly y� � �0 0and
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The negative value for Ay indicates that this reaction acts opposite to the direction as-

sumed initially. Subsequent free-body diagrams will be revised to show this reaction 

force acting downward.

Interval 0 � x � L�2: Section the beam at an arbitrary distance x between A and B. Show 

the unknown shear force V and the unknown bending moment M on the exposed surface 

of the beam. Assume positive directions for both V and M, according to the sign conven-

tion given in Figure 7.6.

The sum of forces in the vertical direction yields the following function for V:

 Σ F
M

L
V V

M

Ly � � � � � � �0 00  (a)

The sum of moments about section a–a gives the following function for M:

 ΣM
M
L

x M M
M
L

xa a� � � � � � �0 00  (b)

These results indicate that the internal shear force V is constant and the internal bending 

moment M varies linearly in the interval 0 � x � L�2.

Interval L�2 � x � L: The beam is cut on section b–b, which is at an 

arbitrary location between B and C. The sum of forces in the vertical 

direction yields the following function for V:

 ΣF
M

L
V V

M

Ly � � � � � � �0 00  (c)

The equilibrium equation for the sum of moments about section b–b gives 

the following function for M:

 

Σ M
M

L
x M M

M M
M

L
x

b b� � � � �

� � �

0
0

0
0

0
 (d)

Again, the internal shear force V is constant and the internal 

bending moment M varies linearly in the interval L�2 � x � L.

Plot the Functions
Plot the functions given in Equations (a) and (b) for the inter-

val 0 � x � L�2, and the functions defi ned by Equations (c) 

and (d) for the interval L�2 � x � L, to create the shear-force 

and bending-moment diagram shown.

The maximum internal shear force is Vmax � �M0�L. 

The maximum internal bending moment is Mmax � �M0�2, 

and it occurs at x � L�2.

Notice that the concentrated moment does not affect the 

shear-force diagram at B. It does create, however, a disconti-

nuity in the bending-moment diagram at its point of applica-

tion. The bending-moment diagram “jumps” by an amount 

equal to the magnitude of the concentrated moment. The 
clockwise concentrated external moment M0 causes the bend-
ing-moment diagram to jump upward at B by an amount 

equal to the magnitude of the concentrated moment.

A
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L
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b
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Draw the shear-force and bending-moment diagrams for the 

simply supported beam shown.

Plan the Solution
After the support reactions at pin A and roller B have been 

determined, cut a section at an arbitrary location x and draw 

the corresponding free-body diagram (FBD), showing the un-

known internal shear force V and internal bending moment M 

acting on the cut surface. Develop the equilibrium equations 

for the FBD, and solve these two equations for functions 

describing the variation of V and M with location x along the 

span. Plot these functions to complete the shear-force and 

bending-moment diagrams.

SOLUTION
Support Reactions
Since this beam is symmetrically supported and symmetrically loaded, the 

reaction forces must also be symmetric. The total load acting on the beam 

is wL; therefore, each support exerts an upward force equal to half of this 

load: wL�2.

Interval 0 � x � L: Section the beam at an arbitrary distance x between A 

and B. Make sure that the original distributed load w is shown on the 
FBD at the outset. Show the unknown shear force V and the unknown 

bending moment M on the exposed surface of the beam. Assume positive 

directions for both V and M, according to the sign convention given in 

Figure 7.6. The resultant of the uniformly distributed load w acting on a 

beam of length x is equal to wx. The resultant force acts at the middle of 

this loading (i.e., at the centroid of the rectangle that has width x and 

height w). The sum of forces in the vertical direction yields the 

following function for V:

 

ΣF
wL

wx V

V
wL

wx w
L

x

y � � � �

� � � � �

2
0

2 2

 (a)

The shear-force function is linear (i.e., a fi rst-order function), 

and the slope of this line is equal to –w (which is the intensity 

of the distributed load).

The sum of moments about section a–a gives the 

following function for M:

 

ΣM
wL

x wx
x

M

M
wL

x
wx wx

L x

a a� � � � � �

� � � � �

2 2
0

2 2 2

2
( )

 (b)

The internal bending moment M is a quadratic function (i.e., a 

second-order function).

EXAMPLE 7.3
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Plot the Functions
Plot the functions given in Equations (a) and (b) to create the shear-force and bending-

moment diagram shown.

The maximum internal shear force is Vmax � �wL�2, and it is found at A and B. The 

maximum internal bending moment is Mmax � wL2�8, and it occurs at x � L�2.

Note that the maximum bending moment occurs at a location where the shear force 

V is equal to zero.

Draw the shear-force and bending-moment diagrams for the 

simply supported beam shown.

Plan the Solution
After determining the support reactions at pin A and roller C, 

cut sections between A and B (in the linearly distributed load-

ing) and between B and C (in the uniformly  distributed load-

ing). Draw the appropriate free-body diagrams, work out the 

equilibrium equations for each FBD, and solve these equa-

tions for functions describing the variation of V and M with 

location x along the span. Plot these functions to complete the 

shear-force and bending-moment diagrams.

SOLUTION
Support Reactions
The FBD for the entire beam is shown. The resultant force 

of the linearly distributed loading is equal to the area of the 

triangle that has base L�2 and height w:

1

2 2 4

L
w

wL
�

The resultant force acts at the centroid of this triangle, which 

is located at two-thirds of the base dimension, measured from 

the point of the triangle:
2

3 2 3

L L
�

Equilibrium equations for the beam can be written as

Σ ΣF A C
wL wL

M C L
wL L w

y y y A y� � � � � � � �
4 2

0
4 3

and
LL L

2

3

4
0�

which can be solved to determine the reaction forces:

A wL C wLy y� �
7

24

11

24
and

Interval 0 � x � L�2: Section the beam at an arbitrary distance x between A and B. Make 
sure that you replace the original linearly distributed load on the FBD. A new resul-

tant force for the linearly distributed load must be derived specifi cally for this FBD.

The slope of the linearly distributed load is equal to w�(L�2) � 2w�L. Accord-

ingly, the height of the triangular loading at section a–a is equal to the product of this 

slope and the distance x—that is, (2w�L)x. Therefore, the resultant of the linearly 

EXAMPLE 7.4
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distributed load that is acting on this FBD is (1/2)x [(2w�L)x] � (wx2�L), and 

it acts at a distance of x�3 from section a–a.

V and M functions applicable for the interval 0 � x � L�2 can be derived 

from the equilibrium equations for the FBD:

 ΣF wL
wx

L
V V

wx

L
wLy � � � � � � � �

7

24
0

7

24

2 2
 (a)

 ΣM wLx
wx

L

x
M M

wx

La a� � � � � � � � � �
7

24 3
0

3

7

24

2 3
wwLx  (b)

The shear-force function is quadratic (i.e., a second-order 

function), and the bending-moment function is cubic (i.e., a 

third-order function).

Interval L�2 � x � L: Section the beam at an arbitrary dis-

tance x between B and C. Make sure that you replace the 
original distributed loads on the FBD before deriving the V 
and M functions.

Based on this FBD, the equilibrium equations can be 

written as

ΣF wL
wL

w x
L

V V wL
wL

wy � � � � � � � � � �
7

24 4 2
0

7

24 4
xx

L
�

2  (c)

 

ΣM wLx
wL

x
L

w x
L

a a� � � � � � �
7

24 4 3 2

11

2 2
0

7

24 4 3

x
L

M

M wLx
wL

x
L

� � �

� � � � � �
w

x
L

2 2

2  (d)

These equations can be simplifi ed to

V w L x

M
w

x Lx L

� �

� � � �( )

13

24

24
12 132 2

and

The shear-force function is linear (i.e., a fi rst-order function), 

and the bending-moment function is quadratic (i.e., a second-

order function) between B and C.

Plot the Functions
Plot the V and M functions to create the shear-force and 

 bending-moment diagram shown.

Notice that the maximum bending moment occurs at a 

location where the shear force V is equal to zero.
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Draw the shear-force and bending-moment diagrams for the 

cantilever beam shown.

Plan the Solution
Initially, determine the reactions at fi xed support A. Three sec-

tions will need to be considered for the intervals between AB, 

BC, and CD. For each section, draw the appropriate free-body 

diagram, develop the equilibrium equations, and solve these 

equations for functions describing the variation of V and M with 

location x along the span. Plot these functions to complete the 

shear-force and bending-moment diagrams.

SOLUTION
Support Reactions
A FBD of the entire beam is shown. Since no forces act in the x 

direction, the reaction force Ax � 0 will be omitted from the FBD. 

The nontrivial equilibrium equations are

Σ

Σ

F A

M M

y y

A A

� � � �

� � � �

19 6 0kN kN

(19 kN)(2 m) (6 kN)(5 m) � 0

From these equations, the beam reactions are found to be

A My A� � �13 8kN and kN-m

Since Ay is negative, it really acts downward. The correct direction of this 

reaction force will be shown in subsequent free-body diagrams.

Interval 0 � x � 2 m: Section the beam at an arbitrary distance x between A and 

B. The FBD for this section is shown. From the equilibrium equations for this 

FBD, determine functions for V and M:

 
ΣF V

V

y � � � �

� � �

13 0

13

kN

kN
 (a)

 
ΣM x M

M x
a a� � � � �

� � � �

( kN)

( kN)

13 8 0

13 8

kN-m

kN-m
 (b)

Interval 2 m � x � 4 m: From a section cut between B and C, determine the 

following shear and moment functions:

 
ΣF V

V

y � � � � �

� �

13 19 0

6

kN kN

kN
 (c)

 
ΣM x x M

M x
b b� � � � � � �

� � �

( kN) ( kN)( m)

( kN)

13 19 2 8 0

6 3

kN-m

00 kN-m
 (d)

EXAMPLE 7.5
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Interval 4 m � x � 6 m: From a section cut between C and 

D, determine the following shear and moment functions:

 

ΣF

x V

V x

y � � �

� � � �

� � �

13 19

3 4 0

3 18

kN

kN/m

kN/m

kN

( )( m)

( ) kNN

 (e)

 

ΣM x x

x
x

c c� � � �

� �
�

( kN) ( kN)( m)

( )( m)
( m)

13 19 2

3 4
4

2
kN/m

� � �

� � � � �

8 0

1 5 18 542

kN-m

kN/m kN kN-m

M

M x x( . ) ( )

 (f)

Plot the Functions
Plot the functions given in Equations (a) through (f) to con-

struct the shear-force and bending-moment diagram shown.

Notice that the shear-force diagram is constant in inter-

vals AB and BC (i.e., zero-order functions) and linear in in-

terval CD (i.e., a fi rst-order function). The bending-moment 

diagram is linear in intervals AB and BC (i.e., fi rst-order 

functions) and quadratic in interval CD (i.e., a second-order 

function).
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P7.1 For the cantilever beam and loading shown in Figure P7.1,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)
(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

PROBLEMSPROBLEMS
P7.2 For the simply supported beam shown in Figure P7.2,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

y

x

A B

L

w0

FIGURE P7.1

y

x

A CB

a b

P

FIGURE P7.2
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(b)  determine the location and the magnitude of the maximum 

bending moment.

P7.3 For the cantilever beam and loading shown in Figure P7.3,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)
(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

P7.5 For the cantilever beam and loading shown in Figure P7.5,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

P7.4 For the simply supported beam subjected to the loading 

shown in Figure P7.4,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

P7.6 For the simply supported beam shown in Figure P7.6,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

P7.7 For the simply supported beam subjected to the loading 

shown in Figure P7.7,

(a)  derive equations for the shear force V and the bending 

moment M for any location in the beam. (Place the origin at 

point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

(c) report the maximum bending moment and its location.

P7.8 For the simply supported beam subjected to the loading 

shown in Figure P7.8,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

(c)  report the maximum positive bending moment, the maximum 

negative bending moment, and their respective locations.
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P7.9 For the simply supported beam subjected to the loading 

shown in Figure P7.9,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

(c)  report the maximum positive bending moment, the maximum 

negative bending moment, and their respective locations.

P7.11 For the simply supported beam subjected to the loading 

shown in Figure P7.11,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

(c)  report the maximum bending moment and its location.

P7.10 For the cantilever beam and loading shown in Figure P7.10,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

P7.12 For the simply supported beam subjected to the loading 

shown in Figure P7.12,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

(c)  report the maximum positive bending moment, the maximum 

negative bending moment, and their respective locations.

P7.13 For the cantilever beam and loading shown in Figure P7.13,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

P7.14 For the cantilever beam and loading shown in Figure P7.14,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

P7.15 For the simply supported beam subjected to the loading 

shown in Figure P7.15,

(a)  derive equations for the shear force V and the bending moment 

M for any location in the beam. (Place the origin at point A.)

(b)  plot the shear-force and bending-moment diagrams for the 

beam, using the derived functions.

(c)  report the maximum positive bending moment, the maximum 

negative bending moment, and their respective locations.
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FIGURE 7.8a Generalized beam subjected to positive external loads.
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FIGURE 7.8b Beam element 

showing internal shear forces 

and bending moments.
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As shown in Section 7.2, we can construct shear and moment diagrams by developing 

functions that express the variation of internal shear force V(x) and internal bending mo-

ment M(x) along the beam and then plotting these functions. When a beam has several 

loads, however, this approach can be quite time-consuming and a simpler method is 

desired. The process of constructing shear and moment diagrams is much easier if specifi c 

relationships between load, shear, and moment are taken into consideration.

Consider a beam subjected to several loads, as shown in Figure 7.8a. All loads are 
shown in their respective positive directions. We will investigate a small portion of the 

beam where there are no external concentrated loads or concentrated moments. This small 

beam element has length �x (Figure 7.8b). An internal shear force V and an internal bend-

ing moment M act on the left side of the beam element. Because the distributed load is 

acting on this element, the shear force and bending moment on the right side must be 

slightly different in order to satisfy equilibrium, having values of V � �V and M � �M, 

respectively. All shear forces and bending moments are assumed to act in their positive 

directions, as defi ned by the sign convention shown in Figure 7.6. The distributed load can 

be replaced by its resultant force w(x) �x that acts at a fractional distance k �x from the 

right side, where 0 � k � 1 (e.g., if the distributed load is uniform, k � 0.5). This small 

portion of the beam must satisfy equilibrium; therefore, we can consider two equilibrium 

conditions—the sum of forces in the vertical direction and the sum of moments about 

point O on the right side of the element:

Σ � �F V w x x V Vy � � � � �( ) ( ) 0

� �� �V w x x( )

Σ � � � �M V x w xx xk M M MO � � �� � � �( ) ( )• 0

� � �� � � �M V x w x x k x( ) •

Dividing each by �x and taking the limit as �x → 0 give the following relationships:

 
dV

dx
w x� ( )  (7.1)

 
dM

dx
V�  (7.2)

7.3  Graphical Method for Constructing Shear 
and Moment Diagrams
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Equation (7.1) indicates that the slope of the shear-force diagram is equal to the numerical 

value of the distributed load intensity at any location x. Similarly, Equation (7.2) indicates 

that the slope of the bending-moment diagram is equal to the numerical value of the shear 

force at any location x.

To illustrate the meaning of Equation (7.1), consider the beam shown in Figure 7.9, 

which is subjected to a distributed load w(x) that increases from w(x) � wA � 0 at A to 

w(x) � wG at G. At A where the distributed load w is zero, the slope of the shear-force dia-

gram is also zero. Moving to the right along the beam span, the distributed load increases to 

a small positive value at B, and accordingly, the slope of the shear-force diagram at B is a 

small positive value (i.e., the shear-force diagram slopes slightly upward). At points C through 

G, the distributed load magnitude gets larger and larger (i.e., more and more positive). Simi-

larly, the slope of the shear-force diagram at these points becomes increasingly more positive. 

In other words, the V curve gets increasingly steeper as the distributed load w gets larger.

In a similar manner, Equation (7.2) states that the slope of the bending-moment dia-

gram at any point is equal to the shear force V at that same point. At point A in Figure 7.9, 

the shear force VA is a relatively large negative value; therefore, the slope of the bending-

moment diagram is a relatively large negative value. In other words, the M diagram slopes 

sharply downward. At points B and C, the shear forces VB and VC are still negative, but not 

as negative as VA. Consequently, the M diagram still slopes downward, but not as steeply as 

at A. At point D, the shear force VD is zero, which means that the slope of the M diagram is 

zero. (This is an important detail because the maximum and minimum values of a function 

are at those locations where the slope of the V diagram is zero.) At point E, the shear force 

VE becomes a small positive number, and accordingly, the M diagram begins to slope up-

ward slightly. At points F and G, the shear forces VF and VG are relatively large positive 

numbers, which means that the M diagram slopes sharply upward.

A positive slope inclines 

upward when moving to 

the right or downward when 

moving to the left.

FIGURE 7.9 Relationships between slopes for the load, shear, and moment diagrams.
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The slope of the M diagram is equal to the intensity 
of the shear force V at the same x location.
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At any location x, the slope of the 
V diagram is equal to the intensity 
of the distributed load w(x).
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For brevity, the shear-force 

diagram is also termed the V 

diagram or the V curve. The 

bending-moment diagram is 

also termed the M diagram 

or the M curve.
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Equations (7.1) and (7.2) may also be rewritten in the form dV � w(x) dx and 

dM � V dx. The terms w(x) dx and V dx represent differential areas under the distributed-load 

and shear-force diagrams, respectively. Equation (7.1) can be integrated between any two 

locations x1 and x2 on the beam:

dV w x dx
V

V

x

x
�

1

2

1

2
( )

This gives the following relationship:

 �V V V w x dx
x

x
� � �2 1

1

2
( )  (7.3)

Similarly, Equation (7.2) can be expressed in integral form as

dM V dx
x

x

M

M
�

1

2

1

2

which gives the relationship

 �M M M V dx
x

x
� � �2 1

1

2

 (7.4)

Equation (7.3) reveals that the change in shear force �V between any two points on the 

beam is equal to the area under the distributed-load curve between those same two points. 

Similarly, Equation (7.4) states that the change in bending moment �M between any two 

points is equal to the corresponding area under the shear-force curve.

To illustrate the signifi cance of Equations (7.3) and (7.4), consider the beam shown in 

Figure 7.10. The change in shear force between points E and F can be found from the area 

FIGURE 7.10 Relationships between areas for the load, shear, and moment diagrams.
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The change in shear force �V  between 
any two locations is equal to the area 
under the distributed-load curve.
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The terms load diagram and 

distributed-load curve are 

synonyms. For brevity, the 

distributed-load curve is 

referred to as the w diagram 

or the w curve.
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230
under the distributed-load curve between those same two points. Similarly, the change in 

bending moment between points B and C is given by the area under the V curve between 

those same two points.

Regions of Concentrated Loads and Moments

Equations (7.1) through (7.4) were derived for a portion of the beam subjected to distrib-

uted load only. Next, consider the free-body diagram of a very thin portion of the beam (see 

Figure 7.8a) directly beneath one of the concentrated loads (Figure 7.11a). Force equilib-

rium for this free body can be stated as

 Σ � �F V P V V V Py � � � � � �0 00( )  (7.5)

This equation shows that the change in shear force �V between the left and right sides of a 

thin beam element is equal to the intensity of the external concentrated load P0 acting on 

the beam element. At the location of a positive external load, the shear-force diagram is 

discontinuous. The shear-force diagram “jumps” upward by an amount equal to the inten-

sity of an upward concentrated load. A downward external concentrated load causes the 

shear-force diagram to jump downward (see Example 7.1).

Next, consider a thin beam element located at a concentrated moment (Figure 7.11b). 

Moment equilibrium for this element can be expressed as

Σ � �M M V x M M MO � � � � � � �0 0( )

As �x approaches zero,

 �M M� � 0  (7.6)

The moment diagram is discontinuous at locations where external concentrated mo-

ments are applied. Equation (7.6) reveals that the change in internal bending moment 

�M between the left and right sides of a thin beam element is equal to the negative of 

the external concentrated moment M0 acting on the beam element. If a positive external 

moment is defi ned as counterclockwise, then a positive external moment causes the 

bending-moment diagram to “jump” downward. Conversely, a negative external mo-

ment (i.e., a moment that acts clockwise) causes the internal bending-moment diagram 

to jump upward (see Example 7.2).

Maximum and Minimum Bending Moments

In mathematics, we fi nd the maximum value for a function f(x) by taking the derivative of 

the function, setting the derivative equal to zero, and determining the corresponding loca-

tion x. Once this value of x is known, it can be substituted into f(x) and the maximum value 

can be ascertained.

In the context of shear and moment diagrams, the function of interest is the bending-

moment function M(x). The derivative of this function is dM�dx, and accordingly, the 

maximum bending moment will occur at locations where dM�dx � 0. Notice, however, 

Equation (7.2), which states that dM�dx � V. If these two equations are combined, we 

can conclude that the maximum or minimum bending moment occurs at locations where 

V � 0. This conclusion will be true unless there is a discontinuity in the M diagram 

caused by an external concentrated moment. Consequently, maximum and minimum 

The positive direction for a 

concentrated load is upward.

An upward load P causes the 

shear diagram to jump upward. 

Similarly, a downward load P 

causes the shear diagram to 

jump downward.

FIGURE 7.11a Free-body 

diagram of beam element 

subjected to concentrated 

load P0.
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FIGURE 7.11b Free-body 

diagram of beam element 

subjected to concentrated 

moment M0.
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bending moments will occur at points where the V curve crosses the V � 0 axis as well 

as at points where external concentrated moments are applied to the beam. Bending mo-

ments corresponding to the location of discontinuities also should be computed to check 

for maximum or minimum bending moment values.

Six Rules for Constructing Shear-Force 
and Bending-Moment Diagrams

Equations (7.1) through (7.6) comprise six rules that can be used to construct shear-force 

and bending-moment diagrams for any beam. These rules, grouped according to usage, can 

be stated as follows:

Rules for the Shear-Force Diagram

Rule 1: The shear-force diagram is discontinuous at points subjected to concentrated loads 

P. An upward P causes the V diagram to jump upward, and a downward P causes the V 

diagram to jump downward [Equation (7.5)].

Rule 2: The change in internal shear force between any two locations x1 and x2 is equal to 

the area under the distributed-load curve [Equation (7.3)].

Rule 3: At any location x, the slope of the V diagram is equal to the intensity of the distrib-

uted load w [Equation (7.1)].

Rules for the Bending-Moment Diagram

Rule 4: The change in internal bending moment between any two locations x1 and x2 is 

equal to the area under the shear-force diagram [Equation (7.4)].

Rule 5: At any location x, the slope of the M diagram is equal to the intensity of the internal 

shear force V [Equation (7.2)].

Rule 6: The bending-moment diagram is discontinuous at points subjected to external 

concentrated moments. A clockwise external moment causes the M diagram to jump 

upward, and a counterclockwise external moment causes the M diagram to jump down-

ward [Equation (7.6)].

For convenience, these six rules are presented along with illustrations in Table 7.1.

General Procedure for Constructing Shear-Force 
and Bending-Moment Diagrams

The method for constructing V and M diagrams presented here is called the graphical 
method because the load diagram is used to construct the shear-force diagram and then the 

shear-force diagram is used to construct the bending-moment diagram. The six rules just 

outlined are used to make these constructions. The graphical method is much less time-

consuming than the process of deriving V(x) and M(x) functions for the entire beam, and it 

provides the information necessary to analyze and design beams. The general procedure 

can be summarized by the following steps:

Step 1 — Complete the Load Diagram: Sketch the beam including the supports, 

loads, and key dimensions. Calculate the external reaction forces, and if the beam is a 

cantilever, fi nd the external reaction moment. Show these reactions on the load diagram, 

 using arrows to indicate the proper direction for these forces and moments.

A negative area results from 

negative w (i.e., downward 

distributed load).

The graphical method is most 

useful when the areas associated 

with Equations (7.3) and (7.4) 

are simple rectangles or 

triangles. These types of areas 

exist when beam loadings are 

concentrated loads or uniformly 

distributed loads.

The area computed from 

negative shear force values 

is considered negative.
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Equation Load Diagram w Shear-Force Diagram V Bending-Moment Diagram M

Rule 1: Concentrated loads create discontinuities in the shear-force diagram. [Equation (7.5)]

�V � P0

Rule 2: The change in shear force is equal to the area under the distributed-load curve. [Equation (7.3)]

Rule 3: The slope of the V diagram is equal to the intensity of the distributed load w. [Equation (7.1)]

Rule 4: The change in bending moment is equal to the area under the shear-force diagram. [Equation (7.4)]

Rule 5: The slope of the M diagram is equal to the intensity of the shear force V. [Equation (7.2)]

Rule 6: Concentrated moments create discontinuities in the bending-moment diagram. [Equation (7.6)]

Table 7.1 Construction Rules for Shear-Force and Bending-Moment Diagrams
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Step 2 — Construct the Shear-Force Diagram: The shear-force diagram will be con-

structed directly beneath the load diagram. For that reason, it is convenient to draw a 

series of vertical lines beneath signifi cant beam locations to help align the diagrams. 

Begin the shear-force diagram by drawing a horizontal axis, which will serve as the x 

axis for the V diagram. The shear-force diagram should always start and end on the 

value V � 0. Construct the V diagram from the leftmost end of the beam toward the 

rightmost end, using the rules outlined on p. 225. Rules 1 and 2 will be the rules most 

frequently used to determine shear-force values at important points. Rule 3 is useful 

when sketching the proper diagram shape between these key points. Label all points 

where the shear force changes abruptly and locations where maximum or minimum 

(i.e., maximum negative values) shear forces occur.

Step 3 — Locate Key Points on the Shear-Force Diagram: Special attention should be 

paid to locating points where the V diagram crosses the V � 0 axis, because these points 

indicate locations where the bending moment will be either a maximum or a minimum 

value. For beams with distributed loadings, Rule 3 will be essential for this task.

Step 4 — Construct the Bending-Moment Diagram: The bending-moment dia-

gram will be constructed directly beneath the shear-force diagram. Begin the bending-

moment diagram by drawing a horizontal axis, which will serve as the x axis for the M 

diagram. The bending-moment diagram should always start and end on the value M � 0. 

Construct the M diagram from the leftmost end of the beam toward the rightmost end, 

using the rules outlined on p. 225. Rules 4 and 6 will be the rules most frequently used to 

determine bending-moment values at important points. Rule 5 is useful when sketching 

the proper diagram shape between these key points. Label all points where the bending 

moment changes abruptly and locations where maximum or minimum (i.e., maximum 

negative values) bending moments occur.

Starting and ending at V � 0 are 

related to the beam equilibrium 

equation ΣFy � 0. A shear-force 

diagram that does not return to 

V � 0 at the rightmost end of the 

beam indicates that equilibrium 

has not been satisfi ed. The most 

common cause of this error in 

the V diagram is a mistake in the 

calculated beam reaction forces.

Starting and ending at M � 0 are 

related to the beam equilibrium 

equation ΣM � 0. A bending-

moment diagram that does not 

return to M � 0 at the rightmost 

end of the beam can be an 

indication that equilibrium has 

not been satisfi ed. The most 

common cause of this error in 

the M diagram is a mistake in the 

calculated beam reaction forces. 

If the applied loads included 

concentrated moments, another 

common error is “jumping” 

the wrong direction at the 

discontinuities.

In the example problems that follow, a special notation is used to denote diagram values 

at discontinuities on the V and M diagrams. To illustrate this notation, suppose that a 

discontinuity occurs on the shear-force diagram at x � 15. The shear value on the �x 

side of the discontinuity will be denoted V(15�), and the value on the �x side will be 

denoted V(15�). Similarly, if a bending-moment discontinuity occurs at x � 0, then the 

moment values at the discontinuity will be denoted M(0�) and M(0�).

Draw the shear-force and bending-moment diagrams for the 

simply supported beam shown. Determine the maximum 

bending moment that occurs in the span.

Plan the Solution
Complete the load diagram by calculating the reaction forces 

at pin A and roller D. Since only concentrated loads act on this 

beam, use Rule 1 to construct the shear-force diagram from 

the load diagram. Construct the bending-moment diagram 

from the shear-force diagram, using Rule 4 to calculate the 

change in bending moments between key points.

EXAMPLE 7.6

y

x

A DCB

4 ft 8 ft 9 ft

12 kips 10 kips
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SOLUTION
Support Reactions
A FBD of the entire beam is shown. Since no loads act in the 

horizontal direction, the equilibrium equation ΣFx � 0 is 

trivial and will not be considered further. The nontrivial 

equilibrium equations are

ΣF A Dy y y� � �� 12 10 0kips kips �

ΣM DA y� �� � �( kips)( ft) ( kips)( ft) ( ft)12 4 10 12 21 0

The following beam reactions can be computed from these equations:

Ay � 14 kips and Dy � 8 kips

Construct the Shear-Force Diagram
Show the reaction forces on the load diagram acting in their proper directions. Draw a 

series of vertical lines beneath key points on the beam, and draw a horizontal line that will 

defi ne the axis for the V diagram. Use the steps outlined next to construct the V diagram. 

(Note: The lowercase letters on the V diagram correspond to the explanations given for 

each step.)

a V(0�) � 0 kips (zero shear at end of beam).

b  V(0�) � 14 kips (Rule 1: V diagram jumps up by an 

amount equal to the 14-kip reaction).

c  V(4�) � 14 kips (Rule 2: Since w � 0, the area under 

the w curve is also zero. Hence, there is no change in 

the shear-force  diagram).

d  V(4�) � 2 kips (Rule 1: V diagram jumps down by 

12 kips).

e  V(12�) � 2 kips (Rule 2: The area under the w curve is 

zero; therefore, �V � 0).

f  V(12�) � –8 kips (Rule 1: V diagram jumps down by 

10 kips).

g  V(21�) � –8 kips (Rule 2: The area under the w curve 

is zero; therefore, �V � 0).

h  V(21�) � 0 kips (Rule 1: V diagram jumps up by an 

amount equal to the 8-kip reaction force and returns 

to V � 0 kips).

Notice that the V diagram started at Va � 0 and fi nished at Vh � 0.

Construct the Bending-Moment Diagram
Starting with the V diagram, use the steps that follow to construct the M diagram. (Note: 
The lowercase letters on the M diagram correspond to the explanations given for each 

step.)

i  M(0) � 0 (zero moment at the pinned end of a simply supported beam).

j  M(4) � 56 kip-ft (Rule 4: The change in bending moment �M between any two 

points is equal to the area under the V diagram). The area under the V diagram 

 between x � 0 ft and x � 4 ft is simply the area of rectangle (1), which is 4 ft wide 

and �14 kips high. The area of this rectangle is (�14 kips) (4 ft) � �56 kip-ft 

(a positive value). Since M � 0 kip-ft at x � 0 ft and the change in bending moment 

is �M � �56 kip-ft, the bending moment at x � 4 ft is Mj � 56 kip-ft.

y

x

A DCB
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k  M(12) � 72 kip-ft (Rule 4: �M � area under the V 

diagram). �M is equal to the area under the V diagram 

between x � 8 ft and x � 12 ft. The area of rectangle 

(2) is (�2 kips) (8 ft) � �16 kip-ft. Therefore, �M � 

�16 kip-ft (a positive value). Since M � �56 kip-ft 

at j and �M � �16 kip-ft, the bending moment at k is 

Mk � �56 kip-ft � 16 kip-ft � �72 kip-ft. Even 

though the shear force decreases from �14 kips to 

�2 kips, notice that the bending moment continues to 

increase in this region.

l  M(21) � 0 kip-ft (Rule 4: �M � area under the V 

 diagram). The area under the V diagram between 

x � 12 ft and x � 21 ft is the area of rectangle (3), 

which is (–8 kips) (9 ft) � �72 kip-ft (a negative 

value); therefore, �M � �72 kip-ft. At point k, M � 

�72 kip-ft. The bending moment changes by �M � 

�72 kip-ft between k and l; consequently, the bending 

moment at x � 21 ft is Ml � 0 kip-ft. This result is cor-

rect since we know that the bending moment at roller 

D must be zero.

Notice that the M diagram started at Mi � 0 and fi nished at 

Ml � 0. Also, notice that the M diagram consists of linear 

segments. From Rule 5 (the slope of the M diagram is equal to the intensity of the shear 

force V), we can observe that the slope of the M diagram must be constant between points 

i, j, k, and l because the shear force is constant in the corresponding regions. The slope of 

the M diagram between points i and j is �14 kips, the M slope between points j and k is 

�2 kips, and the M slope between points k and l is –8 kips. The only type of curve that 

has a constant slope is a line.

The maximum shear force is V � 14 kips. The maximum bending moment is 

M � �72 kip-ft at x � 12 ft. Notice that the maximum bending moment occurs where 

the shear-force diagram crosses the V � 0 axis (between points e and f ).

y
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4 ft 8 ft 9 ft

12 kips 10 kips

14 kips 8 kips

M

56 kip-ft
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b c

d e

f
g

h
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(3)

Relationships Between the Diagram Shapes

Equation (7.3) reveals that the V diagram is obtained by integrating the distributed load w, 

and Equation (7.4) shows that the M diagram is obtained by integrating the shear force V. 

Consider, for example, a beam segment that has no distributed load (w � 0). For this case, 

integration of w gives a constant shear-force function [i.e., a zero-order function f (x0)], and 

integrating a constant V gives a linear function for the bending moment [i.e., a fi rst-order 

function f (x1)]. If a beam segment has constant w [i.e., a zero-order function f (x0)], then the 

V diagram is a fi rst-order function f (x1) and the M diagram is a second-order function f (x2). 

As can be seen, the order of the function successively increases by 1 in going from the w to 

the V to the M diagrams.

If the V diagram is constant for a beam segment, then the M diagram will be linear, 

which makes the M diagram relatively straightforward to sketch. If the V diagram is linear 

for a beam segment, then the M diagram will be quadratic (i.e., a parabola). A parabola can 

take one of two shapes: either concave or convex. The proper shape for the M diagram can 

be determined from information found on the V diagram since the slope of the M diagram is 

equal to the intensity of the shear force V [Rule 5: Equation (7.2)]. Various shear-force dia-

gram shapes and their corresponding bending-moment shapes are illustrated in Figure 7.12.
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FIGURE 7.12 Relationships between V and M diagram shapes.
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If the shear-force diagram is positive and looks like this . . .

. . . then the bending-moment diagram looks like this:

 (a) Positive shear-force diagrams
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If the shear-force diagram is negative and looks like this . . .

. . . then the bending-moment diagram looks like this:

 (b) Negative shear-force diagrams

EXAMPLE 7.7

Draw the shear-force and bending-moment diagrams for the 

simply supported beam shown. Determine the maximum 

bending moment that occurs in the span.

Plan the Solution
This example focuses on fi nding the maximum moment in a 

beam that has a uniformly distributed load. To calculate the 

y

x

A CB

4 m 2 m

1.5 kN/m
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maximum moment, we must fi rst fi nd the location where V � 0. To do this, we will de-

termine the slope of the shear-force diagram from the intensity of the distributed loading, 

using Rule 3. Once the location where V � 0 is established, the maximum bending mo-

ment can be calculated from Rule 4.

SOLUTION
Support Reactions
A FBD of the beam is shown. For the purpose of calculating 

external beam reactions, the �1.5 kN/m distributed load can 

be replaced by its resultant force of (1.5 kN/m)(4 m) � 6 kN 

 acting downward at the centroid of the loading. The equilib-

rium equations are

Σ

Σ

F A C

M C

y y y

A y

� � � �

� � � �

6 0

6 2 6 0

kN

( kN)( m) ( m)

From these equations, the beam reactions are

A Cy y� �4 2kN and kN

Construct the Shear-Force Diagram 
Show the reaction forces on the load diagram acting in their proper directions. The origi-

nal distributed load—not the 6-kN resultant force—should be used to construct the V 
 diagram. The resultant force can be used to determine the external beam reactions; how-

ever, it cannot be used to determine the shear-force variation in the beam.

The steps that follow are used to construct the V diagram. (Note: The lowercase 

 letters on the diagram correspond to the explanations given for each step.)

a V(0–) � 0 kN (zero shear at end of beam).

b  V(0�) � 4 kN (Rule 1: V diagram jumps up by an amount 

equal to the 4-kN reaction force).

c  V(4) � �2 kN (Rule 2: The change in shear force �V is 

equal to the area under the w curve). The area under the 

w curve between A and B is (�1.5 kN/m) (4 m) � �6 kN; 

therefore, �V � �6 kN. Since Vb � �4 kN, the shear 

force at c is Vb � �4 kN – 6 kN � �2 kN.

Since w is constant between A and B, the slope of the 

V diagram is also constant (Rule 3) and equal to 

�1.5 kN/m between b and c. Consequently, the V 

 diagram is linear in this region.

d  V(6�) � �2 kN (Rule 2: The area under the w curve is 

zero between B and C; therefore, �V � 0).

e  V(6�) � 0 kN (Rule 1: V diagram jumps up by an amount 

equal to the 2-kN reaction force and returns to V � 0 kN).

f  Before the V diagram is complete, we must locate the point between b and c where 

V � 0. To do this, recall that the slope of the shear-force diagram (dV�dx) is equal to 

the intensity of the distributed load w (Rule 3). In this instance, a fi nite length of the 

beam �x is considered rather than an infi nitesimal length dx. Accordingly, Equation 

(7.1) can be expressed as

 Slope of diagramV
V

x
w� �

�

�  (a)

  Given that the distributed load is w � �1.5 kN/m between points A and B, the slope 

of the V diagram between points b and c is equal to �1.5 kN/m. Since V � 4 kN 

y
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A CB

4 m 2 m
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1
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at point b, the shear force must change by �V � �4 kN to cross the V � 0 axis. Use 

the known slope and the required �V to solve for �x from Equation (a):

�
�

x
V

w
� �

�

�
�

4

1 5
2 667

kN

. kN/ m
. m

Since x � 0 m at b, point f is located at 2.667 m from the left end of the beam.

Construct the Bending-Moment Diagram
Starting with the V diagram, the steps that follow are used to construct the M diagram. 

(Note: The lowercase letters on the M diagram correspond to the explanations given for 

each step.)

g  M(0) � 0 (zero moment at the pinned end of the simply 

supported beam).

h  M(2.667) � �5.333 kN-m (Rule 4: The change in 

 bending moment �M between any two points is equal to 

the area under the V diagram). The V diagram between b 

and f is a triangle (1) with a width of 2.667 m and a height 

of �4 kN. The area of this triangle is �5.333 kN-m; 

 therefore, �M � �5.333 kN-m. Since M � 0 kN-m at 

x � 0 m and �M � �5.333 kN-m, the bending moment 

at x � 2.667 m is Mh � �5.333 kN-m.

  The shape of the bending-moment diagram between g 

and h can be sketched from Rule 5 (the slope of the M 

diagram is equal to the shear force V). The shear force at b is 

�4 kN; therefore, the M diagram has a large positive slope 

at g. Between b and f, the shear force is still positive, but it 

decreases in magnitude; consequently, the slope of the M 

diagram is positive, but it becomes less steep as x increases. 

At f, V � 0, so the slope of the M diagram becomes zero.

i  M(4) � �4 kN-m (Rule 4: �M � area under the V 

diagram). The shear-force diagram between f and c is a 

triangle (2) with a width of 1.333 m and a height of 

�2 kN. This triangle has a negative area of �1.333 kN-m; 

therefore, �M � �1.333 kN-m. At h, M � �5.333 kN-m. 

Adding �M � �1.333 kN-m to this value gives the 

 bending moment at x � 4 m: Mi � �4 kN-m.

    The shape of the bending-moment diagram between h and i can be sketched 

from Rule 5 (the slope of the M diagram is equal to the shear force V). The slope of 

the M diagram is zero at h, which corresponds to V � 0 at f. As x increases, V 

becomes increasingly negative; consequently, the slope of the M diagram becomes 

more and more negative until it reaches a slope of dM�dx � �2 kN at point i.
j  M(6) � 0 kN-m (Rule 4: �M � area under the V diagram). The area under the V 

diagram between x � 4 m and x � 6 m is simply the area of rectangle (3): (�2 kN) 

	 (2 m) � �4 kN-m. Adding �M � �4 kN-m to the bending moment at point i 
(Mi � �4 kN-m) gives the bending moment at point j: Mj � 0 kN-m. This result is 

correct since we know that the bending moment at roller C must be zero.

The maximum shear force is V � 4 kN. The maximum bending moment is M � 

�5.333 kN-m at x � 2.667 m, occurring where the shear-force diagram crosses V � 0 

(between points b and c).
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EXAMPLE 7.8

Draw the shear-force and bending-moment diagrams for the 

simply supported beam shown. Determine the maximum 

positive bending moment and the maximum negative bend-

ing moment that occur in the beam.

Plan the Solution
The challenges of this problem are

(a)  to determine both the largest positive and largest 

 negative moments and

(b)  to sketch the proper shape of the M curve as it goes from negative to positive values.

SOLUTION
Support Reactions
A FBD of the beam is shown. For the purpose of calculating 

external beam reactions, the distributed loads are replaced by 

their resultant forces. The equilibrium equations are

Σ

Σ

F B D

M

y y y

B

� � � � � �

�

30 20 50 0

30 5

kips kips kips

( kips)( ftt) ( kips)( ft)

( kips)( ft) ( ft)

�

� � �

20 5

50 15 20 0Dy

From these equations, the beam reactions are By � 65 kips 

and Dy � 35 kips.

Construct the Shear-Force Diagram
Before beginning, complete the load diagram by noting the reaction forces and using 

arrows to indicate their proper directions. Use the original distributed loads to construct 

the V diagram—not the resultant forces.

a V(�5–) � 0 kips.

b V(�5�) � �30 kips (Rule 1).

c V(0�) � �30 kips (Rule 2).

  Zero area under the w curve between A and 

B; therefore, �V � 0 between b and c.
d V(0�) � �35 kips (Rule 1).

e  V(10) � �15 kips (Rule 2: �V � area under 

w curve). The area under the w curve 

between B and C is �20 kips. Since w is con-

stant in this region, the slope of the V 

diagram is also constant (Rule 3) and equal 

to �2 kips/ft between d and e.

f  V(20�) � �35 kips (Rule 2: �V � area 

under w curve). The area under the w curve 

between C and D is �50 kips. The slope of 

the V diagram is constant (Rule 3) and equal 

to �5 kips/ft between e and f.
g V(20�) � 0 kips (Rule 1).
h  To complete the V diagram, locate the point 

between e and f where V � 0. The slope of the V 

diagram in this interval is �5 kips/ft (Rule 3).
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At point e, V � �15 kips; consequently, the shear force must change by �V � �15 kips 

to intersect the V � 0 axis. Use the known slope and the required �V to fi nd �x:

�
�

x
V

w
� �

�

�
�

15

5
3 0

kips

kips/ft
. ft

Since x � 10 ft at point e, point h is located at x � 13 ft.

Construct the Bending-Moment Diagram
Starting with the V diagram, the steps that follow are used to construct the M diagram:

i  M(–5) � 0 (zero moment at the free end of a 

simply supported beam).

j  M(0) � �150 kip-ft (Rule 4: �M � area 

under V diagram). The area of region (1) is 

(�30 kips) (5 ft) � �150 kip-ft; therefore, 

�M � �150 kip-ft. The M diagram is linear 

between points i and j, having a constant 

 negative slope of �30 kips.

k  M(10) � �100 kip-ft (Rule 4: �M � area 

under V diagram). The area of trapezoid (2) is 

�250 kip-ft; hence, �M � �250 kip-ft. 

Adding �M � �250 kip-ft to the �150 kip-ft 

moment at j gives Mk � �100 kip-ft at x � 10 ft.

  Use Rule 5 (slope of M diagram � shear 

force V) to sketch the M diagram between j and 

k. Since Vd � �35 kips, the M diagram has a 

large positive slope at j. As x increases, the 

shear force stays positive, but decreases to a 

value of Ve � �15 kips at point e. As a result, 

the slope of the M diagram will be positive 

between j and k, but it will fl atten as it nears 

point k.

l  M(13) � �122.5 kip-ft (Rule 4: �M � area

 under V diagram). Area (3) under the V 

diagram is �22.5 kip-ft; thus, �M � �22.5 

kip-ft. Add �22.5 kip-ft to Mk � �100 kip-ft 

to compute Ml � �122.5 kip-ft at point l. 
Since V � 0 at this location, the slope of the M 

diagram is zero at point l.
m  M(20) � 0 kip-ft (Rule 4: �M � area under 

V diagram). The area of triangle (4) is 

�122.5 kip-ft; therefore, �M � �122.5 kip-ft.

The shape of the bending-moment diagram between l and m can be sketched from 

Rule 5 (slope of M diagram � shear force V). The slope of the M diagram is zero at l. 
As x increases, V becomes increasingly negative; consequently, the slope of the M dia-

gram becomes more and more negative until it reaches its most negative slope at 

x � 20 ft.

The maximum positive bending moment is �122.5 kip-ft, and it occurs at x � 13 ft. 

The maximum negative bending moment is –150 kip-ft, and this bending moment occurs 

at x � 0.
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EXAMPLE 7.9

Draw the shear-force and bending-moment diagrams for the 

cantilever beam shown. Determine the maximum bending 

moment that occurs in the beam.

Plan the Solution
The effects of external concentrated moments on the V and M 

diagrams are sometimes confusing. Two external concentrated 

moments act on this cantilever beam.

SOLUTION
Support Reactions
A FBD of the beam is shown. For the purpose of calculating 

external beam reactions, the distributed loads are replaced by 

their resultant forces. The equilibrium equations are

Σ

Σ

F A

M

y y

A

� � � �

� �

180 50 0

180 1 5 50 5

kN kN

( kN)( . m) ( kN)( m)

� � �140 0kN-m MA

From these equations, the beam reactions are Ay � �130 kN 

and MA � �120 kN-m.

Construct the Shear-Force Diagram
Before beginning, complete the load diagram by noting 

the reaction forces and using arrows to indicate their 

proper directions. Use the original distributed loading to 

construct the V diagram—not the resultant force.

a V(0�) � 0 kN.

b V(0�) � �130 kN (Rule 1).

c  V(3) � �50 kN (Rule 2).

The area under the w curve between A and B is 

�180 kN; therefore, �V � �180 kN between b 

and c.

d  V(4) � �50 kN (Rule 2: �V � area under w curve). 

There is zero area under the w curve between B and 

C;  therefore, no change occurs in V.

e  V(5�) � �50 kN (Rule 2: �V � area under w curve). 

There is zero area under the w curve between C and 

D;  therefore, no change occurs in V.

f V(5�) � 0 kN (Rule 1).

g  To complete the V diagram, locate the point between b and c at which V � 0. The 

slope of the V diagram in this interval is �60 kN/m (Rule 3). At point b, V � 

�130 kN; consequently, the shear force must change by �V � �130 kN to intersect 

the V � 0 axis. Use the known slope and the required �V to fi nd �x:
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Construct the Bending-Moment Diagram
Starting with the V diagram, use the following steps to 

construct the M diagram:

h M(0–) � 0.

i  M(0�) � �120 kN-m (Rule 6: For a counterclock-

wise external moment, the M diagram jumps down by 

an amount equal to the 120 kN-m reaction).

j  M(2.1667) � �260.836 kN-m (Rule 4: �M � area 

under V diagram). Area (1) � �140.836 kN-m; 

therefore, �M � �140.836 kN-m.

  Use Rule 5 (slope of M diagram � shear force V) 

to sketch the M diagram between i and j. Since 

Vb � –130 kN, the M diagram has a large negative slope 

at i. As x increases, the shear force becomes less 

negative until it reaches zero at g. As a result, the slope 

of the M diagram will be  negative  between i and j, but it 

will fl atten as it reaches point j.
k  M(3) � �240 kN-m (Rule 4: �M � area under 

V diagram). Area (2) � �20.833 kN-m; hence, 

�M � �20.833 kN-m. Adding �M to the 

�260.836 kN-m moment at j gives 

Mk � �240 kN-m at x � 3 m.

  Use Rule 5 (slope of M diagram � shear force V) to sketch the M diagram 

between j and k. Since Vg � 0, the M diagram has zero slope at j. As x increases, the 

shear force becomes increasingly positive until it reaches its largest positive value at 

point c. This means that the slope of the M diagram will be positive between j and k, 

curving upward more and more as x increases.

l  M(4–) � �190 kN-m (Rule 4: �M � area under V diagram). Area (3) � 

�50 kN-m. Adding �M � �50 kN-m to the –240 kN-m moment at k gives 

Ml � �190 kN-m at x � 4 m.

m  M(4�) � �50 kN-m (Rule 6: For a clockwise external moment, the M diagram 

jumps up by an amount equal to the 140 kN-m external concentrated moment).

n  M(5) � 0 kN-m (Rule 4: �M � area under V diagram). Area (4) � �50 kN-m.

The maximum bending moment is –260.8 kN-m, and it occurs at x � 2.1667 m.

y

x

A B C D

140 kN-m

3 m 1 m1 m

50 kN

60 kN/m

130 kN

120 kN-m

–120 kN-m

–260.83 kN-m
–240 kN-m

–190 kN-m

–50 kN-m

M

i

j k
l

m

nh

V

50 kN

–130 kN

50 kN
a

b

g

c d e

f

2.167 m

(1)

(2) (3) (4)

Six rules for constructing shear-force and bending-moment diagrams.

 MecMovies Example M7.1 
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Dynamically generated shear-force and bending-moment diagrams for 

48 beams with various support and loading confi gurations. Brief explana-

tions are given for all key points on both the V and M diagrams.

 MecMovies Example M7.3 

M7.1 Six Rules for Constructing Shear-Force and Bending-
Moment Diagrams. Score at least 40 points for each of the six 

rules. (Minimum total score � 240 points.)

M7.2 Following the rules, score at least 350 points out of 400 

possible points.

 MecMovies ExercisesMM

FIGURE M7.1 FIGURE M7.2

P7.16–P7.30 Use the graphical method to construct the shear-

force and bending-moment diagrams for the beams shown in 

Figures P7.16–P7.30. Label all signifi cant points on each diagram, 

and identify the maximum moments (both positive and negative) 

along with their respective locations. Clearly differentiate straight-

line and curved portions of the diagrams.

PROBLEMSPROBLEMS

FIGURE P7.16

y

x

A DCB

6 ft4 ft 4 ft

28 kips 42 kips
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y

x

A DB C E

4 m 2 m4 m 4 m

35 kN 15 kN45 kN

FIGURE P7.17

y

x

A CB

6 ft 3 ft

15 kips 25 kips

FIGURE P7.18

y

x

A CB

12 ft 6 ft

10 kips/ft

FIGURE P7.19

y

x

A C DB

9 ft 3 ft3 ft

4.5 kips/ft

FIGURE P7.20

A B

3 m 1 m

y

x

60 kN-m
40 kN/m

50 kN

FIGURE P7.21

y

x

A CB

5 ft3 ft

28 kips

9 kips/ft

FIGURE P7.22

y

x

A DB C

9 ft6 ft 5 ft

10 kips/ft

FIGURE P7.23

y

x

A EB C D

7 ft3.5 ft 3.5 ft4 ft

38 kips

4.5 kips/ft

FIGURE P7.24

y

x

A DB C

4 m2.5 m 2.5 m

60 kN

45 kN/m

FIGURE P7.25

y

x

A CB

60 kip-ft

3.5 ft 6.5 ft

10 kips

FIGURE P7.26

y

x

A CB

50 kN-m

3.5 m 2.5 m

2 kN 11 kN

FIGURE P7.27

FIGURE P7.28

y

x

A DCB

66 kN-m 96 kN-m

3 m3 m 6 m
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P7.31–P7.32 Draw the shear-force and bending-moment dia-

gram for the beams shown in Figures P7.31 and P7.32. Assume the 

upward reaction provided by the ground to be uniformly distrib-

uted. Label all signifi cant points on each diagram. Determine the 

maximum value of

(a) the internal shear force and

(b) the internal bending moment.

y

x

A B

6 m80 kN-m 50 kN-m

25 kN/m

FIGURE P7.29

y

x

7 kN/m

A DB EC

25 kN-m

4 m 3 m4 m 4 m

15 kN

FIGURE P7.30

y

x

A CB

3 m 12 m

125 kN

50 kN/m

A DB C E

4 ft 4 ft 4 ft 4 ft

25 kips 25 kips

2 kips/ft

FIGURE P7.31

A DB C E

1 m1 m1 m 1 m

50 kN

40 kN/m40 kN/m

FIGURE P7.32

P7.33–P7.36 Use the graphical method to construct the shear-

force and bending-moment diagrams for the beams shown in Fig-

ures P7.33–P7.36. Label all signifi cant points on each diagram, and 

identify the maximum moments along with their respective loca-

tions. Additionally, determine

(a)  V and M in the beam at a point located 0.75 m to the right of B.
(b) V and M in the beam at a point located 1.25 m to the left of C.

FIGURE P7.33

y

x

A DB C

3 m 6 m 4 m

15 kN 18 kN

40 kN/m

FIGURE P7.34

y

x

A B C

3 m 5 m

25 kN/m
65 kN/m

FIGURE P7.35

y

x

A CB

3.5 m2.5 m

120 kN-m

75 kN 60 kN

35 kN/m

FIGURE P7.36

c07EquilibriumofBeams.indd Page 245  1/30/12  4:44 PM user-F393c07EquilibriumofBeams.indd Page 245  1/30/12  4:44 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



246

P7.37–P7.39 Use the graphical method to construct the 

shear-force and bending-moment diagrams for the beams shown 

in Figures P7.37–P7.39. Label all signifi cant points on each dia-

gram, and identify the maximum moments along with their re-

spective locations. Additionally, determine

(a) V and M in the beam at a point located 1.50 m to the right of B.
(b) V and M in the beam at a point located 1.25 m to the left of D.

y

x

A DB E

C

3 m 3 m6 m 3 m

52 kN 36 kN

150 kN-m

35 kN/m

FIGURE P7.37

y

x

A DB EC

3.5 m 2.5 m5.5 m 4.5 m

80 kN 20 kN

25 kN/m

FIGURE P7.38

y

x

A DB C

2 m 2 m 5 m

160 kN

50 kN/m
120 kN/m

FIGURE P7.39

P7.40–P7.55 Use the graphical method to construct the shear-

force and bending-moment diagrams for the beams shown in Fig-

ures P7.40–P7.55. Label all signifi cant points on each diagram, and 

identify the maximum moments (both positive and negative) along 

with their respective locations. Clearly differentiate straight-line 

and curved portions of the diagrams.

y

x

A B DC

225 kN-m

4 m 2.5 m3.5 m

60 kN/m
120 kN/m

FIGURE P7.40

y

x

A B DC E

25 kip-ft

3 ft 5 ft 5 ft 5 ft

25 kips

5 kips/ft

FIGURE P7.41

y

x

8 kips/ft

A B DC

35 kip-ft

3 ft 9 ft 3 ft

17 kips

FIGURE P7.42

y

x

A B EDC

90 kip-ft

10 ft 10 ft 10 ft 10 ft

60 kips60 kips

3 kips/ft
6 kips/ft

FIGURE P7.43

FIGURE P7.44

y

x

A DB EC

5 ft 3 ft12 ft8 ft

25 kip-ft

2 kips/ft

15 kips5 kips 10 kips

C

FIGURE P7.45

y

x

A CB

2 m 3 m

20 kN 50 kN
50 kN/m

25 kN/m
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y

x

A CB

8 ft 7 ft

70 kips20 kips

6 kips/ft
12 kips/ft

FIGURE P7.46

y

x

A DB EC

600 lb/ft
800 lb/ft

4 ft 5 ft5 ft5 ft

9,000 lb-ft
4,000 lb-ft

3,600 lb

C

FIGURE P7.47

y

x

60 kN/m 60 kN/m
120 kN/m

2 m 2 m 4 m 2 m

A DB EC 500 kN-m400
kN-m

600
kN-m

150 kN

FIGURE P7.48

A EC DB

3 m1.5 m1 m2.5 m

75 kN/m
55 kN/m

100 kN

60 kN-m

Frictionless pin

FIGURE P7.49

A EB C D

10 ft 10 ft5 ft

8 ft

500 lb/ft

1,200 lb
Frictionless pin

FIGURE P7.50

y

x

A B C

7 m 3 m

55 kN
70 kN/m

FIGURE P7.51

y

x

A DB EC

8 ft 7 ft 10 ft 5 ft

4 kips/ft
6 kips/ft

FIGURE P7.52

y

x

A B C D

3 m1 m 2 m

25 kN
30 kN/m

FIGURE P7.54

y

x

A B C D

4 ft 9 ft3 ft

9 kips
4 kips/ft

FIGURE P7.53

y

x

A B C

22 ft 8 ft

6 kips/ft
9 kips/ft

FIGURE P7.55
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In Section 7.2, we constructed shear and moment diagrams by developing functions that 

express the variation of internal shear force V(x) and internal bending moment M(x) along 

the beam and then plotting these functions. The method of integration used in Section 7.2 

is convenient if the loads can be expressed as continuous functions acting over the entire 

beam length. However, if several loadings act on the beam, this approach can become ex-

tremely tedious and time-consuming because a new set of functions must be developed for 

each interval of the beam.

In this section, a method will be presented in which a single function is formulated 

that incorporates all loads acting on the beam. This single load function w(x) will be con-

structed in such a way that it will be continuous for the entire length of the beam even 

though the loads may not be. The load function w(x) can then be integrated twice—fi rst to 

derive V(x) and a second time to obtain M(x). To express the load on the beam in a single 

function, two types of mathematical operators will be employed. Macaulay functions will 

be used to describe distributed loads, and singularity functions will be used to represent 

concentrated forces and concentrated moments. Together, these functions are termed dis-
continuity functions. Their usage has restrictions that distinguish them from ordinary 

functions. To provide a clear indication of these restrictions, the traditional parentheses 

used with functions are replaced by angle brackets, called Macaulay brackets, that take the 

form 〈x � a〉n.

Macaulay Functions

Distributed loadings can be represented by Macaulay functions, which are defi ned in 

general terms as follows:

 x a
x a

x a x a
n n

n

n
� �

�

� �
� �

0
0 0 1 2

when

( ) when
for ( , , , .. . .)  (7.7)

Whenever the term inside the brackets is less than zero, the function has no value and it is 

as if the function does not exist. However, when the term inside the brackets is greater 

than or equal to zero, the Macaulay function behaves like an ordinary function, which 

would be written with parentheses. In other words, the Macaulay function acts like a 

switch in which the function turns on for values of x greater than or equal to a.

Three Macaulay functions corresponding to n � 0, n � 1, and n � 2 are plotted in 

Figure 7.13. In Figure 7.13a, the function 〈x � a〉0 is discontinuous at x � a, producing 

a plot in the shape of a step. Accordingly, this function is termed a step function. From 

7.4  Discontinuity Functions to Represent 
Load, Shear, and Moment

a
x

x – a 0

O a
x

x – a 1

O a
x

x – a 2

O

 (a) n � 0  (b) n � 1  (c) n � 2

FIGURE 7.13 Graphs of Macaulay functions.
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the defi nition given in Equation (7.7), and with the recognition that any number raised to 

the zero power is defi ned as unity, the step function can be summarized as

 x a
x a

x a
� �

�

�

0 0

1

when

when
 (7.8)

When scaled by a constant value equal to the load intensity, the step function 〈x � a〉0 can 

be used to represent uniformly distributed loadings. In Figure 7.13b, the function 

〈x � a〉1 is termed a ramp function because it produces a linearly increasing plot beginning 

at x � a. Accordingly, the ramp function 〈x � a〉1 combined with the appropriate load in-

tensity can be used to represent linearly distributed loadings. The function 〈x � a〉2 in 

Figure 7.13c produces a parabolic plot beginning at x � a.

Observe that the quantity inside of the Macaulay brackets is a measure of length; 

therefore, it will include a length dimension such as meters or feet. The Macaulay functions 

will be scaled by a constant to account for the intensity of the loading and to ensure that 

all terms included in the load function w(x) have consistent units of force per unit length. 

Table 7.2 gives discontinuity expressions for various types of loads.

Singularity Functions

Singularity functions are used to represent concentrated forces P0 and concentrated 

moments M0. A concentrated force P0 can be considered a special case of a distributed 

load in which an extremely large load P0 acts over a distance � that approaches zero 

(Figure 7.14a). Thus, the intensity of the loading is w � P0 ��, and the area under the 

loading is equivalent to P. This can be expressed by the singularity function

 w x P x a
x a

P x a
( )

when

when
� � �

�

�

�
0

1

0

0
 (7.9)

in which the function has a value of P0 only at x � a and is otherwise zero. Observe that 

n � –1. Since the bracketed term has a length unit, the result of the function has units of 

force per unit length, as required for dimensional consistency.

Similarly, a concentrated moment M0 can be considered as a special case involving 

two distributed loadings, as shown in Figure 7.14b. For this type of load, the following 

singularity function can be employed:

 w x M x a
x a

M x a
( )

when

when
� � �

�

�

�
0

2

0

0
 (7.10)

As before, the function has a value of M0 only at x � a and is otherwise zero. In Equation 

(7.10), notice that n � �2, which ensures that the result of the function has consistent units 

of force per unit length.

Integrals of Discontinuity Functions

Integration of discontinuity functions is defi ned by the following rules:

 x a dx
x a

n
n

x a n

n

n

n

� �

�

�
�

� �

�

�

1

1

1
0

0

for

for

 (7.11)

Notice that for negative values of the exponent n, the only effect of integration is that n 

increases by 1.
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Constants of Integration. The integration of Macaulay functions does produce con-

stants of integration. The constant of integration that results from the integration of w(x) 

to obtain V(x) is simply the shear force at x � 0; that is, V(0). Similarly, the second con-

stant of integration that results when V(x) is integrated to obtain M(x) is the bending mo-

ment at x � 0; that is, M(0). If the loading function w(x) is written solely in terms of the 

applied loads, then constants of integration must be included in the integration process 

and evaluated with the use of boundary conditions. As these constants of integration are 

introduced into either the V(x) or M(x) functions, they are expressed by singularity func-

tions in the form C〈x〉0. After their introduction into either V(x) or M(x), the constants are 

then integrated in the usual manner in subsequent integrals.

However, the same result for both V(x) or M(x) can be obtained by including the reaction 

forces and moments in the load function w(x). The inclusion of reaction forces and moments 

in w(x) has considerable appeal since the constants of integration for both V(x) or M(x) are 

automatically determined without the need for explicit reference to boundary conditions. The 

reactions for statically determinate beams are easily computed in a fashion that is familiar to 

all engineering students. Accordingly, beam reaction forces and moments will be incorpo-

rated in the load function w(x) in the examples presented subsequently in this section.

To summarize, constants of integration arise in the double integration of w(x) to obtain 

V(x) and M(x). If w(x) is formulated solely in terms of the applied loads, then these constants 

of integration must be explicitly determined with the use of boundary conditions. However, 

if beam reaction forces and moments are included in w(x) along with the applied loads, then 

constants of integration are redundant and thus unnecessary for the V(x) and M(x) functions.

Application of Discontinuity Functions to Determine V and M. Table 7.2 summa-

rizes discontinuity expressions for w(x) required for various common loadings. It is impor-

tant to keep in mind that Macaulay functions continue indefi nitely for x � a. In other 

words, once a Macaulay function is switched on, it stays on for all increasing values of x. 

In accordance with the concept of superposition, a Macaulay function is cancelled by the 

addition of another Macaulay function to the beam’s w(x) function.

Macaulay functions continue 

indefi nitely for x � a. Therefore, 

a new Macaulay function (or in 

some cases, several functions) 

must be introduced to terminate 

a previous function.

FIGURE 7.14 Singularity 

functions to represent (a) 

concentrated forces and (b) 

concentrated moments.

w(x)

x

a

x – a –2
0M

w(x)

x

a

	

	

= 2
P0—	

M0—
	

 (b) Concentrated moment as a special case of a distributed load

w(x)

x

a

w(x)

x

a

	

P0—	

P0 x – a –1

 (a) Concentrated force as a special case of a distributed load
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Table 7.2 Basic Loads Represented by Discontinuity Functions

Case Load on Beam Discontinuity Expressions

1

w

x

a

0M
w x M x a

V x M x a

M x M x a

( )

( )

( )

�

�

�

�

� �

�

�

0
2

0
1

0
0

2

0P

w

x

a

w x P x a

V x P x a

M x P x a

( )

( )

( )

0
1

0
0

0
1

��

��

��

�

3

w0
w

x

a

w x w x a

V x w x a

M x
w

x a

( )

( )

( )

0
0

0
1

0 2

2

� �

� �

� �

4

w

x

a b

w0

w x
w

b
x a

V x
w

b
x a

M x
w

b
x a

( )

( )

( )

0 1

0 2

0 3

2

6

� �

� �

� �

5

w0
w

x

a1

a2

w x w x a w x a

V x w x a w x a

M x
w

( )

( )

( )

0 1
0

0 2
0

0 1
1

0 2
1

0

22 2
1

2 0
2

2
x a

w
x a

�

�

�

�

�

� � �

� �

� �

6

w

x

a1

a2

b

w0

w x
w

b
x a

w

b
x a w x a

V x
w

b
x a

w

( )

( )

0
1

1 0
2

1
0 2

0

0
1

2 0

2 22

6 6 2

2
2

0 2
1

0
1

3 0
2

3 0

b
x a w x a

M x
w

b
x a

w

b
x a

w
x a( ) 22

2

�

�

�

�

� � � � �

�����

� � � �

7

w

x

a1

a2

b

w0

w x w x a
w

b
x a

w

b
x a

V x w x a
w

b

( )
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0 1
0 0

1
1 0

2
1

0 1
1 0

2
xx a

w

b
x a

M x
w

x a
w

b
x a

w

b
x a

1
2 0

2
2

0
1

2 0
1

3 0

2

2 6 6
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3
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�

�

�
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�
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EXAMPLE 7.10

Use discontinuity functions to obtain expressions for the inter-

nal shear force V(x) and internal bending moment M(x) in the 

beam shown. Use these expressions to plot the shear-force and 

bending-moment diagrams for the beam.

Plan the Solution
Determine the reactions at simple supports A and F. Using 

Table 7.2, write expressions of w(x) for each of the three 

loads acting on the beam, as well as for the two support reactions. Integrate w(x) to 

determine an equation for the shear force V(x), and then integrate V(x) to determine an 

equation for the bending moment M(x). Plot these functions to complete the shear-

force and bending-moment diagrams.

SOLUTION
Support Reactions
A FBD of the beam is shown. The equilibrium equations 

are

  

Σ
Σ

F A

F A F
x x

y y y

0

45 30

(trivial)

kN kN/m( ) (( m)

( kN)( m)

( ) ( m)( . m

3 0

120 45 4

30 3 7 5

Σ MA kN-m

kN/m )) ( m)Fy 12 0

� �

� �

�

� ��

�

� � �

From these equations, the beam reactions are

A Fy y73 75 61 25. kN and . kN� �

Discontinuity Expressions
Reaction force Ay: The upward reaction force at A is expressed by

 w x A x xy( ) m . kN m0 73 75 01 1
� � ��

� �
 (a)

120 kN-m concentrated moment: From case 1 of Table 7.2, the 120 kN-m concentrated 

moment acting at x � 2 m is represented by the singularity function:

 w x x( ) m120 2 2kN-m� � �
�   (b)

Note that the negative sign is included to account for the counterclockwise moment rota-

tion shown on this beam.

45-kN concentrated load: From case 2 of Table 7.2, the 45-kN concentrated load acting 

at x � 4 m is represented by the singularity function:

 w x x( ) kN m� � �
�45 4 1  (c)

Note that the negative sign is included to account for the downward direction of the 

45-kN concentrated load shown on this beam.

30 kN/m uniformly distributed load: The uniformly distributed load requires the use of 

two terms. Term 1 applies the 30 kN/m downward load at point D where x � 6 m:

w x x( ) m� � �30 6 0kN/m

y

x

A DB EC F

2 m 3 m2 m 3 m2 m

120 kN-m

45 kN

30 kN/m

y

x

A DB EC F

Ay

Ax

Fy

2 m 3 m2 m 3 m2 m

120 kN-m

45 kN

30 kN/m
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The uniformly distributed load represented by this term continues to act on the beam 

for values of x greater than x � 6 m. For the beam and loading considered here, the 

distributed load should act only within the interval 6 m � x � 9 m. To terminate the 

downward distributed load at x � 9 m requires the superposition of a second term. 

The second term applies an equal-magnitude upward uniformly distributed load that 

begins at E where x � 9 m:

 w x x x( ) m m� � � � �30 6 30 90 0kN/m kN/m  (d)

The addition of these two terms produces a downward 30 kN/m distributed load that 

begins at x � 6 m and terminates at x � 9 m.

Reaction force Fy: The upward reaction force at F is expressed by

 w x F x xy( ) m kN m� �12 61 25 12�1
� �

�1.  (e)

As a practical matter, this term has no effect since the value of Equation (e) is zero for all 

values of x � 12 m. Since the beam is only 12 m long, values of x 
 12 m make no sense 

in this situation. However, this term will be retained here for completeness and clarity.

Complete beam loading expression: The sum of Equations (a) through (e) gives the load 

expression w(x) for the entire beam:

w x x x x( ) . kN m m kN m� � � � � �

�

� � �73 75 0 120 2 45 4

30

1 2 1kN-m

kNN/m kN/mx x x� � � � �
�6 30 9 61 25 120 0 1m m . kN m

 (f)

Shear-force equation: Using the integration rules given in Equation (7.11), integrate 

Equation (f) to derive the shear-force equation for the beam:

 

V x w x dx

x x x

( ) ( )

. kN m m kN

�

� � � � � �
�73 75 0 120 2 45 40 1kN-m mm

m m . kN m

0

1 1 030 6 30 9 61 25 12� � � � � �kN/m kN/mx x x
 

(g)

Bending-moment equation: Similarly, integrate Equation (g) to derive the bending-

moment equation for the beam:

M x V x dx

x x x

( ) ( )

. kN m m kN m

�

� � � � � �73 75 0 120 2 45 41 0kN-m 11

2 2 130

2
6

30

2
9 61 25 12� � � � � �

kN/m kN/m
x x xm m . kN m

 (h)

x

D E F

Fy

3 m3 m6 m

30 kN/m

30 kN/m distributed load 
beginning at D and ending at E

x

D E F

Fy

3 m3 m6 m

30 kN/m

x

D E F

Fy

3 m3 m6 m

30 kN/m

=+

Term 1 : Downward uniformly
distributed load beginning at D

–  (30 kN/m) x – 6 m 0 +  (30 kN/m) x – 9 m 0 

Term 2: Upward uniformly 
distributed load beginning at E
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Plot the Functions
Plot the V(x) and M(x) functions given in Equations (g) 

and (h) for 0 m � x � 12 m to create the shear-force and 

bending-moment diagram shown.

147.50 kN-m
183.75 kN-m

246.28 kN-m

M

232.50 kN-m

27.50 kN-m

175.00 kN-m

6.96 m

73.75 kN

–  61.25 kN

28.75 kN

–  61.25 kN

73.75 kN

V

y

x

A DB EC F

73.75 kN 61.25 kN

2 m 3 m2 m 3 m2 m

120 kN-m

45 kN

30 kN/m

EXAMPLE 7.11

Express the linearly distributed load acting on the beam between A and B with 

discontinuity functions.

Plan the Solution
The expressions found in Table 7.2 are explained by means of the example of the 

loading shown on the beam to the left.

SOLUTION
 When we refer to case 4 of Table 7.2, our fi rst instinct might be to represent the 

linearly distributed load on the beam with just a single term:

w x x( )
. m

m� � �
50

2 5
0 1kN/m

However, this term by itself produces a load that continues to increase as x increases. To 

terminate the linear load at B, we might try adding the algebraic inverse of the linearly 

distributed load to the w(x) equation:

w x x x( )
. m

m
. m

. m� � � � �
50

2 5
0

50

2 5
2 51 1kN/m kN/m

The sum of these two expressions represents the loading shown next. While the second 

expression has indeed cancelled out the linearly distributed load from B onward, a uni-

formly distributed loading remains.

x

y

A B C

2.5 m 4.0 m

50 kN/m
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To cancel this uniformly distributed load, a third term that begins at B is required:

w x x x x( )
. m

m
. m

. m� � � � � �
50

2 5
0

50

2 5
2 5 501 1kN/m kN/m

kN/m � 2 5 0. m

As shown in this example, three terms are required to represent the linearly increas-

ing load that acts between A and B. Case 6 of Table 7.2 summarizes the general disconti-

nuity expressions for a linearly increasing load. Similar reasoning is used to develop case 

7 of Table 7.2 for a linearly decreasing distributed loading.

=

. . . eliminates the linear portion of the load; 
however, a uniformly distributed load remains.

Adding the inverse of the linearly 
increasing load to the beam at B . . . 

x – 0 m
1
 

50 kN/m
2.5 m

–Term 1 =

x – 2.5 m
1
 

50 kN/m
2.5 m

+Term 2 =

x

2.5 m

BA

50 kN/m
x

2.5 m

BA

50 kN/m

=

Therefore, three terms must be 
superimposed in order to obtain the desired 
linearly distributed load between A and B.

An additional uniform load term 
that begins at B is required to 

cancel the remaining uniform load.

x – 2.5 m 0
50 kN/m+Term 3 =

x

2.5 m

BA

50 kN/m
x

2.5 m

BA

50 kN/m
x

EXAMPLE 7.12

Use discontinuity functions to obtain expressions for the inter-

nal shear force V(x) and internal bending moment M(x) in the 

beam shown. Use these expressions to plot the shear-force and 

bending-moment diagrams for the beam.

Plan the Solution
Determine the reactions at simple supports A and F.  Using 

Table 7.2, write w(x) expressions for the linearly decreasing 

load between A and B and for the linearly increasing load between C and D, as well as 

for the two support reactions. Integrate w(x) to determine an equation for the shear 

force V(x), and then integrate V(x) to determine an equation for the bending moment 

M(x). Plot these functions to complete the shear-force and bending-moment diagrams.

x

A DB EC

6 ft 6 ft6 ft6 ft

9 kips/ft 11 kips/ft

5 kips/ft
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SOLUTION
Support Reactions
A FBD of the beam is shown to the left. Before beginning, 

it is convenient to subdivide the linearly increasing load 

between C and D into

(a)  a uniformly distributed load that has an intensity of 

5 kips/ft and

(b)  a linearly distributed load that has a maximum 

 intensity of 6 kips/ft.

Accordingly, the beam equilibrium equations are

Σ

Σ

F E

F B E

x x

y y y

� �

� � � �

0

1

2

(trivial)

(9 kips/ft) (6 ft) (5 kkips/ft) (6 ft) (6 kips/ft) (6 ft)

(9 kips/

� �

�

1

2
0

1

2
ΣMB fft) (6 ft) (4 ft) (5 kips/ft) (6 ft) (9 ft)

(6 kips/ft

�

�
1

2
)) (6 ft) (10 ft) (18 ft)� �Ey 0

From these equations, the beam reactions are

B Ey y� �56 0 19 0. .kips and kips

Discontinuity Expressions
Decreasing linearly distributed load between A and B: Use case 7 of Table 7.2 to write 

the following expression for the 9 kips/ft linearly distributed loading:

     w x x x( ) � � � � � �9 0
9

6
0

90 1kips/ft ft
kips/ft

ft
ft

kips/ft

66 ft
ftx � 6 1

 (a)

Reaction force By: The upward reaction force at B is expressed with the use of case 2 

of Table 7.2:

 w x x( ) .� �
�56 0 6 1kips ft  (b)

Uniformly distributed load between C and D: The uniformly distributed load requires the 

use of two terms. From case 5 of Table 7.2, express this loading as

 
w x x x( ) � � � � �5 12 5 180 0kips/ft ft kips/ft ft

 
(c)

Increasing linearly distributed load between C and D: Use case 6 of Table 7.2 to write the 

following expression for the 6 kips/ft linearly distributed loading:

   w x x x( ) � � � � � �
6

12
6

18 61 1kips/ft

6 ft
ft

kips/ft

6 ft
ft kipps/ft ftx �18 0

 (d)

Reaction force Ey: The upward reaction force at E is expressed by

 w x x( ) kips ft� �
�19 24 1

 (e)

As a practical matter, this term has no effect since the value of Equation (e) is zero for all 

values of x � 24 ft. However, this term will be retained here for completeness and clarity.

x

DC

6 ft12 ft

6 kips/ft

5 kips/ft

A DB EC

By

xE

yE

6 ft 6 ft6 ft6 ft

9 kips/ft
11 kips/ft

5 kips/ft
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Complete beam loading expression: The sum of Equations (a) through (e) gives the load 

expression w(x) for the entire beam:

w x x x( ) � � � � � �9 0
9

0
90 1kips/ft ft

kips/ft

6 ft
ft

kips/ft

66 ft
ft

kips ft kips/ft ft kip

x

x x

�

� � � � �
�

6

56 0 6 5 12 5

1

1 0. ss/ft ft

kips/ft

6 ft
ft

kips/ft

6 ft

x

x x

�

� � � �

18

6
12

6
18

0

1 fft

kips/ft ft kips 24 ft

1

0 16 18 19� � � �
�x x

 (f)

Shear-force equation: Integrate Equation (f), using the integration rules given in 

Equation (7.11) to derive the shear-force equation for the beam:

V x w x dx

x x

( ) ( )�

� � � � �9 0
9

01kips/ft ft
kips/ft

2 (6 ft)
ftt

kips/ft

2 (6 ft)
ft

kips ft kips/f

2 2

0

9
6

56 0 6 5

� �

� � �

x

x. tt ft kips/ft ft

kips/ft

2 (6 ft)
ft

x x

x

� � �

� �

12 5 18

6
12

1 1

2
� �

� � �

6
18

6 18 19

2

1

kips/ft

2 (6 ft)
ft

kips/ft ft kips

x

x x � 24 ft 0

 (g)

Bending-moment equation: Similarly, integrate Equation (g) to derive the bending-

moment equation for the beam:

 

M x V x dx

x x

( ) ( )�

� � � � �
9

0
9

02kips/ft

2
ft

kips/ft

6 (6 ft)
fft

kips/ft

6 (6 ft)
ft kips ft

kips/

3

3 19
6 56 0 6

5

� � � �

�

x x.

fft

2
ft

kips/ft

2
ft

kips/ft

6 (6 ft)

x x

x

� � �

� �

12
5

18

6
12

2 2

fft
kips/ft

6 (6 ft)
ft

kips/ft

2
ft k

3 3

2

6
18

6
18 19

� �

� � �

x

x iips 24 ftx �
1

 (h)

Plot the Functions
Plot the V(x) and M(x) functions given in Equations (g) and 

(h) for 0 ft � x � 24 ft to create the shear-force and bending-

moment diagram shown.

29 kips

–19 kips
– 27 kips

–19 kips

29 kips

V

4.11 ft

–108 kip-ft

66 kip-ft

131.39 kip-ft

M

114 kip-ft

x

A DB EC

56 kips 19 kips

6 ft 6 ft6 ft6 ft

9 kips/ft 11 kips/ft

5 kips/ft
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P7.56–P7.66 For the beams and loading shown in Figures 

P7.56–P7.66,

(a)  use discontinuity functions to write the expression for w(x); 

include the beam reactions in this expression.

(b) integrate w(x) twice to determine V(x) and M(x).

(c)  use V(x) and M(x) to plot the shear-force and bending-moment 

diagrams.

PROBLEMSPROBLEMS

y

x

A DB C

3 ft2 ft 4 ft

450 lb180 lb

FIGURE P7.56

x

A DB C

2 m3 m2.5 m

10 kN 35 kN

FIGURE P7.57

x

A EB C D

5 m3 m3 m 4 m

30 kN 15 kN20 kN
y

FIGURE P7.58

y

x

A CB

3 m 3 m

20 kN-m

5 kN

FIGURE P7.59

y

x

A CB

2 m3 m

35 kN/m

FIGURE P7.60

FIGURE P7.61

y

x

A DB C

2 m4 m 2 m

32 kN

25 kN/m

y

x

A DB EC

5 ft 4 ft7 ft4 ft

8,000 lb-ft

3,000 lb

800 lb/ft

FIGURE P7.62

y

x

A DCB

12 ft 6 ft 6 ft

800 lb/ft 800 lb/ft

FIGURE P7.63

y

x

A DB C

2 m1 m 2 m

18 kN/m12 kN-m

FIGURE P7.64

y

x

A B C

22 ft 8 ft

6 kips/ft
9 kips/ft

FIGURE P7.65

y

x

A CB

3 m 1 m

20 kN/m

50 kN/m

FIGURE P7.66

c07EquilibriumofBeams.indd Page 258  1/30/12  4:45 PM user-F393c07EquilibriumofBeams.indd Page 258  1/30/12  4:45 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



259

P7.67–P7.72 For the beams and loading shown in Figures 

P7.67–P7.72,

(a)  use discontinuity functions to write the expression for w(x); 

include the beam reactions in this expression.

(b) integrate w(x) twice to determine V(x) and M(x).

(c)  determine the maximum bending moment in the beam 

between the two simple supports.

FIGURE P7.67

y

x

A CB

3 m1 m

9 kN-m
18 kN/m

y

x

A CB

9 ft 5 ft

5 kips/ft

FIGURE P7.68

y

x

A B DC

6 ft 11 ft10 ft

5 kips/ft
9 kips/ft

FIGURE P7.69

x

A DB C

2.0 m4.5 m1.5 m

60 kN
90 kN/m

FIGURE P7.72

y

x

A B DC

1.5 m4.0 m2.5 m

25 kN/m

70 kN/m

FIGURE P7.70

x

A DB C

2.0 m5.5 m1.5 m

70 kN/m
30 kN/m 50 kN/m

FIGURE P7.71
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Bending

CHAPTER 8

261

Perhaps the most common type of structural member is the beam. In actual structures and ma-

chines, beams can be found in a wide variety of sizes, shapes, and orientations. The elementary 

stress analysis of the beam constitutes one of the more interesting facets of mechanics of materials.

Beams are usually long (compared with their cross-sectional dimensions), straight, 

prismatic members that support transverse loads, which are loads that act perpendicular to 

the longitudinal axis of the member (Figure 8.1a). Loads on a beam cause it to bend (or 

fl ex) as opposed to stretching, compressing, or twisting. The applied loads cause the 

initially straight member to deform into a curved shape (Figure 8.1b), which is called the 

defl ection curve or the elastic curve.

In this study, we will consider beams that are initially straight and have a longitudinal 
plane of symmetry (Figure 8.2a). The member cross section, the support conditions, and 

8.1 Introduction

The term transverse refers to 

loads and sections that are 

perpendicular to the longitudinal 

axis of the member.

FIGURE 8.1a Transverse loads applied to a beam.

x

y

z

w(x) P

x

y

z

w(x)

P

FIGURE 8.1b Defl ection caused by bending.
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the applied loads are symmetric with respect to this plane of symmetry. Coordinate axes 

used for beams will be defi ned so that the longitudinal axis of the member will be desig-

nated the x axis; the y axis will be directed vertically upward, and the z axis will be oriented 

so that the x–y–z axes form a right-handed coordinate system. In Figure 8.1b, the x–y plane 

is called the plane of bending, since the loads and the member defl ection occur in this 

plane. Bending (also termed fl exure) is said to occur about the z axis.

In discussing and understanding the behavior of beams, it is convenient to imagine the 

beam to be a bundle of many longitudinal fi bers, which run parallel to the longitudinal axis 

(or simply the axis) of the beam (Figure 8.2b). This terminology originated when the most 

common material used to construct beams was wood, which is a fi brous material. Although 

metals such as steel and aluminum do not contain fi bers, the terminology is nevertheless 

quite useful to describe and understand bending behavior. As shown in Figure 8.2b, bending 

causes fi bers in the upper portion of the beam to be shortened or compressed, while fi bers 

in the lower portion are elongated in tension.

Pure Bending

Pure bending refers to fl exure of a beam in response to constant (i.e., equal) bending 

moments. For example, the region between points B and C for the beam shown in Figure 8.3 

Longitudinal plane of symmetry

Longitudinal axis

x

y

z

FIGURE 8.2a Longitudinal plane of symmetry.

Longitudinal “fibers”

x

y

z

w(x)

P

FIGURE 8.2b The notion of longitudinal 

“fi bers.”

A DCB

aa b

y

x

PP

P P
�x

h k

kh

M

M = Pa

V = 0
V

P

P–

FIGURE 8.3 Example of pure bending in a region of a beam.

BENDING
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FLEXURAL STRAINS

y

�
y–�

��

�x

�x�

h

h

k

k

O

Neutral surface

FIGURE 8.4 Flexural 

 deformation.

To investigate the strains produced in a beam subjected to pure bending, consider a short 

segment of the beam shown in Figure 8.3. The segment, located between sections h–h and 

k–k, is shown in Figure 8.4 with the deformations greatly exaggerated. The beam is as-

sumed to be straight before bending occurs, and the beam cross section is constant. (In 

other words, the beam is a prismatic member.) Sections h–h and k–k, which were plane 

surfaces before deformation, remain plane surfaces after deformation.

If the beam is initially straight, then all beam fi bers between sections h–h and k–k are 

initially the same length �x. After bending occurs, the beam fi bers in the upper portions of 

the cross section become shortened, and fi bers in the lower portions become elongated. 

However, a single surface exists between the upper and lower surfaces of the beam where 

the beam fi bers neither shorten nor elongate. This surface is called the neutral surface of 

the beam, and the intersection of this surface with any cross section is called the neutral 
axis of the section. All fi bers on one side of the neutral surface are compressed, and those 

on the opposite side are elongated.

When subjected to pure bending, the beam deforms into the shape of a circular arc. 

The center of this arc O is called the center of curvature. The radial distance from the 

center of curvature to the beam neutral surface is called the radius of curvature, and it is 

designated by the Greek letter � (rho).

Consider a longitudinal fi ber located at some distance y above the neutral surface. In 

other words, the origin of the y coordinate axis will be located on the neutral surface. Be-

fore bending, the fi ber has a length of �x. After bending, it becomes shorter, and its de-

formed length will be denoted �x�. From the defi nition of normal strain given in Equation 

(2.1), the normal strain of this longitudinal fi ber can be expressed as

x
xL

x x
x

�
� � lim

0
�

�� �

��

�

The beam segment subjected to pure bending defl ects into the shape of a circular arc, and the 

interior angle of this arc will be denoted ��. According to the geometry shown in Figure 8.4, 

the lengths �x and �x� can be expressed in terms of arc lengths so that the longitudinal strain 

�x can be related to the radius of curvature � as

 x
x

x x
x

y
ylim lim

( )
0 0

1
�

� � �
� � ��

�

�

� �

�

�

� �

� �

� �

��

�

�

�
 (8.1)

8.2 Flexural Strains

has a constant bending moment M, and consequently, this region is said to be in pure bending. 

Pure bending occurs only in regions where the transverse shear force V is equal to zero. 

Recall Equation (7.2), which shows that V � dM/dx. If the bending moment M is constant, 

then dM/dx � 0, which in turn means that V � 0. Pure bending also implies that no axial 

forces act in the beam.

In contrast, nonuniform bending refers to fl exure where the shear force V is not equal 

to zero. If V � 0, then dM/dx � 0, which means that the bending moment changes along 

the span of the beam.

In the sections that follow, the strains and stresses in beams subjected to pure bending 

will be investigated. Fortunately, the results obtained for pure bending can be applied to 

beams with nonuniform bending if the beam is relatively long compared with its cross-

sectional dimensions, or in other words, if the beam is “slender.”
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Equation (8.1) indicates that the normal strain developed in any fiber is directly pro-

portional to the distance of the fiber from the neutral surface. Equation (8.1) is valid 

for beams of any material, whether the material is elastic or inelastic, linear or non-

linear. Notice that the strain determined here occurs in the x direction, even though the 

loads applied to the beam act in the y direction and the beam bends about the z axis. 

For a positive value of � (as defined shortly), the negative sign in Equation (8.1) indi-

cates that compression strain will be developed in the fibers above the neutral surface 

(i.e., positive values of y), while tensile strain will occur below the neutral surface 

(where y values are negative). Note that the sign convention for �x is the same as that 

defined for normal strains in Chapter 2; specifically, elongation is positive and short-

ening is negative.

Curvature � (Greek letter kappa) is a measure of how sharply a beam is bent, and it 

is related to the radius of curvature � by

 
1

��
�  (8.2)

If the load on a beam is small, then the beam defl ection will be small, the radius of curva-

ture � will be very large, and the curvature � will be very small. Conversely, a beam with 

large defl ections will have a small radius of curvature � and a large curvature �. For the 

x–y–z coordinate axes used here, the sign convention for � is defi ned such that � is positive 

if the center of curvature is located above a beam. The center of curvature O for the beam 

segment shown in Figure 8.4 is located above the beam; therefore, this beam has a positive 

curvature �, and in accordance with Equation (8.2), the radius of curvature � must be posi-

tive, too. To summarize, � and � always have the same sign. They are both positive if the 

center of curvature is located above the beam, and they are both negative if the center of 

curvature is located below the beam.

Transverse Deformations

Longitudinal strains �x in the beam are accompanied by deformations in the plane of the 

cross section (i.e., strains in the y and z directions) due to the Poisson effect. Since most 

beams are slender, the deformations in the y–z plane due to Poisson effects are very 

small. If the beam is free to deform laterally (as is usually the case), normal strains in the 

y and z directions do not cause transverse stresses. This situation is comparable to that of 

a prismatic bar in tension or compression, and therefore, the longitudinal fi bers in a beam 

subjected to pure bending are in a state of uniaxial stress.

For pure bending, the longitudinal strain �x that occurs in the beam varies in proportion to 

the fi ber’s distance from the neutral surface of the beam. The variation of normal stress �x 

acting on a transverse cross section can be determined from a stress–strain curve for the 

specifi c material used to fabricate the beam. For most engineering materials, the stress–

strain diagrams for both tension and compression are identical in the elastic range. 

Although the diagrams may differ somewhat in the inelastic range, the differences can be 

neglected in many instances. For the beam problems considered in this book, the tension and 
compression stress–strain diagrams will be assumed identical.

8.3 Normal Stresses in Beams

BENDING
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NORMAL STRESSES IN BEAMSThe most common stress–strain relationship encountered in engineering is the equa-

tion for a linear elastic material, which is defi ned by Hooke’s Law: � � E�. If the strain 

relationship defi ned in Equation (8.1) is combined with Hooke’s Law, then the variation of 

normal stress with distance y from the neutral surface can be expressed as

 
x xE

E
y E y� � � � �� �

�
�  (8.3)

Equation (8.3) shows that the normal stress �x on the transverse section of the beam varies 

linearly with distance y from the neutral surface. This type of stress distribution is shown 

in Figure 8.5a for the case of a bending moment M, which produces compression stresses 

above the neutral surface and tension stresses below the neutral surface.

While Equation (8.3) describes the variation of normal stress over the depth of a beam, 

its usefulness depends upon knowing the location of the neutral surface. Moreover, the 

radius of curvature � is generally not known, whereas the internal bending moment M is 

readily available from shear-force and bending-moment diagrams. A more useful relation-

ship than Equation (8.3) would be one that related the normal stresses produced in the 

beam to the internal bending moment M. Both of these objectives can be accomplished by 

determining the resultant of the normal stress �x acting over the depth of the cross section.

In general, the resultant of the normal stresses in a beam consists of two components:

(a) a resultant force acting in the x direction (i.e., the longitudinal direction) and

(b) a resultant moment acting about the z axis.

If the beam is subjected to pure bending, the resultant force in the longitudinal direc-

tion must be zero. The resultant moment must equal the internal bending moment M in the 

beam. From the stress distribution shown in Figure 8.5a, two equilibrium equations can be 

written: ΣFx � 0 and ΣMz � 0. From these two equations,

(a) the location of the neutral surface can be determined and

(b) the relationship between bending moment and normal stress can be established.

Location of the Neutral Surface

The cross section of the beam is shown in Figure 8.5b. We will consider a small element dA 

of the cross-sectional area A. The beam is assumed to be homogeneous, and the bending 

stresses are produced at an arbitrary radius of curvature �. The distance from the area 

dA to the neutral axis is measured by the coordinate y. The normal stresses acting on area dA 

Since plane cross sections 

remain plane, the normal stress 

�x caused by bending is also 

uniformly distributed in the 

z direction.

The intersection of the neutral 
surface (which is a plane) and 

any cross section of the beam (also 

a plane surface) is a line, which is 

termed the neutral axis.

In Figure 8.5a, compression 

stresses are indicated by arrows 

pointing toward the cross section 

and tension stresses are indicated 

by arrows pointing away from 

the cross section.

FIGURE 8.5 Normal stresses in a beam of linearly elastic material.

�x

x

y

Neutral surface

M

O

(a)  Side view of beam, showing 

normal stress distribution

z

y

ctop

cbot

O

y

Neutral axis

dA

(b) Beam cross section
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produce a resultant force dF given by �x dA. (Recall that force can be thought of as the 

product of stress and area.) In order to satisfy horizontal equilibrium, all forces dF for the 

beam in Figure 8.5a must sum to zero or, as expressed in terms of calculus,

F dF dAx xA
0� � �Σ �

Substitution of Equation (8.3) for �x yields

 F dA
E

y dA
E

y dAx xA A A
�

� �
0� � � � � �Σ  (8.4)

In Equation (8.4), the elastic modulus E cannot be zero for a solid material. The radius of 

curvature � could equal infi nity; however, this would imply that the beam does not bend at all. 

Consequently, horizontal equilibrium of the normal stresses can be satisfi ed only if

 y dA
A

0�  (a)

This equation states that the fi rst moment of area of the cross section with respect to the z 

axis must equal zero. From statics, recall that the defi nition for the centroid of an area with 

respect to a horizontal axis also includes the fi rst moment of area term:

 y
y dA

dA

A

A

�  (b)

Substituting Equation (a) into Equation (b) shows that equilibrium can be satisfi ed only if 

y � 0; in other words, the distance y  measured from the neutral surface to the centroid of 

the cross-sectional area must be zero. Thus, for pure bending, the neutral axis must pass 
through the centroid of the cross-sectional area.

As discussed in Section 8.1, the study of bending presented here applies to beams that 

have a longitudinal plane of symmetry. Consequently, the y axis must pass through the 

centroid. The origin O of the beam coordinate system (see Figure 8.5b) is located at the 

centroid of the cross-sectional area. The x axis lies in the plane of the neutral surface and is 

coincident with the longitudinal axis of the member. The y axis lies in the longitudinal 

plane of symmetry, originates at the centroid of the cross section, and is directed vertically 

upward (for a horizontal beam). The z axis also originates at the centroid and acts in the 

direction that produces a right-handed x–y–z coordinate system.

Moment–Curvature Relationship

The second equilibrium equation to be satisfi ed requires that the sum of moments must 

equal zero. Consider again the area element dA and the normal stress that acts upon it 

(Figure 8.5b). Since the resultant force dF acting on dA is located at a distance of y from 

the z axis, it produces a moment dM about the z axis. The resultant force can be expressed 

as dF � �x dA. A positive normal stress �x (i.e., a tension normal stress) acting on area 

dA, which is located at a positive y, produces a moment dM that rotates in a negative 

right-hand rule sense about the z axis; therefore, the incremental moment dM is 

expressed as dM � �y�x dA.

Keep in mind that this 

conclusion assumes pure 

bending of an elastic material. 

If an axial force exists in the 

fl exural member or if the 

material is inelastic, the neutral 

surface will not pass through 

the centroid of the 

cross-sectional area.

A moment comprises a force 

term and a distance term. The 

distance term is often called a 

moment arm. On area dA, the 

force is �x dA. The moment arm 

is y, which is the distance from 

the neutral surface to dA.

BENDING
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NORMAL STRESSES IN BEAMSAll such moment increments that act on the cross section, along with the internal 

bending moment M, must sum to zero in order to satisfy equilibrium about the z axis:

M y dA Mz xA
0� � ��Σ �

If Equation (8.3) is substituted for �x, then the bending moment M can be related to the 

radius of curvature �:

 M y dA
E

y dAxA A
2� �� �

�  (8.5)

Again from statics, recall that the integral term in Equation (8.5) is called the second 

 moment of area or, more commonly, the area moment of inertia:

I y dAz A
2�

The subscript z indicates an area moment of inertia determined with respect to the z cen-

troidal axis (i.e., the axis about which the bending moment M acts). The integral term in 

Equation (8.5) can be replaced by the moment of inertia Iz, where

M
EIz
�

�

to give an expression relating the beam curvature and its internal bending moment:

 
1 M

EIz
� ��

�  (8.6)

This relationship is called the moment–curvature equation, and it shows that the beam 

curvature is directly related to bending moment and inversely related to the quantity EIz. In 

general, the term EI is known as the fl exural rigidity, and it is a measure of the bending 

resistance of a beam.

Flexure Formula

The relationship between normal stress �x and curvature was developed in Equation (8.3), 

and the relationship between curvature and bending moment M is given by Equation (8.6). 

These two relationships can be combined, giving

x
z

E y E
M
EI

y� � � �� �

to defi ne the stress produced in a beam by a bending moment:

 x
z

My

I
� ��  (8.7)

Equation (8.7) is known as the elastic fl exure formula or simply the fl exure formula. As 

developed here, a bending moment M that acts about the z axis produces normal stresses that 

act in the x direction (i.e., the longitudinal direction) of the beam. The stresses vary linearly 

in intensity over the depth of the cross section. The normal stresses produced in a beam by 

a bending moment are commonly referred to as bending stresses or fl exural stresses.

Examination of the fl exure formula reveals that a positive bending moment causes 

negative normal stresses (i.e., compression) for portions of the cross section above the 

neutral axis (i.e., positive y values) and positive normal stresses (i.e., tension) for portions 

below the neutral axis (i.e., negative y values). The opposite stresses occur for a negative 

bending moment. The distributions of bending stresses for both positive and negative bend-

ing moments are illustrated in Figure 8.6.

In the context of mechanics of 

materials, the area moment of 

inertia is usually referred to as 

simply the moment of inertia.

The radius of curvature � is 

measured from the center of 

curvature to the neutral surface 

of the beam. (See Figure 8.5b.)
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In Chapter 7, a positive internal bending moment was defi ned as a moment that

• acts counterclockwise on the right-hand face of a beam; or

• acts clockwise on the left-hand face of a beam.

This sign convention can now be enhanced by taking into account the bending stresses 

produced by the internal moment. The enhanced bending-moment sign convention is 

illustrated in Figure 8.7.

FIGURE 8.6 Relationship between bending moment M and bending stress.

x

y

M

O

Compression
bending stress

Tension
bending stress

(a)  Bending stresses caused by 

positive M

x

y

M

O

Tension
bending stress

Compression
bending stress

(b)  Bending stresses caused by 

negative M

FIGURE 8.7 Enhanced bending-

moment sign convention.

+M +M

Compression

Tension

–M –M

Tension

Compression

(a) Positive M

(b) Negative M

A positive internal bending moment M causes

• compression bending stresses above the neutral axis;

• tension bending stresses below the neutral axis; and

• a positive curvature �.

A negative internal bending moment M causes

• tension bending stresses above the neutral axis;

• compression bending stresses below the neutral axis; and

• a negative curvature �

Maximum Stresses on a Cross Section

Since the intensity of the bending stress �x varies linearly with distance y from the neutral 

surface [see Equation (8.3)], the maximum bending stress �max occurs on either the top or 

the bottom surface of the beam, depending on which surface is farther from the neutral 

surface. In Figure 8.5b, the distances from the neutral axis to either the top or the bottom of 

the cross section are denoted by ctop and cbot, respectively. In this context, ctop and cbot are 

taken as absolute values of the y coordinates for the top and bottom surfaces. The corre-

sponding bending stress magnitudes are given by

 

max
top

top

max

for the top surface of the beam
Mc

I

M

z S

Mc

I

M

z

bot

bot

for the bottom surface of the beam
S

� �

� �

�

�

 (8.8)

BENDING
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NORMAL STRESSES IN BEAMSThe sense of �x (either tension or compression) is dictated by the sign of the bending mo-

ment. The quantities Stop and Sbot are called the section moduli of the cross section, and they 

are defi ned as

 
S

I

c
S

I

c
z z

top
top

bot
bot

and� �
 

(8.9)

The section modulus is a convenient property for beam design because it combines two 

important cross-sectional properties into a single quantity.

The beam cross section shown in Figure 8.5 is symmetric about the y axis. If a beam 

cross section is also symmetric about the z axis, it is called a doubly symmetric cross 
 section. For a doubly symmetric shape, ctop � cbot � c and the bending stress magnitudes 

at the top and bottom of the cross section are equal and given by

 max where
Mc

I

M

S
S

I

cz

z� � ��
 

(8.10)

Again, Equation (8.10) gives only the magnitude of the stress. The sense of �x (either ten-

sion or compression) is dictated by the sense of the bending moment.

Nonuniform Bending

The preceding analysis assumed that a slender, homogeneous, prismatic beam was subjected 

to pure bending. If the beam is subjected to nonuniform bending, which occurs when a 

transverse shear force V exists, then the shear force produces out-of-plane distortions of the 

cross sections. Strictly speaking, this out-of-plane distortion violates the initial assumption 

that cross-sectional surfaces that are planar before bending remain planar after bending. 

However, the distortion caused by transverse shear forces is not signifi cant for common 

beams, and its effect may be neglected. Therefore, the equations developed in this section 

may be used to calculate fl exural stresses for beams subjected to nonuniform bending.

Summary

Bending stresses in a beam are evaluated in a three-step process.

Step 1 — Determine the Internal Bending Moment M: The bending moment may 

be specifi ed, but more typically, the bending moment is determined by constructing a 

shear-force and bending-moment diagram.

Step 2 — Calculate Properties for the Beam Cross Section: The centroid location 

must be determined fi rst since the centroid defi nes the neutral surface for pure bending. 

Next, the moment of inertia of the cross-sectional area must be calculated about the 

centroidal axis that corresponds to the bending moment M. If the bending moment M 

acts about the z axis, then the moment of inertia about the z axis is required. Finally, 

bending stresses within the cross section vary with depth. Therefore, the y coordinate at 

which stresses are to be calculated must be established.

Step 3 — Use the Flexure Formula to Calculate Bending Stresses: Two equa-

tions for bending stresses were derived:

 x
z

My

I
� ��

 (8.7)

 x
z

Mc

I

M

S
���

 (8.10)
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 In common practice, both of these equations are often called the fl exure formula. The 

fi rst form is more useful for calculating the bending stress at locations other than the top 

or the bottom of the beam cross section. Use of this form requires careful attention to the 

sign conventions for M and y. The second form is more useful for calculating maximum 

bending stress magnitudes. If it is important to determine whether the bending stress is 

either tension or compression, then that is done by inspection, using the sense of the 

internal bending moment M.

A beam with an inverted tee-

shaped cross section is subjected 

to positive bending moments of 

Mz � 5 kN-m. The cross-sectional 

dimensions of the beam are 

shown. Determine

(a)  the centroid location, the 

moment of inertia about the 

z axis, and the controlling 

section modulus about the 

z axis.

(b)  the bending stress at points H and K. State whether the normal stress is tension or 

compression.

(c)  the maximum bending stress produced in the cross section. State whether the stress 

is tension or compression.

Plan the Solution
The normal stresses produced by the bending moment will be determined from the fl ex-

ure formula [Equation (8.7)]. Before the fl exure formula is applied, however, the section 

properties of the beam cross section must be calculated. The bending moment acts about 

the z centroidal axis; therefore, the location of the centroid in the y direction must be de-

termined. Once the centroid has been located, the moment of inertia of the cross section 

about the z centroidal axis will be calculated. When the centroid location and the moment 

of inertia about the centroidal axis are known, the bending stresses can be readily calcu-

lated from the fl exure formula.

SOLUTION
(a)  The centroid location in the horizontal direction can be determined from symmetry 

alone. The centroid location in the y direction must be determined for the inverted tee 

cross section. The tee shape is fi rst subdivided into rectangular shapes (1) and (2), and 

the area Ai for each of these shapes is computed. For calculation purposes, a reference 

axis is arbitrarily established. In this example, the reference axis will be placed at the 

bottom surface of the tee shape. The distance yi in the vertical direction from the ref-

erence axis to the centroid of each rectangular area Ai is determined, and the product 

yi  Ai (termed the fi rst moment of area) is computed. The centroid location y  mea-

sured from the reference axis is computed as the sum of the fi rst moments of area yi Ai 

divided by the sum of the areas Ai. The calculation for the inverted tee cross section 

is summarized in the table on the next page.

5 kN-m

5 kN-m

y

z x

15 mm

150 mm

10 mm

120 mm

H

K

40 mm

EXAMPLE 8.1

BENDING
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y
y A

A
i i

i

148,500 mm

3,300 mm
mm

3

2
45 0.� � �

Σ
Σ

 The z centroidal axis is located 45.0 mm above the reference axis for 

the inverted tee cross section. Ans.

The internal bending moment acts about the z centroidal axis, and consequently, 

the moment of inertia must be determined about this same axis for the inverted tee 

cross section. Since the centroids of areas (1) and (2) do not coincide with the z cen-

troidal axis for the entire cross section, the parallel axis theorem must be used to 

calculate the moment of inertia for the inverted tee shape.

The moment of inertia Ici of each rectangular shape about its own centroid must 

be computed for the calculation to begin. For example, the moment of inertia of area 

(1) about the z centroidal axis for area (1) is calculated as Ic1 � bh3/12 � (10 mm) 

(150 mm)3/12 � 2,812,500 mm4. Next, the perpendicular distance di between the 

z centroidal axis for the inverted tee shape and the z centroidal axis for area Ai must 

be determined. The term di is squared and multiplied by Ai and the result is added to 

Ici to give the moment of inertia for each rectangular shape about the z centroidal axis 

of the inverted tee cross section. The results for all areas Ai are summed to determine 

the moment of inertia of the cross section about its centroidal axis. The complete 

calculation procedure is summarized in the following table:

Ai

(mm2)

yi

(mm)

yi Ai

(mm3)

 (1) 1,500 90 135,000

 (2) 1,800 7.5   13,500

 3,300 148,500

15 mm

150 mm

10 mm

120 mm

Ref.
axis

(1)

(2)
7.5 mm

90 mm

15 mm

150 mm

10 mm

120 mm

Ref.
axis

(1)

(2)

y

z

45 mm

120 mm

H

K

40 mm

Ici

(mm4)

| di |

(mm)

di
2Ai

(mm4)

Iz

(mm4)

(1) 2,812,500 45.0 3,037,500 5,850,000

(2)      33,750 37.5 2,531,250 2,565,000

8,415,000

 The moment of inertia of the cross section about its z centroidal axis 

is Iz � 8,415,000 mm4. Ans.

Since the inverted tee cross section is not symmetric about its z 

centroidal axis, two section moduli are possible. [See Equation (8.9).] The distance 

from the z axis to the upper surface of the cross section will be denoted ctop. The sec-

tion modulus calculated with this value is

 S
I

c
z

top
top

38,415,000 mm

mm
70,136 mm

4

120
� � �

  Let the distance from the z axis to the lower surface of the cross section be denoted 

cbot. The corresponding section modulus is

 S
I

c
z

bot
bot

38,415,000 mm

mm
187,000 mm

4

45
� � �
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 The controlling section modulus is the smaller of these two values; therefore, the 

section modulus for the inverted tee cross section is

 S 70,125 mm3�  Ans.

 Why is the smaller section modulus said to control in this context? The maximum 

bending stress is calculated with the use of the section modulus from the following 

form of the fl exure formula [see Equation (8.10)]:

max
M

S
��

 The section modulus S appears in the denominator of this formula; consequently, 

there is an inverse relationship between the section modulus and the bending stress. 

The smaller value of S corresponds to the larger bending stress.

(b)  Since the centroid location and the moment of inertia about the centroidal axis have 

been determined, the fl exure formula [Equation (8.7)] can now be used to determine 

the bending stress at any coordinate location y. (Recall that the y coordinate axis has 

its origin at the centroid.) Point H is located at y � �30 mm; therefore, the bending 

stress at H is given by

 
x

z

My

I

(5 kN-m)( 30 mm)(1,000 N/kN)(1,000 mm/m)

8,,415,000 mm

MPa MPa (T)

4

17 83 17 83. .

�

� �

� � �
�

�

 Ans.

 Point K is located at y � �80 mm; therefore, the bending stress at K is calculated as

 
x

z

My

I

(5 kN-m)(80 mm)(1,000 N/kN)(1,000 mm/m)

8,4415,000 mm

MPa MPa (C)

4

47 5 47 5. .

� �

� ��

� ��

 Ans.

(c)  Regardless of the particular cross-sectional geometry, the largest bending stress in any 

beam will occur at either the top surface or the bottom surface of the beam. If the cross 

section is not symmetric about the axis of bending, then the largest bending stress 

magnitude (for any given moment M) will occur at the location farthest from the 

neutral axis, or in other words, at the point that has the largest y coordinate. For the 

inverted tee cross section, the largest bending stress will occur at the upper surface:

 
x

z

My
I

� �
(5 kN-m)(120 mm)(1,000 N/kN)(1,000 mm/m)

8,,415,000 mm

MPa MPa (C)

4

71 3 71 3. .

� �

� ��

�

 Ans.

 Alternatively, the section modulus S could be used in Equation (8.10) to determine 

the magnitude of the maximum bending stress:

max
(5 kN-m)(1,000 N/kN)(1,000 mm/m)

70,125 mm

M

S 3

771 3 71 3. .MPa MPa (C) by inspection

�

� �

��

 If Equation (8.10) is used to calculate the maximum bending stress, the sense of the 

stress (either tension or compression) must be determined by inspection.

272

c08Bending.indd Page 272  28/03/12  8:08 PM user-F391c08Bending.indd Page 272  28/03/12  8:08 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



The cross-sectional dimensions 

of a beam are shown on the 

right. If the maximum allow-

able bending stress is 230 MPa, 

determine the magnitude of the 

maximum internal bending mo-

ment M that can be supported by 

the beam. (Note: The rounded 

corners of the cross section can 

be neglected in performing the 

section property calculations.)

Plan the Solution
The centroid location and the moment of inertia of the beam cross section must be calcu-

lated at the outset. Once the section properties have been computed, the fl exure formula 

will be rearranged to determine the maximum bending moment that can be applied without 

exceeding the 230-MPa allowable bending stress.

SOLUTION
The centroid location in the horizontal direction can be determined from symmetry. The 

cross section can be subdivided into three rectangular shapes. In accordance with the 

procedure described in Example 8.1, the centroid calculation for this shape is summarized 

in the following table:

y
y A

A
i i

i

23,586 mm

mm
mm

3

2858
27 49.� � �

Σ
Σ

The z centroidal axis is located 27.49 mm above the reference 

axis for this cross section. Ans.

The moment of inertia calculation about this axis is sum-

marized in the following table:

40 mm

6 mm

75 mm

6 mm

Ref.
axis

(1)

(2) (3)17 mm

37 mm

40 mm

6 mm

75 mm

6 mm

Ref.
axis

(1)

(2) (3)

y

z
12.51 mm

27.49 mm

M

M
y

z
x

40 mm

6 mm

75 mm

6 mm

Ai

(mm2)

yi

(mm)

yi Ai

(mm3)

(1) 450 37 16,650

(2) 204 17  3,468

(3) 204 17  3,468

858 23,586

Ic

(mm4)

| di |

(mm)

di
2Ai

(mm4)

Iz

(mm4)

(1)  1,350   9.51 40,698.0  42,048.0

(2) 19,652 10.49 22,448.2  42,100.2

(3) 19,652 10.49 22,448.2  42,100.2

126,248.4

EXAMPLE 8.2
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The moment of inertia of the cross section about its z centroidal axis is 

Iz � 126,248.4 mm4. Ans.

The largest bending stress in any beam will occur at either the top or the bottom 

surface of the beam. For this cross section, the distance to the bottom of the beam is 

greater than the distance to the top of the beam. Therefore, the largest bending stress will 

occur on the bottom surface of the cross section at y � �27.49 mm. In this situation, it is 

convenient to use the fl exure formula in the form of Equation (8.10), setting c � 27.49 mm. 

Equation (8.10) can be rearranged to solve for the bending moment M that will produce a 

bending stress of 230 MPa on the bottom surface of the beam:

 
M

I
c
x z ( ) )(230 N/mm 126,248.4 mm

27.49 mm

1,056,2

2 4

880 N-mm 1,056 N-m

�

� �

�
�

 Ans.

For the bending moment direction indicated in the sketch on the previous page, a bending 

moment of M � 1,056 N-m will produce a compression stress of 230 MPa on the bottom 

surface of the beam.

Animated example of the procedure for calculating the centroid of a tee shape.

 MecMovies Example M8.5 

Investigate bending stresses acting on various 

portions of a cross section and determine internal 

bending moments, given bending stresses.

 MecMovies Example M8.4 
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 MecMovies Example M8.7

Determine the centroid location and the moment of inertia about the centroidal 

axis for a tee shape.

  

Animated example of the procedure for calculating the centroid of a U-shape.

MecMovies Example M8.6

FIGURE M8.1

M8.1 The Centroids Game: Learning the Ropes. Score at 

least 90 percent on the game.

  MecMovies Exercises
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M8.2 The Moment of Inertia Game: Starting from Square 
One. Score at least 90 percent on the game.

M8.3 Use the fl exure formula to determine bending stresses in a 

fl anged shape.
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PROBLEMSPROBLEMS
P8.1 During fabrication of a laminated timber arch, one of the 

10-in.-wide by 1-in.-thick Douglas fi r [E � 1,900 ksi] planks is 

bent to a radius of curvature of 40 ft. Determine the maximum 

bending stress developed in the plank.

P8.2 A high-strength steel [E � 200 GPa] tube having an out-

side diameter of 80 mm and a wall thickness of 3 mm is bent into a 

circular curve having a 52-m radius of curvature. Determine the 

maximum bending stress developed in the tube.

P8.3 A high-strength steel [E � 200 GPa] band saw blade wraps 

around a pulley that has a diameter of 450 mm. Determine the max-

imum bending stress developed in the blade. The blade is 12 mm  

wide and 1 mm thick.

P8.4 The boards for a concrete form are to be bent into a circu-

lar shape having an inside radius of 10 m. What maximum thick-

ness can be used for the boards if the normal stress is not to exceed 

7 MPa? Assume that the modulus of elasticity for the wood is 

12 GPa.

P8.5 A beam having a tee-shaped cross section is subjected to 

equal 12 kN-m bending moments, as shown in Figure P8.5a. The 

cross-sectional dimensions of the beam are shown in Figure P8.5b. 

Determine

(a)  the centroid location, the moment of inertia about the z axis, 

and the controlling section modulus about the z axis.

(b)  the bending stress at point H. State whether the normal stress 

at H is tension or compression.

(c)  the maximum bending stress produced in the cross section. 

State whether the stress is tension or compression.

12 kN-m

12 kN-m

y

z
x

FIGURE P8.5a

25 mm

150 mm

175 mm

25 mm

100 mm

y

z

H

FIGURE P8.5b

FIGURE M8.3

FIGURE M8.2
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P8.7 A beam is subjected to equal 470 N-m bending moments, 

as shown in Figure P8.7a. The cross-sectional dimensions of the 

beam are shown in Figure P8.7b. Determine

(a)  the centroid location, the moment of inertia about the z axis, 

and the controlling section modulus about the z axis.

(b)  the bending stress at point H. State whether the normal stress 

at H is tension or compression.

(c)  the maximum bending stress produced in the cross section. 

State whether the stress is tension or compression.

P8.6 A beam is subjected to equal 6.5 kip-ft bending moments, 

as shown in Figure P8.6a. The cross-sectional dimensions of the 

beam are shown in Figure P8.6b. Determine

(a)  the centroid location, the moment of inertia about the z axis, 

and the controlling section modulus about the z axis.

(b)  the bending stress at point H, which is located 2 in. below the 

z centroidal axis. State whether the normal stress at H is 

tension or compression.

(c)  the maximum bending stress produced in the cross section. 

State whether the stress is tension or compression.

P8.8 A beam is subjected to equal 17.5 kip-ft bending moments, 

as shown in Figure P8.8a. The cross-sectional dimensions of the 

beam are shown in Figure P8.8b. Determine

(a)  the centroid location, the moment of inertia about the z axis, 

and the controlling section modulus about the z axis.

(b)  the bending stress at point H. State whether the normal stress 

at H is tension or compression.

(c)  the bending stress at point K. State whether the normal stress 

at K is tension or compression.

(d)  the maximum bending stress produced in the cross section. 

State whether the stress is tension or compression.
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6.5 kip-ft

6.5 kip-ft y

z

x

FIGURE P8.6a

1 in.

8 in.

1 in. 1 in.

6 in.

y

z

2 in.

H

FIGURE P8.6b

470 N-m

470 N-m

y

z
x

FIGURE P8.7a

50 mm

50 mm

8 mm

8 mm8 mm

y

z

H

FIGURE P8.7b

17.5 kip-ft

17.5 kip-ft y

z x

FIGURE P8.8a

2 in.

2 in.

10 in. 14 in.

6 in.

10 in.

2 in.

y

z

K

H

FIGURE P8.8b

P8.9 The cross-sectional dimensions of a beam are shown in 

Figure P8.9.

(a)  If the bending stress at point K is 43 MPa (C), determine the 

internal bending moment Mz acting about the z centroidal axis 

of the beam.
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P8.12 The cross-sectional dimensions of a beam are shown in 

Figure P8.12. The internal bending moment about the z centroidal 

axis is Mz � �2.70 kip-ft. Determine

(a) the maximum tension bending stress in the beam.

(b) the maximum compression bending stress in the beam.

(b)  Determine the bending stress at point H. State whether the 

normal stress at H is tension or compression.
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260 mm

20 mm

12 mm

180 mm

y

z

30 mm

K

H

FIGURE P8.14

P8.11 The dimensions of the double-box beam cross section 

shown in Figure P8.11 are b � 150 mm, d � 50 mm, and t � 4 mm. 

If the maximum allowable bending stress is 17 MPa, determine the 

maximum internal bending moment Mz magnitude that can be 

 applied to the beam.

FIGURE P8.10

P8.10 The cross-sectional dimensions of the beam shown in Fig-

ure P8.10 are d � 5.0 in., bf � 4.0 in., tf � 0.50 in., and tw � 0.25 in.

(a)  If the bending stress at point H is 4,500 psi (T), determine the 

internal bending moment Mz acting about the z centroidal axis 

of the beam.

(b)  Determine the bending stress at point K. State whether the 

normal stress at K is tension or compression.

40 mm 5 mm5 mm

5 mm

50 mm

y

z

H

K

75 mm

FIGURE P8.9

P8.13 The cross-sectional dimensions of a beam are shown in 

Figure P8.13.

(a)  If the bending stress at point K is 35.0 MPa (T), determine the 

bending stress at point H. State whether the normal stress at H 

is tension or compression.

(b)  If the allowable bending stress is 165 MPa, determine the 

magnitude of the maximum bending moment Mz that can be 

supported by the beam.

P8.14 The cross-sectional dimensions of a beam are shown in 

Figure P8.14.

(a)  If the bending stress at point K is 9.0 MPa (T), determine the 

bending stress at point H. State whether the normal stress at 

H is tension or compression.

(b)  If the allowable bending stress is 165 MPa, determine the 

magnitude of the maximum bending moment Mz that can be 

supported by the beam.

30 mm

350 mm

16 mm

240 mm

y

z

90 mm

K

H

FIGURE P8.13

FIGURE P8.11

4 in.

0.5 in.
6 in.

0.5 in.

y

z

H

K

FIGURE P8.12

d

tf

tw

bf

y

z

H

K

t
(typ.)

d

b

y

z
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P8.15 The cross-sectional dimensions of the beam shown in 

Figure P8.15 are a � 5.0 in., b � 6.0 in., d � 4.0 in., and t � 0.5 in. 

The internal bending moment about the z centroidal axis is Mz � 

�4.25 kip-ft. Determine

(a) the maximum tension bending stress in the beam.

(b) the maximum compression bending stress in the beam.

P8.17 Two vertical forces are applied to a simply supported 

beam (Figure P8.17a) having the cross section shown in Figure 

P8.17b. Determine the maximum tension and compression bending 

stresses produced in segment BC of the beam.

P8.18 Two vertical forces of P � 240 lb are applied to a simply 

supported beam (Figure P8.18a) having the cross section shown in 

Figure P8.18b. Using a � 30 in., L � 84 in., b � 3.0 in., d � 4.0 

in., and t � 0.5 in., calculate the maximum tension and compres-

sion bending stresses produced in segment BC of the beam.
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15 mm

160 mm

9 mm

200 mm

FIGURE P8.17b

FIGURE P8.18a

FIGURE P8.18b

P8.16 The cross-sectional dimensions of a beam are shown in 

Figure P8.16. The internal bending moment about the z centroidal 

axis is Mz � �270 lb-ft. Determine

(a) the maximum tension bending stress in the beam.

(b) the maximum compression bending stress in the beam.

FIGURE P8.15

FIGURE P8.16

y

x

A DB C

1 m 3 m 1 m

12 kN 12 kN

FIGURE P8.17a

8.4 Analysis of Bending Stresses in Beams

In this section, the fl exure formula will be applied in the analysis of bending stresses for 

statically determinate beams subjected to various applied loads. The analysis process 

begins with the construction of shear-force and bending-moment diagrams for the specifi c 

span and loading. The cross-sectional properties of the beam will be determined next. 

Essential properties include

2.50 in.

0.125 in.
(typ)

0.75 in. 0.75 in.

3.25 in.

y

z

d

b

a a

t
(typ.)

y

z

d

t t

t

b

y

x

A DB C

a aL

PP
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(a) the centroid of the cross section,

(b)  the moment of inertia of the cross-sectional area about the centroidal axis of 

bending, and

(c)  the distances from the centroidal axis to both the top and bottom surfaces 

of the beam.

After these prerequisite calculations have been completed, bending stresses can be 

calculated from the fl exure formula at any location on the beam.

Beams can be supported and loaded in a variety of ways; consequently, the distribu-

tion and intensity of positive and negative bending moments are unique for each beam. 

Understanding the signifi cance of the bending-moment diagram as it relates to fl exural 

stresses is essential for the analysis of beams. For instance, consider a reinforced concrete 

beam with an overhang, as shown in Figure 8.8. Concrete is a material with substantial 

strength in compression, but very low strength in tension. When concrete is used to con-

struct a beam, steel bars must be placed in those regions where tension stresses occur, in 

order to reinforce the concrete. In some portions of the overhang beam, tension stresses 

will develop below the neutral axis, while tension stresses will occur above the neutral axis 

in other portions. The engineer must defi ne these regions of tension stress so that the rein-

forcing steel is placed where it is needed. In summary, the engineer must be attentive not 

only to the magnitude of bending stresses, but also to the sense (either tension or compres-

sion) of stresses that occur above and below the neutral axis and that vary with positive and 

negative bending moments along the span.

Cross-Sectional Shapes for Beams

Beams can be constructed from many different cross-sectional shapes such as squares, 

rectangles, solid circular shapes, and round pipe or tube shapes. A number of additional 

shapes are available for use in structures made of steel, aluminum, and fi ber-reinforced 

plastics, and it is worthwhile to discuss some terminology associated with these standard 

shapes. Since steel is perhaps the most common material used in structures, this discussion 

will focus on the fi ve standard rolled structural steel shapes shown in Figure 8.9.

FIGURE 8.8 Reinforced concrete beam.

M

Steel reinforcing bars

Tension on top

Tension on bottom

BENDING
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The most commonly used steel shape for beams is called a wide-fl ange shape 

(Figure 8.9a). The wide-fl ange shape is optimized for economy in bending applications. As 

shown by Equation (8.10), the bending stress in a beam is inversely related to its section 

modulus S. If a choice is given between two shapes having the same allowable stress, the 

shape with the larger S is the better choice because it will be able to withstand more bend-

ing moment than the one with the smaller S. The weight of a beam is proportional to its 

cross-sectional area, and typically, the cost of a beam is directly related to its weight. 

Therefore, a shape that is optimized for bending is confi gured so that it provides the largest 

possible section modulus S for a given cross-sectional area of material. The area of a wide-

fl ange shape is concentrated in its fl anges. The area of the web, which connects the two 

fl anges, is relatively small. By increasing the distance between the centroid and each fl ange, 

the shape’s moment of inertia (about the X–X axis) can be increased dramatically, roughly 

in proportion to the square of this distance. Consequently, the section modulus of the shape 

can be substantially increased with a minimal overall increase in area.

For a wide-fl ange shape, the moment of inertia I and the section modulus S about the 

X–X centroidal axis (shown in Figure 8.9a) are much larger than I and S about the Y–Y 

centroidal axis. As a result, a shape that is aligned so that bending occurs about the X–X 

axis is said to be bending about its strong axis. Conversely, bending about the Y–Y axis is 

termed bending about the weak axis.

In U.S. customary units, a wide-fl ange shape is designated by the letter W followed by 

the nominal depth of the shape measured in inches and its weight per length measured in 

pounds per foot. A typical U.S. customary designation is W12 	 50, which is spoken as 

“W12 by 50.” This shape is nominally 12 in. deep, and it weighs 50 lb/ft. W-shapes are 

manufactured by passing a hot billet of steel through several sets of rollers arrayed in series 

Web

Thickness

Flange

X X

Y

Y

Width

Depth

(a) Wide-fl ange shape (W)

X X

Y

Y

Stem

Thickness

Flange

Width

Depth

(b) Tee shape (WT)

Web

Flange

X X

Y

Y

Width

Depth

(c) Channel shape (C)

Wall
thickness

X X

Y

Y

Width

Depth

(d) Hollow structural section (HSS)

X X

Y

Y

Short
leg

Long leg

Leg
thickness

(e) Angle shape (L)

FIGURE 8.9 Standard steel shapes.
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that incrementally transform the hot steel into the desired shape. By varying the spacing 

between rollers, a number of different shapes of the same nominal dimensions can be pro-

duced, giving the engineer a fi nely graduated selection of shapes. In making W-shapes, the 

distance between fl anges is kept constant while the fl ange thickness is increased. Conse-

quently, the actual depth of a W-shape is generally not equal to its nominal depth. For 

example, the nominal depth of a W12 	 50 shape is 12 in., but its actual depth is 12.2 in.

In SI units, the nominal depth of the W-shape is measured in millimeters. Instead of 

weight per length, the shape designation gives mass per length, where mass is measured in 

kilograms and length is measured in meters. A typical SI designation is W310 	 74. This 

shape is nominally 310 mm deep, and it has a mass of 74 kg/m.

Figure 8.9b shows a tee shape, which consists of a fl ange and a stem. Figure 8.9c 

shows a channel shape, which is similar to a W-shape except that the fl anges are truncated 

so that the shape has one fl at vertical surface. Steel tee shapes are designated by the letters 

WT, and channel shapes are designated by the letter C. WT- and C-shapes are named in a 

similar fashion as W-shapes, where the nominal depth and either the weight per length or 

mass per length are specifi ed. Steel WT-shapes are manufactured by cutting a W-shape at 

mid-depth; therefore, the nominal depth of a WT-shape is generally not equal to its actual 

depth. C-shapes are rolled so that the actual depth is equal to the nominal depth. Both the 

WT- and C-shapes have strong and weak axes for bending.

Figure 8.9d shows a rectangular tube shape called a hollow structural section (HSS). 
The designation used for HSS shapes gives the overall depth followed by the outside width 

followed by the wall thickness. For example, an HSS10 	 6 	 0.50 is 10 in. deep and 6 in. 

wide and has a wall thickness of 0.50 in.

Figure 8.9e shows an angle shape, which consists of two legs. Angle shapes are des-

ignated by the letter L followed by the long leg dimension, the short leg dimension, and 

the leg thickness (e.g., L6 	 4 	 0.50). Although angle shapes are versatile members that 

can be used for many purposes, single L-shapes are rarely used as beams because they are 

not very strong and they tend to twist about their longitudinal axis as they bend. However, 

pairs of angles connected back-to-back are regularly used as fl exural members in a con-

fi guration that is called a double-angle shape (2L).
Cross-sectional properties of standard shapes are presented in Appendix B. While one 

could calculate the area and moment of inertia of a W- or a C-shape from the specifi ed 

fl ange and web dimensions, the numerical values given in the Appendix B tables are pre-

ferred since they take into account specifi c section details such as fi llets.

A fl anged cross section is used to support the loads shown on the beam on the next page. 

The dimensions of the shape are given. Consider the entire 20-ft length of the beam and 

determine

(a) the maximum tension bending stress at any location along the beam, and

(b) the maximum compression bending stress at any location along the beam.

Plan the Solution
The fl exure formula will be used to determine the bending stresses in this beam. However, 

the internal bending moments that are produced in the beam and the properties of the 

cross section must be determined before the stress calculations can be performed. With 

the use of the graphical method presented in Section 7.3, the shear-force and bending-

moment diagrams for the beam and loading will be constructed. Then, the centroid 

EXAMPLE 8.3

BENDING
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location and the moment of inertia will be calculated for the beam 

cross section. Since the cross section is not symmetric about the 

axis of bending, bending stresses must be investigated for both the 

largest positive and largest negative internal bending moments that 

occur along the entire beam span.

SOLUTION
Support Reactions
A FBD of the beam is shown. For the purpose of calculat-

ing the external beam reactions, the downward 200 lb/ft 

distributed load can be replaced by a resultant force of 

(200 lb/ft)(20 ft) � 4,000 lb acting downward at the cen-

troid of the loading. The equilibrium equations are

F B Dy y y 700 0lb 1,500 lb 4,000 lb� � � � � �Σ

MD (700 lb) (20 ft) (1,500 lb) (11 ft)� �Σ

 (4,000 lb) (10 ft) (15 ft)By 0� � �

From these equilibrium equations, the beam reactions at 

pin support B and roller support D are

B Dy y4,700 lb and 1,500 lb� �

Construct the Shear-Force and 
Bending-Moment Diagrams
The shear-force and bending-moment diagrams can be 

constructed with the six rules outlined in Section 7.3.

The maximum positive internal bending moment occurs 

3.5 ft to the right of C and has a value of M � 5,625 lb-ft.

The maximum negative internal bending moment occurs 

at pin support B and has a value of M � � 6,000 lb-ft.

Centroid Location
The centroid location in the horizontal direction can be 

determined from symmetry alone. To determine the vertical 

location of the centroid, the fl anged cross section is subdi-

vided into three rectangular shapes. A reference axis for 

the calculation is established at the bottom surface of the 

lower fl ange. The centroid calculation for the fl anged shape 

is summarized in the table on the next page.

A B DC

200 lb/ft

4 ft5 ft 11 ft

1,500 lb700 lb

12 in.

1 in.

1 in.

10 in.

1 in.

4 in.

8 in.

A B DC

200 lb/ft

4 ft5 ft 11 ft

1,500 lb700 lb 10 ft

4,000 lb

By yD

A B DC

200 lb/ft

4 ft5 ft 11 ft

1,500 lb700 lb

4,700 lb 1,500 lb

3.5 ft

3,000 lb

2,200 lb

–1,700 lb –1,500 lb

–700 lb

700 lb

V

5,625 lb-ft

4,400 lb-ft

–6,000 lb-ft

M
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Ai

(in.2)

yi

(in.)

yi Ai

(in.3)

(1)  4.0  11.5  46.0

(2)  10.0  6.0  60.0

(3)  8.0  0.5  4.0

 22.0  110.0

y y A
A
i i

i

110 0

22 0
5 0

3

2

.

.
.

in.

in.
in.� � �

Σ
Σ

The z centroidal axis is located 5.0 in. above the reference axis for this cross 

section. Ans.

Moment of Inertia
Since the centroids of areas (1), (2), and (3) do not coincide with the z centroidal 

axis for the entire cross section, the parallel axis theorem must be used to calculate 

the moment of inertia of the cross section about this axis. The complete calcula-

tion is summarized in the following table:

Ic

(in.4)

| di |

(in.)

di
2Ai

(in.4)

Iz

(in.4)

(1)  0.333  6.5  169.000  169.333

(2)  83.333  1.0  10.000  93.333

(3)  0.667  4.5  162.000  162.667

 425.333

The moment of inertia of the cross section about its z centroidal axis is 

Iz � 425.333 in.4. Ans.

Flexure Formula
A positive bending moment produces compression stress at the top of the beam 

and tension stress at the bottom. Since the beam cross section is not symmetric 

about the axis of bending (i.e., the z axis), the bending stress magnitude at the 

top of the beam will be greater than the bending stress at the bottom of the 

beam.

The maximum positive internal bending moment is M � 5,625 lb-ft. For 

this positive moment, the compression bending stress produced on the top of 

the fl anged shape (at y � �7 in.) is calculated as

 x
z

My
I

(5,625 lb-ft)(7 in.)(12 in./ft)

425.333 in..
1,111 psi 1,111 psi (C)

4
� � � � � ���

and the tension bending stress produced on the bottom of the fl anged shape (at 

y � –5 in.) is calculated as

x
z

My
I

(5,625 lb-ft)(–5in.)(12 in./ft)

425.333 inn.
psi psi (T)

4
793 793� � � � ����

A negative bending moment produces tension stress at the top of the beam and com-

pression stress at the bottom. The maximum negative internal bending moment is 

12 in.

1 in.

1 in.

10 in.

1 in.

4 in.

8 in.
Ref. axis

(1)

(2)

(3)
0.5 in.

11.5 in.

6 in.

12 in.

1 in.

1 in.

10 in.

1 in.

4 in.

8 in.

y

z

7 in.

5 in.

(1)

(2)

(3)

+M

+M

–M

–M
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M � �6,000 lb-ft. For this negative moment, the tension bending stress produced on the 

top of the fl anged shape (at y � �7 in.) is calculated as

 x
z

My
I

( 6,000 lb-ft)(7 in.)(12 in./ft)

425.333 inn.
1,185 psi 1,185 psi (T)

4
� � � � ���

�
�

and the compression bending stress produced on bottom of the fl anged shape (at 

y � �5 in.) is

 x
z

My
I

( 6,000 lb-ft)( 5 in.)(12 in./ft)

425.333 iin.
psi psi (C)

4
846 846� � � � � ��

� �
�

(a) Maximum tension bending stress: For this beam, the maximum tension bending stress 

occurs on top of the beam at the location of the maximum negative internal bending 

moment. The maximum tension bending stress is �x � 1,185 psi (T). Ans.

(b) Maximum compression bending stress: The maximum compression bending stress 

also occurs on top of the beam; however, it occurs at the location of the maximum 

positive internal bending moment. The maximum compression bending stress is 

�x � 1,111 psi (C). Ans.

A 40-mm-diameter solid steel shaft supports the loads 

shown. Determine the magnitude and location of the maxi-

mum bending stress in the shaft.

Note: For the purposes of this analysis, the bearing at 

B can be idealized as a pin support and the bearing at E 

can be idealized as a roller support.

Plan the Solution
By the graphical method presented in Section 7.3, the 

shear-force and bending-moment diagrams for the shaft 

and loading will be constructed. Since the circular cross 

section is symmetric about the axis of bending, the maximum 

bending stress will occur at the location of the maximum 

internal bending moment.

SOLUTION
Support Reactions
A FBD of the beam is shown. From this FBD, the equilibrium equations can be written as

F B Ey y y 200 350 400 200 0N N N N� � � � � � �Σ

MB (200 N)(500 mm) (350 N)(400 mm) (400 N)(1,000 mm)� � �Σ

 
(200 N)(2,000 mm) (1,600 mm)Ey 0� � �

From these equilibrium equations, the beam reactions at pin support B and roller 

support E are

B Ey y625 525N and N� �

400 mm 400 mm600 mm600 mm500 mm

A B C D E F

200 N 350 N 400 N 200 N
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Construct the Shear-Force and 
Bending-Moment Diagrams
The shear-force and bending-moment diagrams can be 

 constructed in accordance with the six rules outlined in 

Section 7.3.

The maximum internal bending moment occurs at D 

and has a magnitude of M � 115 N-m.

Moment of Inertia
The moment of inertia for the 40-mm-diameter solid steel 

shaft is

I dz 64 64
125 6644 4 4(40 mm) mm,� � �

� �

Flexure Formula
The maximum bending stress in the shaft occurs at D. Since 

the circular cross section is symmetric about the axis of 

bending, both the tension and compression bending stresses 

have the same magnitude. In this situation, the fl exure for-

mula in the form of Equation (8.10) is convenient for calcu-

lating bending stresses. The distance c used in Equation 

(8.10) is simply the shaft radius. From this form of the fl ex-

ure formula, the maximum bending stress magnitude in the 

shaft is

 max 4

(115 N-m)(20 mm)(1,000 mm/m)

125,664 mm

Mc

Iz

188 30. MPa

�

�

��
 

Ans.

Section Modulus for a Solid Circular Section
Alternatively, the maximum bending stress magnitude in 

the shaft can be computed from the section modulus. For a 

solid circular section, the following formula can be derived 

for the section modulus:

S
I
c

d
d

dz ( 64)

2

4
3

32
� � �

� �

For the 40-mm-diameter solid steel shaft considered here, the section modulus is, 

therefore,

S d
32 32

3 3 3(40 mm) 6,283 mm� � �
� �

and the maximum bending stress magnitude in the shaft can be computed from

 
max

(115 N-m)(1,000 mm/m)

6,283 mm
MPa

M
S 3

18 30.� � ��

 

Ans.

400 mm 400 mm600 mm600 mm500 mm

A B C D E F

200 N 350 N 400 N 200 N

525 N625 N

V

200 N

–200 N
–325 N

75 N

425 N

–100 N-m

70 N-m

–80 N-m

115 N-m

M

400 mm 400 mm600 mm600 mm500 mm

A B C D E F

200 N 350 N 400 N 200 N

By yE
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Determine the bending-moment diagram and 

the maximum tension and compression bending 

stresses for a tee shape.

 MecMovies Example M8.9

Determine maximum bending moments, given allowable tension and compression bending 

stresses.

 MecMovies Example M8.10

Determine the bending-moment diagram, the moment of 

inertia, and the bending stress produced in a simple span 

beam consisting of a wide-fl ange steel shape.

 MecMovies Example M8.11  

Determine the bending-moment diagram, the moment 

of inertia, and the bending stress produced in a cantile-

ver beam consisting of a tee shape.

 MecMovies Example M8.12 
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Determine the bending-moment diagram, 

the centroid location, the moment of iner-

tia, and the bending stress for a simple 

span beam consisting of a U-shape beam.

 MecMovies Example M8.13 

Determine the bending-moment diagram and 

the bending stress for a standard steel shape that 

is used as a simply supported beam with an 

overhang.

 MecMovies Example M8.14 

Moment of inertia calculations involving shapes built up from standard steel shapes.

 MecMovies Example M8.15 

c08Bending.indd Page 288  28/03/12  8:09 PM user-F391c08Bending.indd Page 288  28/03/12  8:09 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



P8.19 A WT230 � 26 standard steel shape is used to support 

the loads shown on the beam in Figure P8.19a. The dimensions 

from the top and bottom of the shape to the centroidal axis are 

shown on the sketch of the cross section (Figure P8.19b). Consider 

the entire 4-m length of the beam and determine

(a)  the maximum tension bending stress at any location along the 

beam, and

(b)  the maximum compression bending stress at any location 

along the beam.

FIGURE P8.19a

A CB

3 m 1 m

15 kN

10 kN/m
20 kN/m

FIGURE P8.19b

60.7 mm

164.3 mm

y

z

WT230 × 26

P8.20 A WT305 � 41 standard steel shape is used to support the 

loads shown on the beam in Figure P8.20a. The dimensions from 

the top and bottom of the shape to the centroidal axis are shown on 

the sketch of the cross section (Figure P8.19b). Consider the entire 

10-m length of the beam and determine

(a)  the maximum tension bending stress at any location along the 

beam, and

(b)  the maximum compression bending stress at any location 

along the beam.

289

M8.9 Given a specifi c bending-moment diagram, compute the 

maximum tension and compression bending stresses produced at 

any location along the span.

M8.10 Given an allowable tension bending stress and an allow-

able compression bending stress, determine the maximum internal 

bending-moment magnitude that may be applied to a beam.

FIGURE M8.8

M8.8 Calculate the tension and compression bending stresses 

produced in singly symmetric cross sections.

 MecMovies Exercises

PROBLEMSPROBLEMS
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A CB D

3 m2 m 5 m

12 kN

10 kN/m

FIGURE P8.20a

88.9 mm

211.1 mm

y

z

WT305 × 41

FIGURE P8.20b

P8.21 A steel tee shape is used to support the loads shown on 

the beam in Figure P8.21a. The dimensions of the shape are shown 

in Figure P8.21b. Consider the entire 24-ft length of the beam and 

determine

(a)  the maximum tension bending stress at any location along the 

beam, and

(b)  the maximum compression bending stress at any location 

along the beam.

A CB D E

4 ft6 ft 4 ft10 ft

7 kips 17 kips16 kips

6 kips/ft

FIGURE P8.21a

1.50 in.

18.50 in.

0.75 in.

16.00 in.

y

z

FIGURE P8.21b

P8.22 A fl anged shape is used to support the loads shown on the 

beam in Figure P8.22a. The dimensions of the shape are shown in 

Figure P8.22b. Consider the entire 18-ft length of the beam and 

determine

(a)  the maximum tension bending stress at any location along the 

beam, and

(b)  the maximum compression bending stress at any location 

along the beam.

A DB C E

4 ft 4 ft7 ft 3 ft

1,800 lb 2,100 lb

800 lb/ft

FIGURE P8.22a

8 in.

2 in.

2 in.

6 in.

10 in.

2 in.

y

z

FIGURE P8.22b

P8.23 A channel shape is used to support the loads shown on the 

beam in Figure P8.23a. The dimensions of the shape are shown in 

Figure P8.23b. Consider the entire 12-ft length of the beam and 

determine

(a)  the maximum tension bending stress at any location along the 

beam, and

(b)  the maximum compression bending stress at any location 

along the beam.

2,300 lb

900 lb/ft

3 ft 9 ft

A B C

FIGURE P8.23a

6 in.

0.5 in.
12 in.

0.5 in.

y

z

FIGURE P8.23b
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P8.24 A W360 	 72 standard steel shape is used to support the 

loads shown on the beam in Figure P8.24a. The shape is oriented so 

that bending occurs about the weak axis as shown in Figure P8.24b. 

Consider the entire 6-m length of the beam and determine
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(a)  the maximum tension bending stress at any location along the 

beam, and

(b)  the maximum compression bending stress at any location 

along the beam.

A B C

15 kN/m

1.5 m 1.5 m 3 m

6 kN

45 kN-m

FIGURE P8.24a

P8.25 A 20-mm-diameter solid steel shaft supports loads 

PA � 500 N, PC � 1,750 N, and PE � 500 N, as shown in Figure 

P8.25/26. Assume that L1 � 90 mm, L2 � 260 mm, L3 � 140 mm, 

and L4 � 160 mm. The bearing at B can be idealized as a roller 

support, and the bearing at D can be idealized as a pin support. 

 Determine the magnitude and location of the maximum bending 

stress in the shaft.

P8.26 A 1.75-in.-diameter solid steel shaft supports loads PA � 

250 lb, PC � 600 lb, and PE � 250 lb, as shown in Figure P8.25/26. 

Assume that L1 � 9 in., L2 � 24 in., L3 � 12 in., and L4 � 15 in. 

The bearing at B can be idealized as a roller support, and the bear-

ing at D can be idealized as a pin support. Determine the magnitude 

and location of the maximum bending stress in the shaft.

P8.27 The steel beam in Figure P8.27a/28a has the cross sec-

tion shown in Figure P8.27b/28b. The beam length is L � 6.0 m, 

and the cross-sectional dimensions are d � 350 mm, bf � 205 mm, 

tf � 14 mm, and tw � 8 mm. Calculate the largest intensity of dis-

tributed load w0 that can be supported by this beam if the allowable 

bending stress is 200 MPa.

P8.28 The steel beam in Figure P8.27a/28a has the cross section 

shown in Figure P8.27b/28b. The beam length is L � 22 ft, and the 

cross-sectional dimensions are d � 16.3 in., bf � 10.0 in., tf � 

0.665 in., and tw � 0.395 in. Calculate the maximum bending stress 

in the beam if w0 � 6 kips/ft.

P8.29 A HSS12 � 8 � 1/2 standard steel shape is used to sup-

port the loads shown on the beam in Figure P8.29. The shape is 

oriented so that bending occurs about the strong axis. Determine the 

magnitude and location of the maximum bending stress in the beam.

P8.30 A W410 � 60 standard steel shape is used to support the 

loads shown on the beam in Figure P8.30. The shape is oriented so 

that bending occurs about the strong axis. Determine the magnitude 

and location of the maximum bending stress in the beam.

A CB D

40 kN/m

60 kN20 kN

2 m 3 m 1 m

50 kN-m

FIGURE P8.30
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W360 × 72

y

z

FIGURE P8.24b

6 ft 4 ft 7 ft 8 ft6 ft

A B F

C

D E

4 kips/ft
2 kips/ft

15 kips

70 kip-ft

FIGURE P8.29FIGURE P8.25/26

1L
2L

4L3L

A B
C D E

AP

CP
EP

FIGURE P8.27b/28b

FIGURE P8.27a/28a

tf

d

tw

bf

y

z
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At a minimum, a beam must be designed so that it is capable of supporting the loads 

acting on it without exceeding allowable bending stresses. A successful design involves 

the determination of an economical cross section for the beam—one that performs the 

intended function but does not waste materials. Elementary design generally involves 

either

(a)  the determination of appropriate dimensions for basic shapes such as rectangular or 

circular cross sections or

(b)      the selection of satisfactory standard manufactured shapes that are available for the 

preferred material.

A complete beam design requires attention to many concerns. This discussion, however, 

will be limited to the task of proportioning cross sections so that allowable bending stresses 

are satisfi ed, thus ensuring that a beam has suffi cient strength to support the loads that act 

upon it.

The section modulus S is a particularly convenient property for beam strength 

design. One form of the fl exure formula given by Equation (8.10) for doubly symmetric 

shapes was

max where
Mc

I

M

S
S

I

c
� � ��

If an allowable bending stress is specifi ed for the beam material, then the fl exure formula 

can be rearranged to solve for the minimum required section modulus Smin:

 S
M

min
allow

�
�  (8.11)

Using Equation (8.11), the engineer may either

(a)  determine the cross-sectional dimensions necessary to attain the minimum section 

modulus, or

(b)  select a standard shape that offers a section modulus equal to or greater 

than Smin.

The maximum bending moment in the beam is found from a bending-moment 

diagram. If the cross section to be used for the beam is doubly symmetric, then the maxi-

mum bending-moment magnitude (i.e., either positive or negative M) should be used in 

Equation (8.11). In some instances, it may be necessary to investigate both the maximum 

positive bending moment and the maximum negative bending moment. One such situation 

arises when differing allowable tension and compression bending stresses are specifi ed for 

a cross section that is not doubly symmetric, such as a tee shape.

If a beam has a simple cross-sectional shape, such as a circle, a square, or a rectangle 

of specifi ed height-to-width proportions, then its dimensions can be determined directly 

from Smin, since by defi nition, S � I/c. If a more complex shape (e.g., a W-shape) is to be 

used for the beam, then tables of cross-sectional properties such as those included in 

Appendix B are utilized. The general process for selecting an economical standard steel 

shape from a table of section properties is outlined in Table 8.1.

The ratio of one dimension to 

another is called an aspect ratio. 

For a rectangular cross section, 

the ratio of height h to width b is 

the aspect ratio of the beam.

8.5 Introductory Beam Design for Strength
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Table 8.1 Selecting Standard Steel Shapes for Beams

Step 1: Calculate the minimum section modulus required for the specifi c span and loading.

Step 2:  In the section properties tables (such as those presented in Appendix B), locate the section modulus values. Typically, the 

beam will be oriented so that bending occurs about the strong axis; therefore, fi nd the column that gives S for the strong axis 

(which is typically designated as the X–X axis).

Step 3:  Start your search at the bottom of the section properties table. Shapes are typically sorted from heaviest to lightest; therefore, 

the shapes at the bottom of the table are usually the lightest-weight members. Scan up the column until a section modulus 

equal to or slightly greater than Smin is found. This shape is acceptable, and its designation should be noted.

Step 4: Continue scanning upwards until several acceptable shapes have been determined.

Step 5:  After several acceptable shapes have been identifi ed, select one shape for use as the beam cross section. The lightest-weight 

cross section is usually chosen because beam cost is directly related to the weight of the beam. However, other considerations 

could affect the choice. For example, a limited height might be available for the beam, thus necessitating a shorter and 

heavier cross section instead of a taller, but lighter, shape.

293

A 24-ft-long simply supported wood beam sup-

ports three 1,200-lb concentrated loads that are 

located at the quarter points of the span. The 

allowable bending stress of the wood is 1,800 psi. 

If the aspect ratio of the solid rectangular wood 

beam is specifi ed as h/b � 2.0, determine the min-

imum width b that can be used for the 

beam.

Plan the Solution
By the graphical method presented in Section 7.3, the 

shear-force and bending-moment diagrams for the beam 

and loading will be constructed at the outset. With the 

use of the maximum internal bending moment and the 

specifi ed allowable bending stress, the required section 

modulus can be determined from the fl exure formula 

[Equation (8.10)]. The beam cross section can then be 

proportioned so that the height of the cross section is 

twice as large as the width.

SOLUTION
Construct the Shear-Force and 
Bending-Moment Diagrams
The shear-force and bending-moment diagrams for the 

beam and loading are shown. The maximum internal 

bending moment occurs at C.

Required Section Modulus
The fl exure formula can be solved for the minimum 

section modulus required to support a maximum internal 

bending moment of M � 14,400 lb-ft without exceeding 

the 1,800 psi allowable bending stress:

max allow

M

S
�� ��

A ECB D

1,200 lb 1,200 lb 1,200 lb

6 ft 6 ft 6 ft 6 ft

Beam and loading.

A ECB D

1,200 lb 1,200 lb 1,200 lb

6 ft 6 ft 6 ft 6 ft

1,800 lb 1,800 lb

1,800 lb

600 lb

–1,800 lb

–600 lb

V

10,800 lb-ft

14,400 lb-ft

10,800 lb-ft

M

EXAMPLE 8.5

h

b

Cross section.
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�S
M

allow

(14,400 lb-ft)(12 in./ft)

1,800 psi

96..0 in.3

	 �

�

�

Section Modulus for a Rectangular Section
For a solid rectangular section with width b and height h, the following formula can be 

derived for the section modulus:

S
I
c

bh
h

bhz
3 12

2 6

2

� � �

The aspect ratio specifi ed for the beam in this problem is h/b � 2; therefore, h � 2b. 

 Substituting this requirement into the section modulus formula gives

S
bh b b

b b
2 2

3 3

6

2

6

4

6

2

3

( )
� � � �

The minimum required beam width can now be determined:

 
2

3
96 0 5 243b b�. .in. in.3	 	  Ans.
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The beam shown will be constructed from a standard steel 

W-shape with an allowable bending stress of 30 ksi.

(a)  Develop a list of acceptable shapes that could be 

used for this beam. Include the most economical W8, 

W10, W12, W14, W16, and W18 shapes on the list 

of possibilities.

(b) Select the most economical W-shape for this beam.

Plan the Solution
By the graphical method presented in Section 7.3, the shear-force and bending-

moment diagrams for the beam and loading will be constructed at the outset. With the use 

of the maximum internal bending moment and the specifi ed allowable bending stress, the 

required section modulus can be determined from the fl exure formula [Equation (8.10)]. 

Acceptable standard steel W-shapes will be selected from Appendix B, and the lightest of 

those shapes will be chosen as the most economical shape for this application.

SOLUTION
Support Reactions
A FBD of the beam is shown. From this FBD, the equilibrium equations can be written as

F A Cy y y 30 15 30 4 0kips kips kips kips� � � � � � �Σ

MC ( kips)(7 ft) ( kips)(6 ft) (4 kips)(2 ft) (130 30 55 kips)(4 ft) kip-ft ( ft)55 12 0Ay� � � � � � �Σ

A DCB

7 ft5 ft 4 ft

15 kips30 kips

55 kip-ft
2.5 kips/ft

1 kips/ft

EXAMPLE 8.6
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From these equilibrium equations, the beam reactions 

at pin support A and roller support C are

A Cy y31 42 47 58. .kips and kips� �

Shear-Force and Bending-Moment Diagrams
The shear-force and bending-moment diagrams for 

the beam and loading are shown. The maximum inter-

nal bending moment in the beam is M � 70.83 kip-ft, 

and it occurs at B.

Required Section Modulus
The fl exure formula can be solved for the minimum 

section modulus required to support the maximum in-

ternal bending moment without exceeding the 30 ksi 

allowable bending stress:

max allow
M
S

� � ��

�S
M

allow

(70.83 kip-ft)(12 in./ft)

ksi

in

30

28 33. ..3

�

�

	
�

(a) Select acceptable steel shapes: The properties of 

selected standard steel wide-fl ange shapes are presented 

in Appendix B. W-shapes having a section modulus 

greater than or equal to 28.33 in.3 are acceptable for the 

beam and loading considered here. Since the cost of a 

steel beam is proportional to its weight, it is generally 

preferable to select the lightest acceptable shape for 

use.

Follow the procedure for selecting standard steel 

shapes presented in Table 8.1. By this process, the fol-

lowing shapes are identifi ed as being acceptable for the 

beam and loading:

 W8 	 40, S � 35.5 in.3

W10 	 30, S � 32.4 in.3

W12 	 26, S � 33.4 in.3

W14 	 22, S � 29.0 in.3

W16 	 31, S � 47.2 in.3

W18 	 35, S � 57.6 in.3

(b) Select the most economical W-shape: The most economical W-shape can now be 

selected from the short list of acceptable shapes. From this list, a W14 	 22 standard 

steel wide-fl ange shape is identifi ed as the lightest-weight section for this beam and 

loading. Ans.

A DCB

7 ft5 ft 4 ft

15 kips30 kips

55 kip-ft
2.5 kips/ft

1 kips/ft

6 ft 2 ft

4 kips30 kips

Ay yC

A DCB

7 ft5 ft 4 ft

15 kips30 kips

55 kip-ft
2.5 kips/ft

1 kips/ft

31.42 kips 47.58 kips

31.42 kips

18.92 kips

–11.08 kips

–28.58 kips

19.00 kips
15.00 kips

V

70.83 kip-ft

–55.00 kip-ft
–68.00 kip-ft

M
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P8.31 A solid steel shaft supports loads PA � 200 lb and 

PD � 300 lb as shown in Figure P8.31. Assume that L1 � 6 in., 

L2 � 20 in., and L3 � 10 in. The bearing at B can be idealized as a 

roller support, and the bearing at C can be idealized as a pin sup-

port. If the allowable bending stress is 8 ksi, determine the mini-

mum diameter that can be used for the shaft.

FIGURE P8.31

1L 2L 3L

A B C D

AP DP

FIGURE P8.32

P8.34 A simply supported wood beam (Figure P8.33a/34a) 

with a span of L � 5 m supports a uniformly distributed load of w0. 

The beam width is b � 140 mm, and the beam height is h � 260 mm 

(Figure P8.33b/34b). The allowable bending stress of the wood is 

9.5 MPa. Calculate the magnitude of the maximum load w0 that 

may be carried by the beam.

P8.35 A cantilever wood beam (Figure P8.35a/36a) with a

span of L � 3.6 m supports a linearly distributed load with maximum 

intensity of w0. The beam width is b � 240 mm, and the beam height 

is h � 180 mm (Figure P8.35b/36b). The allowable bending stress of 

the wood is 7.6 MPa. Calculate the magnitude of the maximum load 

w0 that may be carried by the beam.

P8.32 A solid steel shaft supports loads PA � 250 N and 

PC � 620 N as shown in Figure P8.32. Assume that L1 � 500 mm, 

L2 � 700 mm, and L3 � 600 mm. The bearing at B can be idealized 

as a roller support, and the bearing at D can be idealized as a pin 

support. If the allowable bending stress is 105 MPa, determine the 

minimum diameter that can be used for the shaft.

P8.33 A simply supported wood beam (Figure P8.33a/34a) 

with a span of L � 15 ft supports a uniformly distributed load of 

w0 � 320 lb/ft. The allowable bending stress of the wood is 1,200 psi. 

If the aspect ratio of the solid rectangular wood beam is specifi ed as 

h/b � 2.0 (Figure P8.33b/34b), calculate the minimum width b that 

can be used for the beam.

FIGURE P8.33a/34a

FIGURE P8.33b/34b
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h

b

1L 2L 3L

A B C D

AP CP

A B

L

w0

FIGURE P8.35a/36a FIGURE P8.35b/36b

b

h

P8.36 A cantilever wood beam (Figure P8.35a/36a) with a 

span of L � 15 ft supports a linearly distributed load with maxi-

mum intensity of w0 � 420 lb/ft. The allowable bending stress of 

the wood is 1,400 psi. If the aspect ratio of the solid rectangular 

cross section is specifi ed as h/b � 0.75 (Figure P8.35b/36b), 

 determine the minimum width b that can be used for the beam.

P8.37 The beam shown in Figure P8.37 will be constructed from 

a standard steel W-shape, with an allowable bending stress of 24 ksi.

(a)  Develop a list of fi ve acceptable shapes that could be used for 

this beam. On this list, include the most economical W10, 

W12, W14, W16, and W18 shapes.

(b) Select the most economical W shape for this beam.

FIGURE P8.37

P8.38 The beam shown in Figure P8.38 will be constructed from a 

standard steel W-shape, with an allowable bending stress of 165 MPa.

(a)  Develop a list of four acceptable shapes that could be used for 

this beam. Include the most economical W360, W410, W460, 

and W530 shapes on the list of possibilities.

(b) Select the most economical W shape for this beam.
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P8.39 The beam shown in Figure P8.39 will be constructed from a 

standard steel W-shape, with an allowable bending stress of 165 MPa.

(a)  Develop a list of four acceptable shapes that could be used for 

this beam. Include the most economical W360, W410, W460, 

and W530 shapes on the list of possibilities.

(b) Select the most economical W shape for this beam. P8.41 The beam shown in Figure P8.41 will be constructed from a 

standard steel HSS-shape, with an allowable bending stress of 30 ksi.

(a)  Develop a list of three acceptable shapes that could be used 

for this beam. On this list, include the most economical HSS8, 

HSS10, and HSS12 shapes.

(b) Select the most economical HSS-shape for this beam.

A

B

3 m

15 kN

40 kN/m

FIGURE P8.40

8 ft16 ft

A CB

2 kips/ft

5 kips

FIGURE P8.41

Many structural applications involve beams made of two materials. These types of beams 

are called composite beams. Examples include wood beams reinforced with steel plates 

attached to the top and bottom surfaces, and reinforced concrete beams in which steel rein-

forcing bars are embedded to resist tension stresses. Engineers purposely design beams in 

this manner so that advantages offered by each material can be effi ciently utilized.

The fl exure formula was derived for homogeneous beams—that is, beams consisting of 

a single, uniform material characterized by an elastic modulus E. As a result, the fl exure 

formula cannot be used to determine the normal stresses in composite beams without some 

additional modifi cations. In this section, a computational method will be developed so that 

a beam cross section that consists of two different materials can be “transformed” into an 

equivalent cross section consisting of a single material. For this equivalent homogeneous 

beam, the fl exure formula can be used to evaluate bending stresses in the beam.

Equivalent Beams

Before considering a beam made of two materials, let us fi rst examine what is required so 

that two beams of different materials can be considered equivalent. Suppose that a small 

8.6 Flexural Stresses in Beams of Two Materials

297

A DB C

2 m 2 m 5 m

50 kN 50 kN

40 kN/m

FIGURE P8.38

A DB EC

2.4 m 3.0 m 4.6 m 2.0 m

60 kN/m
35 kN/m

40 kN 40 kN 40 kN

FIGURE P8.39

P8.40 The beam shown in Figure P8.40 will be constructed 

from a standard steel W-shape, with an allowable bending stress of 

165 MPa.

(a)  Develop a list of four acceptable shapes that could be used for 

this beam. Include the most economical W310, W360, W410, 

and W460 shapes on the list of possibilities.

(b) Select the most economical W shape for this beam.
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rectangular aluminum bar having an elastic modulus of Ealum � 70 GPa is used as a beam 

in pure bending (Figure 8.10a). The bar is subjected to an internal bending moment of 

M � 140,000 N-mm, which causes the bar to bend about the z axis. The width of the bar is 

15 mm, and the height of the bar is 40 mm (Figure 8.10b); therefore, its moment of inertia 

about the z axis is Ialum � 80,000 mm4. The radius of curvature � of this beam can be com-

puted from Equation (8.6):

1

( () )
�

M
EIalum

2 4

140,000 N-mm

70,000 N/mm 80,000 mm

40,000 mm

� �

�

�

�

The maximum bending strain caused by the bending moment can be determined from 

Equation (8.1):

�x y
1 1

0 0005
40,000 mm

( 20 mm) mm/mm.� � � �
 
��

Next, suppose that we want to replace the aluminum bar with wood, which has an elastic 

modulus of Ewood � 10 GPa. In addition, we require that the wood beam must be equivalent 

to the aluminum beam. The question becomes, “What dimensions are required in order for 

the wood beam to be equivalent to the aluminum beam?”

What is meant by “equivalent” in this context? To be equivalent, the wood beam must 

have the same radius of curvature � and the same distribution of bending strains �x as the 

aluminum beam for the given internal bending moment M. To produce the same � for the 

140 N-m bending moment, the moment of inertia of the wood beam must be increased to

I
M

Ewood 2

140,000 N-mm

10,000 N/mm
(40,000 mm) 560,0000 mm4� � ��

The wood beam must be larger than the aluminum bar in order to have the same radius of 

curvature. However, equivalence also requires that the wood beam must exhibit the same 

distribution of strains. Since strains are directly proportional to y, the wood beam must have 
the same y coordinates as the aluminum bar, or in other words, the height of the wood 

beam must also be 40 mm.

The moment of inertia of the wood beam must be larger than that of the aluminum bar, 

but the height of both must be the same. Therefore, the wood beam must be wider than the 

aluminum bar if the two beams are to be equivalent:

I
bh b

b

wood
wood

3
4

wood

(40 mm)
560,000 mm

�

3

12 12
105 mmm

� � �

�

In this example, a wood beam that is 105 mm wide and 40 mm tall is equivalent to an aluminum 

beam that is 15 mm wide and 40 mm tall (Figure 8.10c). Since the elastic moduli of the two 

materials are different (by a factor of 7 in this case), the wood beam (which has the lesser E) must 

be wider than the aluminum bar (which has the greater E)—wider in this case by a factor of 7.

If the two beams are equivalent, are the bending stresses the same? The bending stress 

produced in the aluminum beam can be calculated from the fl exure formula:

alum 4

(140,000 N-mm)(20 mm)

80,000 mm
MPa35� ��

Similarly, the bending stress in the wood beam is

wood 4

(140,000 N-mm)(20 mm)

560,000 mm
MPa5� ��

FIGURE 8.10 Equivalent 

beams of aluminum and wood.

�

O

M M

x

y

(a)  Bar subjected to pure 

bending

z

y

40 mm

15 mm

(b)  Cross-sectional dimensions 

of aluminum bar

y

z 40 mm

105 mm

(c)  Cross-sectional dimensions 

of equivalent wood beam

BENDING
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FLEXURAL STRESSES IN BEAMS 

OF TWO MATERIALS
The bending stress in the wood is one-seventh of the stress in the aluminum; therefore, 

equivalent beams do not necessarily have the same bending stresses, only the same � and �.

In this example, the elastic moduli, the beam widths, and the bending stresses all dif-

fer by a factor of 7. Compare the moment–curvature relationships for the two beams:

1 M
E I

M
E Ialum alum wood wood

� ��

Expressing the moments of inertia in terms of the respective beam widths balum and bwood 

and the common beam height h gives

M

E
b h

M

E
b h

alum
alum

wood
wood

3 3

12 12

�

which can be simplifi ed to

b

b

E

E
wood

alum

alum

wood
�

The ratio of elastic moduli will be termed the modular ratio and denoted by the symbol n. 

For the two materials considered here, the modular ratio n has a value of

n
E

E
alum

wood

GPa

GPa

70

10
7� � �

Hence, the factor of 7 that appears throughout this example stems from the modular ratio 

for the two materials. The required width of the wood beam can be expressed in terms of 

the modular ratio n as

b
b

E
E

n b nbwood

alum

alum

wood
wood alum (15 mm)� 7 1055 mm� � � � �

The bending stresses from the two beams also differed by a factor of 7. Since the aluminum 

and wood beams are equivalent, the bending strains are the same for the two beams:

x x(     ) (     )alum wood�� �

Stress is related to strain by Hooke’s Law; therefore, the bending strains can be expressed as

x xE Ealum
alum

woodand
wood

� �(     )(     )� �
� �

The relationship between bending stresses for the two materials can be now be expressed 

in terms of the modular ratio n:

alum

alum

wood

wood

alum

wood

alum

wood

or
E E

E

E
n� � �

� � �

�

Once again, the ratio of bending stresses differs by an amount equal to the modular ratio n.

To summarize, a beam made of one material is transformed into an equivalent beam 

of a different material by modifying the beam width (and only the beam width). The ratio 

between the elastic moduli of the two materials (termed the modular ratio) dictates the 

change in width required for equivalence. Bending stresses are not equal for equivalent 

beams; rather, they, too, differ by a factor equal to the modular ratio.

Transformed-Section Method

The concepts introduced in the preceding example can be used to develop a method for 

analyzing beams made up of two materials. The basic idea is to transform a cross section that 
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300
consists of two different materials into an equivalent cross section of only one material. Once 

this transformation is completed, techniques developed previously for fl exure of homoge-

neous beams can be used to determine the bending stresses.

Consider a beam cross section that is made up of two linear elastic materials (desig-

nated Material 1 and Material 2) that are perfectly bonded together (Figure 8.11a). This 

composite beam will bend as described in Section 8.2. If a bending moment is applied to 

this beam, then, like a homogeneous beam, the total cross-sectional area will remain plane 

after bending. This means that the normal strains will vary linearly with the y coordinate 

measured from the neutral surface and that Equation (8.1) is valid:

 
�x y
1

� ��  (8.1)

In this situation, however, the neutral surface cannot be assumed to pass through the cen-

troid of the composite area.

We wish to transform Material 2 into an equivalent amount of Material 1 and, in so doing, 

defi ne a new cross section made entirely of Material 1. In order for this transformed cross sec-

tion to be valid for calculation purposes, it must be equivalent to the actual cross section (which 

consists of Material 1 and Material 2), meaning that the strains and the curvature of the trans-

formed section must be the same as the strains and curvature of the actual cross section.

How much area of Material 1 is equivalent to an area dA of Material 2? Consider a 

cross section consisting of two materials in which Material 2 is stiffer than Material 1, or in 

other words, E2 > E1 (Figure 8.11b). We will investigate the force transmitted by an area 

element dA2 of Material 2. Element dA has width dz and height dy. The force dF transmitted 

by this element of area is given by dF � �x dz dy. From Hooke’s Law, the stress �x can be 

expressed as the product of the elastic modulus and the strain; therefore,

dF E dz dy(      )2� �

Since Material 2 is stiffer than Material 1, more area of Material 1 will be required to transmit 

a force equal to dF. The distribution of strain in the transformed section must be the same as 

the strain distribution in the actual cross section. For that reason, the y dimensions (i.e., the 

dimensions perpendicular to the neutral axis) in the transformed section must be the same as 

those in the actual cross section. The width dimension (i.e., the dimension parallel to the 

neutral axis), however, can be modifi ed. Let the equivalent area dA� of Material 1 be given by 

In this procedure, Material 1 can 

be thought of as a “common 

currency” for the transformation. 

All areas are converted to their 

equivalents in the common 

currency.

Suppose that Material 2 was a 

“hard” material like steel and 

Material 1 was a “soft” material 

like rubber. If the strains in both 

the rubber and the steel were the 

same, a much greater area of 

rubber would be required to 

transmit the same force that 

could be transmitted by a small 

area of steel.

FIGURE 8.11  Beam with two materials: basic geometry and transformed geometry of the cross section.

b

(1)

(2)

h1
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(1)
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dzn
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E2 E1>
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E1
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(a) Original cross section (b)  Orginal cross section 

with dA � dy dz
(c)  Material 2 transformed by use of the 

modular ratio n

BENDING
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301
FLEXURAL STRESSES IN BEAMS 

OF TWO MATERIALS
height dy and a modifi ed width n dz, where n is a factor to be determined (Figure 8.11c). The 

force transmitted by this area of Material 1 can be expressed as

dF E n dz dy( ) ( )1�� �

If the transformed section is to be equivalent to the actual cross section, the forces dF� and 

dF must be equal:

E n dz dy E dz dy1 2(      )(      ) ( ) �� �

Therefore,

 n
E

E
2

1
�  (8.12)

The ratio n is called the modular ratio.

This analysis shows that the actual cross section consisting of two materials can be trans-

formed by use of the modular ratio into an equivalent cross section consisting of a single mate-

rial. The actual cross section is transformed in the following manner: The area of Material 1 is 

unmodifi ed, meaning that its original dimensions remain unchanged. The area of Material 2 is 

transformed into an equivalent area of Material 1 by multiplication of the actual width (i.e., the 

dimension that is parallel to the neutral axis) by the modular ratio n. The height of Material 2 

(i.e., the dimension perpendicular to the neutral axis) is kept the same. This procedure pro-

duces a transformed section, made entirely of Material 1, that transmits the same force (for 

any given strain �) as the actual cross section, which is composed of two materials.

Does the transformed section have the same neutral axis as the actual cross section? 

If the transformed cross section is equivalent to the actual cross section, then it must pro-

duce the same strain distribution. Therefore, it is essential that both cross sections have the 

same neutral axis location. For a homogeneous beam, the neutral axis was determined by 

summing forces in the x direction in Equation (8.4). Application of this same procedure for 

a beam made up of two materials gives

F dA dAx xA xA1 2
1 2

0� � �Σ � �

in which �x1 is the stress in Material 1 and �x2 is the stress in Material 2. In this equation, 

the fi rst integral is evaluated over the cross-sectional area of Material 1 and the second in-

tegral is evaluated over the cross-sectional area of Material 2. From Equation (8.3), the 

normal stresses at y (measured from the neutral axis) for the two materials can be expressed 

in terms of the radius of curvature � as

 x x
E

y
E

y1
1

2
2and� � � �� �

� �  (8.13)

Substituting these expressions for �x1 and �x2 gives

F
E

y dA
E

y dAx A A

1 2

1 2

0� � � �Σ
� �

The radius of curvature can be cancelled out so that this equation reduces to

E y dA E y dA
A A1 2

1 2

0� �

In this equation, the integrals represent the fi rst moments of the two portions of the cross 

section with respect to the neutral axis. At this point, the modular ratio will be introduced 

so that the previous equation can be rewritten in terms of n:

E y dA E yn dA
A A1 1

1 2

0� �
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This reduces to

 y dA yn dA
A A1 2

0� �  (8.14)

The area of the transformed cross section can be expressed as

dA n dA dA
A A tAt1 2

� �

so that Equation (8.14) can be rewritten simply as

 y dAtAt

0�  (8.15)

Therefore, the neutral axis passes through the centroid of the transformed section, just as 

it passes through the centroid of a homogeneous beam.

Does the transformed section have the same moment–curvature relationship as the 
actual cross section? From the relationships of Equation (8.13), the moment–curvature 

relationship for a beam of two materials is

M y dA

y dA y dA

E y dA E y d

xA

xA xA

A

1 2

1

1
1

2
2

2 AA
A2

� �

�

� �

� �

�

� �

�

By the modular ratio, the elastic modulus of Material 2 can be expressed as E2 � nE1, 

which reduces the preceding equation to

M
E

y dA y n dA
A A

1 2 2

1 2

� �
�

The term in brackets is just the moment of inertia It of the transformed section about its 

neutral axis (which was previously shown to pass through the centroid). Therefore, the 

 moment–curvature relationship can be written as

 M
E I

I y dAt
t tAt

1 2where� �
�  (8.16)

Therefore, the moment–curvature relationship of the transformed cross section is equal to 

that of the actual cross section.

How are bending stresses calculated for each of the two materials according to the 
transformed-section method? Equation (8.16) can be expressed as

1

1

M
E It

��

and substituted into the stress relationships of Equation (8.13) to give the bending stress at 

those locations corresponding to Material 1 in the actual cross section:

 x
t t

E
y

M
E I

E y
My
I1

1

1
1� � � � � ��

�  (8.17)

BENDING
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FLEXURAL STRESSES IN BEAMS 

OF TWO MATERIALS
Notice that the bending stress in Material 1 is calculated from the fl exure formula. Recall 

that the actual area of Material 1 was not modifi ed in developing the transformed section.

The bending stress at those locations corresponding to Material 2 in the actual cross 

section is given by

 x
t t t

y
M

E I
E y

E
E

My
I

n
My
I2

E2

1
2

2

1
� � � � � � � ��

�  (8.18)

When the transformed-section method is used to calculate bending stresses at locations 

corresponding to Material 2 (i.e., the transformed material) in the actual cross section, the 

fl exure formula must be multiplied by the modular ratio n.

For a cross section consisting of two materials (Figure 8.12a), the strains caused by a 

bending moment are distributed linearly over the depth of the cross section (Figure 8.12b), 

just as they are for a homogeneous beam. The corresponding normal stresses are also distrib-

uted linearly; however, there is a discontinuity at the intersection of the two materials (Fig-

ure 8.12c), which is a consequence of the differing elastic moduli for the materials. In the 

transformed-section method, the normal stresses for the material that was transformed ( Material 

2 in this instance) are calculated by multiplying the fl exure formula by the modular ratio n.

y

�x

�x1 = –
It

M y

�x2 = – n
It

M y

b

(1)

(2)

h1

h2

(a) Original cross section

y

�x

�x = –
y
�

(b)  Distribution of 

normal strains

(c) Distribution of normal stresses

FIGURE 8.12 Beam with two materials: strain and stress distributions.

To recap, the procedure for calculating bending stresses by the transformed-section 

method depends upon whether or not the material was transformed:

•  If the area was not transformed, then simply calculate the associated bending stresses 

from the fl exure formula.

•  If the area was transformed, then multiply the fl exure formula by n when calculating 

the associated bending stresses.

In this discussion, the actual beam cross section was transformed into an equivalent 

cross section consisting entirely of Material 1. It is also permissible to transform the cross 

section to Material 2. In that case, the modular ratio is defi ned as n � E1/E2. The bending 

stresses in Material 2 of the actual cross section will be the same as the bending stresses in 

the corresponding portion of the transformed cross section. The bending stresses at those 

locations corresponding to Material 1 in the actual cross section will be obtained by multi-

plying the fl exure formula by n � E1/E2.
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A cantilever beam 10 ft long carries a uniformly 

distributed load of w � 100 lb/ft. The beam is 

constructed from a 3-in.-wide by 8-in.-deep 

wood timber (1) that is reinforced on its upper 

surface by a 3-in.-wide by 0.25-in.-thick alumi-

num plate (2). The elastic modulus of the wood 

is E � 1,700 ksi, and the elastic modulus of the 

aluminum plate is E � 10,200 ksi. Determine 

the maximum bending stresses produced in 

timber (1) and aluminum plate (2).

Plan the Solution
The transformed-section method will be used 

to transform the cross section consisting of two 

materials into an equivalent cross section con-

sisting of a single material. This transformed 

section will be used for calculation purposes. The centroid location and the moment of 

inertia of the transformed section about its centroid will be calculated. With these section 

properties, the fl exure formula will be used to compute the bending stresses in both the 

wood and the aluminum for the maximum internal bending moment produced in the 

cantilever span.

SOLUTION
Modular Ratio
The transformation procedure is based on the ratio of the elastic moduli for the two 

materials, termed the modular ratio and denoted by n. The modular ratio is defi ned as the 

elastic modulus of the transformed material divided by the elastic modulus of the refer-
ence material. In this example, the stiffer material (i.e., the aluminum) will be trans-

formed into an equivalent amount of the less stiff 

material (i.e., the wood); therefore, the wood will be 

used as the reference material. The modular ratio for 

this transformation is

n
E

E

E

E
trans

ref

10,200 ksi

1,700 ksi

2

1

6

� �

� �

The width of the aluminum portion of the cross 

section is multiplied by the modular ratio n. The 

resulting cross section, consisting solely of wood, is 

equivalent to the actual cross section, which con-

sists of both wood and aluminum.

Section Properties
The centroid location for the transformed section 

is shown in the fi gure on the left. The moment of 

inertia of the transformed section about the z cen-

troidal axis is It � 192.5 in.4.

y

z

3 in.

0.25 in.

8 in.

(1)

(2)

6 × 3 in. = 18 in.

4.6513 in.

3.5987 in.

y

z

3 in.

0.25 in.

8 in.

(1)

(2)

6 × 3 in. = 18 in.

Transformed cross section.

EXAMPLE 8.7

10 ft

100 lb/ft

y

z

3 in.

3 in. 0.25 in.

8 in.

(1)

(2)

Cantilever beam with w � 100 lb/ft.
Cross-sectional 
dimensions.
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Maximum Bending Moment
The maximum bending moment for a 10-ft-long cantilever beam with a uniformly distrib-

uted load of w � 100 lb/ft is

M
wL

max

2( lb/ft)(10 ft)

2
5,000 lb-ft 60,

2

2

100
0000 lb-in.� � � � � � � �

Flexure Formula
The fl exure formula [Equation (8.7)] gives the bending stress at any coordinate location y; 

however, the fl exure formula is valid only if the beam consists of a homogeneous material. 

The transformation process used to replace the aluminum plate with an equivalent amount 

of wood was necessary to obtain a homogeneous cross section that satisfi es the limitations 

of the fl exure formula.

The transformed section consisting entirely of wood is equivalent to the actual cross 

section. The transformed section is equivalent because the bending strains produced in 

the transformed section are identical to the strains produced in the actual cross section. 

The bending stresses in the transformed section, however, require an additional adjust-

ment. The bending stresses computed for the original wood portion of the cross section 

[i.e., area (1)] are correctly computed from the fl exure formula. The bending stresses 

computed for the aluminum plate must be multiplied by the modular ratio n to account for 

the difference in elastic moduli of the two materials.

Maximum Bending Stresses in the Wood
The maximum bending stress in the wood portion (1) of the cross section occurs at the 

lower surface of the beam. Since the wood was not transformed, Equation (8.17) is used 

to compute the maximum bending stress:

x
t

My

I1
( 60,000 lb-in.)( 4.6513 in.)

192.5 in.4
1,450 psi 1,450 psi (C)� � � � � ��

� �
�  Ans.

Maximum Bending Stresses in the Aluminum
The aluminum portion of the cross section was transformed in the analysis to an equiva-

lent width of wood. While the bending strains for the transformed section are correct, the 

bending stress for the transformed material must be multiplied by the modular ratio n to 

account for the differing elastic moduli of the two materials. The maximum bending stress 

in the aluminum portion (2) of the cross section, which occurs at the upper surface of the 

beam, is computed from Equation (8.18):

x
t

n
My

I2 6
( 60,000 lb-in.)(3.5987 in.)

192.5 in.44
6,730 psi 6,730 psi (T)� � � � ��

�
�  Ans.

 Beam cross section. Profi le view of beam. Bending strains. Bending stresses.

y

z

3 in.

3 in. 0.25 in.

8 in.

(1)

(2)

x

60,000 lb-in.

100 lb/ft

y

�x

(elongation)(contraction)

+660 ��

+614 ��

–853 ��

�x

y

(compression) (tension)

–1,450 psi

1,044 psi 6,260 psi

6,730 psi
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Bending Stresses at the Intersection of the Two Materials
The joint between timber (1) and aluminum plate (2) occurs at y � 3.3487 in. At this loca-

tion, the bending strain in both materials is identical: �x � �614 
�. Since the elastic 

modulus of the aluminum is six times greater than the elastic modulus of the wood, the 

bending stress in the aluminum, calculated as

x
t

n
My

I2 6
( 60,000 lb-in.)(3.3487 in.)

192.5 in.44
6,263 psi 6,263 psi (T)� � � � ��

�
�

is six times greater than the bending stress in the wood:

x
t

My

I1
( 60,000 lb-in.)(3.3487 in.)

192.5 in.4
11,044 psi 1,044 psi (T)� � � � ��

�
�

This result can also be seen by application of Hooke’s Law to each material. For a normal 

strain of �x � �614 
�, the normal stress in wood timber (1) is found from Hooke’s Law as

x xE1 1
6 1 044(   )(1,700,000 psi) 614 10 in./in. p, ssi psi (T)1 044,� � � � ��� �

and the normal stress in aluminum plate (2) is

x xE2 2
6( )(10,200,000 psi) 614 10 in./in. 6,263 ppsi 6,263 psi (T)� � � � � �� �

Determine the bending stresses in a composite 

beam, using the transformed-section method.

 MecMovies Example M8.16

Given allowable stresses for the aluminum and brass materials, determine the 

largest allowable moment that can be applied about the z axis to the beam cross 

section.

 MecMovies Example M8.17
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Given allowable stress for two materials, determine the largest allowable moment that can 

be applied about the horizontal axis of the beam cross section shown.

 MecMovies Example M8.18

Given allowable stress for wood and steel materials, determine the largest allowable 

moment and, in turn, the maximum distributed load that can be applied to a simply 

supported beam.

 MecMovies Example M8.19

M8.16 A composite beam cross section consists of two rectan-

gular bars securely bonded together. The beam is subjected to a 

specifi ed bending moment M. Determine

(a) the vertical distance from K to the centroidal axis.

(b) the bending stress produced at H.

(c) the bending stress produced at K.

 MecMovies ExercisesMM

FIGURE M8.16

307

c08Bending.indd Page 307  28/03/12  8:11 PM user-F391c08Bending.indd Page 307  28/03/12  8:11 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



M8.17 A composite beam cross section consists of two rectan-

gular bars securely bonded together. From the indicated allowable 

stress, determine

(a) the vertical distance from K to the centroidal axis.

(b) the maximum allowable bending moment M.

(c) the bending stress produced at H.

(d) the bending stress produced at K.

P8.44 A composite beam is made of two brass [E � 110 GPa] 

bars to two aluminum [E � 70 GPa] bars, as shown in Figure P8.44. 

The beam is subjected to a bending moment of 380 N-m acting 

about the z axis. Using a � 5 mm, b � 40 mm, c � 10 mm, and d � 

25 mm, calculate

(a)  the maximum bending stresses in the aluminum bars.

(b)  the maximum bending stress in the brass bars.

FIGURE M8.17

P8.42 A composite beam is fabricated by bolting two 3-in.-wide � 

12-in.-deep wood planks to the sides of a 0.50 in. � 12 in. steel plate 

(Figure P8.42b). The moduli of elasticity of the wood and the steel are 

1,800 ksi and 30,000 ksi, respectively. The simply supported beam 

spans a distance of 20 ft and carries two concentrated loads P, which 

are applied at the quarter points of the span (Figure P8.42a).

(a)  Determine the maximum bending stresses produced in the 

wood planks and the steel plate if P � 3 kips.

(b)  Assume that the allowable bending stresses of the wood and 

the steel are 1,200 psi and 24,000 psi, respectively. Determine 

the largest acceptable magnitude for concentrated loads P. 

(You may neglect the weight of the beam in your calculations.)

PROBLEMSPROBLEMS
P8.43 The cross section of a composite beam that consists of 

4-mm-thick fi berglass faces bonded to a 20-mm-thick particleboard 

core is shown in Figure P8.43. The beam is subjected to a bending 

moment of 55 N-m acting about the z axis. The elastic moduli for 

the fi berglass and the particleboard are 30 GPa and 10 GPa, 

respectively. Determine

(a)  the maximum bending stresses in the fi berglass faces and the 

particleboard core.

(b)  the stress in the fi berglass at the joint where the two materials 

are bonded together.

A DB C

PP

5 ft 10 ft 5 ft

FIGURE P8.42a

0.50 in.

12 in.

3 in. 3 in.

FIGURE P8.42b

4 mm

4 mm

20 mm

50 mm

y

z

FIGURE P8.43
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P8.48 The simply supported beam shown in Figure P8.48a/49a 

carries a uniformly distributed load w on overhang BC. The beam is 

constructed of a Southern pine [E � 12 GPa] timber that is reinforced 

on its upper surface by a steel [E � 200 GPa] plate (Figure P8.48b/

49b). The beam spans are L � 4 m and a � 1.25 m. The wood beam 

has dimensions of bw � 150 mm and dw � 280 mm. The steel plate 

dimensions are bs � 230 mm and ts � 6 mm. Assume that the 

allowable bending stresses of the wood and the steel are 9 MPa and 

165 MPa, respectively. Determine the largest acceptable magnitude 

for distributed load w. (You may neglect the weight of the beam in 

your calculations.)

P8.45 An aluminum [E � 10,000 ksi] bar is bonded to a steel 

[E � 30,000 ksi] bar to form a composite beam (Figure P8.45b/46b). 

The composite beam is subjected to a bending moment of M � 

�300 lb-ft about the z axis (Figure P8.45a/46a). Determine

(a)  the maximum bending stresses in the aluminum and steel bars.

(b)  the stress in the two materials at the joint where they are 

bonded together.

P8.46 An aluminum [E � 10,000 ksi] bar is bonded to a steel 

[E � 30,000 ksi] bar to form a composite beam (Figure P8.45b/46b). 

The allowable bending stresses for the aluminum and steel bars are 

20 ksi and 30 ksi, respectively. Determine the maximum bending 

moment M that can be applied to the beam.

P8.47 Two steel [E � 30,000 ksi] plates are securely attached to 

a Southern pine [E � 1,800 ksi] timber to form a composite beam 

(Figure P8.47). The allowable bending stress for the steel plates is 

24,000 psi, and the allowable bending stress for the Southern pine 

is 1,200 psi. Determine the maximum bending moment that can be 

applied about the horizontal axis of the beam.

0.75 in.

0.50 in.

2.00 in.

y

z

Steel

Aluminum

FIGURE P8.45b/46b

y

z x

M

M
Steel

Aluminum

FIGURE P8.45a/46a

16 in.

10 in.

PL      × 8

PL      × 8

4
1—

4
1—

FIGURE P8.47

x

y

A B C

w

L a

FIGURE P8.48a/49a

ts

dw

bs

bw

y

z

H

K

Steel

Wood

FIGURE P8.48b/49b

P8.49 The simply supported beam shown in Figure P8.48a/49a 

carries a uniformly distributed load of w � 28 kN/m on overhang 

BC. The beam is constructed of a Southern pine [E � 12 GPa] 

   timber that is reinforced on its upper surface by a steel [E � 200 GPa] 

plate (Figure P8.48b/49b). The beam spans are L � 5.5 m and 

a � 1.75 m. The wood beam has dimensions of bw � 215 mm 

and dw � 325 mm. The steel plate dimensions are bs � 250 mm 

and ts � 10 mm. (You may neglect the weight of the beam in 
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a

a

d

b

c

c

y

z

Aluminum

Aluminum

Brass

Brass

c08Bending.indd Page 309  28/03/12  8:12 PM user-F391c08Bending.indd Page 309  28/03/12  8:12 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



your calculations.) At the location of the maximum bending 

moment for the beam, determine

(a)  the vertical distance from point K to the neutral axis of the 

composite beam.

(b)  the bending stress in the steel at H.

P8.50 Two steel plates, each 4 in. wide and 0.25 in. thick, rein-

force a wood beam that is 3 in. wide and 8 in. deep. The steel plates 

are attached to the vertical sides of the wood beam in a position 

such that the composite shape is symmetric about the z axis, as 

shown in the sketch of the beam cross section (Figure P8.50). De-

termine the maximum bending stresses produced in both the wood 

and the steel if a bending moment of Mz � �50 kip-in. is applied 

about the z axis. Assume that Ewood � 2,000 ksi and Esteel � 

30,000 ksi.

the elastic modulus of the CFRP is 23,800 ksi. The simply sup-

ported beam spans 24 ft and carries two concentrated loads P, 

which act at the quarter-points of the span (Figure P8.51a). The 

allowable bending stresses of the wood and the CFRP are 2,400 psi 

and 175,000 psi, respectively. Determine the largest acceptable 

magnitude for the concentrated loads P. (You may neglect the 

weight of the beam in your calculations.)

FIGURE P8.50

8 in.

3 in.

4 in.

0.25 in. thick

y

z

in.

3 in.

5.5 in.

y

z

CFRP

8
1—

12 in.

FIGURE P8.51b

6 ft6 ft 12 ft

P P

A DB C

FIGURE P8.51a

P8.51 A glue-laminated wood beam is reinforced by carbon 

fi ber reinforced plastic (CFRP) material bonded to its bottom 

surface. The cross section of the composite beam is shown in 

Figure P8.51b. The elastic modulus of the wood is 1,700 ksi, and 

As discussed in Chapters 1, 4, and 5, an axial load whose line of action passes through the 

centroid of a cross section (termed a centric axial load) creates normal stress that is uni-

formly distributed across the cross-sectional area of a member. An eccentric axial load is 

a force whose line of action does not pass through the centroid of the cross section. When 

an axial force is offset from a member’s centroid, bending stresses are created in the mem-

ber in addition to the normal stresses caused by the axial force. Analysis of this type of 

bending, therefore, requires consideration of both axial stresses and bending stresses. Many 

structures are subjected to eccentric axial loads, including common objects such as sign-

posts, clamps, and piers.

The normal stresses acting on the section containing C are to be determined for the 

object shown in Figure 8.13a. The analysis presented here assumes that the bending 

8.7 Bending Due to Eccentric Axial Load
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 member has a plane of symmetry (see Figure 8.2a) and that all loads are applied in the 

plane of symmetry.

The line of action of the axial load P does not pass through centroid C; therefore, this 

object (between points H and K ) is subjected to an eccentric axial load. The eccentricity 

between the line of action of P and the centroid C is denoted by the symbol e.

The internal forces acting on a cross section can be represented by an internal 

axial force F acting at the centroid of the cross section and an internal bending moment 

M acting in the plane of symmetry, as shown on the free-body diagram cut through C 

(Figure 8.13b).

Both the internal axial force F and the internal bending moment M produce normal 

stresses (Figure 8.14). These stresses must be combined to determine the complete stress 

distribution at the section of interest. The axial force F produces a normal stress �x � F/A 

that is uniformly distributed over the entire cross section. The bending moment M produces 

a normal stress, given by the fl exure formula �x � �My/Iz, that is linearly distributed over 

the depth of the cross section. The complete stress distribution is obtained by superposing 

the stresses produced by F and M as

 x
z

F

A

My

I
� ��  (8.19)

The sign conventions for F and M are the same as those presented in previous chapters. 

A positive internal axial force F produces tension normal stresses. A positive internal bend-

ing moment produces compression normal stresses for positive values of y.

An axial force whose line of action is separated from the centroid of the cross section by 

an eccentricity e produces an internal bending moment of M � P 	 e. Thus, for an 

eccentric axial force, Equation (8.19) can also be expressed as

 x
z

F

A

y

I

( )Pe
� ��  (8.20)

H K

x

y

PP
e

C

 (a) Confi guration of bending member

F

M = Pe

x

y

P
e

C

 (b) Free-body diagram

FIGURE 8.13 Bending due to an eccentric axial load.

F

M = P e

+ =

Uniform
stress due
to axial
force

Stress caused
by bending

moment

Complete
stress

distribution

Internal
axial force

and bending
moment

C

FIGURE 8.14 Normal stresses caused by eccentric axial load.
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312
Neutral Axis Location

Whenever an internal axial force F acts simultaneously with an internal bending mo-

ment M, the neutral axis is no longer located at the centroid of the cross section. In fact, 

depending upon the magnitude of the internal axial force F, there may be no neutral axis 

at all. All normal stresses on the cross section may be either tension stresses or compres-

sion stresses. The location of the neutral axis can be determined by setting �x � 0 in 

Equation (8.19) and solving for the distance y measured from the centroid of the cross 

section.

Limitations

The stresses determined by this approach assume that the internal bending moment in the 

fl exural member can be accurately calculated from the original undeformed dimensions. In 

other words, the defl ections caused by the internal bending moment must be relatively 

small. If the fl exural member is relatively long and slender, the lateral defl ections caused by 

the eccentric axial load may signifi cantly increase the eccentricity e, which amplifi es the 

bending moment.

The use of Equations (8.19) and (8.20) should be consistent with Saint-Venant’s 

Principle. In practice, this means that stresses cannot be accurately calculated near points 

H and K in Figure 8.13a.

13 in.

10 in.
a a

x

y

z

30 kips

EXAMPLE 8.8

A structural member with a rectangular cross section 10 in. wide by 6 in. deep sup-

ports a 30-kip concentrated load as shown. Determine the distribution of normal 

stresses on section a–a of the member.

Plan the Solution
The internal forces acting on section a–a must be determined at the outset. The 

principle of equivalent force systems will be used to determine a force and a mo-

ment acting at the section of interest that is equivalent to the single 30-kip concen-

trated load acting on the top of the structural member. Once the equivalent force 

and moment have been determined, the stresses produced at section a–a can be 

computed.

SOLUTION
Equivalent Force and Moment
The cross section of the structural member is rectangular; therefore, by sym-

metry, the centroid must be located 5 in. from the left side of the structural 

member. The 30-kip concentrated load is located 13 in. from the left side of 

the structural member. Consequently, the concentrated load is located 8 in. to the 

right of the centroidal axis of the structural member. The distance between the line 

of action of the load and the centroidal axis of the member is commonly termed the 

eccentricity e. In this instance, the load is said to be located at an eccentricity of 

e � 8 in.

Since its line of action does not coincide with the centroidal axis of the structural 

member, the 30-kip load produces bending in addition to axial compression. The 

BENDING
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H K

F = 30 kips

M = 240 kip-in.

e = 8 in.

x

y

z

30 kips

H K

F = 30 kips

M = 240 kip-in.

0.5 ksi (C)
Axial
stress

2.4 ksi (C)

2.4 ksi (T)

Bending
stress

2.9 ksi (C)

1.9 ksi (T)

Combined
stress

equivalent force at section a–a is simply equal to the 30-kip load. The moment at 

 section a–a that is required for equivalence is equal to the product of the load and 

the eccentricity e. Therefore, an internal force of F � 30 kips and an internal 

bending moment of M � F 	 e � (30 kips)(8 in.) � 240 kip-in. acting at the 

centroid of section a–a are equivalent to the 30-kip load applied to the top of the 

structural member.

Section Properties
The centroid location is known from symmetry. The area of the cross section is 

A � (10 in.)(6 in.) � 60 in.2. The bending moment M � 240 kip-in. acts about the 

z axis; therefore, the moment of inertia about the z axis must be determined in order 

to calculate the bending stresses:

Iz
(6 in.)(10 in.)

12
in.

3
500 4� �

Axial Stress
On section a–a, the internal force F � 30 kips (which acts along the y centroidal axis) 

produces a normal stress of

axial 2

30 kips

60 in.
ksi (C)

F

A
0 5.� � ��

which acts vertically (i.e., in the y direction). The axial stress is a compression normal 

stress that is uniformly distributed over the entire section.

Bending Stress
The magnitude of the maximum bending stress on section a–a can be determined from 

the fl exure formula:

bend 4

(240 kip-in.)(5 in.)

500 in.
ksi

Mc

Iz

2 4.� � ��

The bending stress acts in the vertical direction (i.e., in the y direction), and it increases 

linearly with distance from the axis of bending. In the coordinate system defi ned for 

this problem, distance from the axis of bending is measured in the x direction from the 

z axis.

The sense of the bending stress (either tension or compression) can be readily 

determined by inspection, based on the direction of the internal bending moment M. In 

this instance, M causes compression bending stresses on the K side of the structural 

member and tension bending stresses on the H side.

Combined Normal Stresses
Since the axial and bending stresses are normal stresses that act in the same direction 

(i.e., the y direction), they can be directly added to give the combined stresses acting on 

section a–a. The combined normal stress on side H of the structural member is

 �H axial bend ksi ksi ksi ksi (T0 5 2 4 1 9 1 9. . . . ))� � � � � � � �� �  Ans.
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and the combined normal stress on side K is

 K axial bend ksi ksi ksi ksi (C0 5 2 4 2 9 2 9. . . . ))� � � � � � ��� � �  Ans.

Neutral Axis Location
For an eccentric axial load, the neutral axis (i.e., the location with zero stress) is not 

located at the centroid of the cross section. Although not requested in this example, the 

location of the axis of zero stress can be determined from the combined stress distribu-

tion. By the principle of similar triangles, the combined stress is zero at a distance of 

3.958 in. from the left side of the structural member.

The C-clamp shown is made of an alloy that 

has a yield strength of 324 MPa in either ten-

sion or compression. Determine the allowable 

clamping force that the clamp can exert if a 

factor of safety of 3.0 is required.

Plan the Solution
The location of the centroid for the tee-

shaped cross section must be determined at 

the outset. Once the centroid has been lo-

cated, the eccentricity e of the clamping force 

P can be determined and the equivalent force 

and moment acting on section a–a can be 

established. Expressions for the combined 

axial and bending stresses, written in terms of the unknown P, can be set 

equal to the allowable normal stress. From these expressions, the maxi-

mum allowable clamping force can be determined.

Section Properties
The centroid for the tee-shaped cross section is located as shown in the 

sketch on the left. The cross-sectional area is A � 96 mm2, and the moment 

of inertia about the z centroidal axis can be calculated as Iz � 2,176 mm4.

Allowable Normal Stress
The alloy used for the clamp has a yield strength of 324 MPa. Since a 

factor of safety of 3.0 is required, the allowable normal stress for this 

material is 108 MPa.

Internal Force and Moment
A free-body diagram cut through the clamp at section a–a is shown. The 

internal axial force F is equal to the clamping force P. The internal bend-

ing moment M is equal to the clamping force P times the eccentricity e 

between the centroid of section a–a and the line of action of P, which is 

e � 40 mm � 6 mm � 46 mm.

40 mm

a

a

P P

40 mm

x

y

F

M

P

12 mm

4 mm

4 mm

12 mm

y

z

6 mm

10 mm

H

K

12 mm

4 mm

4 mm

12 mm

Cross section a–a.

EXAMPLE 8.9
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F

M

H

K

+ =

Axial
stress

Bending
stress

Combined
stress

Axial Stress
On section a–a, the internal force F (which is equal to the clamping force P) produces a 

normal stress of

axial mm

F

A

P

A

P

96 2
� � ��

This normal stress is uniformly distributed over the entire cross section. By inspection, the 

axial stress is tension.

Bending Stress
Since the tee shape is not symmetrical about its z axis, the bending stress on section a–a 

at the top of the fl ange (point H ) will be different from the bending stress at the bottom of 

the stem (point K). At point H, the bending stress can be expressed in terms of the clamp-

ing force P as

bend,
(46 mm)(6 mm)

2,176 mm mmH
z

My
I

P P
4 27 88406.

� �� �

By inspection, the bending stress at point H will be tension.

The bending stress at point K can be expressed as

bend,
(46 mm)(10 mm)

mm mmK
z

My
I

P P
2 176 4 730434 2, .

�� ��

By inspection, the bending stress at point K will be compression.

Combined Stress at H
The combined stress at point H can be expressed in terms of the unknown clamping 

force P as

comb, mm mm mm mmH
P P

P
96 7 88406

1

96

1

7 884062 2 2 2. .

P
7 28572 2. mm

� �� ���

Note that the axial and bending stress expressions are added since both are tension 

stresses. This expression can be set equal to the allowable normal stress to obtain one pos-

sible value for P:

 
P

P
7 28572

108 108 787
2

2

. mm
MPa N/mm N��� �  (a)
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 MecMovies Example M8.20

A C-clamp is expected to exert a maximum total clamping force of 400 N. The clamp cross 

section is 20 mm wide and 10 mm thick. Determine the maximum tension and compression 

stresses in the clamp.

 MecMovies Example M8.21

A precast concrete beam is supported by a corbel on a concrete column. 

The reaction force at the end of the beam is 1,200 kN. This reaction force 

acts on the corbel at a distance of 240 mm from the column centerline. 

Determine the stresses at the base of the column at points a and b.

Combined Stress at K
The combined stress at point K is the sum of a tension axial stress and a compression 

bending stress:

comb, mm mm mm mmK
P P

P
96 4 73043

1

96

1

4 730432 2 2 2. .

P
4 97560 2. mm

� � � � � ��

The negative sign indicates that the combined stress at K is a compression normal stress. A 

second possible value for P can be derived from the expression that follows. The negative 

signs can be omitted here because we are interested only in the magnitude of P.

 
P

P
4 97560

108 108 537
2

2

. mm
MPa N/mm N�� ��  (b)

Controlling Clamping Force
The allowable clamping force is the lesser of the two values obtained from Equations (a) 

and (b). For this clamp, the maximum allowable clamping force is P � 537 N. Ans.
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A steel inverted tee shape is used as a boom for a wall bracket jib 

crane that can lift loads of up to 5 kN. The boom is pinned to the 

wall at A. At point B, the boom is supported by steel rod BC. The pin 

at A is located on the centroidal axis of the inverted tee, but at B, the 

steel rod is connected to the tee 65 mm above the centroidal axis. 

When the 5-kN crane load is in the position shown, determine the nor-

mal stress at point H, located at the topmost edge of the inverted tee, 

1.0 m from A.

 MecMovies Example M8.22 

317

FIGURE M8.21

M8.20 Determine the normal stresses at A and B. M8.21 Determine the normal stresses at A and B.

 MecMovies ExercisesMM

FIGURE M8.20
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M8.22 Answer 10 questions concerning the structure shown 

subjected to various loads.

M8.23 Pipe AB (outside diameter and wall thickness specifi ed) 

supports a uniformly distributed load of w. Determine the reaction 

forces at pin A, the axial force in member (1), and the normal stresses 

at points H and K, located at a specifi ed distance above pin A.

FIGURE M8.22

FIGURE M8.23

FIGURE P8.53

H

K

1.25 in.

3.75 in.

PROBLEMSPROBLEMS
P8.52 A steel pipe assembly supports a concentrated load of 

22 kN as shown in Figure P8.52. The outside diameter of the pipe 

is 142 mm, and the wall thickness is 6.5 mm. Determine the normal 

stresses produced at points H and K.

P8.53 The screw of a clamp exerts a compressive force of 350 lb 

on the wood blocks. Determine the normal stresses produced at 

points H and K. The clamp cross-sectional dimensions at the section 

of interest are 1.25 in. by 0.375 in. thick.

370 mm

x

y

600 mm

H K

P

FIGURE P8.52
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P8.54 A 30-mm-diameter steel rod is formed into a machine part 

with the shape shown in Figure P8.54. A load of P � 2,500 N is applied 
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y PP

d
a

a

y PP a

a

d

700 lb 900 lb
10 ft13 ft

16 ft

ABC

D

e

PP

d

FIGURE P8.54

P8.55 The offset link shown in Figure P8.55 is subjected to a 

load of P � 1,100 lb. The link has a rectangular cross section with 

a thickness of 0.375 in. at section a–a. A minimum clearance of y � 

1.5 in. is specifi ed for this link. If the tension normal stress must be 

limited to 15,000 psi at section a–a, calculate the minimum depth d 

required for the link.

FIGURE P8.55

P8.56 The machine component shown in Figure P8.56 has a 

rectangular cross section with a depth of d = 3.00 in. and a thick-

ness of 0.75 in. The component is subjected to a tension load of 

P � 9,000 lb. A milling operation will be used to remove a por-

tion of the cross section in the central region of the component. 

If the allowable tension stress at section a–a must be limited to 

30,000 psi, determine the maximum depth of cut y that is per-

missible.

FIGURE P8.56

P8.57 A tubular steel column CD supports horizontal cantile-

ver arm ABC, as shown in Figure P8.57. Column CD has an 

outside diameter of 10.75 in. and a wall thickness of 0.365 in. 

Determine the maximum compression stress at the base of col-

umn CD. 

x

z

2,800 lb

1,200 lb

H K

y

80 in.

12 in.

FIGURE P8.57

P8.58 Determine the normal stresses acting at points H 

and K for the structure shown in Figure P8.58a. The cross-

sectional dimensions of the vertical member are shown in Figure 

P8.58b.

FIGURE P8.58a

to the ends of the part. If the allowable normal stress is limited to 

40 MPa, what is the maximum eccentricity e that may be used for 

the part?

8 in.

4 in.

z

x

H K

FIGURE P8.58b  Cross section.
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normal stress must be limited to 24,000 psi at section a–a, what is 

the maximum offset distance y that can be used?

P8.59 A W18 	 35 standard steel shape is subjected to a ten-

sion force P that is applied 15 in. above the bottom surface of 

the wide-fl ange shape, as shown in Figure P8.59. If the tension 

normal stress of the upper surface of the W-shape must be lim-

ited to 18 ksi, determine the allowable force P that may be ap-

plied to the member.

PP

15 in.15 in. W18 × 35

FIGURE P8.59

P8.60 A WT305 	 41 standard steel shape is subjected to a 

tension force P that is applied 250 mm above the bottom surface 

of the tee shape, as shown in Figure P8.60. If the tension normal 

stress of the upper surface of the WT-shape must be limited to 

150 MPa, determine the allowable force P that may be applied to 

the member.

320

PP

250 mm (typ)

WT305 × 41

Front View Perspective View

1,200 N 1,200 N

10 mm

30 mm

45 mm
H K

FIGURE P8.60

P8.61 A pin support consists of a vertical plate 60 mm wide by 

10 mm thick. The pin carries a load of 1,200 N. Determine the 

normal stresses acting at points H and K for the structure shown in 

Figure P8.61.

FIGURE P8.61

P8.62  The bracket shown in Figure P8.62 is subjected to a load 

of P � 1,300 lb. The bracket has a rectangular cross section with a 

width of b � 3.00 in. and a thickness of t � 0.375 in. If the tension 

P

a

a

y

b

t

FIGURE P8.62

P8.63 A load of P � 2,400 lb is applied parallel to the longitu-

dinal axis of a rectangular structural tube, as shown in Figure P8.63a. 

The cross-sectional dimensions of the structural tube, are given in 

Figure P8.63b. If a � 20 in. and b � 2 in., calculate the normal 

stresses produced at points H and K.

x

y

K

H

P
b

a

FIGURE P8.63a

y
z 6 in.

0.125 in.

0.125 in.

4 in.

FIGURE P8.63b
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P8.67 The steel pipe shown in Figure P8.67 has an outside 

diameter of 195 mm, a wall thickness of 10 mm, an elastic 

modulus of E � 200 GPa, and a coefficient of thermal expan-

sion of � � 11.7 	 10�6/°C. Using a � 300 mm, b � 900 mm, 

and � � 70°, calculate the normal strains at H and K after a load 

of P � 40 kN has been applied and the temperature of the pipe 

has been increased by 25°C.

321

P8.64 The tee shape shown in Figure P8.64b/65b is used as a 

short post to support a load of P � 4,600 lb. The load P is ap-

plied at a distance of 5 in. from the surface of the fl ange, as 

shown in Figure P8.64a/65a. Determine the normal stresses at 

points H and K, which are located on section a–a.

P8.65 The tee shape shown in Figure P8.64b/65b is used as a 

short post to support a load of P. The load P is applied at a dis-

tance of 5 in. from the surface of the fl ange, as shown in Figure 

P8.64a/65a. The tension and compression normal stresses in the 

post must be limited to 1,000 psi and 800 psi, respectively. De-

termine the maximum magnitude of load P that satisfi es both the 

tension and compression stress limits.

P

5 in.

24 in.

x

z

a
aH

K

FIGURE P8.64a/65a

FIGURE P8.64b/65b  Cross-sectional dimensions.

P8.66 The tee shape shown in Figure P8.66b is used as a post 

that supports a load of P � 25 kN, which is applied 400 mm from 

the fl ange of the tee shape, as shown in Figure P8.66a. Determine 

the magnitudes and locations of the maximum tension and com-

pression normal stresses within the vertical portion BC of the 

post.

12 in.

2 in.

2 in.12 in. x

z

H

K

x

y

C

B
A

400 mm1.2 m

35°
P

FIGURE P8.66a

150 mm

20 mm

20 mm 120 mmx

z
H

K

FIGURE P8.66b  Cross-sectional dimensions.

FIGURE P8.67

a

b P

H K
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FIGURE P8.69b/70b

In Sections 8.1 through 8.3, the theory of bending was developed for prismatic beams. 

In deriving this theory, beams were assumed to have a longitudinal plane of symmetry 

(Figure 8.2a), which was termed the plane of bending. Furthermore, loads acting on 

the beam as well as the resulting curvatures and defl ections were assumed to act only 

in the plane of bending. If the beam cross section is unsymmetric or if the loads on 

the beam do not act in the plane of bending, then the theory of bending developed in 

Sections 8.1 through 8.3 is not valid.

Consider the following thought experiment: The unsymmetric fl anged cross section 

shown in Figure 8.15a (termed a zee section) is subjected to equal magnitude bending 

moments Mz that act as shown about the z axis. Further, suppose that the beam bends only 

in the x–y plane in response to Mz and that the z axis is the neutral axis for bending. If this 

supposition is correct, then the bending stresses shown in Figure 8.15b will be produced in 

the zee section. Compression bending stresses will occur above the z axis, and tension 

bending stresses will occur below the z axis.

8.8 Unsymmetric Bending

P8.68  The U-shaped aluminum bar shown in Figure P8.68 is 

used as a dynamometer to determine the magnitude of the ap-

plied load P. The aluminum [E � 70 GPa] bar has a square cross 

section with dimensions a � 30 mm and b � 65 mm. The strain 

on the inner surface of the bar was measured and found to be 

955 
�. What is the magnitude of load P?

FIGURE P8.68

P8.69 A short length of a rolled-steel [E � 29 	 103 ksi] 

column supports a rigid plate on which two loads P and Q are 

applied, as shown in Figure P8.69a/70a. The column cross sec-

tion (Figure P8.69b/70b) has a depth of d � 8.0 in., an area of 

A � 5.40 in.2, and a moment of inertia of Iz � 57.5 in.4. Normal 

strains are measured with strain gages H and K, which are at-

tached on the centerline of the outer faces of the fl anges. Load P 

is known to be 35 kips, and the strain in gage H is measured as 

�H � �120 	 10�6 in./in. Using a � 6.0 in., determine

(a) the magnitude of load Q.

(b) the expected strain reading for gage K.

P8.70 A short length of a rolled-steel [E � 29 	 103 ksi] 

column supports a rigid plate on which two loads P and Q are 

applied, as shown in Figure P8.69a/70a. The column cross sec-

tion (Figure P8.69b/70b) has a depth of d � 8.0 in., an area of 

A � 5.40 in.2, and a moment of inertia of Iz � 57.5 in.4. Normal 

strains are measured with strain gages H and K, which are 

at tached on the centerline of the outer faces of the fl anges. The 

strains measured in the two gages are �H � �530 	 10�6 in./in. 

and �K � �310 	 10�6 in./in. Using a � 6.0 in., determine the 

magnitudes of loads P and Q.

Strain gage

a

b
PP

FIGURE P8.69a/70a

x

y

z

P

Q
a

a

Gage H

d

Gage HGage K

Cross section

x

z
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FIGURE 8.15 Unsymmetric bending thought experiment.

z

y

x

zM

zM

Flange

Flange

Web

z

y

x

zM
Compression
bending stress

Tension
bending stress

z

y

x

zM

zC

zT

FC

FT

(a)  Equal magnitude bending 

moments Mz applied to the 

zee section

(b)  Bending stresses produced in the zee 

section if bending were to occur in the 

x–y plane only

(c)  Resultant forces produced by the bending 

stresses in the fl anges

In this context, the term 

arbitrary cross section means 

shapes that may not have 

axes of symmetry.

FIGURE 8.16 Bending of a 

beam with an arbitrary cross 

section.

y

y
z

z C

dA

n

n
�

yM

zM

Next, consider the stresses that act in the fl anges of the zee section. Bending 

stresses will be uniformly distributed across the width of each fl ange. The internal re-

sultant force of the compression bending stresses acting in the top fl ange will be termed 

FC (Figure 8.15c). Its line of action passes through the midpoint of the fl ange (in the 

horizontal direction) at a distance of zC from the y axis. Similarly, the internal resultant 

force of the tension bending stresses in the bottom fl ange will be termed FT, and its line 

of action is located a distance of zT from the y axis. Since resultant forces FC and FT are 

equal in magnitude, but act in opposite directions, they form an internal couple, which 

creates a bending moment about the y axis. This internal moment about the y axis 

(i.e., acting in the x–z plane) is not counteracted by any external moment (since the 

applied moments Mz act about the z axis only); therefore, equilibrium is not satisfi ed. 

Consequently, bending of the unsymmetric beam cannot occur solely in the plane of the 

applied loads (i.e., the x–y plane). This thought experiment shows that the unsymmetric 

beam must bend both in the plane of the applied moments Mz (i.e., the x–y plane) and in 

the out-of-plane direction (i.e., the x–z plane).

Prismatic Beams of Arbitrary Cross Section

A more general theory of bending is required for beams having an arbitrary cross 
 section. We will assume that the beam is subjected to pure bending, that plane cross sections 

before bending remain plane after bending, and that bending stresses remain elastic. The 

cross section of the beam is shown in Figure 8.16, and the longitudinal axis of the beam 

is defi ned as the x axis. In this derivation, the y and z axes will be assumed to be oriented 

vertically and horizontally, respectively. However, these axes may exist at any orientation, 

provided that they are orthogonal.

Bending moments My and Mz will be assumed to act on the beam, creating beam cur-

vature in the x–z and x–y planes, respectively. The bending moments create normal stresses 

�x that are distributed linearly above and below the neutral axis n–n. As shown in the pre-

ceding thought experiment, loads acting on an unsymmetrical beam may produce bending 

both within and perpendicular to the plane of loading.
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324
BENDING Let 1/�z denote the beam curvature in the x–y plane and 1/�y denote the curvature in 

the x–z plane. Since cross sections that are planar before bending remain planar after bend-

ing, the normal strain in the longitudinal direction �x at any location (y, z) in the beam cross 

section can be expressed as

x
z y

y z
� � �

� �
�

If the bending is elastic, then the bending stress �x is proportional to the bending strain, and 

the stress distribution over the cross section can be defi ned by

 x x
z y

E
Ey Ez

� � � �� �
� �

 (a)

To satisfy equilibrium, the resultant of all bending stresses must reduce to zero net axial 

force as

 xA
dA 0��  (b)

and the following moment equations must be satisfi ed:

 z dA MxA y��  (c)

 y dA MxA z� ��  (d)

Substitute the expression for �x given by Equation (a) into Equation (b) to obtain

 
Ey Ez

dA
y z

dA
z y z yA A

1 1
0

z A y A
y dA z dA� � � � � � �� � �� � �

 (e)

This equation can be satisfi ed only if the neutral axis n–n passes through the centroid of the 

cross section.

Substitution of Equation (a) into Equation (c) gives

 z
Ey Ez

dA
E

yz dA
E

z dA
z yA z A y A

2 My� � � � � �� � � �  (f )

but the integral terms are simply the moment of inertia about the z axis and the product of 

inertia, respectively:

I z dA I yz dAy A yz A
2� �

Therefore, Equation (f) can be rewritten as

 
EI EI

Myz

z

y

y
y� � �

� �
 (g)

Similarly, Equation (a) can be substituted into Equation (d) to give

 
EI EI

Mz

z

yz

y
z� � �

� �
 (h)

where

I y dAz A
2�

Moments of inertia and the 

product of inertia for areas are 

reviewed in Appendix A.
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325
UNSYMMETRIC BENDINGEquations (g) and (h) can be solved simultaneously to derive expressions for the curvatures 

in the x–y and x–z planes, respectively, due to bending moments My and Mz:

 
1 1

2z

z y y yz

y z yz y

y z z yz

y z

M I M I

E I I I

M I M I

E I I( ) ( )IIyz
2

�
�

�

�

�
� �

� �  (i)

These curvature expressions can be substituted into Equation (a) to give a general relation-

ship for the bending stresses produced in a prismatic beam of arbitrary cross section sub-

jected to bending moments My and Mz:

 
x

z y y yz

y z yz

y z z yz

y z y

M I M I y

I I I

M I M I z

I I I

( ) ( )
2

zz
2

�

�

�

�
� � ��  (8.21)

or

 x
z yz

y z yz
y

y yz

y z

I z I y

I I I
M

I y I z

I I2 I
M

yz
z2

� �
�

�

��

�
�  (8.22)

Neutral Axis Orientation

The orientation of the neutral axis must be determined in order to locate points in the cross 

section where the normal stress has a maximum or minimum value. Since � is zero on the 

neutral surface, the orientation of the neutral axis can be determined by setting Equation (8.21) 

equal to zero:

( ) ( )M I M I y M I M I zz y y yz y z z yz 0�� ���

Solving for y then gives

y
M I M I

M I M I
zy z z yz

z y y yz

�
�

�

which is the equation of the neutral axis in the y–z plane. If the slope of the neutral axis is 

expressed as dy/dz � tan �, the orientation of the neutral axis is given by

 tan
M I M I

M I M I
y z z yz

z y y yz

� �
�

�
 (8.23)

Beams with Symmetric Cross Sections

If a beam cross section has at least one axis of symmetry, then the product of inertia for the 

cross section is Iyz � 0. In this case, Equations (8.21) and (8.22) reduce to

 x
y

y

z

z

M z

I

M y

I
� ��  (8.24)

and the neutral axis orientation can be expressed by

 tan
M I

M I
y z

z y

� �  (8.25)
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Notice that if the loading acts entirely in the x–y plane of the beam, then My � 0 and Equa-

tion (8.24) reduces to

x
z

z

M y

I
� ��

which is identical to the elastic fl exure formula [Equation (8.7)] developed in Section 8.3.

Equation (8.24) is useful for the fl exural analysis of many common cross-sectional 

shapes (e.g., rectangle, W-shape, C-shape, WT-shape) that are subjected to bending moments 

about two axes (i.e., My and Mz).

Principal Axes of Cross Sections

In the preceding derivation, the y and z axes were assumed to be oriented vertically and 

horizontally, respectively. However, any pair of orthogonal axes may be taken as y and z in 

using Equations (8.21) through (8.25). For any cross section, it can be shown that there are 

always two orthogonal centroidal axes for which the product of inertia Iyz � 0. These axes 

are called the principal axes of the cross section, and the corresponding planes of the beam 

are called the principal planes of bending. For bending moments applied in the principal 

planes, bending occurs only in those planes. If a beam is subjected to a bending moment 

that is not in a principal plane, then that bending moment can always be resolved into com-

ponents that coincide with the two principal planes of the beam. Then, by superposition, 

the total bending stress at any (y, z) coordinate in the cross section can be obtained by alge-

braically adding the stresses produced by each moment component.

Limitations

The preceding discussion holds rigorously only for pure bending. During bending, shear 

stress and shear deformations will also occur in the cross section; however, these shear 

stresses do not greatly affect the bending action, and they can be neglected in the calcula-

tion of bending stresses by Equations (8.21) through (8.25).

Since the principal axes are 

orthogonal, if either the y or z 

axis is a principal axis, then the 

other axis is automatically a 

principal axis.

178 mm

y

z

13.5 mm

58.4 mm

H

K

13°

C180 × 22

5 kN-m

EXAMPLE 8.10

A standard steel C180 	 22 channel shape is subjected to a resultant bending 

moment of M � 5 kN-m oriented at an angle of 13° with respect to the z axis, 

as shown. Calculate the bending stresses at points H and K and determine the 

orientation of the neutral axis.

Plan the Solution
The section properties for the C180 	 22 channel shape can be obtained from 

Appendix B. Moment components in the y and z directions will be computed 

from the magnitude and orientation of the resultant bending moment. Since 

the channel shape has one axis of symmetry, the bending stresses at points H 

and K will be calculated from Equation (8.24) and the orientation of the neu-

tral axis will be calculated from Equation (8.25).

SOLUTION
Section Properties
From Appendix B, the moments of inertia of the C180 	 22 shape are Iy � 

570,000 mm4 and Iz � 11.3 	 106 mm4. Since the shape has an axis of 

BENDING

326

c08Bending.indd Page 326  28/03/12  8:13 PM user-F391c08Bending.indd Page 326  28/03/12  8:13 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



178 mm

y

z

13.5 mm

58.4 mm

H

K

13°

Compression
bending stress

Tension
bending stress

Tension
bending
stress

5 kN-m
yM

zM

Neutral
axis

77.7°
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symmetry, the product of inertia is Iyz � 0. The depth and fl ange width of the C180 	 22 

shape are d � 178 mm and bf � 58.4 mm, respectively, and the distance from the back of 

the channel to its centroid is 13.5 mm. These dimensions are shown in the sketch.

Coordinates of Points H and K
The (y, z) coordinates of point H are

y zH H
178

2
89 13 5

mm
mm mm.� � �

and the coordinates of point K are

y zK K
178

2
89 13 5 58 4 44 9

mm
mm mm mm mm. . .� � � � � � ��

Moment Components
The bending moments about the y and z axes are

M My sin (5 kN-m) sin( °) kN-m13 1 12576 1 12576. . 10

13 4 87185

6 N-mm

cos (5 kN-m) cos( °) kN-mM Mz . 44 87185 106. N-mm

�

�

� � � � � �

� � � � �

�

�

�

Bending Stresses at H and K
Since the C180 	 22 shape has an axis of symmetry, the bending stresses at points H and K 

can be computed from Equation (8.24). At point H, the bending stress is

 

H
y

y

z

z

M z

I
M y
I

1 12576 10 56. .N-mm (13 mm)

570,0000 mm

4.87185 10 N-mm ( mm)

11.3 10 mm

M

6

64 4

89

65 0

( )( )

. PPa MPa (C)65 0.

�

� �

� ��

� � �

�

��

 Ans.

At point K, the bending stress is

    

K
y

y

z

z

M z

I
M y
I

1 12576 10 44 96. .N-mm ( mm)

570,0000 mm

4.87185 10 N-mm ( mm)

11.3 10 mm

6

64 4

89

127.. .0 127 0MPa MPa (T)

�

�

� ��

�
� �� � �

�

��

( ) ( )

Orientation of the Neutral Axis
The orientation of the neutral axis can be calculated from Equation (8.25):

tan
( kN-m) 11.3 10 mm

(

6M I

M I
y z

z y

1 12576

4 871

4.

. 885
4 580949

kN-m) 570,000 mm4
.� � � �

� �
�

( )
( )

� 77 7. °� ��

Positive � angles are rotated clockwise from the z axis; therefore, the neutral axis 

is oriented as shown in the sketch. The sketch has been shaded to indicate the 

tension and compression normal stress regions of the cross section.

Ans.
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8 in.

y

z

3.50 in.
0.50 in.

(typ)

0.859 in.

2.859 in.

(1)

(2)
4 in.

0.50 in.

Ref.

8 in.

y

z

4 in.

0.50 in.
(typ)

H

K

9,000 lb-in.

8 in.

3.50 in.
0.50 in.

(typ)

(1)

(2)

Ref.

4 in.

0.50 in.

EXAMPLE 8.11

328

An unequal-leg angle shape is subjected to a bending moment of M � 9,000 lb-in., 

oriented as shown. Calculate the bending stresses at points H and K and determine 

the orientation of the neutral axis.

Plan the Solution
To begin the calculation, we must fi rst locate the centroid of the angle shape. Then, 

the area moments of inertia Iy and Iz and the product of inertia Iyz must be computed 

with respect to the centroid location. The bending stresses at points H and K will 

be computed from Equation (8.21), and the orientation of the neutral axis will be 

computed from Equation (8.23).

SOLUTION
Section Properties
The angle shape will be subdivided into two areas (1) and (2) as shown. (Note: 
The fi llets will be neglected in this calculation.) The corner of the angle 

(as indicated in the sketch) will be used as the reference location for calculations 

in both the horizontal and vertical directions. The location of the centroid in the 

vertical direction is calculated in the following manner:

Ai

(in.2 )

yi

(in.)

yi Ai

(in.3 )

(1)  4.00  4  16.00

(2)  1.75  0.25  0.4375

 5.75  16.4375

y
y A

A
i i

i

16 4375

5 75
2 859

3

2

.

.
.

in.

in.
in.

Σ
Σ

� � �

Similarly, the location of the centroid in the horizontal direction is calculated from

Ai

(in.2)

zi

(in.)

zi Ai

(in.3)

(1)  4.00  �0.25  �1.00

(2)  1.75  �2.25  �3.9375

 5.75  �4.9375

z
z A

A
i i

i

4 9375

5 75
0 859

3

2

.

.
.

in.

in.
in.�

�� ��
Σ
Σ

The location of the centroid for the angle shape is shown in the sketch. Next, the moment 

of inertia Iy is calculated for the angle shape about its y centroidal axis.

Ai

(in.2)

zi

(in.)

Iyi

(in.4)

| di |

(in.)

di
2Ai

(in.4)

Iy

(in.4)

(1)  4.00  �0.25  0.0833  0.609  1.4835  1.5668

(2)  1.75  �2.25  1.7865  1.391  3.3860  5.1725

 6.7393
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Similarly, the moment of inertia Iz about the z centroidal axis is calculated from

Ai

(in.2)

yi

(in.)

Izi

(in.4)

| di |

(in.)

di
2Ai

(in.4)

Iz

(in.4)

(1)  4.00  4  21.3333  1.1410 5.2075  26.5408

(2)  1.75  0.25  0.0365  2.6090 11.9120  11.9485

 38.4893

and the product of inertia Iyz about the centroid is calculated from

Ai

(in.2)

yi

(in.)

zi

(in.)

y
_
 – yi

(in.)

z
_
 – zi

(in.)

Iyz � (y – yi)(z – zi)Ai

(in.4)

(1)  4.00  4  �0.25  �1.1410  �0.6090  2.7795

(2)  1.75  0.25  �2.25  2.6090  1.3910  6.3510

 9.1304

Coordinates of Points H and K
The (y, z) coordinates of point H are

y zH H8 2 859 5 141 0 859in. in. in. in.. . .� � � �

and the coordinates of point K are

y zK K2 859 0 859. .in. in.� ��

Moment Components
The bending moment acts about the –z axis; therefore,

M Mz y9,000 lb-in. and 0� ��

Bending Stresses at H and K
Since the angle shape does not have an axis of symmetry, the bending stresses at points 

H and K must be computed from Equation (8.21) or Equation (8.22). Since My � 0, 

Equation (8.22) is the more convenient of the two equations in this instance. The bend-

ing stress at point H is calculated from Equation (8.22) as

H
z yz

y z yz
y

y yz

y z

I z I y

I I I
M

I y I z

I I2

( )

( )( ) ( )

( )

I
M

yz
z2

4
0

6 7393 5 141 9. .in. ( in.) .. .

.

1304 0 859

6 7393

4

4

in. ( in.)

in. 38.4893 in.4 9.1304 in.
( 9,000 lb-in.)

1,370 psi

4 2

1,370 psi (T)

� �
� �

�

�

�

�

� ��

� �
�

� �

�
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P8.71 A beam with a box cross section is subjected to a resul-

tant moment magnitude of 2,100 N-m acting at the angle shown in 

Figure P8.71. Determine

(a)  the maximum tension and the maximum compression bending 

stresses in the beam.

(b)  the orientation of the neutral axis relative to the �z axis. 

Show its location on a sketch of the cross section.

P8.72 The moment acting on the cross section of the T-beam has 

a magnitude of 22 kip-ft and is oriented as shown in Figure P8.72. 

Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c)  the orientation of the neutral axis relative to the �z axis; show 

its location on a sketch of the cross section.

P8.73 A beam with a box cross section is subjected to a resul-

tant moment magnitude of 75 kip-in. acting at the angle shown in 

 Figure P8.73. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c)  the maximum tension and the maximum compression bending 

stresses in the beam.

(d)  the orientation of the neutral axis relative to the �z axis. 

Show its location on a sketch of the cross section.

9 in.

1.25 in.

0.75 in.

7 in.

y

z

55°

H

K

22 kip-ft

FIGURE P8.72

PROBLEMSPROBLEMS

55 mm

5 mm
(typ)

90 mm

y

z

2,100 N-m

30°

FIGURE P8.71

and the bending stress at point K is

K
z yz

y z yz
y

y yz

y z

I z I y

I I I
M

I y I z

I I2 I
M

yz
z2

4
0

6 7393 2 859. .in. ( in.) 99 1304 0 859

6 7393

4

4

. .

.

in. ( in.)

in. 38.4893 in.4 9.1304 in.
( 9,000 lb-in.)

1,386 ps

4 2

ii 1,386 psi (C)

� �
� �

�

�

�

� � �
� � �

�

� ��

( ) ( )

( )( ) ( )

�

Orientation of the Neutral Axis
The orientation of the neutral axis can be calculated from Equation (8.23):

tan
( lb-in.) 9.130M I M I

M I M I
y z z yz

z y y yz

0 9 000, 44 in.

( lb-in.) 6.7393 in.

4

4

�

9 000 0
1 3548

5

,
.

33 6. °

�
� � �

� ��
�

�

�
( )

( )
�

�

Positive � angles are rotated clockwise from the z axis; therefore, the neutral axis 

is oriented as shown in the sketch. The sketch has been shaded to indicate the 

tension and compression normal stress regions of the cross section.
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8 in.

y

z

4 in.

0.50 in.
(typ)

H

K

9,000 lb-in.

0.859 in.

Neutral
axis

2.859 in.

Compression
bending stress

Tension
bending stress

53.6°
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P8.74 The moment acting on the cross section of the wide-

fl ange beam has a magnitude of M � 12 kN-m and is oriented as 

shown in Figure P8.74/75. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c)  the orientation of the neutral axis relative to the �z axis. Show 

its location on a sketch of the cross section.

P8.75 For the cross section shown in Figure P8.74/75, deter-

mine the maximum magnitude of the bending moment M so that 

the bending stress in the wide-fl ange shape does not exceed 

165 MPa.

P8.77 For the cross section shown in Figure P8.76/77, deter-

mine the maximum magnitude of the bending moment M so that 

the bending stress in the unequal-leg angle shape does not exceed 

24 ksi.

P8.78 The moment acting on the cross section of the zee shape 

has a magnitude of M � 40 kN-m and is oriented as shown in 

 Figure P8.78. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c)  the maximum tension and the maximum compression bending 

stresses in the cross section.

(d)  the orientation of the neutral axis relative to the �z axis. 

Show its location on a sketch of the cross section.

4 in.
0.375 in.

(typ)

6 in.

y

z

K

H

75 kip-in.

20°

FIGURE P8.73

210 mm

15 mm

10 mm

210 mm

y

z

K

H

35°

M

FIGURE P8.74/75

P8.76 The unequal-leg angle is subjected to a bending moment 

of Mz � 20 kip-in. that acts at the orientation shown in Figure 

P8.76/77. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c)  the maximum tension and the maximum compression bending 

stresses in the cross section.

(d)  the orientation of the neutral axis relative to the �z axis; show 

its location on a sketch of the cross section.

0.375 in.

0.375 in.

4.0 in.

3.0 in.

K

H

y

z
zM

FIGURE P8.76/77

200 mm

25 mm

25 mm

16 mm

100 mm

100 mm

y

z

K

H

15°

40 kN-m

FIGURE P8.78

P8.79 The moment acting on the cross section of the unequal-

leg angle has a magnitude of 14 kN-m and is oriented as shown in 

Figure P8.79. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.
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(c)  the maximum tension and the maximum compression bending 

stresses in the cross section.

(d)  the orientation of the neutral axis relative to the �z axis. Show 

its location on a sketch of the cross section.

For a rectangular beam, the 

nominal bending stress used 

in Equation (8.26) is the stress at 

its minimum depth. For a 

circular shaft, the nominal 

bending stress is computed for 

its minimum diameter.

150 mm

19 mm
(typ)

200 mm

y

z

14 kN-m

H
K

FIGURE P8.79

P8.80 The moment acting on the cross section of the zee shape 

has a magnitude of M � 4.75 kip-ft and is oriented as shown in 

Figure P8.80/81. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c)  the maximum tension and the maximum compression bending 

stresses in the cross section.

(d)  the orientation of the neutral axis relative to the �z axis. 

Show its location on a sketch of the cross section.

P8.81 For the cross section shown in Figure P8.80/81, deter-

mine the maximum magnitude of the bending moment M so that 

the bending stress in the zee shape does not exceed 24 ksi.

0.50 in.

0.50 in.

5 in.

0.35 in.

2.50 in.

2.50 in.

y

z

K

H

M

FIGURE P8.80/81

In Section 5.7, it was shown that the introduction of a circular hole or other geometric dis-

continuity into an axially loaded member could cause a signifi cant increase in the stress 

near the discontinuity. Similarly, increased stresses occur near any reduction in diameter of 

a circular shaft subjected to torsion. This phenomenon, termed stress concentration,  occurs 

in fl exural members as well.

In Section 8.3, it was shown that the normal stress magnitude in a beam of uniform 

cross section in a region of pure bending is given by Equation (8.10) as

 max
Mc

Iz

� �  (8.10)

The bending stress magnitude computed from Equation (8.10) is termed a nominal stress 

because it does not account for the stress-concentration phenomenon. Near notches, 

grooves, fi llets, or any other abrupt change in cross section, the normal stress due to bend-

ing can be signifi cantly greater. The relationship between the maximum bending stress at 

the discontinuity and the nominal stress computed from Equation (8.10) is expressed in 

terms of a stress-concentration factor K as

 
K max

nom

�

�
�

 (8.26)

The nominal stress used in Equation (8.26) is the bending stress computed for the mini-

mum depth or diameter of the fl exural member at the location of the discontinuity. Since 

8.9 Stress Concentrations Under Flexural Loadings
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the factor K depends only upon the geometry of the member, curves can be developed that 

show the stress-concentration factor K as a function of the ratios of the parameters in-

volved. Such curves for notches and fi llets in rectangular cross sections subjected to pure 

bending are shown in Figures 8.17 and 8.18.1 Similar curves for grooves and fi llets in cir-

cular shafts subjected to pure bending are shown in Figures 8.19 and 8.20.2

1Adapted from Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed. (New York: John Wiley & 

Sons, Inc., 1997).

2Ibid.

dD

MM
2r

r t = thickness
�max
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FIGURE 8.17 Stress-concentration factors K for bending of a fl at bar with opposite 

U-shaped notches.
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=K , �nom = 6M

t d 2

0 0.05 0.10 0.15 0.20 0.25 0.30
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FIGURE 8.18 Stress-concentration factors K for bending of a fl at bar with shoulder fi llets.

STRESS CONCENTRATIONS 
UNDER FLEXURAL LOADINGS
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� d3
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FIGURE 8.19 Stress-concentration factors K for bending of a circular shaft with a 

U-shaped groove.
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FIGURE 8.20 Stress-concentration factors K for bending of a stepped shaft with shoulder fi llets.

A cantilever spring made of SAE 4340 heat-treated steel is 50 mm 

thick. As shown in the fi gure, the depth of the rectangular cross sec-

tion is reduced from 80 mm to 40 mm, with fi llets at the transition. 

A factor of safety of 2.5 with respect to fracture is specifi ed for the 

spring. Determine the maximum safe moment M for the spring if

(a) the fi llet radius r is 4 mm.

(b) the fi llet radius r is 12 mm.

80 mm 40 mm

Radius r

M

EXAMPLE 8.12

BENDING
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SOLUTION
The ultimate strength �U for heat-treated SAE 4340 steel (see Appendix D for its properties) 

is 1,030 MPa. Thus, the allowable stress for the spring is

allow FS

1,034 MPa
MPaU

2 5
413 6

.
.�

�
� � �

The moment of inertia I at the minimum spring depth is

I
(50 mm)(40 mm)

266,667 mm
3

4

12
� �

The allowable bending-moment magnitude can be derived from Equation (8.26) in terms 

of the stress-concentration factor K:

M
I

Kc Kallow
allow

2 4N/mm 266,667 mm

(20 mm
( () )413 6.

))

5,514,574 N-mm 5,515 N-m

K K
� � � �

�

With reference to the nomenclature used in Figure 8.18, the ratio of the maximum spring 

depth D to the reduced depth d is D/d � 80/40 � 2.0.

(a) Fillet Radius r � 4 mm
A stress-concentration factor of K � 1.84 is obtained from Figure 8.18 with D/d � 2.0 

and r/d � 4/40 � 0.10. The maximum allowable bending moment is thus

 M
K

5,515 N-m 5,515 N-m
2,997 N-m

1 84.
� � �  Ans.

(b) Fillet Radius r � 12 mm
For a 12-mm fi llet, r/d � 12/40 � 0.30, and thus, the corresponding stress-concentration fac-

tor from Figure 8.18 is K � 1.38. Accordingly, the maximum allowable bending moment is

 
M

K

5,515 N-m 5,515 N-m
3,996 N-m

1 38.
� � �  Ans.

dD

Radius r

M

(1)
(2)

A B
C

FIGURE P8.82/83

P8.82 A stainless-steel spring (shown in Figure P8.82/83) has 

a thickness of 3/4 in. and a change in depth at section B from 

D � 1.50 in. to d � 1.25 in. The radius of the fi llet between the two 

sections is r � 0.125 in. If the bending moment applied to the 

spring is M � 2,000 lb-in., determine the maximum normal stress 

in the spring.

PROBLEMSPROBLEMS
P8.83 An alloy-steel spring (shown in Figure P8.82/83) has a 

thickness of 25 mm and a change in depth at section B from 

D � 75 mm to d � 50 mm. If the radius of the fi llet between the 

two sections is r � 8 mm, determine the maximum moment that 

the spring can resist if the maximum bending stress in the spring 

must not exceed 120 MPa.

P8.84 The notched bar shown in Figure P8.84/85 is subjected 

to a bending moment of M � 300 N-m. The major bar width is 

D � 75 mm, the minor bar width at the notches is d � 50 mm, and 

the radius of each notch is r � 10 mm. If the maximum bending 

stress in the bar must not exceed 90 MPa, determine the minimum 

required bar thickness b.

P8.85 The machine part shown in Figure P8.84/85 is made of 

cold-rolled 18-8 stainless steel. (See Appendix D for properties.) 

The major bar width is D � 1.50 in., the minor bar width at the 

notches is d � 1.00 in., the radius of each notch is r � 0.125 in., 
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FIGURE P8.86/87

D d

x Radius r

P

2
L—

2
L—

P8.87 The C86100 bronze (see Appendix D for properties) shaft 

shown in Figure P8.86/87 is supported at each end by self-aligning 

bearings. The major diameter is D � 40 mm, the minor shaft diam-

eter is d � 25 mm, and the radius of the fi llet between the major and 

minor diameter sections is r � 5 mm. The shaft length is L � 

500 mm, and the fi llets are located at x � 150 mm. Determine the 

maximum load P that may be applied to the shaft if a factor of safety 

of 3.0 is specifi ed.

P8.88 The machine shaft shown in Figure P8.88/89 is made of 

1020 cold-rolled steel. (See Appendix D for properties.) The 

major shaft diameter is D � 1.000 in., the minor diameter is 

d � 0.625 in., and the radius of the fi llet between the major and 

minor diameter sections is r � 0.0625 in. The fi llet are located at 

x � 4 in. from C. If a load of P � 125 lb is applied at C, determine 

the factor of safety in the fi llet at B.

P8.89 The machine shaft shown in Figure P8.88/89 is made of 

1020 cold-rolled steel. (See Appendix D for properties.) The 

major shaft diameter is D � 30 mm, the minor shaft diameter is 

d � 20 mm, and the radius of the fi llet between the major and 

minor diameter sections is r � 3 mm. The fi llets are located at 

x � 90 mm from C. Determine the maximum load P that can be 

applied to the shaft at C if a factor of safety of 1.5 is specifi ed.

P8.90 The grooved shaft shown in Figure P8.90 is made of 

C86100 bronze. (See Appendix D for properties). The major 

 diameter is D � 50 mm, the minor shaft diameter at the groove is 

d � 34 mm, and the radius of the groove is r � 4 mm. Determine 

the maximum allowable moment M that may be applied to the 

shaft if a factor of safety of 1.5 with respect to failure by yield is 

specifi ed.

x

D d

A B
C

PRadius r

FIGURE P8.88/89

dD

Radius r

MM

FIGURE P8.90

FIGURE P8.84/85

x

d
D

Radius r

M

b

336

and the bar thickness is b � 0.25 in. Determine the maximum safe 

moment M that may be applied to the bar if a factor of safety of 

2.5 with respect to failure by yield is specifi ed.

P8.86 The shaft shown in Figure P8.86/87 is supported at each end 

by self-aligning bearings. The major shaft diameter is D � 2.00 in., 

the minor shaft diameter is d � 1.50 in., and the radius of the fi llet 

between the major and minor diameter sections is r � 0.125 in. The 

shaft length is L � 24 in., and the fi llets are located at x � 8 in. Deter-

mine the maximum load P that may be applied to the shaft if the 

maximum normal stress must be limited to 24,000 psi.
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CHAPTER 9
Shear Stress In Beams

337

9.1 Introduction

For beams subjected to pure bending, only tension and compression normal stresses are 

developed in the fl exural member. In most situations, however, loadings applied to a beam 

create nonuniform bending; that is, internal bending moments are accompanied by internal 

shear forces. As a consequence of nonuniform bending, shear stresses as well as normal 

stresses are produced in the beam. In this chapter, a method will be derived for determining 

the shear stresses produced by nonuniform bending. The method will also be adapted to 

consider beams fabricated from multiple pieces joined together by discrete fasteners.

9.2 Resultant Forces Produced by Bending Stresses

Before developing the equations that describe beam shear stresses, it is instructive to 

consider in more detail the resultant forces produced by bending stresses on portions of 

the beam cross section. Consider the simply supported beam shown in Figure 9.1 in 

which a concentrated load of P � 9,000 N is applied at the middle of a 2-m-long span. 

The shear-force and bending-moment diagrams for this span and loading are shown.

For this investigation, we will arbitrarily consider a 150-mm-long segment BC of the 

beam that is located 300 mm from the left support, as shown in Figure 9.1. The beam is 

made up of two wood boards, each having the same elastic modulus. The lower board will 
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338
SHEAR STRESS IN BEAMS

be designated as member (1), and the upper board will be designated as member (2). The 

cross-sectional dimensions of the beam are shown in Figure 9.2.

The objective of this investigation is to determine the forces acting on member (1) at 
sections B and C.

From the bending-moment diagram, the internal bending moments at sections B and 

C are MB � 1.350 kN-m and MC � 2.025 kN-m, respectively. Both moments are positive; 

thus, beam segment BC will be deformed as shown in Figure 9.3a. Compression normal 

stresses will be produced in the upper half of the beam cross section, and tension normal 

stress will be produced in the lower half. The bending stress distribution over the depth of 

the cross section at these two locations can be determined from the fl exure formula with the 

use of a moment of inertia about the z centroidal axis of Iz � 33,750,000 mm4. The distribu-

tion of bending stresses is shown in Figure 9.3b.

To determine the forces acting on member (1), we will consider only those normal 

stresses acting between points b and c (on section B) and between points e and f (on 

section C ). At B, the bending stress varies from 1.0 MPa (T) at b to 3.0 MPa (T) at c. At C, 

the bending stress varies from 1.5 MPa (T) at e to 4.5 MPa (T) at f.
From Figure 9.2, the cross-sectional area of member (1) is

A1 � (50 mm) (120 mm) � 6,000 mm2

To determine the resultant force at section B that acts on this area, the stress distribution can 

be split into two components: a uniformly distributed portion having a magnitude of 1.0 MPa 

and a triangular portion having a maximum intensity of (3.0 MPa � 1.0 MPa) � 2.0 MPa. By 

this approach, the resultant force acting on member (1) at section B can be calculated as

Resultant FB � (1.0 N/mm2)(6,000 mm2) �    (2.0 N/mm2)(6,000 mm2)

        � 12,000 N � 12 kN 

1

2

Since the bending stresses are tensile, the resultant force acts in tension on section B.

Similarly, the stress distribution on section C can be split into two components: 

a uniformly distributed portion having a magnitude of 1.5 MPa and a triangular portion having 

x

y

A EDB C

1 m 1 m

150
mm

300
mm

9 kN

4.5 kN 4.5 kN

(1)

(2)

1.350 kN-m

M

4.5 kN-m

2.025 kN-m

V

4.5 kN

�4.5 kN 

FIGURE 9.1 Simply supported beam with concentrated load applied at midspan.

(1)

(2)

y

z

100 mm

50 mm

120 mm

FIGURE 9.2 Beam cross-

sectional dimensions.
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RESULTANT FORCES PRODUCED 

BY BENDING STRESSES
a maximum intensity of (4.5 MPa � 1.5 MPa) � 3.0 MPa. The resul-

tant force acting on member (1) at section C is found from

Resultant FC � (1.5 N/mm2)(6,000 mm2) �    (3.0 N/mm2)(6,000 mm2)

        � 18,000 N � 18 kN 

1

2

The resultant forces caused by the bending stresses on member (1) 

are shown in Figure 9.3c. Notice that the resultant forces are not 

equal in magnitude. Why are these resultant forces unequal? The 

resultant force on section C is larger than the resultant force on sec-

tion B because the internal bending moment MC is larger than MB. 

The resultant forces FB and FC will be equal in magnitude only 

when the internal bending moments are the same on sections B and C. 

Is member (1) of beam segment BC in equilibrium? This portion 

of the beam is not in equilibrium, because ©Fx � 0. How much ad-
ditional force is required to satisfy equilibrium? An additional 

force of 6 kN in the horizontal direction is required to satisfy equi-

librium for member (1). Where must this additional force be 
located? All normal stresses acting on the two vertical faces (b–c and 

e–f ) have been considered in the calculations for FB and FC. The 

bottom horizontal face c–f is a free surface that has no stress acting 

on it. Therefore, the additional 6-kN horizontal force required to 

satisfy equilibrium must be located on horizontal surface b–e, as 

shown in Figure 9.4. This surface is the interface between member 

(1) and member (2). What is the term given to a force that acts on 
a surface parallel to its line of action? The 6-kN horizontal force 

acting on surface b–e is termed a shear force. Notice that the 6-kN 

force acts in the same direction as the resultants of the bending 

stress—that is, parallel to the x axis.

What lessons can be drawn from this simple investigation? 
In those beam spans where the internal bending moment is not con-

stant, the resultant forces acting on portions of the cross section will 

be unequal in magnitude. Equilibrium of these portions can be satis-

fi ed only by an additional shear force that is developed internally in 

the beam.

In the sections that follow, we will discover that this additional 

internal shear force required to satisfy equilibrium can be developed 

in two ways. The internal shear force can be the resultant of shear 

stresses developed in the beam, or it can be provided by individual 

fasteners such as bolts, nails, or screws.

1.350 kN-m 2.025 kN-m

y

x

(1)

(2)

B C

(a) Internal bending moments

3.0 MPa (T)

1.0 MPa (T)

3.0 MPa (C)

4.5 MPa (T)

1.5 MPa (T)

4.5 MPa (C)

(1)

(2)

c f
b

a

e

d
y

x

B C

(b) Bending stresses

(1)

FB � 12 kN

FC � 18 kNc f
b e

B C

y

x

(c) Bending stress resultant forces

FIGURE 9.3 Moments, stresses, and forces acting on 

beam segment BC.

6 kN

(1)
c f
b e

B C

y

x

FB � 12 kN

FC � 18 kN

FIGURE 9.4 Free-body diagram of member (1). 
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EXAMPLE 9.1

340

A beam segment is subjected to the internal bending moments 

shown. The cross-sectional dimensions of the beam are given.

(a)  Sketch a side view of the beam segment, and plot the 

 distribution of bending stresses acting at sections A and B. 

Indicate the magnitude of key bending stresses in the 

sketch.

(b)  Determine the resultant forces acting in the x direction on 

area (2) at sections A and B, and show these resultant forces 

in the sketch.

(c)  Is the specifi ed area in equilibrium with respect to forces 
acting in the x direction? If not, determine the horizontal 

force required to satisfy equilibrium for the specifi ed 

area and show the location and direction of this force in 

the sketch.

Plan the Solution
After computing the section properties, the normal stresses pro-

duced by the bending moment will be determined from the fl exure 

formula. In particular, the bending stresses acting on area (2) will be calculated. From 

these stresses, the resultant forces acting in the horizontal direction at each end of the 

beam segment will be computed.

SOLUTION
(a)  The centroid location in the z direction can be determined from symmetry. The centroid 

location in the y direction must be determined for the U-shaped cross section. The 

U-shape is subdivided into rectangular shapes (1), (2), and (3), and the y centroid 

location is calculated from the following:

Ai (mm2) yi (mm) yi Ai (mm3)

(1)  3,000 50 150,000

(2)  4,500 15  67,500

(3)  3,000 50 150,000

10,500 367,500

y �
367,500 mm3

10,500 mm2
� 35.0 mm�

∑yiAi 

∑ Ai

  The z centroidal axis is located 35.0 mm above the reference axis for the U-shaped cross 

section. Next, the moment of inertia about the z centroidal axis is calculated. The paral-

lel axis theorem is required since the centroids of areas (1), (2), and (3) do not coincide 

with the z centroidal axis for the U-shape. The complete calculation is summarized in 

the table on the next page.

A

B

(1)

(2)

(3)

x

y

z

MA � 11.0 kN-m

MB � 16.5 kN-m

100 mm

30 mm

30 mm 30 mm150 mm

(1)

(2)

(3)

100 mm

30 mm

30 mm 30 mm150 mm

(1)

(2)

(3)

Ref. axis
15 mm

50 mm
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Ici (mm4) | di | (mm) di
2Ai (mm4)  Iz (mm4)

(1)  2,500,000  15.0  675,000 3,175,000

(2)  337,500  20  1,800,000 2,137,500

(3)  2,500,000  15.0  675,000 3,175,000

8,487,500

The moment of inertia of the U-shaped cross section about its z 

 centroidal axis is Iz � 8,487,500 mm4.

For the positive bending moments MA and MB acting on the 

beam segment as shown, compression normal stresses will be 

produced above the z centroidal axis and tension normal stresses 

will occur below the z centroidal axis. The fl exure formula [Equa-

tion (8.7)] is used to compute the bending stress at any coordi-

nate location y. (Recall that the y coordinate axis has its origin at 

the centroid.) For example, the bending stress at the top of area 

(1) at section A is  calculated with y � �65 mm:

�x � �
My

Iz
� �

(11 kN-m)(65 mm)(1,000 N/kN)(1,000 mm/m)

8,487,500 mm4

� �84.2 MPa � 84.2 MPa (C)

The maximum tension and compression bending 

stresses at sections A and B are shown in the fi gure 

to the right.

(b)  Of particular interest in this example are the bending 

stresses acting on area (2) of the U-shaped cross 

section. The normal stresses acting on area (2) are 

shown in the following fi gure:

100 mm

30 mm

30 mm 30 mm150 mm

(1)

(2)

(3)
y

z
35 mm

65 mm

A

B

(1)

(2)

(3)

x

y

z

Compression bending stress

Tension bending stress

MA � 11.0 kN-m

MB � 16.5 kN-m

x

126.4 MPa (C)

68.0 MPa (T)

84.2 MPa (C)

45.4 MPa (T)
A B

(2)

x

y

A B

126.4 MPa (C)

9.72 MPa (T)

68.0 MPa (T)

84.2 MPa (C)

6.48 MPa (T)

45.4 MPa (T)

The resultant force of the bending stresses acting on area (2) must be determined 

at section A and at section B. The normal stresses acting on area (2) are all of the same 

sense (i.e., tension), and since these stresses are linearly distributed in the y direction, 

we need only determine the average stress intensity. The stress distribution is uni-

formly distributed across the z dimension of area (2). Therefore, the resultant force 

acting on area (2) can be determined from the product of the average normal stress 

and the area upon which it acts. Area (2) is 150 mm wide and 30 mm deep; therefore, 

A2 � 4,500 mm2. On section A, the resultant force in the x direction is

1

2
FA �    (6.48 MPa � 45.4 MPa) (4,500 mm2) � 116,730 N � 116.7 kN

and on section B, the horizontal resultant force is

1

2
FB �    (9.72 MPa � 68.0 MPa)(4,500 mm2) � 174,870 N � 174.9 kN

341
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The additional force in the horizontal direction FH required to satisfy equilibrium 

cannot emanate from the upper and lower surfaces of area (2) since these are free 

surfaces. Therefore, FH must act at the boundaries between areas (1) and (2), and 

between areas (2) and (3). By symmetry, half of the horizontal force will act on each 

surface. Since FH acts along the vertical sides of area (2), it is termed a shear force.

(c)  Consider the equilibrium of area (2). In the x direction, the sum of the resultant forces is

ΣFx � 174.9 kN � 116.7 kN � 58.2 kN � 0

Area (2) is not in equilibrium. What observations can be drawn from this situation? 

Whenever a beam segment is subjected to nonuniform bending—that is, whenever the 

bending moments are changing along the span of the beam—portions of the beam 

cross section will require additional forces in order to satisfy equilibrium in the longi-

tudinal direction. Where can these additional forces be applied to area (2)?

Discussion of the horizontal shear force developed in a fl exural  member.

 MecMovies Example M9.1MM
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(2)

x

y

A B

126.4 MPa (C)

9.72 MPa (T)

68.0 MPa (T)

84.2 MPa (C)

6.48 MPa (T)

45.4 MPa (T)
174.9 kN116.7 kN

(1)

(2)

(3)

No shear forces
on these surfaces

x

y

z

FH 29.1 kN1
2
–

FH 29.1 kN1
2
–116.7 kN

174.9 kN�

�
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P9.3 The 500-mm-long beam segment shown in Figure P9.3a is 

subjected to internal bending moments of MA � �5.8 kN-m and 

MB � �3.2 kN-m. Consider area (1) shown in Figure P9.3b.

24 kip-ft

28 kip-ft

y

z
x

20 in.

A

B

FIGURE P9.1a Beam segment.

3.5 in.

17 in.

3.5 in.

3.5 in.

0.75 in. 0.75 in.

y

z

(1)

FIGURE P9.1b Cross-

sectional dimensions.

P9.2 The 12-in.-long beam segment shown in Figure P9.2a is 

subjected to internal bending moments of MA � 700 lb-ft and 

MB � 400 lb-ft. Consider area (1) shown in Figure P9.2b.

400 lb-ft

700 lb-ft

y

z
x

12 in.

A

B

FIGURE P9.2a Beam segment.

1 in.

6 in.

7 in.

1 in.

4.5 in.

y

z

(1)

FIGURE P9.2b Cross-sectional dimensions.

3.2 kN-m

5.8 kN-m

y

z

x

500 mm

A

B

FIGURE P9.3a Beam segment.

30 mm

300 mm

20 mm 20 mm

160 mm

y

z

(1)

FIGURE P9.3b Cross-sectional dimensions.

For the problems that follow, a beam segment subjected to internal 

bending moments at sections A and B is shown along with a sketch 

of the cross-sectional dimensions. For each problem,

(a)  sketch a side view of the beam segment, and plot the distribution 

of bending stresses acting at sections A and B. Indicate the 

magnitude of key bending stresses in the sketch.

(b)  determine the resultant forces acting in the x direction on the 

specifi ed area at sections A and B, and show these resultant 

forces in the sketch.

(c)  is the specifi ed area in equilibrium with respect to forces 

acting in the x direction? If not, determine the horizontal force 

required to satisfy equilibrium for the specifi ed area, and show 

the location and direction of this force in the sketch.

P9.1 The 20-in.-long beam segment shown in Figure P9.1a is 

subjected to internal bending moments of MA � 24 kip-ft and 

MB � 28 kip-ft. Consider area (1) shown in Figure P9.1b.

PROBLEMSPROBLEMS

343
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P9.4 The 16-in.-long beam segment shown in Figure P9.4a is 

 subjected to internal bending moments of MA � �3,300 lb-ft and 

MB � �4,700 lb-ft. Consider area (1) shown in Figure P9.4b.

y

z
x

3,300 lb-ft

4,700 lb-ft

16 in.

A

B

FIGURE P9.4a Beam segment.

12 in.

3.5 in.

1.5 in. 1.5 in.

1.5 in.

y

z
(1) (2)

FIGURE P9.4b Cross-sectional dimensions.

P9.5 The 18-in.-long beam segment shown in Figure P9.5a/6a is 

subjected to internal bending moments of MA � �42 kip-in. and 

MB � �36 kip-in. Consider area (1) shown in Figure P9.5b/6b.

y

z x
42 kip-in.

36 kip-in.18 in.

A

B

FIGURE P9.5a/6a Beam segment.

2 in.

2 in.

8 in. 12 in.

6 in.

10 in.

2 in.

y

z

(2)

(1)

FIGURE P9.5b/6b Cross-sectional dimensions.

P9.6 The 18-in.-long beam segment shown in Figure P9.5a/6a 

is subjected to internal bending moments of MA � �42 kip-in. and 

MB � �36 kip-in. Consider area (2) shown in Figure P9.5b/6b.

P9.7 The 300-mm-long beam segment shown in Figure P9.7a/8a 

is subjected to internal bending moments of MA � 7.5 kN-m and 

MB � 8.0 kN-m. Consider area (1) shown in Figure P9.7b/8b.

7.5 kN-m

8.0 kN-m

y

z x

300 mm

A

B

FIGURE P9.7a/8a Beam segment.

40 mm

280 mm

90 mm

40 mm

150 mm40 mm 40 mm

y

z

(1)

(2)

(3)

FIGURE P9.7b/8b Cross-sectional dimensions.

P9.8 The 300-mm-long beam segment shown in Figure P9.7a/8a 

is subjected to internal bending moments of MA � 7.5 kN-m and 

MB � 8.0 kN-m. Consider the combined areas (1), (2), and (3) 

shown in Figure P9.7b/8b.
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FIGURE 9.5 Prismatic beam subjected to nonuniform bending.
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x
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(a) Beam loading
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FIGURE 9.6 Free-body diagrams of beam segment.
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      (b)  Bending stresses due to internal

bending moments

�x
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y
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d

b

a

e

c f

w(x)

V��VV

(a) Free-body diagram

In this section, a method for determining the shear stresses produced in a prismatic beam 

made of a homogeneous linear-elastic material will be developed. Consider the beam 

shown in Figure 9.5a, which is subjected to various loadings. The cross section of the 

beam is shown in Figure 9.5b. In this development, particular attention is focused on a por-

tion of the cross section that will be designated A�.
A free-body diagram of the beam having length �x and located at some distance x from 

the origin will be investigated (Figure 9.6a). The internal shear force and bending moment 

on the left side of the free-body diagram (section a–b–c) are designated as V and M, respec-

tively. On the right side of the free-body diagram (section d–e–f ), the internal shear force 

and bending moment are slightly different: V � �V and M � �M. Equilibrium in the hori-

zontal x direction will be considered here. The internal shear forces V and V � �V and the 

distributed load w(x) act in the vertical direction; consequently, they will have no effect on 

equilibrium in the x direction, and they can be omitted in the subsequent analysis.

The normal stresses acting on this free-body diagram (Figure 9.6b) can be determined 

by the fl exure formula. On the left side of the free-body diagram, the bending stresses due 

to the internal bending moment M are given by My/Iz, and on the right side, the internal 

bending moment M � �M creates bending stresses given by (M � �M)y/Iz. The signs 

associated with the bending stresses will be determined by inspection. Above the neutral 

9.3 The Shear Stress Formula
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346
SHEAR STRESS IN BEAMS

axis, the internal bending moments produce compression normal stresses, which act on the 

free-body diagram in the directions shown.

If a beam is in equilibrium, then any portion of the beam that we choose to consider 

must also be in equilibrium. We will consider a portion of the free-body diagram shown in 

Figure 9.6, starting at section b–e (y � y1) and extending away from the neutral axis 

(upward in this case) to the outermost boundary of the cross section (y � y2). This is the 

portion of the cross section designated as A� in Figure 9.5b. A free-body diagram of area A� 
is shown in Figure 9.7.

The resultant force on sections a–b and d–e can be found by integrating the normal 

stresses acting on area A�, which includes that portion of the cross-sectional area starting at 

y � y1 and extending vertically to the top of the cross section at y � y2. (See Figure 9.5b.) 

No force exists on section a–d; however, we shall assume that an internal horizontal force 

FH could be present on section b–e. The equilibrium equation for the sum of forces acting 

on area A� in the x direction can be written as

 
M

IzA� A� Iz

(M � �M )
ΣFx � y d A� � y d A� � FH � 0  (a)

where the signs of each term are determined by inspection of Figure 9.7. The integral terms 

in Equation (a) can be expanded to give

 
�M

F
M

I
y dA

M

I
y dA

I
y dA Fx

zA zA zA
H 0Σ

� � �
� � ��� � � �  

(b)

Canceling terms and rearranging give

 F
I

y dAH
zA

�M
�

�
�

 (c)

With respect to area A�, both �M and Iz are constant; therefore, Equation (c) can be simplifi ed to

 
F

I
y dAH

z A

�M
�

�
�

 
(d)

The integral term in Equation (d) is the fi rst moment of area A� about the neutral axis of the 
cross section. This quantity will be designated Q. More details concerning the calculation 

of Q will be presented in Section 9.4. By replacing the integral term with the designation Q, 

Equation (d) can be rewritten as

 F
IH

z

�MQ
�  (9.1)

FIGURE 9.7 Free-body diagram of area A� (profi le view).

�x

x

y

da

b e

FH

M 

Iz
y dA�

A�

(M � �M )
Iz

y dA�
A�

The moment of inertia term 

appearing in Equation (9.1) 

stems from the fl exure formula, 

which was used to determine the 

bending stresses acting over the 

entire depth of the beam and 

over area A� in particular. For 

that reason, Iz is the moment of 

inertia of the entire cross section 

about the z axis.
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347
THE SHEAR STRESS FORMULA

What is the signifi cance of Equation (9.1)? If the internal bending moment in a beam 
is not constant (i.e., �M � 0), then an internal horizontal shear force FH must exist at y � 

y1 in order to satisfy equilibrium. Furthermore, note that the term Q pertains expressly 

to area A�. (See Figure 9.5b.) Since the value of Q changes with area A�, so too does FH. 

In other words, at every value of y possible within a cross section, the internal shear 

force FH required for equilibrium is unique.

Before continuing, it may be helpful to apply Equation (9.1) to the problem discussed in 

Section 9.2. In that problem, the internal bending moments on the right and left sides of the 

beam segment (which had a length of �x � 150 mm) were MB � 1.350 kN-m and MC � 

2.025 kN-m, respectively. From these two moments, �M � 2.025 kN-m � 1.350 kN-m � 

0.675 kN-m � 675 kN-mm. The moment of inertia Iz was given as Iz � 33,750,000 mm4.

The area A� pertinent to this problem is simply the area of member (1), the 50-mm by 

120-mm board at the bottom of the cross section. The fi rst moment of area Q is computed 

from �y dA�. Let the width of member (1) be denoted by b. Since this width is constant, the 

differential area dA� can be conveniently expressed as dA� � b dy. In this instance, area A� 
starts at y � �25 mm and extends away from the neutral axis in a downward direction to 

an outermost boundary of y � �75 mm. With b � 120 mm, the fi rst moment of area Q is 

calculated as

1
2y��25

y��75

y��25
y��75

Q �                by dy �  b    �y2 �            � 300,000 mm3 

and from Equation (9.1), the horizontal shear force FH required to keep member (1) in 

equilibrium is

F
IH

z

( kN-mm)( )300,000 mm

33,750,000 mm
k

3675
6

4
NN

�MQ
� � �

This result agrees with the horizontal force determined in Section 9.2.

Shear Stress in a Beam

Equation (9.1) can be extended to defi ne the shear stress produced in a beam subjected to 

nonuniform bending. The surface upon which FH acts has a length of �x. Depending upon 

the shape of the beam cross section, the width of area A� may vary, so the width of area A� 
at y � y1 will be denoted by the variable t. (See Figure 9.5b.) Since stress is defi ned as force 

divided by area, the average horizontal shear stress acting on horizontal section b–e can be 

derived by dividing FH given in Equation (9.1) by the area of the surface upon which this 

force acts, which is t �x:

 �H
HF

�x

Q
,avg � � �

t �x

M Q� M�

I tzIzt �x  (e)

Implicit in this equation is the assumption that shear stress is constant across the width of 

the cross section at any y position. That is, at any specifi c y position, the shear stress is 

constant for any z location. This derivation also assumes that the shear stresses � are paral-

lel to the vertical sides of the cross section (i.e., the y axis).

In the limit as �x S 0, �M/�x can be expressed in terms of differentials as dM/dx, and 

so Equation (e) can be enhanced to give the horizontal shear stress acting at location x 

along the beam’s span:

 �H
z

dM

dx

Q

I t
�  (f )

(1)

(2)

y

z

100 mm

50 mm

120 mm

FIGURE 9.2 (repeated) Beam 

cross-sectional dimensions.
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348
SHEAR STRESS IN BEAMS Equation (f ) defi nes the horizontal shear stress in a beam. Note that shear stress will exist 

in a beam at those locations where the bending moment is not constant (i.e., dM/dx � 0). As 

discussed previously, the fi rst moment of area Q varies in value for every possible y in the 

beam cross section. Depending upon the shape of the cross section, the width t may also 

vary with y. Consequently, the horizontal shear stress varies over the depth of the cross sec-

tion at any location x along the beam span.

The simple investigation presented in Section 9.2 and the equations derived in this sec-

tion have demonstrated the concept that is essential to understanding shear stresses in beams.

Horizontal shear forces and, consequently, horizontal shear stresses are caused in a fl ex-

ural member at those locations where the internal bending moment is changing along 

the beam span. The imbalance in the bending stress resultant forces acting on a portion 

of the cross section demands an internal horizontal shear force for equilibrium.

Equation (f) gives an expression for the horizontal shear stress developed in a beam. Al-

though the term dM/dx helps to clarify the source of shear stress in beams, it is awkward 

for calculation purposes. Is there an equivalent expression for dM/dx? Recall the relation-

ships developed in Section 7.3 between internal shear force and internal bending moment. 

Equation (7.2) defi ned the following relationship:

 
dM

dx
V�  (7.2)

In other words, wherever the bending moment is changing, there is an internal shear 
force V. The term dM/dx in Equation (f) can be replaced by the internal shear force V to 

give an expression for �H that is easier to use:

 

�H
z

VQ

I t
�

 

(g)

Section 1.6 demonstrated that a shear stress never acts on just one surface. If there is a shear 

stress �H on a horizontal plane in the beam, then there is also a shear stress �V of the same 

magnitude on a vertical plane (Figure 9.8). Since the horizontal and vertical shear stresses 

are equal, we will let �H � �V � �; thus, Equation (g) can be simplifi ed into a form com-

monly known as the shear stress formula:

 �
z

VQ

I t
�  (9.2)

Since Q varies with area A�, the value of � varies over the depth of the cross section. At the 

upper and lower boundaries of the cross section (e.g., points a, c, d, and f in Figure 9.8), the 

value of Q is zero since area A� is zero. The maximum value of Q occurs at the neutral axis of 

the cross section. Accordingly, the largest shear stress � is usually located at the neutral axis; 

however, this is not necessarily so. In Equation (9.2), the internal shear force V and the mo-

ment of inertia Iz are constant at any particular location x along the span. The value of Q is 

clearly dependent upon the particular y coordinate being considered. The term t (which is the 

cross section width in the z direction at any specifi c y location) in the denominator of Equa-

tion (9.2) can also vary over the depth of the cross section. Therefore, the maximum horizon-

tal shear stress � occurs at the y coordinate that has the largest value of Q/t. Most often, the 

largest value of Q/t does occur at the neutral axis, but this is not necessarily the case.

The terms horizontal shear 
stress and transverse shear 
stress are both used in reference 

to beam shear stress. Since shear 

stresses on perpendicular planes 

must be equal in magnitude, 

these two terms are effectively 

synonyms in that both refer to 

the same numerical shear 

stress value.

The moment of inertia Iz in 

Equation (9.2) is the moment 

of inertia of the entire cross 
section about the z axis. 
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349
THE FIRST MOMENT OF AREA Q

The direction of the shear stress acting on a transverse plane is the same as the direc-

tion of the internal shear force. As illustrated in Figure 9.8, the internal shear force acts 

downward on section d–e–f. The shear stress acts in the same direction on the vertical 

plane. Once the direction of the shear stress on one face has been determined, the shear 

stresses acting on the other planes are known.

Although the stress given by Equation (9.2) is associated with a particular point in a 

beam, it is averaged across the thickness t and hence is accurate only if t is not too great. 

For a rectangular section having a depth equal to twice the width, the maximum stress 

computed by methods that are more rigorous is about 3 percent greater than that given by 

Equation (9.2). If the cross section is square, the error is about 12 percent. If the width is 

four times the depth, the error is almost 100 percent! Furthermore, if the shear stress for-

mula is applied to a cross section in which the sides of the beam are not parallel, such as a 

triangular section, the average stress is subject to additional error because the transverse 

variation of stress is greater when the sides are not parallel.

�x

x

y

M

da

b e

c f

V��V

M��M

V

e
� H

� V

�H �V �� �

FIGURE 9.8 Shear stress at point e.

Calculation of the fi rst moment of area Q for a specifi c y location in a beam cross section 

is initially one of the most confusing aspects associated with shear stress in fl exural mem-

bers. It tends to be confusing because there is not a unique value of Q for a particular cross 

section—there are many values of Q. For example, consider the box-shaped cross section 

shown in Figure 9.9a. In order to calculate the shear stress associated with the internal 

shear force V at points a, b, and c, three different values of Q must be determined.

What is Q? Q is a mathematical abstraction termed a fi rst moment of area. Recall that 

a fi rst moment of area term appears as the numerator in the defi nition of a centroid:

 y
y dA

dA

A

A

�  (a)

Q is the fi rst moment of area of only portion A� of the total cross-sectional area A. Equation 

(a) can be rewritten in terms of A� instead of the total area A and rearranged to give a useful 

formulation for Q:

 � � �
A� A�

Ad �A�dA� y�yQ y �  (9.3)

Here, y–� is the distance from the neutral axis of the cross section to the centroid of area A�.

9.4 The First Moment of Area Q
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SHEAR STRESS IN BEAMS To determine Q for point a in Figure 9.9a, the cross-sectional area is subdivided at a, 

slicing parallel to the neutral axis (which is perpendicular to the direction of the internal shear 

force V). The area A� begins at this cut line and extends away from the neutral axis to the free 

surface of the beam. (Recall the free-body diagram in Figure 9.7 used to evaluate horizontal 

equilibrium of area A� in the preceding derivation.) The area A� to be used in calculating Q 

for point a is highlighted in Figure 9.9b. The centroid of the highlighted area relative to the 

neutral axis (the z axis in this instance) is determined, and Q is calculated from the product 

of this centroidal distance and the area of the shaded portion of the cross section. 

A similar process is used to calculate Q for point b. The box shape is sectioned at b paral-

lel to the neutral axis. (Note: V is always perpendicular to its 

corresponding neutral axis and vice versa.) The area A� be-

gins at this cut line and extends away from the neutral axis 

to the free surface, as shown in Figure 9.9c. The centroidal 

location y–� of the highlighted area relative to the neutral axis 

is determined, and Q is calculated from Q � y–�A�.
Point c is located on the neutral axis for the box shape; 

thus, area A� begins at the neutral axis (Figure 9.9d). For 

points a and b, it was clear which direction was meant by 

the phrase “away from the neutral axis.” However, in this 

instance c is actually on the neutral axis, which raises the 

question, Should area A� extend above the neutral axis or 
below the neutral axis? The answer is, Either direction will 
give the same Q at point c. Although the area above the 

neutral axis is highlighted in Figure 9.9d, the area below the 

neutral axis would give the same result. The centroidal loca-

tion y–� of the highlighted area relative to the neutral axis is 

determined, and Q is calculated from Q � y–�A�.
The fi rst moment of the total cross-sectional area A 

taken about the neutral axis must be zero (by defi nition of 

the neutral axis). While the illustrations given here have 

shown how Q can be calculated using an area A� above 

points a, b, and c, the fi rst moment of the area below 

points a, b, and c is simply the negative. In other words, the value of Q calculated using an 

area A� below points a, b, and c must have the same magnitude as Q calculated from an area 

A� above points a, b, and c. It is usually easier to calculate Q using an area A� that extends 

away from the neutral axis, but there are exceptions.

Let us consider the calculation of Q for point b (Figure 9.9c) in more detail. The area 

A� can be divided into three rectangular areas (Figure 9.9e) so that A� � A1 � A2 � A3. The 

centroid location y–� of the highlighted area can be calculated with respect to the neutral 

axis from the following:

��y
� �y A y A y A1 1 2 2 3 3

� � AA1 3A2

The value of Q associated with point b is calculated from the following:

��
� �y A y A y A1 1 2 2 3 3

� � AA1 3A2
� � AA1 3A2 A1y1 A2y2 A3y3�yQ �A ( ) � ��

This result suggests a more direct calculation procedure that is often expedient. Q for cross 

sections that consist of i shapes can be calculated as the summation

 Ai i∑� yQ
i

 (9.4)

where yi � distance between the neutral axis and the centroid of shape i and Ai � area of shape i.

FIGURE 9.9 Calculating Q at different locations in a box-shaped 

cross section. 

y

z c

b

a

V

(a) Box shape

(b) Area A� for point a

y

z

a

V

y�

��A

(c) Area A� for point b

y

z
b

V

�A

�y

(d) Area A� for point c

c

y

z

V

�A

�y

(e) Calculation process

(1) (2)

(3)

y

z
b

y3y2y1

V

Generally, if the point of interest 

is above the neutral axis, it is 

convenient to consider an area A� 
that begins at the point and 

extends upward. If the point of 

interest is below the neutral axis, 

consider the area A� that begins 

at the point and extends 
downward.
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FIGURE 9.10 Shear distribution in a rectangular cross section.

351351

Beams of rectangular cross sections will be considered to develop some understanding of 

how shear stress is distributed over the depth of a beam. Consider a beam subjected to an 

internal shear force of V. Keep in mind that a shear force exists only when the internal 

bending moment is not constant and that it is the variation in bending moments along the 

span that creates shear stress in a beam, as discussed in Section 9.3. The rectangular cross 

section shown in Figure 9.10a has width b and height h; therefore, the total cross-sectional 

area is A � bh. By symmetry, the centroid of the rectangle is located at mid-height. The 

moment of inertia about the z centroidal axis (i.e., the neutral axis) is Iz � bh3/12.

Shear stress in the beam will be determined from Equation (9.2). To investigate the 

distribution of � over the cross section, the shear stress will be computed at an arbitrary 

height y from the neutral axis (Figure 9.10b). The fi rst moment of area Q for the high-

lighted area A� can be expressed as

 Q y A y
h

y
h

y
1

2 2 2
bb

h
y b

1

2 4

2
2� � � � � ��� �  (a)

9.5  Shear Stresses in Beams of Rectangular 
Cross Section
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352
SHEAR STRESS IN BEAMS The shear stress � as a function of the vertical coordinate y can now be determined from the 

shear formula:

 
VQ

I t

V

bh b

h
y b

z 1

12

1

3

2
2 66

43

2
2V

bh

h
y� � � � � ��  (9.5)

Equation (9.5) is a second-order equation, which indicates that � is distributed paraboli-

cally with respect to y (Figure 9.10c). At y � ; h/2, � � 0. The shear stress vanishes at the 

extreme fi bers of the cross section since A� � 0 and consequently Q � 0 at these locations. 

There is no shear stress on a free surface of the beam. The maximum horizontal shear stress 

occurs at y � 0, which is the neutral axis location. At the neutral axis, the maximum hori-

zontal shear stress in a rectangular cross section is given by

 max
VQ

I t

V

bh b

h bh

z 1

12

1

2 2 23

3

2

3

2

V

bh

V

A
� � � � ��  (9.6)

It is important to emphasize that Equation (9.6) gives the maximum horizontal shear stress 

only for rectangular cross sections. Note that the maximum horizontal shear stress at the 

neutral axis is 50 percent greater than the overall average shear stress given by � � V/A.
To summarize, the shear stress intensity associated with an internal shear force V in 

a rectangular cross section is distributed parabolically in the direction perpendicular to the 

neutral axis (i.e., in the y direction) and uniformly in the direction parallel to the neutral 

axis (i.e., in the z direction) (Figure 9.10d). The shear stress vanishes at the upper and 

lower edges of the rectangular cross section and peaks at the neutral axis location. It is 

important to remember that shear stress acts on both transverse and longitudinal planes 

(Figure 9.10e).

The expression “maximum shear stress” in the context of beam shear stresses is prob-

lematic. In Chapter 12, the discussion of stress transformations will show that the state of 

stress existing at any point can be expressed by many different combinations of normal and 

shear stress, depending on the orientation of the plane surface upon which the stresses act. 

(This notion has been introduced previously in Section 1.5, pertaining to axial members, 

and in Section 6.4, regarding torsion members.) Consequently, the expression “maxi-

mum shear stress” when applied to beams could be interpreted to mean either 

(a) the maximum value of � � VQ/It for any coordinate y in the cross section, or 

(b)  the maximum shear stress at a particular point in the cross section when all 

possible plane surfaces that pass through the point are considered. 

In this chapter, to preclude ambiguity, the expression “maximum horizontal shear 

stress” will be used to indicate that the maximum value of � � VQ/It for any coordinate 

y in the cross section is to be determined. Since shear stresses on perpendicular planes 

must be equal in magnitude, it would be equally proper to use the expression “maxi-

mum transverse shear stress” for this purpose. In Chapter 12, the maximum shear stress 

at a particular point will be determined using the notion of stress transformations, and 

in Chapter 15, maximum normal and shear stresses at specifi c points in beams will be 

discussed in more detail.

The accuracy of Equation (9.6) 

depends on the depth-to-width 

ratio of the cross section. For 

beams in which the depth is 

much greater than the width, 

Equation (9.6) can be considered 

exact. As the cross section 

approaches a square shape, the 

true maximum horizontal shear 

stress is somewhat greater than 

the result given by Equation (9.6).
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Derivation of the shear stress formula.

 MecMovies Example M9.2MM

EXAMPLE 9.2

A 10-ft-long simply supported laminated wood beam consists of eight 1.5-in. by 6-in. 

planks glued together to form a section 6 in. wide by 12 in. deep, as shown. The beam 

carries a 9-kip concentrated load at midspan. At section a–a located 2.5 ft from pin 

 support A, determine

(a) the average horizontal shear stress in the glue joints at b, c, and d.

(b) the maximum horizontal shear stress in the cross section.

Plan the Solution
The transverse shear force V acting at section a–a can be deter-

mined from a shear-force diagram for the simply supported 

beam. To determine the horizontal shear stress in the indicated 

glue joints, the corresponding fi rst moment of area Q must be 

calculated for each location. The average horizontal shear 

stress will then be determined by the shear stress formula given 

in Equation (9.2).

SOLUTION
Internal Shear Force at Section a–a
The shear-force and bending-moment diagrams can readily be 

constructed for the simply supported beam. From the shear-

force diagram, the internal shear force V acting at section a–a 

is V � 4.5 kips.

Section Properties
The centroid location for the rectangular cross section can be 

determined from symmetry. The moment of inertia of the cross 

section about the z centroidal axis is equal to

I
bh

z � � �
3

12

6

12
864

( in.)(12 in.)
in.

3
4

(a) Average Horizontal Shear Stress in Glue Joints
The shear stress formula is

VQ

I tz
��

353

6 in.

12 in.

y

z

1.5 in.
(typ)

d

b

c

y

x

5 ft 5 ft

2.5 ft

a

aA CB

9 kips

y

x

5 ft 5 ft

2.5 ft

a

aA CB

9 kips

4.5 kips4.5 kips

V

4.5 kips

 4.5 kips

M

22.5 kip-ft

11.25 kip-ft

�
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To determine the average horizontal shear stress in the glue joints at b, c, and d 

by the shear stress formula, the fi rst moment of area Q and the width of the stressed 

surface t must be determined for each location.

Shear stress in glue joint b: The portion of the cross section to be considered for 

Q begins at point b and extends away from the neutral axis. The fi rst moment 

of this area about the neutral axis is denoted by Q. The area to be considered for 

joint b is highlighted on the left. The area of the highlighted region is (1.50 in.)

(6 in.) � 9 in.2. The distance from the neutral axis to the centroid of the high-

lighted area is 5.25 in. The fi rst moment of area Q corresponding to joint b is 

calculated as

Qb � �( . )( )( . ) .1 50 6 5 25 47 25 3in. in. in. in.

The width of the glue joint is t � 6 in. From the shear stress formula, the average 

horizontal shear stress in glue joint b is computed as

 b
b

z b

VQ

I t

( .

((
(

))
)kips) .4 5 47 25

864 6

3

4

in.

in. in.
00 0410 41 0. ksi . psi� � � ��

  
Ans.

This shear stress acts in the x direction on the glue joint. (Note: The shear stress 

determined by the shear stress formula is an average shear stress because the shear 

stress actually varies somewhat in magnitude across the 6-in. width of the cross 

section. The variation is more pronounced for cross sections that are relatively 

short and wide.)

Shear stress in glue joint c: The area to be considered for joint c, highlighted in the 

fi gure to the left, begins at c and extends away from the neutral axis. The fi rst mo-

ment of area Q corresponding to joint c is calculated as

Qc ( . ) ( ) ( . ) .4 50 6 3 75 101 25 3in. in. in. in.� �

The width of the glue joint is t � 6 in. From the shear stress formula, the average 

horizontal shear stress acting in the x direction in glue joint c is computed as

 c
c

z c

VQ

I t
�� � � �

( . kips) .

( )

4 5 101 25

864 6

3

4

in.

in. in.
0 0879 87 9. ksi . psi

(
(

)
)

 Ans.

Shear stress in glue joint d: The area to be considered for joint d, highlighted in 

the fi gure to the left, begins at d and extends away from the neutral axis. In this 

instance, however, the area extends downward from d, away from the z axis. The 

fi rst moment of area Q corresponding to joint d is calculated as

Qd � �( ) ( ) ( . ) .3 6 4 50 81 0 3in. in. in. in.

The average horizontal shear stress acting in the x direction in glue joint d is com-

puted as

 
d

d

z d

VQ

I t

( . kips) .

( )( )
( )4 5 81 0

864 6
0

3

4

in.

in. in.
.. ksi . psi0703 70 3� � � ��

 
Ans.

6 in.

12 in.

1.50 in.
b

5.25 in.

Neutral axis
z

6 in.

6 in.

12 in.

4.50 in.

3.75 in.

Neutral axis
z

6 in.

c

12 in.
Neutral axisz

4.50 in.

3 in.

6 in.

d
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1.6 m

7.2 kN

FIGURE P9.9a Cantilever beam.

280 mm

120 mm

FIGURE P9.9b Cross-sectional dimensions.

355

(b) Maximum Horizontal Shear Stress in Cross Section
The maximum horizontal shear stress in the rectangular cross section occurs at the neutral 

axis. To calculate Q, the area beginning at the z axis and extending upwards or extending 

downwards may be used, as shown in the following two fi gures: 

For either area, Q is calculated as

Qmax � (6 in.) (6 in.) (3 in.) � 108 in.3

The maximum value of Q always occurs at the neutral axis location. Also, the maximum 

horizontal shear stress usually occurs at the neutral axis. There are instances, however, in 

which the width t of the stressed surface varies over the depth of the cross section. In such 

instances, it is possible that the maximum horizontal shear stress will occur at a y location 

other than the neutral axis.

The maximum horizontal shear stress in the rectangular cross section is computed as

 
max

max ( . kips)

( )

VQ

I tz

4 5 108

864 6

3

4

in.

in. in.
0 0938 93 8. ksi . psi

( )
( )

� � � ��  Ans.

12 in.
Neutral axisz

6 in.

6 in.

3 in.

6 in.

12 in.
Neutral axis

z

6 in.

3 in.

6 in.

P9.9 A 1.6-m-long cantilever beam supports a concentrated load 

of 7.2 kN as shown in Figure P9.9a. The beam is made of a rectangu-

lar timber having a width of 120 mm and a depth of 280 mm as 

shown in Figure P9.9b. Calculate the maximum horizontal shear 

stresses at points located 35 mm, 70 mm, 105 mm, and 140 mm be-

low the top surface of the beam. From these results, plot a graph 

showing the distribution of shear stresses from top to bottom of the 

beam.

PROBLEMSPROBLEMS
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P9.10 A 14-ft-long simply supported timber beam carries a 6-kip 

concentrated load at midspan as shown in Figure P9.10a. The cross-

sectional dimensions of the timber are shown in Figure P9.10b.

(a)  At section a–a, determine the magnitude of the shear stress in 

the beam at point H.
(b)  At section a–a, determine the magnitude of the shear stress 

in the beam at point K.
(c)  Determine the maximum horizontal shear stress that occurs in 

the beam at any location within the 14-ft span length.

(d)  Determine the maximum tension bending stress that occurs 

in the beam at any location within the 14-ft span length.

P9.12 A 5-m-long simply supported timber beam carries two 

concentrated loads as shown in Figure P9.12a. The cross-sectional 

dimensions of the beam are shown in Figure P9.12b.

(a)  At section a–a, determine the magnitude of the shear stress in 

the beam at point H.
(b)  At section a–a, determine the magnitude of the shear stress 

in the beam at point K.
(c)  Determine the maximum horizontal shear stress that occurs in 

the beam at any location within the 5-m span length.

(d)  Determine the maximum compression bending stress that 

 occurs in the beam at any location within the 5-m span length.

y

x

3 ft

7 ft 7 ft

a

a

6 kips

A CB

FIGURE P9.10a Simply supported timber beam.

y

z

6 in.

15 in.

3 in.

H

1 in.

K

FIGURE P9.10b Cross-sectional dimensions.

P9.11 A 5-m-long simply supported timber beam carries a uni-

formly distributed load of 12 kN/m as shown in Figure P9.11a. The 

cross-sectional dimensions of the beam are shown in Figure P9.11b.

(a)  At section a–a, determine the magnitude of the shear stress in 

the beam at point H.
(b)  At section a–a, determine the magnitude of the shear stress 

in the beam at point K.
(c)  Determine the maximum horizontal shear stress that occurs in 

the beam at any location within the 5-m span length.

(d)  Determine the maximum compression bending stress that 

occurs in the beam at any location within the 5-m span length.

y

x

5 m

1 m

a

a

12 kN/m

A B

FIGURE P9.11a Simply supported timber beam.

y

z

100 mm

300 mm 60 mm

H

110 mm

K

FIGURE P9.11b Cross-sectional dimensions.

y

x

A DB C

14 kN 42 kN

2 m 2 m 1 m

0.5 m

a

a

FIGURE P9.12a Simply supported timber beam.

y

z

150 mm

450 mm

150 mm

H

100 mm

K

FIGURE P9.12b Cross-sectional dimensions.
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P9.13 A laminated wood beam consists of eight 2 in. � 6-in. 

planks glued together to form a section 6 in. wide by 16 in. deep, as 

shown in Figure P9.13a. If the allowable strength of the glue in 

shear is 130 psi, determine

(a)  the maximum uniformly distributed load w that can be applied 

over the full length of the beam if the beam is simply supported 

and has a span of L � 23 ft.

(b)  the shear stress in the glue joint at H, which is located 4 in. above 

the bottom of the beam and at a distance of x � 42 in. from 

the left support. Assume that the beam is subjected to the load w
determined in part (a).

(c)  the maximum tension bending stress in the beam when the 

load of part (a) is applied. 

P9.14 A simply supported wood beam of length L � 9 ft carries 

a concentrated load P at midspan, as shown in Figure P9.14a. The 

cross-sectional dimensions of the beam (Figure P9.14b) are b � 5 in. 

and h � 9 in. If the allowable shear strength of the wood is 100 psi, 

determine the maximum load P that may be applied at midspan. 

Neglect the effects of the beam’s self-weight. 

FIGURE P9.13a Simply supported timber beam.

y

z

6 in.

16 in.

2 in. (typ)

H

FIGURE P9.13b Cross-sectional dimensions.

y

x

A CB

P

L
2

L
2

FIGURE P9.14a Simply supported timber beam.

P9.15 A wood beam supports the loads shown in Figure P9.15a. 

The cross-sectional dimensions of the beam are shown in Figure 

P9.15b. Determine the magnitude and location of

(a)  the maximum horizontal shear stress in the beam.

(b) the maximum tension bending stress in the beam.

y

z

b

h

FIGURE P9.14b Cross-sectional dimensions.

y

x

7 kN/m

2.5 m 1.5 m1 m

A CB D

4 kN

FIGURE P9.15a Simply supported timber beam.

y

z

20 mm20 mm 75 mm

240 mm

70 mm

100 mm

70 mm

FIGURE P9.15b Cross-sectional dimensions.
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y

z

V

A
r 2�

��
2

4r
3�

r

FIGURE 9.11 Solid circular 

cross section.

y

z

V
r

R

FIGURE 9.12 Hollow circular 

cross section.
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In beams with circular cross sections, transverse shear stress does not act parallel to the y 

axis over the entire depth of the shape. Consequently, the shear stress formula is not ap-

plicable in general for a circular cross section. However, Equation (9.2) can be used to de-

termine the shear stress acting at the neutral axis.

A solid circular cross section of radius r is shown in Figure 9.11. To use the shear 

stress formula, the value of Q for the highlighted semicircular area must be determined. 

T,'Æhe area A� of the semicircle is A� � �r2/2. The distance from the neutral axis to the cen-

troid of the semicircle is given by y–�� 4r/3�. Thus, Q can be calculated as

 Q y A
r r

r
4

3 2

2

3

2
3� � �

�

�
��  (9.7)

or, in terms of the diameter d � 2r, as

 Q d
1

12
3��  (9.8)

The width of the circular cross section at the neutral axis is t � 2r, and the moment of in-

ertia about the z axis is Iz � �r4/4 � �d4/64. Substituting these relationships into the shear 

stress formula gives the following expression for �max at the neutral axis of a solid circular 

cross section:

 max 4 2

VQ

I t

V

r
r

r

V

r

V

Az 4

2

3

1

2

4

3

4

3
3� � � � � ��

� �  
(9.9)

A hollow circular cross section having outside radius R and inside radius r is shown 

in Figure 9.12. The results from Equations (9.7) and (9.8) can be used to determine Q for 

the highlighted area above the neutral axis:

 Q R r D d
2

3

1

12
3 3 3 3� � � �  (9.10)

The width t of the hollow circular cross section at the neutral axis is two times the wall 

thickness, or t � 2(R � r) � D � d. The moment of inertia of the hollow circular shape 

about the z axis is

I R r D dz 4 64
4 4 4 4� � � �

� �

9.6 Shear Stresses in Beams of Circular Cross Section

The elementary theory used to derive the shear stress formula is suitable for determining 

only the shear stress developed in the web of a fl anged beam (if it is assumed that the beam 

is bent about its strong axis). A wide-fl ange beam shape is shown in Figure 9.13. To deter-

mine the shear stress at a point a located in the web of the cross section, the calculation for 

Q consists of determining the fi rst moment of the two highlighted areas (1) and (2) about 

the neutral axis z (Figure 9.13b). A substantial portion of the total area of a fl anged shape 

is concentrated in the fl anges, so the fi rst moment of area (1) about the z axis makes up a 

large percentage of Q. While Q increases as the value of y decreases, the change is not as 

pronounced in a fl anged shape as it would be for a rectangular cross section. Consequently, 

9.7 Shear Stresses in Webs of Flanged Beams
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359
SHEAR STRESSES IN WEBS OF 

FLANGED BEAMS
the distribution of shear stress magnitudes over the depth of the web, while still parabolic, 

is relatively uniform (Figure 9.13a). The minimum horizontal shear stress occurs at the 

junction between the web and the fl ange, and the maximum horizontal shear stress occurs 

at the neutral axis. For wide-fl ange steel beams, the difference between the maximum and 

minimum web shear stresses is typically in the range of 10–60 percent.

In deriving the shear stress for mula, it was assumed that the shear stress across the 

width of the beam (i.e., in the z direction) could be considered constant. This assumption is 

not valid for the fl anges of beams; 

therefore, shear stresses computed for 

the top and bottom fl anges from 

Equation (9.2) and plotted in Figure 

9.13a are fi ctitious. Shear stresses are 

developed in the fl anges (1) of a wide-

fl ange beam, but they act in the x and 

z directions, not the x and y direc-

tions. Shear stresses in thin-walled 

members such as wide-fl ange shapes 

will be discussed in more detail in 

Section 9.9. FIGURE 9.13 Shear stress distribution in a wide-fl ange shape.

V

x

y

min

max

min

z
y

bf

tf

tw

a

(1)

(2)
2
d—

2
d—

�

�

�

(a) Shear stress distribution (b) Cross section 

Pipe cross section.

EXAMPLE 9.3

x

z

d D

x

z

y

36 kN

A concentrated load of P � 36 kN is applied to the 

upper end of a pipe as shown. The outside diameter 

of the pipe is D � 220 mm, and the inside diameter 

is d � 200 mm. Determine the vertical shear stress 

on the y–z plane of the pipe wall.

Plan the Solution
The shear stress in a pipe shape can be determined 

from the shear stress formula [Equation (9.2)] using 

the fi rst moment of area Q calculated from Equation 

(9.10).

SOLUTION
Section Properties
The centroid location for the tubular cross section can be determined from symmetry. 

The moment of inertia of the cross section about the z centroidal axis is equal to

I D dz 64 64
220 2004 4 4 4( ) ( )mm mm 36,450,329 mmm4�

� �
� � � �

Equation (9.10) is used to compute the fi rst moment of area Q for a pipe shape:

Q D d
1

12

1

12
220 2003 3 3 3 3( ) ( )mm mm 220,667 mm� � � � �

x

z

y

36 kN
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Shear Stress Formula
The maximum vertical shear stress in this pipe occurs along the intersection of the y–z 

plane and the pipe wall. Note that the y–z plane is perpendicular to the direction of the 

shear force V, which acts in the x direction in this instance. The thickness t upon 

which the shear stress acts is equal to t � D � d � 20 mm. The maximum shear stress 

on this plane is computed from the shear stress formula:

 max

3

4

(36,000 N) 220,667 mm

36,450,329 mm

VQ

I tz ((20 mm)
MPa10 90.

(
( )

)
� �� �   Ans.

Further Explanation
At fi rst, it may be diffi cult for the student to visualize the shear stress acting in a 

pipe shape. To better understand the cause of shear stress in this situation, consider 

a free-body diagram of a short portion of the pipe near the point of load applica-

tion. The 36-kN external load produces an internal bending moment M, which 

produces tension and compression normal stresses on the �x and �x portions of 

the pipe, respectively. We will investigate the equilibrium of half of the pipe.

Compression normal stresses are created in the right half-pipe by the internal 

bending moment M. Equilibrium in the y direction requires a resultant force acting 

downward to resist the upward force created by the compression normal stresses. 

This downward resultant force comes from shear stresses acting vertically in the 

wall of the pipe. For the example considered here, the shear stress has a magnitude 

of � � 10.90 MPa.

Pipe free-body diagram.

x

z

y

36 kN

M

V

Compression
normal stress

�
�

Stresses acting on the right 
half of the pipe.

A cantilever beam is subjected to a concentrated 

load of 2,000 N. The cross-sectional dimensions 

of the double-tee shape are shown. Determine

(a)  the shear stress at point H, which is located 

17 mm below the centroid of the double-tee 

shape.

(b)  the shear stress at point K, which is located 

5 mm above the centroid of the double-tee 

shape.

(c)  the maximum horizontal shear stress in the 

double-tee shape.

Plan the Solution
The shear stress in the double-tee shape can be determined from the shear stress 

formula [Equation (9.2)]. The challenge in this problem lies in determining the 

appropriate values of Q for each calculation.

SOLUTION
Section Properties
The centroid location for the double-tee cross section must be determined at the 

outset. The results are shown in the fi gure to the left. The moment of inertia of 

the cross section about the z centroidal axis is Iz � 88,200 mm4.

360

EXAMPLE 9.4

x

y

z

2,000 N 3 mm

42 mm

3 mm 3 mm20 mm

56 mm

y

z 5 mmK

H

17 mm

3 mm

42 mm

3 mm 3 mm20 mm

56 mm

y

z 5 mmK

H

17 mm
30 mm

15 mm
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(a) Shear Stress at H
Before proceeding to the calculation of �, it is helpful to visualize the source of the 

shear stresses produced in the fl exural member. Consider a free-body diagram cut 

near the free end of the cantilever beam. The external 2,000 N concentrated load 

creates an internal shear force V � 2,000 N and an internal bending moment M, 

which varies over the cantilever span. To investigate the shear stresses produced in 

the double-tee cross section, this free body will be divided further in a manner 

similar to the derivation presented in Section 9.3.

The shear stress acting at H is exposed by cutting the free-body diagram 

shown. The internal bending moment M produces compression bending stresses 

that are linearly distributed over the stems of the double-tee shape. The resultant 

force from these compression normal stresses tends to push the double-tee stems 

in the positive x direction. To satisfy equilibrium in the horizontal direction, shear 

stresses � must act on the horizontal surfaces exposed at H. The magnitude of 

these shear stresses is found from the shear stress formula [Equation (9.2)].

In determining the proper value of the fi rst moment of area Q for use in the 

shear stress formula, it is helpful to keep this free-body diagram in mind.

Calculating Q at point H: The double-tee cross section is shown in the fi gure to 

the right. Only a portion of the entire cross section is considered in the Q calcula-

tion. To determine the proper area, slice through the cross section parallel to the 
axis of bending at point H and consider that portion of the cross section beginning 

at H and extending away from the neutral axis. Note that slicing through the sec-

tion parallel to the axis of bending can also be described as slicing through the 

section perpendicular to the direction of the internal shear force V.
The area to be considered in the Q calculation for point H is highlighted in 

the cross section. (This is the area denoted A' in the derivation of the shear stress 

formula in Section 9.3, particularly Figures 9.5 and 9.7.)

Q for point H is the moment of areas (1) and (2) about the z centroidal axis 

(i.e., the neutral axis about which bending occurs). From the cross-section sketch, 

QH is calculated as

QH 2[(3 mm)(13 mm)(23.5 mm)] 1,833 mm3� �

The shear stress acting at H can now be calculated from the shear stress formula:

 H
H

z

VQ

I t

( ( )
( )
2,000 N) 1,833 mm

88,200 mm (6 mm)

3

4
6.993 MPa�� � �  Ans.

Note that the term t in the shear stress formula is the width of the surface exposed 

in cutting the free-body diagram through point H. In slicing through the two stems 

of the double-tee shape, a surface 6 mm wide is exposed; therefore, t � 6 mm.

(b) Shear Stress at K
Consider again a free-body diagram cut near the free end of the cantilever beam. 

This free-body diagram will be further dissected by cutting a free-body diagram, 

beginning at point K and extending away from the neutral axis, as shown in the 

fi gure to the right. The internal bending moment M produces tension bending 

stresses that are linearly distributed over the stems and fl ange of the double-tee 

shape. The resultant force from these tension normal stresses tends to pull this 

portion of the cross section in the �x direction. Shear stresses � must act on the 

horizontal surfaces exposed at K to satisfy equilibrium in the horizontal direction.

x

y

z

2,000 N

M

V
H

K

x

z

2,000 N

Compression
bending stress

H
�

�

3 mm

42 mm

3 mm 3 mm20 mm

56 mm

y

z

17 mm
23.5 mm

13 mm
(1) (2)

H

x

z

2,000 N

Tension
bending

stress

K�

�
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Calculating Q at point K: The area to be considered in the Q calculation for 

point K is highlighted in the cross section. Q for point K is the moment of 

areas (3), (4), and (5) about the z centroidal axis:

QK 2[(3 mm)(7 mm)(8.5 mm)]

(56 mm)(3 mm)(13.5 mm) 2,6225 mm3

�

� �

The shear stress acting at K is

 K
K

z

VQ

I t

(

( )
2,000 N) 2,625 mm

88,200 mm (6 mm)

3

4
9.992 MPa�� � �

( )
 Ans.

(c) Maximum Horizontal Shear Stress
The maximum value of Q corresponds to an area that begins at and extends 

away from the neutral axis. For this location, however, the instruction ex-
tends away from the neutral axis can mean either the area above or the area 

below the neutral axis. The value obtained for Q is the same in either case. 

For the double-tee cross section, the calculation for Q is somewhat simpler 

if we consider the highlighted area below the neutral axis:

Qmax 2[(3 mm)(30 mm)(15 mm)] 2,700 mm3� �

The maximum horizontal shear stress in the double-tee shape is

 
max

VQ

I tz

max
3

4

( ( )
( )
2,000 N) 2,700 mm

88,200 mm (6 mm))
MPa10 20.�� � �

  
Ans.

3 mm

42 mm

3 mm 3 mm20 mm

56 mm

y

z 5 mm8.5 mm
7 mm13.5 mm (3) (4)

(5)

K

3 mm

42 mm

3 mm 3 mm20 mm

56 mm

y

z

30 mm
15 mm

(6) (7)
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Determine the shear stress at points H and K for a simply supported beam, which 

consists of the WT265 � 37 standard steel shape shown.

 MecMovies Example M9.4MM
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Determine the distribution of shear stresses produced in a tee shape.

 MecMovies Example M9.5MM

Determine the maximum horizontal shear stress in a 

simply supported wide-fl ange beam.

 MecMovies Example M9.6MM

Determine the shear stress at point H for a cantilever post, which consists of a structural 

tube as shown.

 MecMovies Example M9.7MM

c09ShearStressInBeams.indd Page 363  29/03/12  8:54 PM user-F391c09ShearStressInBeams.indd Page 363  29/03/12  8:54 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



364

Determine the normal and shear stresses at point H, which is 

located 3 in. above the centroidal axis for the wide-fl ange shape.

 MecMovies Example M9.8MM

M9.3 Q-tile: The Q Section Property Game. Score at least 

90 percent on the Q-tile game.

M9.4 Determine the shear stresses acting at points H and K for a 

wide-fl ange shape subjected to an internal shear force V.

FIGURE M9.4FIGURE M9.3

 MecMovies ExercisesMM

P9.16 A 50-mm-diameter solid steel shaft supports loads 

PA � 1.5 kN and PC � 3.0 kN as shown in Figure P9.16/17. As-

sume that L1 � 150 mm, L2 � 300 mm, and L3 � 225 mm. The 

bearing at B can be idealized as a roller support, and the bearing at 

D can be idealized as a pin support. Determine the magnitude and 

location of

(a) the maximum horizontal shear stress in the shaft.

(b) the maximum tension bending stress in the shaft.
FIGURE P9.16/17

1L 2L 3L

A B C D

AP CP

PROBLEMSPROBLEMS
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P9.17 A 1.25-in.-diameter solid steel shaft supports loads 

PA � 400 lb and PC � 900 lb as shown in Figure P9.16/17. Assume 

that L1 � 6 in., L2 � 12 in., and L3 � 8 in. The bearing at B can be 

idealized as a roller support, and the bearing at D can be idealized 

as a pin support. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.

(b) the maximum tension bending stress in the shaft.

P9.18 A 1.00-in.-diameter solid steel shaft supports loads 

PA � 200 lb and PD � 240 lb as shown in Figure P9.18/19. Assume 

that L1 � 2 in., L2 � 5 in., and L3 � 4 in. The bearing at B can be 

idealized as a pin support, and the bearing at C can be idealized as 

a roller support. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.

(b) the maximum tension bending stress in the shaft.

P9.21 A 25-mm-diameter solid steel shaft supports loads 

PA � 1,000 N, PC � 3,200 N, and PE � 800 N as shown in Figure 

P9.20/21. Assume that L1 � 80 mm, L2 � 200 mm, L3 � 100 mm, 

and L4 � 125 mm. The bearing at B can be idealized as a roller 

support, and the bearing at D can be idealized as a pin support. 

Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.

(b) the maximum tension bending stress in the shaft.

P9.22 A 3-in. standard steel pipe (D � 3.500 in.; d � 3.068 in.) 

in Figure 9.22b/23b supports a concentrated load of P � 900 lb 

as shown in Figure P9.22a/23a. The span length of the cantilever 

beam is L � 3 ft. Determine the magnitude of

(a) the maximum horizontal shear stress in the pipe.

(b) the maximum tension bending stress in the pipe.

1L 2L 3L

A B C D

AP

DP

FIGURE P9.18/19

P9.19 A 20-mm-diameter solid steel shaft supports loads PA � 

900 N and PD � 1,200 N as shown in Figure P9.18/19. Assume that 

L1 � 50 mm, L2 � 120 mm, and L3 � 90 mm. The bearing at B can 

be idealized as a pin support, and the bearing at C can be idealized 

as a roller support. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.

(b) the maximum compression bending stress in the shaft.

P9.20 A 1.25-in.-diameter solid steel shaft supports loads 

PA � 600 lb, PC � 1,600 lb, and PE � 400 lb as shown in Figure 

P9.20/21. Assume that L1 � 6 in., L2 � 15 in., L3 � 8 in., and 

L4 � 10 in. The bearing at B can be idealized as a roller support, 

and the bearing at D can be idealized as a pin support. Determine 

the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.

(b) the maximum tension bending stress in the shaft.

1L
2L

4L3L

A B
C D E

AP

CP
EP

FIGURE P9.20/21

L

P

A

B

FIGURE P9.22a/23a Cantilever beam.

y

zd D

FIGURE P9.22b/23b Pipe cross section.

P9.23 A steel pipe (D � 170 mm; d � 150 mm) in Figure 

P9.22b/23b supports a concentrated load of P as shown in Figure 

P9.22a/23a. The span length of the cantilever beam is L � 1.2 m. 

(a) Compute the value of Q for the pipe.

(b)  If the allowable shear stress for the pipe shape is 75 MPa, 

determine the maximum load P that can be applied to the 

cantilever beam.

P9.24 A concentrated load P is applied to the upper end of a 

1-m-long pipe as shown in Figure P9.24a/25a. The outside 

diameter of the pipe is D � 114 mm, and the inside diameter is 

d � 102 mm. 

(a) Compute the value of Q for the pipe.

(b)  If the allowable shear stress for the pipe shape is 75 MPa, 

determine the maximum load P that can be applied to the 

cantilever beam.
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L

P

A

B

FIGURE P9.24a/25a 
Cantilever pipe.

y

zd D

FIGURE P9.24b/25b 
Pipe cross section.

P9.25 A concentrated load of P � 6 kips is applied to the up-

per end of a 4-ft-long pipe, as shown in Figure P9.24a/25a. The 

pipe is an 8-in. standard steel pipe, which has an outside diameter 

of D � 8.625 in. and an inside diameter of d � 7.981 in. Deter-

mine the magnitude of

(a) the maximum vertical shear stress in the pipe.

(b) the maximum tension bending stress in the pipe.

P9.26 The cantilever beam shown in Figure P9.26a/27a is 

subjected to a concentrated load of P � 38 kips. The cross-sectional 

dimensions of the wide-fl ange shape are shown in Figure P9.26b/27b. 

Determine

(a)  the shear stress at point H, which is located 4 in. below the 

centroid of the wide-fl ange shape.

(b) the maximum horizontal shear stress in the wide-fl ange shape.

x

y

z

P

FIGURE P9.26a/27a FIGURE P9.26b/27b

14.00 in.

0.455 in.

0.285 in.

6.75 in.

y

z

4 in.

H

2 in.
K

P9.27 The cantilever beam shown in Figure P9.26a/27a is sub-

jected to a concentrated load of P. The cross-sectional dimensions 

of the wide-fl ange shape are shown in Figure P9.26b/27b.

(a)  Compute the value of Q that is associated with point K, which 

is located 2 in. above the centroid of the wide-fl ange shape.

(b)  If the allowable shear stress for the wide-fl ange shape is 

14 ksi, determine the maximum concentrated load P that 

can be applied to the cantilever beam.

P9.28 The cantilever beam shown in Figure P9.28a/29a is sub-

jected to a concentrated load of P. The cross-sectional dimensions 

of the rectangular tube shape are shown in Figure P9.28b/29b.

(a)  Compute the value of Q that is associated with point H, which is 

located 90 mm above the centroid of the rectangular tube shape.

(b)  If the allowable shear stress for the rectangular tube shape is 

125 MPa, determine the maximum concentrated load P that 

can be applied to the cantilever beam.

x

y

z

P

FIGURE P9.28a/29a

y

z 250 mm

8 mm
(typ)

150 mm

90 mm

50 mm
K

H

FIGURE P9.28b/29b

P9.29 The cantilever beam shown in Figure P9.28a/29a is 

subjected to a concentrated load of P � 175 kN. The cross-

sectional dimensions of the rectangular tube shape are shown in 

Figure P9.28b/29b. Determine

(a)  the shear stress at point K, which is located 50 mm below the 

centroid of the rectangular tube shape.

(b) the maximum horizontal shear stress in the rectangular tube shape.

P9.30 The internal shear force V at a certain section of an alumi-

num beam is 8 kN. If the beam has a cross section shown in Figure 

P9.30, determine

5 mm

75 mm

5 mm

75 mm

y

z

8 kN30 mm

H

FIGURE P9.30
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(a)  the shear stress at point H, which is located 30 mm above the 

bottom surface of the tee shape.

(b) the maximum horizontal shear stress in the tee shape.

P9.31 The internal shear force V at a certain section of a steel 

beam is 80 kN. If the beam has a cross section shown in Figure 

P9.31, determine

(a)  the shear stress at point H, which is located 30 mm below the 

centroid of the wide-fl ange shape.

(b) the maximum horizontal shear stress in the wide-fl ange shape.

P9.32 The internal shear force V at a certain section of a steel 

beam is 110 kips. If the beam has a cross section shown in 

Figure P9.32, determine

(a)  the value of Q associated with point H, which is located 2 in. 

below the top surface of the fl anged shape.

(b) the maximum horizontal shear stress in the fl anged shape.

FIGURE P9.31

15 mm

210 mm
10 mm

210 mm

y

z

80 kN

30 mm

H

FIGURE P9.32

1 in.

1 in.

12 in.1 in.

5 in.

y

z

110 kips

2 in.
H

8 in.

P9.34 Consider a 100-mm-long segment of a simply supported 

beam (Figure P9.34a). The internal bending moments on the left 

and right sides of the segment are 75 kN-m and 80 kN-m, respec-

tively. The cross-sectional dimensions of the fl anged shape are 

shown in Figure P9.34b. Determine the maximum horizontal shear 

stress in this segment of the beam.

FIGURE P9.34a Beam segment (side view).

100 mm

80 kN-m75 kN-m

x

150 mm

250 mm

210 mm

60 mm

60 mm

40 mm

FIGURE P9.34b Cross-sectional dimensions.

10 in.

0.75 in.
(typ) 0.5 in.

10 in.

y

z

75 kips
2 in.

H

4.5 in.

K

FIGURE P9.33
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P9.33 The internal shear force V at a certain section of a steel 

beam is 75 kips. If the beam has a cross section shown in Figure 

P9.33, determine

(a)  the shear stress at point H, which is located 2 in. above the 

bottom surface of the fl anged shape.

(b)  the shear stress at point K, which is located 4.5 in. below the 

top surface of the fl anged shape.
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P9.35 A simply supported beam with spans of a � 1.5 m and 

b � 5.5 m supports loads of w � 40 kN/m and P � 30 kN, as shown 

in Figure P9.35a. The cross-sectional dimensions of the wide-

fl ange shape are shown in Figure P9.35b.

(a) Determine the maximum shear force in the beam.

(b)  At the section of maximum shear force, determine the shear 

stress in the cross section at point H, which is located a 

distance of c � 75 mm below the neutral axis of the wide-

fl ange shape.

(c)  At the section of maximum shear force, determine the 

maximum horizontal shear stress in the cross section.

(d)  Determine the magnitude of the maximum bending stress in 

the beam.

A B C

w

a b

P

FIGURE P9.35a

15 mm

300 mm

10 mm

200 mm

y

z
c

H

FIGURE P9.35b

P9.36 A simply supported beam supports the loads shown in 

Figure P9.36a. The cross-sectional dimensions of the structural 

tube shape are shown in Figure P9.36b.

(a)  At section a–a, which is located 4 ft to the right of pin support 

B, determine the bending stress and the shear stress at point H, 

which is located 3 in. below the top surface of the tube shape.

(b)  Determine the magnitude and the location of the maximum 

horizontal shear stress in the tube shape at section a–a.

3 kips/ft

25 kips 12 kips

7 ft 8 ft 5 ft 7 ft 9 ft

A B FC D E

4 ft

a

a

FIGURE P9.36a

P9.37 A cantilever beam supports the loads shown in Figure 

P9.37a. The cross-sectional dimensions of the shape are shown in 

Figure P9.37b. Determine

(a) the maximum horizontal shear stress.

(b) the maximum compression bending stress.

(c) the maximum tension bending stress.

FIGURE P9.36b

0.375 in.

16 in.

0.375 in.

12 in.

y

z

3 in.

H

3,100 lb

1,200 lb/ft

3 ft 9 ft

A B C

FIGURE P9.37a

6 in.

0.4 in.
12 in.

0.4 in.

y

z

FIGURE P9.37b

P9.38 A cantilever beam supports the loads shown in Figure 

P9.38a. The cross-sectional dimensions of the shape are shown in 

Figure P9.38b. Determine

(a) the maximum vertical shear stress.

(b) the maximum compression bending stress.

(c) the maximum tension bending stress.
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(a)  Determine the magnitude of the maximum shear force in the 

beam.

(b)  At the section of maximum shear force, determine the shear 

stress magnitude in the cross section at point H, which is 

located 2 in. above the bottom surface of the wide-fl ange shape.

(c)  At the section of maximum shear force, determine the 

magnitude of the  maximum horizontal shear stress in the 

cross section.

(d)  Determine the magnitude of the maximum compression 

 bending stress in the beam. Where along the span does 

this stress occur?

0.5 m

0.5 m

0.5 m

4 kN

3 kN

6 kN

x

y

z

FIGURE P9.38a

8 mm

100 mm

6 mm

100 mm

y

z

FIGURE P9.38b

P9.39 A simply supported beam fabricated from pultruded rein-

forced plastic supports the loads shown in Figure P9.39a. The 

cross-sectional dimensions of the plastic wide-fl ange shape are 

shown in Figure P9.39b.

1,200 lb

450 lb/ft

14 ft 6 ft

A B C

FIGURE P9.39a

0.375 in.

8 in.

0.375 in.

4 in.

y

z

2 in.

H

FIGURE P9.39b
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While standard steel shapes and other specially formed cross sections are frequently used 

to construct beams, there are instances in which beams must be fabricated from compo-

nents such as wood boards or metal plates to suit a particular purpose. As has been shown 

in Section 9.2, nonuniform bending creates horizontal forces (i.e., forces parallel to the 

longitudinal axis of the beam) in each portion of the cross section. To satisfy equilibrium, 

additional horizontal forces must be developed internally between these parts. For a cross 

section made from disconnected components, fasteners such as nails, screws, bolts, or 

other individual connectors must be added so that the separate pieces act together as a uni-

fi ed fl exural member (Figure 9.14a).

The cross section of a built-up fl exural member is shown in Figure 9.14a. Nails con-

nect four wood boards so that they act as a unifi ed fl exural member. As in Section 9.3, we 

will consider a length �x of the beam, which is subjected to nonuniform bending 

(Figure 9.14b). Next, we will examine a portion A� of the cross section to assess the forces 

that act in the longitudinal direction (i.e., the x direction). In this instance, we will consider 

9.8 Shear Flow in Built-Up Members
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FIGURE 9.14 Horizontal equilibrium of a built-up beam.

board (3) as area A�. A free-body diagram of board (3) is shown in Figure 9.14c. Using an 

approach similar to the derivation presented in Section 9.3, Equation (9.1) relates the 

change in internal bending moment �M over a length �x to the horizontal force required to 

satisfy equilibrium for area A�:

 F
IH

z

�
�MQ

 (9.1)

The change in internal bending moment �M can be expressed as �M � (dM/dx) �x � V 

�x, thereby allowing Equation (9.1) to be rewritten in terms of the internal shear force V:

 F
VQ

I
�xH

z

�  (9.11)

Equation (9.11) relates the internal shear force V in a beam to the horizontal force FH re-

quired to keep a specifi c portion of the cross section (area A�) in equilibrium. The term Q 

is the fi rst moment of area A� about the neutral axis, and Iz is the moment of inertia of the 

entire cross section about the neutral axis.

The force FH required to keep board (3) (i.e., area A�) in equilibrium must be supplied 

by nail B shown in Figure 9.14a, and it is the presence of individual fasteners (such as 

nails) that is unique to the design of built-up fl exural members. In addition to using the 

fl exure formula and the shear stress formula to consider bending stresses and shear stresses, 

the designer of a built-up fl exural member must ensure that the fasteners used to connect 

the pieces together are adequate to transmit the horizontal forces required for equilibrium.

To facilitate this type of analysis, it is convenient to introduce a quantity known 

as shear fl ow. If both sides of Equation (9.11) are divided by �x, shear fl ow q can be 

defi ned as

 
F

q
VQ

I
H

z�x
� �  (9.12)

The shear fl ow q is the shear force per unit length of beam span required to satisfy horizon-

tal equilibrium for a specifi c portion of the cross section. Equation (9.12) is called the 

shear fl ow formula.

The term Iz appearing in 

Equations (9.1), (9.11), and 

(9.12) is always the moment of 

inertia of the entire cross section 

about the z centroidal axis.

It is important to understand that 

shear fl ow stems from normal 

stresses created by internal 

bending moments that vary 

along the beam span. The term V 

appears in Equation (9.12) as a 

substitute for dM/dx. Shear fl ow 

acts parallel to the longitudinal 

axis of the beam—that is, in the 

same direction as the bending 

stresses.

z

y
Nail C

Nail
A

Nail
B

(1)

(2)

(3)

(4)

(a)  Cross section made from 

four wood boards

M

M M

x

y

z

(1)

(2)
(3)

(4)

x

�

�

�

(b)  Built-up beam subjected to 

nonuniform bending

x

(3)
FH

Area A

�
�

�

�

�

�

  (M � �M)
Iz

y dA

M 

Iz
y dA

A

A

(c) Free-body diagram of board (3)
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371
SHEAR FLOW IN 

BUILT-UP MEMBERS
Analysis and Design of Fasteners

Built-up cross sections use individual fasteners such as nails, screws, or bolts to connect 

several components into a unifi ed fl exural member. One example of a built-up cross section 

is shown in Figure 9.14a, and several other examples are shown in Figure 9.15. Although 

these examples consist of wood boards connected by nails, the principles are the same re-

gardless of the beam material or the fastener type.

Consideration of fasteners usually involves one of the following objectives:

•  Given the internal shear force V in the beam and the shear force capacity of a 

fastener, what is the proper spacing intervals for fasteners along the beam span 

(i.e., in the longitudinal x direction)?

•  Given the diameter and spacing interval s of the fasteners, what is the shear stress 

�f produced in each fastener for a given shear force V in the beam?

•  Given the diameter, spacing interval s, and allowable shear stress of the fasteners, 

what is the maximum shear force V that is acceptable for the built-up member?

To address these objectives, an expression can be developed from Equation (9.12) that 

relates fastener resistance to the horizontal force FH required to keep an area A� in equi-

librium. The length term �x in Equation (9.12) will be set equal to the fastener spacing 

interval s along the x axis of the beam. In terms of the shear fl ow q, the total horizontal 

force FH that must be transmitted between connected parts over a beam interval of s can be 

expressed as

 
F qsH �

 
(a)

The internal horizontal force FH must be transmitted between the boards or plates by the 

fasteners. (Note: The effect of friction between the connected parts is neglected.) The shear 

force that can be transmitted by a single fastener (e.g., nail, screw, or bolt) will be denoted 

by Vf . Since more than one fastener could be used within the spacing interval s, the number 

of fasteners in the interval will be denoted by nf . The resistance provided by nf fasteners 

must be greater than or equal to the horizontal force FH required to keep the connected part 

in equilibrium horizontally:

 
F n VH f f�

 (b)

Combining Equation (a) with Equation (b) gives a relationship between the shear fl ow 

q, the fastener spacing interval s, and the shear force that can be transmitted by a single 

fastener Vf . This equation will be termed the fastener force-spacing relationship.

 qs n Vf f�  (9.13)

The average shear stress �f produced in a fastener can be expressed as

 
f

f

f

V

A
� �  (c)

where the fastener is assumed to act in single shear and Af � cross-sectional area of fas-

tener. Using this relationship, Equation (9.13) can be rewritten in terms of shear stress in 

the fastener. This equation will be termed the fastener stress-spacing relationship.

 qs � nf �f Af  (9.14)

Nail A

Nail B

(1)

(2)

(3)

z

y

(a)  I-shaped wood beam 

cross section

FIGURE 9.15 Examples of 

built-up fl exural members.

z

y(1)

(2)

(3)

NailNail

(b)  U-shaped wood beam 
cross section

(1)

(2)

(3)

z

y

NailNail

(c)  Alternate U-shaped wood 

beam cross section
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372
SHEAR STRESS IN BEAMS Identifying the Proper Area for Q

In analyzing the shear fl ow q for a particular application, the most confusing decision often 

concerns which portion of the cross section to include in the Q calculation. The key to 

identifying the proper area A� is to determine which portion of the cross section is being 

held in place by the fastener.

Several built-up wood beam cross sections are shown in Figure 9.14a and Figure 9.15. 

In each case, nails are used to connect the wood boards together into a unifi ed fl exural mem-

ber. A vertical internal shear force V is assumed to act in the beam for each cross section.

For the tee shape shown in Figure 9.14a, board (1) is held in place by nail A. To ana-

lyze nail A, the designer must determine the shear fl ow q transmitted between board (1) and 

the remainder of the cross section. The proper Q for this purpose is the fi rst moment of 

board (1)’s area about the z centroidal axis. Similarly, the shear fl ow associated with nail B 

requires Q for board (3) about the neutral axis. Nail C must transmit the shear fl ow arising 

from boards (1), (2), and (3) to the stem of the tee shape. Consequently, the proper Q 

includes boards (1), (2), and (3).

Figure 9.15a shows an I-shaped cross section that is fabricated by nailing fl ange boards 

(1) and (3) to web board (2). Nail A connects board (1) to the remainder of the cross section; 

therefore, the shear fl ow q associated with nail A is based on fi rst moment of area Q for board 

(1) about the z axis. Nail B connects board (3) to the remainder of the cross section. Since 

board (3) is smaller than board (1) and more distant from the z axis, a different value of Q will 

be calculated, resulting in a different value of q for board (3). Consequently, it is likely that 

the nail spacing interval s for nail B will be different from s for nail A. In both instances, Iz is 

the moment of inertia of the entire cross section about the z centroidal axis.

Figures 9.15b and 9.15c show alternative confi gurations for U-shaped cross sections 

in which board (2) is connected to the remainder of the cross section by two nails. The part 

held in place by the nails is board (2) in both confi gurations. Both alternatives have the 

same dimensions, the same cross-sectional area, and the same moment of inertia. However, 

the value of Q calculated for board (2) in Figure 9.15b will be smaller than Q for board (2) 

in Figure 9.15c. Consequently, the shear fl ow for the fi rst confi guration will be smaller than 

q for the alternative confi guration.

7 ft 7 ft

5 in.

5 in.
(typ)

A B C D

500 lb
y

x 8 in.

2 in.

2 in.

8 in.

y

z

6.5 in.

3.50 in.

EXAMPLE 9.5

A simply supported beam with an overhang supports a concentrated load of 500 lb at D. 

The beam is fabricated from two 2-in. by 8-in. wood boards that are fastened together 

with lag screws spaced at 5-in. intervals along the length of the beam. The centroid loca-

tion of the fabricated cross section is shown in the sketch, and the moment of inertia of 

the cross section about the z centroidal axis is Iz � 290.667 in.4. Determine the shear force 

acting in the lag screws.
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Plan the Solution
Whenever a cross section includes discrete fasteners (such as nails, screws, or bolts), the 

shear fl ow formula [Equation (9.12)] and the related fastener force-spacing relationship 

[Equation (9.13)] will be helpful in assessing the suitability of the fasteners for the in-

tended purpose. To determine the shear force acting in the fasteners, we must fi rst iden-

tify those portions of the cross section that are held in place by the fasteners. For the 

basic tee-shape cross section considered here, it is evident that the top fl ange board is 

secured to the stem board by the lag screws. If the entire cross section is to be in equilib-

rium, the resultant force acting in the horizontal direction on the fl ange board must be 

transmitted by shear forces in the fasteners to the stem board. In the analysis, a short 

length of the beam equal to the spacing interval of the lag screws will be considered to 

determine the shear force that must be supplied by each fastener to satisfy equilibrium.

SOLUTION
Free-Body Diagram at C
To better understand the function of the fasteners, consider a free-body dia-

gram (FBD) cut at section C, 5 in. from the end of the overhang. This FBD 

includes one lag screw fastener. The external 500-lb concentrated load cre-

ates an internal shear force V � 500 lb and an internal bending moment 

M � 2,500 lb-in. acting at C in the direction shown.

The internal bending moment M � 2,500 lb-in. creates tension bend-

ing stresses above the neutral axis (i.e., the z centroidal axis) and compres-

sion bending stresses below the neutral axis. The key normal stresses acting 

on the fl ange and the stem can be calculated from the fl exure formula. These 

stresses are labeled in the fi gure.

The approach outlined in Section 9.2 can be used to compute the resul-

tant horizontal force created by the tension bending stresses acting on the 

fl ange. The resultant force has a magnitude of 344 lb, and it pulls the fl ange 

in the −x direction. If the fl ange is to be in equilibrium, additional force act-

ing in the �x direction must be present. This added force is provided by the 

shear resistance of the lag screw. With this force denoted as Vf, equilibrium 

in the horizontal direction dictates that Vf � 344 lb.

In other words, equilibrium of the fl ange can be satisfi ed only if 344 lb 

of resistance from the stem fl ows through the lag screw into the fl ange. The 

magnitude of Vf determined here is applicable only for a 5-in.-long segment 

of the beam. If a segment longer than 5 in. were considered, the internal 

bending moment M would be larger, which in turn would create larger bend-

ing stresses and a larger resultant force magnitude. Consequently, it is con-

venient to express the amount of force that must fl ow to the connected por-

tion in terms of the horizontal resistance required per unit of beam span. The 

shear fl ow for this instance is

  
344 lb

5 in.
q �              � 68.8 lb/in.  (a)

The preceding discussion is intended to illuminate the behavior of a built-up 

beam. A basic understanding of the forces and stresses involved in this type 

of fl exural member facilitates the proper use of the shear fl ow formula 

[Equation (9.12)] and the fastener force-spacing relationship [Equation 

(9.13)] to analyze and design fasteners in built-up fl exural members.

�

x

y

500 lb

V 500 lb

M 2,500 lb-in.

5 in.

C D

�

12.90 psi

55.91 psi

30.10 psi

Compression
bending stress

Tension
bending stress

x

y

500 lb

5 in.

C D

Shear force
from

fastener

fV

30.10 psi

12.90 psi

Tension
bending stress

344 lb

x

y

500 lb

5 in.

C D
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Shear Flow Formula
The shear fl ow formula rewritten as

 

VQ
Iz

q �  
 

(b)

and the fastener force-spacing relationship

 
qs n Vf f	

 
(c)

will be employed to determine the shear force Vf 

produced in the lag screws of the built-up beam. 

Appropriate values for the terms appearing in 

these equations will now be developed.

Beam internal shear force V: The shear-force and 

bending-moment diagrams for the simply sup-

ported beam are shown. The V diagram reveals that 

the internal shear force has a constant magnitude of 

V � 500 lb throughout the entire beam span.

First moment of area Q: Q is calculated for the portion of the cross section connected 

by the lag screw. Consequently, Q is calculated for the fl ange board in this situation:

Q � (8 in.) (2 in.) (2.5 in.) � 40 in.3

Fastener spacing interval s: The lag screws are installed at 5-in. intervals along the 

span; therefore, s � 5 in.

Shear fl ow q: The shear fl ow that must be transmitted from the stem to the fl ange 

through the fastener can be calculated from the shear fl ow formula:

 

VQ

Iz
q �       �                             � 68.8 lb/in.

(500 lb)(40 in.3)
(290.667 in.4)

 

(d)

Notice that the result obtained in Equation (d) from the shear fl ow formula is identical 

to the result obtained in Equation (a). While the shear fl ow formula provides a conve-

nient format for calculation purposes, the underlying fl exural behavior addressed by 

this equation may not be readily evident. The preceding investigation using a FBD of 

the beam at C may help to enhance one’s understanding of this behavior.

Fastener shear force Vf: The shear force that must be provided by the fastener can be 

calculated from the fastener force-spacing relationship. The beam is fabricated with 

one lag screw installed in each 5-in. interval; therefore, nf � 1.

qs 	 nfVf 

 
qs

nf
�Vf �     �                               � 344 lb per fastener

(68.8 lb/in.)(5 in.)

1 fastener
 Ans.

7 ft 7 ft

5 in.

5 in.
(typ)

A B C D

500 lb
y

x

1,000 lb

500 lb

V

500 lb

M

  3,500 lb-ft�

  500 lb�

8 in.

2 in.

2 in.

8 in.

y

z
2.5 in.
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An alternative cross section is proposed for the simply supported beam of Example 9.5. 

In the alternative design, the beam is fabricated from two 1-in. by 10-in. wood boards 

nailed to a 2-in. by 6-in. fl ange board. The centroid location of the fabricated cross sec-

tion is shown in the sketch, and the moment of inertia of the cross section about the z 

centroidal axis is Iz � 290.667 in.4. If the allowable shear resistance of each nail is 

80 lb, determine the maximum spacing interval s that is acceptable for the built-up beam.

Plan the Solution
The shear fl ow formula [Equation (9.12)] and the fastener force-spacing rela-

tionship [Equation (9.13)] will be required to determine the maximum spacing 

interval s. Since the 2-in. by 6-in. fl ange board is held in place by the nails, the 

fi rst moment of area Q as well as the shear fl ow q will be based on this region 

of the cross section.

SOLUTION
Beam Internal Shear Force V
The shear-force and bending-moment diagrams for the simply supported beam 

are shown in Example 9.5. The shear force V has a constant magnitude of V � 

500 lb throughout the entire beam span.

First moment of area Q: Q is calculated for the 2-in. by 6-in. fl ange board, which is the 

portion of the cross section held in place by the nails.

Q (6 in.)(2 in.)(2.5 in.) 30 in.3� �

Shear fl ow q: The shear fl ow that must be transmitted through the pair of nails is

VQ

Iz
q �       �                             � 51.6 lb/in.

(500 lb)(30 in.3)
(290.667 in.4)

Maximum nail spacing interval s: The maximum spacing interval for the nails can be 

calculated from the fastener force-spacing relationship [Equation (9.13)]. The beam is 

fabricated with two nails installed in each interval; therefore, nf � 2.

qs 	 nfVf 

 nfVf 

q
�s 	         �                                 � 3.10 in.

(2 nails)(80 lb/nail)

51.6 lb/in.
 Ans.

Pairs of nails must be installed at intervals less than or equal to 3.10 in. In practice, nails 

would be driven at 3-in. intervals.

7 ft 7 ft

s

A B C

500 lb
y

x
10 in.

2 in.

1 in. 1 in.

6 in.

y

z

Nails

6.5 in.

3.50 in.

10 in.

2 in.

1 in. 1 in.

6 in.

y

z
2.5 in.
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376

Determine the allowable shear force capacity of two wood box beams, 

which are fabricated with two different nail confi gurations.

 MecMovies Example M9.9MM

Determine the maximum nail spacing that can be used to construct a U-shaped beam 

from wood boards.

 MecMovies Example M9.10MM

Determine the maximum longitudinal bolt spacing required to support a 50-kip shear 

force.

 MecMovies Example M9.11MM
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M9.9 Five multiple-choice questions involving the calculation of Q for 

built-up beam cross sections.

Determine the shear stress developed in the bolts used to connect two 

channel shapes back to back.

Determine the shear stress in the bolts used to fabricate a box beam.

FIGURE M9.9

377

 MecMovies Example M9.12MM

 MecMovies Example M9.13MM

 MecMovies ExercisesMM
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M9.10 Five multiple-choice questions pertaining to shear fl ow 

in built-up beam cross sections.

FIGURE M9.10

M9.11 Four multiple-choice questions pertaining to shear fl ow 

in built-up beam cross sections.

FIGURE M9.11

2 in.

2 in.

2 in.

4 in.

10 in.

Nails

FIGURE P9.40/41

P9.41 A beam is fabricated from one 2 � 10 and two 2 � 4 

pieces of dimension lumber to form the I-beam cross section shown 

in Figure P9.40/41. The I-beam will be used as a simply supported 

beam to carry a concentrated load P at the center of a 20-ft span. 

The wood has an allowable bending stress of 1,200 psi and an 

allowable shear stress of 90 psi. The fl anges of the beam are fas-

tened to the web with nails that can safely transmit a force of 120 lb 

in direct shear. 

(a)  If the nails are uniformly spaced at an interval of s � 4.5 in. 

along the span, what is the maximum concentrated load P that 

y

z x

s

FIGURE P9.42a

25 mm

25 mm

250 mm

120 mm40 mm 40 mm

y

z

FIGURE P9.42b
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P9.40 A wood beam is fabricated from one 2 � 10 and two 

2 � 4 pieces of dimension lumber to form the I-beam cross section 

shown in Figure P9.40/41. The fl anges of the beam are fastened to 

the web with nails that can safely transmit a force of 120 lb in direct 

shear. If the beam is simply supported and carries a 1,000-lb load at 

the center of a 12-ft span, determine

(a)  the horizontal force transferred from each fl ange to the 

web in a 12-in.-long segment of the beam.

(b)  the maximum spacing s (along the length of the beam) 

 required for the nails.

(c)  the maximum horizontal shear stress in the I-beam.

can be supported by the beam? Demonstrate that the maximum 

bending and shear stresses produced by P are acceptable.

(b)  Determine the magnitude of load P that produces the 

allowable bending stress in the span (i.e., �b � 1,200 psi). 

What nail spacing s is required to support this load magnitude? 

Demonstrate that the maximum horizontal shear stresses 

produced by P are acceptable.

P9.42 A box beam is fabricated from four boards, which are fas-

tened together with nails, as shown in Figure P9.42b. The nails are 

installed at a spacing of s � 125 mm (Figure P9.42a), and each nail 

can provide a resistance of Vf � 500 N. In service, the box beam will 

be installed so that bending occurs about the z axis. Determine the 

maximum shear force V that can be supported by the box beam on 

the basis of the shear capacity of the nailed connections.

PROBLEMSPROBLEMS
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P9.43 A box beam is fabricated from four boards, which are 

fastened together with screws, as shown in Figure P9.43b. Each 

screw can provide a resistance of 800 N. In service, the box beam 

will be installed so that bending occurs about the z axis, and the 

maximum shear force in the beam will be 9 kN. Determine the 

maximum permissible spacing interval s for the screws. (See 

Figure P9.43a.)

P9.45 A beam is fabricated by gluing four dimension lumber 

boards, each 40 mm wide and 90 mm deep, to a 32 � 400 plywood 

web as shown in Figure P9.45. Determine the maximum allowable 

shear force and the maximum allowable bending moment that this 

section can carry if the allowable bending stress is 6 MPa, the al-

lowable shear stress in the plywood is 640 kPa, and the allowable 

shear stress in the glued joints is 250 kPa.

y

z x

s

FIGURE P9.43a

50 mm

50 mm

150 mm

140 mm25 mm 25 mm

y

z

FIGURE P9.43b

P9.44 A beam is fabricated by nailing together three pieces of 

dimension lumber as shown in Figure P9.44a. The cross-sectional 

dimensions of the beam are shown in Figure P9.44b. The beam 

must support an internal shear force of V � 750 lb.

(a)  Determine the maximum horizontal shear stress in the cross 

section for V � 750 lb.

(b)  If each nail can provide 100 lb of horizontal resistance, 

 determine the maximum allowable spacing s for the nails.

(c)  If the three boards were connected by glue instead of nails, 

what minimum shear strength would be necessary for the 

glued joints?

y

z x

s

FIGURE P9.44a

FIGURE P9.44b

8 in.

2 in. 2 in.4 in.

2 in.

y

z

32 mm

112 mm

400 mm

90 mm
(typ)

FIGURE P9.45

P9.46 A beam is fabricated from one 2 � 12 and two 2 � 10 

dimension lumber boards to form the double-tee cross section 

shown in Figure P9.46. The beam fl ange is fastened to the stem 

with nails. Each nail can safely transmit a force of 175 lb in direct 

shear. The allowable shear stress of the wood is 70 psi.

(a)  If the nails are uniformly spaced at an interval of s � 4 in. 

along the span, what is the maximum internal shear force V 

that can be supported by the double-tee cross section?

(b)  What nail spacing s would be necessary to develop the full 
strength of the double-tee shape in shear? (Full strength means 

that the maximum horizontal shear stress in the double-tee 

shape equals the allowable shear stress of the wood.)

10 in.

2 in.

2 in.2 in.

12 in.

y

z

Nails

FIGURE P9.46
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P9.47 A box beam is fabricated from two plywood webs that are 

secured to dimension lumber boards at its top and bottom fl anges 

(Figure P9.47b/48b). The beam supports a concentrated load of 

P � 5,000 lb at the center of a 15-ft span (Figure P9.47a/48a). 

Bolts (3/8-in. diameter) connect the plywood webs and the lumber 

fl anges at a spacing of s � 12 in. along the span. Supports A and C 

can be idealized as a pin and a roller, respectively. Determine

(a) the maximum horizontal shear stress in the plywood webs.

(b) the average shear stress in the bolts.

(c) the maximum bending stress in the lumber fl anges.

(Figure P9.49a). In service, the beam will be positioned so that 

bending occurs about the z axis. The maximum bending moment in 

the beam is Mz � �4.50 kN-m, and the maximum shear force in the 

beam is Vy � �2.25 kN. Determine

(a)  the magnitude of the maximum horizontal shear stress in 

the beam.

(b) the shear force in each screw.

(c) the magnitude of the maximum bending stress in the beam.

s

P

A B C

2
L—

2
L—

FIGURE P9.47a/48a

4 in.

4 in.

16 in.

0.5 in.0.5 in.

3 in.

Plywood
webs

FIGURE P9.47b/48b

P9.48 A box beam is fabricated from two plywood webs that are 

secured to dimension lumber boards at its top and bottom fl anges 

(Figure P9.47b/48b). The lumber has an allowable bending stress 

of 1,500 psi. The plywood has an allowable shear stress of 300 psi. 

The 3/8-in.-diameter bolts have an allowable shear stress of 6,000 psi, 

and they are spaced at intervals of s � 9 in. The beam span is L � 15 ft 

(Figure P9.47a/48a). Support A can be assumed to be pinned, and 

support C can be idealized as a roller.

(a)  Determine the maximum load P that can be applied to the 

beam at midspan.

(b)  Report the bending stress in the lumber, the shear stress in the 

plywood, and the average shear stress in the bolts at the load 

P determined in part (a).

P9.49 A beam is fabricated from three boards, which are fastened 

together with screws, as shown in Figure P9.49b. The screws are 

uniformly spaced along the span of the beam at intervals of 150 mm 

Spacing    150 mm

z

y

x

�

FIGURE P9.49a

y

z
180 mm

40 mm

40 mm40 mm 140 mm

220 mm

Screws

FIGURE P9.49b

P9.50 A beam is fabricated by bolting together three wood 

members as shown in Figure P9.50a/51a. The cross-sectional di-

mensions are shown in Figure P9.50b/51b. The 8-mm-diameter 

bolts are spaced at intervals of s � 200 mm along the x axis of the 

beam. If the internal shear force in the beam is V � 7 kN, determine 

the shear stress in each bolt.

z

y

x

s

V

V

FIGURE P9.50a/51a
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P9.51 A beam is fabricated by bolting together three wood 

members as shown in Figure P9.50a/51a. The cross-sectional di-

mensions are shown in Figure P9.50b/51b. The allowable shear 

stress of the wood is 850 kPa, and the allowable shear stress of the 

10-mm-diameter bolts is 40 MPa. Determine

(a)  the maximum internal shear force V that the cross section 

can withstand based on the allowable shear stress in 

the wood.

(b)  the maximum allowable bolt spacing s required to develop the 

internal shear force computed in part (a).

P9.52 A cantilever fl exural member is fabricated by bolting two 

identical cold-rolled steel channels back to back as shown in Fig-

ure P9.52a. The cantilever beam has a span of L � 1,600 mm and 

supports a concentrated load of P � 600 N. The cross-sectional 

dimensions of the built-up shape are shown in Figure P9.52b. The 

effect of the rounded corners can be neglected in determining the 

section properties for the built-up shape.

(a)  If 4-mm-diameter bolts are installed at intervals of s � 75 mm, 

determine the shear stress produced in the bolts.

(b)  If the allowable average shear stress in the bolts is 96 MPa, 

determine the minimum bolt diameter required if a spacing of 

s � 400 mm is used.

FIGURE P9.50b/51b

90 mm

40 mm

300 mm

40 mm

40 mm

s
L

P

FIGURE P9.52a

3 mm
(typ) 40 mm

40 mm

65 mm

y

z

FIGURE P9.52b

P9.53 A W360 � 51 steel beam (see Appendix B) in an existing 

structure is to be strengthened by adding a 200-mm-wide by 

25-mm-thick cover plate to its lower fl ange, as shown in Figure 

P9.53. The cover plate is attached to the lower fl ange by pairs of 

24-mm-diameter bolts spaced at intervals of s along the beam span. 

Bending occurs about the z centroidal axis.

(a)  If the allowable bolt shear stress is 96 MPa, determine the 

maximum bolt spacing interval s required to support an 

internal shear force in the beam of V � 85 kN.

(b)  If the allowable bending stress is 150 MPa, determine the 

allowable bending moment for the existing W360 � 51 

shape, the allowable bending moment for the W360 � 51 

with the added cover plate, and the percentage increase in 

moment capacity that is gained by adding the cover plate.

P9.54 A W410 � 60 steel beam (see Appendix B) is simply 

supported at its ends and carries a concentrated load P at the center 

of a 7-m span. The W410 � 60 shape will be strengthened by add-

ing two 250-mm-wide by 16-mm-thick cover plates to its fl anges as 

shown in Figure P9.54/55. Each cover plate is attached to its fl ange 

by pairs of 20-mm-diameter bolts spaced at intervals of s along the 

beam span. The allowable bending stress is 150 MPa, the allowable 

average shear stress in the bolts is 96 MPa, and bending occurs 

about the z centroidal axis.

(a)  On the basis of the 150-MPa allowable bending stress, 

determine the maximum concentrated load P that may be 

applied at the center of a 7-m span for a W410 � 60 steel 

beam with two cover plates.

(b)  For the internal shear force V associated with the concentrated 

load P determined in part (a), compute the maximum spacing 

interval s required for the bolts that attach the cover plates to 

the fl anges.

381

FIGURE P9.53

25 mm

200 mm

y

z

W360  51

Cover
plate
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P9.55 A W410 � 60 steel beam (see Appendix B) is simply sup-

ported at its ends and carries a concentrated load of P � 420 kN 

at the center of a 7-m span. The W410 � 60 shape will be strength-

ened by adding two 250-mm-wide by 16-mm-thick cover plates 

to its fl anges as shown in Figure P9.54/55. Each cover plate is 

attached to its fl ange by pairs of bolts spaced at intervals of s � 250 mm 

along the beam span. The allowable average shear stress in the bolts 

is 96 MPa, and bending occurs about the z centroidal axis. Deter-

mine the minimum required diameter for the bolts.

P9.56 A W310 � 60 steel beam (see Appendix B) has a C250 � 

45 channel bolted to the top fl ange as shown in Figure P9.56/57. The 

beam is simply supported at its ends and carries a concentrated load of 

100 kN at the center of a 6-m span. Pairs of 24-mm-diameter bolts are 

spaced at intervals of s along the beam. If the allowable average shear 

stress in the bolts must be limited to 125 MPa, determine the maxi-

mum spacing interval s for the bolts.

P9.57 A W310 � 60 steel beam (see Appendix B) has a C250 � 

45 channel bolted to the top fl ange as shown in Figure P9.56/57. 

The beam is simply supported at its ends and carries a concentrated 

load of 90 kN at the center of an 8-m span. If pairs of bolts are 

spaced at 600-mm intervals along the beam, determine

(a)  the shear force carried by each of the bolts.

(b)  the bolt diameter required if the average shear stress in the 

bolts must be limited to 75 MPa.

FIGURE P9.56/57
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16 mm

250 mm

y

z

W410 � 60

Cover
plate

Cover
plate

FIGURE P9.54/55

In the preceding discussion of built-up beams, the internal shear force FH required for 

horizontal equilibrium of a specifi c portion and length of a fl exural member was expressed 

by Equation (9.11):

 F
VQ

I
�xH

z

�  (9.11)

As shown in Figure 9.14, the force FH acts parallel to the bending stresses (i.e., in the 

x-direction). The shear fl ow q was derived in Equation (9.12),

 
F

q
VQ

I
H

z�x
� �  (9.12)

to express the shear force per unit length of beam span required to satisfy horizontal equi-

librium for a specifi c portion of the cross section. In this section, these ideas will be applied 

to the analysis of average shear stress and shear fl ow in thin-walled members such as the 

fl anges of wide-fl ange beam sections.

Shear Stress in Thin-Walled Sections

Consider the segment of length dx of the wide-fl ange beam shown in Figure 9.16a. The bend-

ing moments M and M � dM produce compression bending stresses in the upper fl ange of the 

9.9  Shear Stress and Shear Flow in 
Thin-Walled Members

y

z

W310 � 60

C250 � 45
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383
SHEAR STRESS AND SHEAR 

FLOW IN THIN-WALLED 
MEMBERS

member. Next, consider the free-body diagram of a portion of the upper fl ange, element (1), 

shown in Figure 9.16b. On the back side of the beam segment, the bending moment M creates 

compression normal stresses that act on the �x face of fl ange element (1). The resultant of 

these normal stresses is the horizontal force F. Similarly, the bending moment M � dM acting 

on the front side of the beam segment produces compression normal stresses that act on the 

�x face of fl ange element (1), and the resultant of these stresses is the horizontal force F � 

dF. Since the resultant force acting on the front side of element (1) is greater than the re-

sultant force acting on the back side, an additional force of dF must act on element (1) to 

satisfy equilibrium. This force dF can act only on the exposed surface BB� (since all other 

surfaces are free of stress). By a derivation similar to that used in obtaining Equation (9.11), 

the force dF can be expressed in terms of differentials as

 dF �        dx
VQ
Iz

 (9.15)

where Q is the fi rst moment of the cross-sectional area of element (1) about the neutral axis 

of the beam section. The area of surface BB� is dA � t dx, and thus, the average shear stress 

acting on the longitudinal section BB� is

 � �          �
dF
dA

VQ
Izt

 (9.16)

Note that � in this instance represents the average value of the shear stress acting on a z 

plane [i.e., the vertical surface BB� of element (1)] in the horizontal direction x, or in other 

words, �zx. Since the fl ange is thin, the average shear stress �zx will not vary much over the 

thickness t of the fl ange. Consequently, �zx can be assumed to be constant. Since shear 

stresses acting on perpendicular planes must be equal (see Section 1.6), the shear stress �xz 

acting on an x face in the z direction must equal �zx at any point on the fl ange (Figure 9.16c). 

Accordingly, the horizontal shear stress �xz at any point on a transverse section of the fl ange 

can be obtained from Equation (9.16).

FIGURE 9.16 Shear stresses in a thin-walled wide-fl ange beam.

x

y

z

M

V

V dV

M  dM 

dx

B

B (1)

(a) Thin-walled beam section.

dx

F  dF

F

dFt B

B

dA

(1)

(b) FBD of flange element (1).

zx
xz

B

t

x

y

z

(c) Horizontal shear 
stress at B in 
flange element (1).

xy

yx

B

t

x

y

z

(d) Vertical shear 
stress at B in 
flange element (1).
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384
SHEAR STRESS IN BEAMS

FIGURE 9.18 Shear stress 

directions at various locations 

in the cross-section.

x

y

z

B

D

E

C

V

FIGURE 9.17 Thin-walled wide-fl ange beam.
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z
N.A.

V

t

Cut
xy

Free surface Free surface

FIGURE 9.19 Shear stresses in a wide-fl ange shape.

(a) Shear stress in fl ange (b) Shear stress in web

V

y

z
N.A.

t

Cut

�xz

Free surface

Free surface

The shear stress �xy acting on an x face in the vertical y direction at point B of the 

fl ange element is shown in Figure 9.16d. The top and bottom surfaces of the fl ange are free 

surfaces; thus, �yx � 0. Since the fl ange is thin and the shear stresses on the top and bottom 

of the fl ange element are zero, the shear stress �xy through the thickness of the fl ange will 

be very small and thus can be neglected. Consequently, only the shear stresses (and shear 

fl ows) that act parallel to the free surfaces of the thin-walled section will be signifi cant.

Next, consider point C on the upper fl ange of the beam segment shown in Figure 9.17a. 

A free-body diagram of fl ange element (2) is shown in Figure 9.17b. With the same ap-

proach used for point B, it can be demonstrated that the shear stress �xz must act in the di-

rection shown in Figure 9.17c. Similar analyses for points D and E on the lower fl ange of 

the cross section reveal that the shear stress �xz acts in the directions shown in Figure 9.18.

Equation (9.16) can be used to determine the shear stress in the fl anges (Figure 9.19a) 

and the web (Figure 9.19b) of wide-fl ange shapes, in box beams (Figures 9.20a and 9.20b), 

in half-pipes (Figure 9.21), and in other thin-walled shapes, provided that the shear force V 
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385
SHEAR STRESS AND SHEAR 

FLOW IN THIN-WALLED 
MEMBERS

acts along an axis of symmetry for the cross section. For each shape, the cutting plane of 

the free-body diagram must be perpendicular to the free surface of the member. The 

shear stress acting parallel to the free surface can be calculated from Equation (9.16). 

(As discussed previously, the shear stress acting perpendicular to the free surface is 

negligible because of the thinness of the element and the proximity of the adjacent 

free surface.)

Shear Flow in Thin-Walled Sections

The shear fl ow along the top fl ange of the wide-fl ange shape shown in Figure 9.22a will be 

studied here. The product of the shear stress at any point in a thin-walled shape and the 

thickness t at that point is equal to the shear fl ow q:

 �t �            t �        � q
VQ
Izt

VQ
Iz

 (9.17)

For a given cross section, the shear force V and the moment of inertia Iz in Equation (9.17) 

are constant. Thus, the shear fl ow at any location in the thin-walled shape depends only on 

the fi rst moment of area Q. Consider the shear fl ow acting on the shaded area, which is 

located a horizontal distance of s from the tip of the fl ange. The shear fl ow acting at s can 

be calculated as

 q �          �     st      �       s
VQ
Iz

Vtd
2Iz

V
Iz

d
2

 (a)

Note that Q is the fi rst moment of the shaded area about the neutral axis. From inspection 

of Equation (a), the distribution of shear fl ow along the top fl ange is a linear function of s. 

The maximum shear fl ow in the fl ange occurs at s � b/2:

 (qmax)f �                 �
Vtd
2Iz

Vbtd
4Iz

b
2  (b)

Note that s � b/2 is the centerline of the section. Since the cross section is assumed to be 

thin walled, centerline dimensions for the fl ange and web can be used in the calculation. 

This approximate procedure simplifi es the calculations and is satisfactory for thin-walled 

cross sections. Owing to symmetry, similar analyses of the other three fl ange elements 

FIGURE 9.21 Shear stresses in 

a half-pipe cross section.
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FIGURE 9.20 Shear stresses in a box-shaped cross section.
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SHEAR STRESS IN BEAMS

produce the same result for (qmax)f. The linear variation of shear fl ow in the fl anges is 

shown in Figure 9.22c.

The total force developed in the upper left fl ange of Figure 9.22a can be determined 

by integration of Equation (a). The force on the differential element ds is dF � q ds. The 

total force acting on the upper left fl ange element is, therefore,

 Ff � q ds � s ds �
Vtd
2Iz

Vb2td
16Iz

b/2

0
 

This same result can also be determined by calculating the area under the triangular distri-

bution in Figure 9.22c since q is a distribution of force per length:

 �    (qmax)f     �                      �Ff
Vbtd
4Iz

Vb2td
16Iz

1
2

b
2

b
2

1
2

 

Again on the basis of symmetry, the force Ff in each fl ange element will be the same. These 

fl ange forces are shown in their proper directions in Figure 9.22d. From the direction of these 

forces, it is evident that horizontal force equilibrium of the cross section is maintained. 

(a)  Calculating shear fl ow in fl anges (b)  Calculating shear fl ow in web
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d
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FIGURE 9.22 Wide-fl ange shape with equal fl ange and web thicknesses.

(d)  Forces and their directions 

in fl anges and web
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(c)  Shear fl ow distribution in fl anges and web
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Next, consider the web of the thin-walled cross section shown in Figure 9.22b. In the 

web, the shear fl ow is 

 

q �               �         � y       � y t
btd
2

V
Iz

d
2

d
2

1
2

   �             �            � y2Vbtd
2Iz

Vt
2Iz

d2

4  (c)

By using the expression for (qmax)f derived in Equation (b), Equation (c) can be rewritten 

as the sum of the shear fl ows in the fl ange plus the change in shear fl ow over the depth of 

the web:

 q � 2(qmax)f �               � y2Vt
2Iz

d2

4
 

The shear fl ow in the web increases parabolically from a minimum value at y � d	2 of 

(qmin)w � 2(qmax)f to a maximum value at y � 0 of

 (qmax)w � 2(qmax)f  �
Vtd2

8Iz
 

Again, it should be noted that the shear fl ow expression here has been based on the center-

line dimensions of the cross section.

To determine the force in the web, Equation (c) must be integrated. Again, with the 

centerline bounds of y � 
d/2, the force in the web can be expressed as

 

d2

4
Fw � q dy � � y2   dybd �

Vt
2Iz

d/2

�d/2

d/2

�d/2

d2

4
1
3

      �        bdy �          y �      y3Vt
2Iz

d3

6
      �        bd2 �

Vt
2Iz

 

or

 
d  2

2
td3

12
Fw �      2bt         �

V
Iz

 (d)

The moment of inertia Iz for the thin-walled fl anged shape can be expressed as

 
d  2

2
bt3

12
td3

12
Iz � Iflanges � Iweb � 2         � bt          �  

Since t is small, the fi rst term in the brackets can be neglected so that

 
d  2

2
td3

12
Iz � 2bt          �  

Substituting this expression into Equation (d) gives Fw � V, which is as expected. (See 

Figure 9.22d.)
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388
SHEAR STRESS IN BEAMS It is useful to visualize shear fl ow in the same manner that one might visualize fl uid 

fl ow in a network of pipes. In Figure 9.22c, the shear fl ows q in the two top fl ange ele-

ments are directed from the outermost edges toward the web. At the junction of the web 

and the fl ange, these shear fl ows turn the corner and fl ow down through the web. At the 

bottom fl ange, the fl ows split again and move outward toward the fl ange tips. Because 

this fl ow is always continuous in any structural section, it serves as a convenient method 

for determining the directions of shear stresses. For instance, if the shear force acts 

downward on the beam section of Figure 9.22a, then we can recognize immediately that 

the shear fl ow in the web must act downward. Since the shear fl ow must be continuous 

through the section, we can infer that (a) the shear fl ows in the upper fl ange must move 

toward the web, and (b) the shear fl ows in the bottom fl ange must move away from the 

web. Using this simple technique to ascertain the directions of shear fl ows and shear 

stresses is easier than visualizing the directions of the forces acting on elements such 

those in Figures 9.16b and 9.17b.

The preceding analysis demonstrates how shear stresses and shear fl ow in a thin-

walled cross section can be calculated. The results offer a more complete understanding 

of how shear stresses are distributed throughout a beam that is subjected to shear forces. 

(Recall that in Section 9.7, shear stresses in a wide-fl ange cross section were determined 

for the web only.) Three important conclusions should be drawn from these analyses:

1.  The shear fl ow q is dependent on the value of Q, and Q will vary throughout the cross 

section. For beam cross-sectional elements that are perpendicular to the direction of the 

shear force V, q and hence � will vary linearly in magnitude. Both q and � will vary 

parabolically in cross-sectional elements that are parallel to or inclined toward the 

direction of V.

2.  Shear fl ow will always act parallel to the free surfaces of the cross-sectional elements.

3.  Shear fl ow is always continuous in any cross-sectional shape subjected to a shear 

force. Visualization of this fl ow pattern can be used to establish the direction of both 

q and � in a shape. The fl ow is such that the shear fl ows in the various cross-sectional 

elements contribute to V while satisfying both horizontal and vertical equilibrium.

Closed Thin-Walled Sections

Flanged shapes such as wide-fl ange shapes (Figure 9.19) and tee shapes are classifi ed as open 

sections, whereas box shapes (Figure 9.20) and circular pipe shapes are classifi ed as closed 

sections. The distinction between open and closed sections is that closed shapes have a con-

tinuous periphery in which the shear fl ow is uninterrupted and open shapes do not. Consider 

beam cross sections that satisfy two conditions: (a) The cross section has at least one longitu-

dinal plane of symmetry, and (b) the beam loads act in this plane of symmetry. For open sec-

tions, such as fl anged shapes, satisfying these conditions, the shear fl ow and shear stress clearly 

must be zero at the tips of the fl anges. For closed sections such as box or pipe shapes, the loca-

tions at which the shear fl ow and the shear stress vanish are not so readily apparent. 

A thin-walled box section subjected to a shear force V is shown in Figure 9.23a. This 

section is split vertically along its longitudinal plane of symmetry in Figure 9.23b. The shear 

fl ow in vertical walls of the box must fl ow parallel to the internal shear force V; thus, the shear 

fl ow in the top and bottom walls of the box must act in the directions shown. On the plane of 

symmetry, the shear stress at points B and B� must be equal; however, the shear fl ows act in 

opposite directions. Similarly, the shear stress at points C and C� must be equal, but they, too, 

act in opposing directions. Consequently, the only possible value of shear stress that can satisfy 

these constraints is � � 0. Since q � �t, the shear fl ow must also be zero at these points. From 

this analysis, we can conclude that the shear fl ow and the shear stress for a closed thin-walled 

beam section must be zero on a longitudinal plane of symmetry.
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EXAMPLE 9.7

A beam with the thin-walled inverted-tee-shaped cross section shown is 

subjected to a vertical shear force of V � 37 kN. The location of the neutral 

axis is shown on the sketch, and the moment of inertia of the inverted-tee 

shape about the neutral axis is I � 11,219,700 mm4. Determine the shear 

stresses in the tee stem at points a, b, c, and d, and in the tee fl ange at points 

e and f. Plot the distribution of shear stress in both the stem and fl ange.

Plan the Solution
The location of the neutral axis and the moment of inertia of the inverted-

tee shape about the neutral axis are given. The value of Q associated with 

each point will be determined from Q � y–�A� for the applicable portion 

A� of the cross-sectional area. After Q is determined, the shear stress will 

be calculated from Equation (9.16). 

SOLUTION
Points a, b, and c are located in the stem of the inverted-tee shape. A horizontal cutting 

plane that is perpendicular to the walls of the stem defi nes the boundary of area A�. For 

these locations, area A� begins at the cutting plane and reaches upward to the top of the 

stem. Point d is located at the junction of the stem and the fl ange. For this location, the area 

A� is simply the area of the fl ange. Point e is also at the junction of the stem and the fl ange; 

however, the shear stress in the fl ange is to be determined at e. The area A� corresponding 

to point e extends from the left end of the fl ange to a vertical cutting plane located at the 

centerline of the stem. (Note that the centerline location for the cutting plane is acceptable 

because the shape is thin walled.) For point f in the fl ange, a vertical cutting plane defi nes 

the boundary of area A�, which extends horizontally from the cutting plane to the outer 

edge of the fl ange. For all points, the fi rst moment Q is the moment of the area A� about the 

neutral axis of the inverted-tee shape. The shear stress at each point is calculated from

� �
VQ

It

where V � 37 kN and I � 11,219,700 mm4. The thickness t is 8 mm for each location. 

The results of these analyses are summarized in the following table: 

FIGURE 9.23 Shear stress in a thin-walled box cross section.

(a)  Closed thin-walled section with a longitudinal 

plane of symmetry

(b)  Shear stresses at the plane of symmetry

x

y

z

B

C

V

B

C

Longitudinal plane 
of symmetry

x

y

z

B

C

B

C

B  0

B  0

C  0
C  0

Shear flow and shear stress 
must vanish on a longitudinal 

plane of symmetry.

a

b

c

d

ef
55 mm

220 mm

N.A.

8 mm

8 mm

50 mm

50 mm
186 mm

V43.0 mm

143.0 mm

c09ShearStressInBeams.indd Page 389  29/03/12  8:56 PM user-F391c09ShearStressInBeams.indd Page 389  29/03/12  8:56 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



Point Sketch y–�
(mm)

A�
(mm2)

Q
(mm3)

�
(MPa)

a 118.0 400 47,200 19.46

b 93.0 800 74,400 30.67

c 71.5 1,144 81,796 33.72

d 43.0 1,760 75,680 31.20

e 43.0 880 37,840 15.60

f 43.0 440 18,920 7.80

N.A.

y

A

y

a

y

y

N.A.

b

A

cN.A.

y

y

A

y

y
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A

d

y

y
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A e
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The directions and intensities of the shear stress in the inverted-tee shape are shown 

in the sketch. Note that the shear stress in the tee stem is distributed parabolically, while 

the shear stress in the fl ange is distributed linearly. At the junction of the stem and the 

fl ange, the shear stress intensity is cut in half as shear fl ows outward in two opposing 

directions.

7.80 MPa 15.60 MPa

15.60 MPa 7.80 MPa

33.72 MPa

31.20 MPa

30.67 MPa

19.46 MPa

EXAMPLE 9.8

A 6061-T6 aluminum thin-walled tube is subjected to a vertical shear force of 

V � 21,000 lb, as shown in the fi gure at the right. The outside diameter of the tube 

is D � 8.0 in., and the inside diameter is d � 7.5 in. Plot the distribution of shear 

stress in the tube.

Plan the Solution
The shear stress distribution in the thin-walled tube will be calculated from the shear 

stress formula � � VQ/It. At the outset, an expression for the moment of inertia of a 

thin-walled tube will be derived. From the earlier discussion of shear stresses in 

closed thin-walled cross sections, the free-body diagram to be considered for the 

calculation of Q should be symmetric about the xy-plane. Based on this free-body 

diagram, the fi rst moment of area Q corresponding to an arbitrary location in the 

tube wall will be derived and the variation of shear stress will be determined.

SOLUTION 
The shear stress in the tube will be determined from the shear stress formula � � VQ/It. 
The values for both I and Q can be determined by integration using polar coordinates.  

Since the tube is thin walled, the radius r of the tube is taken as the radius to the middle 

of the tube wall; therefore,

r �
D � d

4

For a thin-walled tube, the radius r is much greater than the wall thickness t 
(i.e., r �� t).

Moment of Inertia
From the sketch, observe that the distance y from the z axis to a differential area 

dA of the tube wall can be expressed as y � r sin �. The differential area dA can 

be expressed as the product of the differential arclength ds and the tube thick-

ness t; thus, dA � t ds. Furthermore, the differential arclength can be expressed as 

ds � r d�. As a result, the differential area can be expressed in polar coordinates 

t

r
V

y

z

t

r

y
d

dsdAy

z

391391
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of r and � as dA � r t d�. From these relationships for y and dA, the moment of inertia of 

the thin-walled tube can be derived as follows:

1
2

1
2

Iz � sin2�d�(rsin �)2rtd� � r3ty2dA �

� r3t      � �     sin�cos�

� �r3t

2�

0

2�

0

2�

0

First Moment of Area Q
The value of Q can also be determined by integration in polar coordinates. From 

the sketch on the left, the value of Q for the area of the cross section above the 

arbitrarily chosen sections defi ned by � and �–� will be determined. The free-

body diagram to be considered for the calculation of Q should be symmetric about 

the xy-plane.

From the defi nition of Q, the fi rst moment of area dA about the neutral axis 

(N.A.) can be expressed as dQ � y dA. Substituting the previous expressions for y 

and dA into this defi nition gives the following expression of dQ in terms of r and �:

dQ � ydA � (rsin �)rt d�

The angle � will vary between symmetric limits of � and �– �. The following 

integration shows the derivation of a general expression for Q:

Q � dQ � r2tsin�d�

� r2t �cos�

� 2r2tcos�

��� ���

�

�

�

���

Shear Stress Expressions 
The variation of shear stress � can now be expressed in terms of the angle �: 

� �       �                      �         cos�
VQ
It

V
�rt

V(2r2tcos�)
(�r3t)(2t)

Note that the thickness term t in the shear stress equation is the total width of the surface 

exposed when cutting the free-body diagram. The free-body diagram considered between 

sections at � and �–� exposes a total width of two times the wall thickness; hence, the 

term 2t appears in the preceding shear stress equation.

For a thin-walled tube in which r �� t, the cross-sectional area can be approximated 

by A � 2�rt. Thus, the shear stress � can be expressed as

� �          cos� �        cos�
V

A/2
2V
A

and the maximum shear stress given by

�max �
2V
A

at a value of � � 0.

t

r

y
d

dsdA

N.A.

V

y

z
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Calculation of Shear Stress Distribution 
The radius r for the given aluminum tube is

r �             �                                � 3.875 in.
D � d

4
8.00 in. � 7.50 in.

4

Thus, the shear stress distribution can be computed from

� �       cos� �                                     cos�

� (6,900 psi) cos�

V
�rt

21,000 lb
�(3.875 in.)(0.25 in.)

The direction of the shear stress is shown in the next fi gure, along with a graph of the 

shear stress magnitude as a function of the angle �:

In Sections 8.1 through 8.3, the theory of bending was developed for prismatic beams. In 

deriving this theory, beams were assumed to have a longitudinal plane of symmetry (Figure 

8.2a) and loads acting on the beam, as well as the resulting curvatures and defl ections, were 

assumed to act only in the plane of bending. The only time that the requirement of symmetry 

was removed was in Section 8.8, where it was shown that the bending moment could be re-

solved into component moments about the principal axes of the cross section, provided that 

the loading was pure bending (i.e., no shear forces were present). However, unsymmetrical 

bending confi gurations in which shear forces were present were not considered.

If loads are applied in the plane of bending and the cross section is symmetric with 

respect to the plane of bending, twisting of the beam cannot occur. However, suppose that 

we consider bending of a beam (a) not symmetric with respect to the longitudinal plane of 

bending and (b) subjected to transverse shear forces in addition to bending moments. For 

beams such as this, the resultant of the shear stresses produced by the transverse loads will 

act in a plane that is parallel to, but offset from, the plane of loading. Whenever the resul-

tant shear forces do not act in the plane of the applied loads, the beam will twist about its 

longitudinal axis in addition to bending about its neutral axis. Bending without twisting is 

possible, however, if the transverse loads pass through the shear center. The shear center 

can be simply defi ned as the location (to the side of the longitudinal axis of the beam) 

9.10 Shear Centers of Thin-Walled Open Sections 
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394
SHEAR STRESS IN BEAMS where the transverse loads should be placed to avoid twisting of the cross section. In other 

words, transverse loads applied through the shear center cause no torsion of the beam.

Determination of the shear center location has important ramifi cations for beam de-

sign. Beam cross sections are generally confi gured to provide the greatest possible econ-

omy of material. As a result, beam cross sections are frequently composed of thin plates 

arranged so that the resulting shape is strong in fl exure. Wide-fl ange and channel shapes are 

designed with most of the material concentrated at the greatest practical distance from the 

neutral axis. This arrangement makes for an effi cient fl exural shape because most of the 

beam material is placed in the fl anges, which are locations of high fl exural stress. Less 

material is used in the web, which is near the neutral axis where fl exural stresses are low. 

The web primarily serves to carry shear force while also securing the fl anges in position. 

An open cross section that is made up of thin plate elements may be strong in fl exure, but 

it is extremely weak in torsion. If a beam twists as it bends, torsional shear stresses will be 

developed in the cross section, and generally, these shear stresses will be quite large in 

magnitude. For that reason, it is important for the beam designer to ensure that loads are 

applied in a manner that eliminates twisting of the beam. This can be accomplished when 

external loads act through the shear center of the cross section.

The shear center of a cross section is always located on an axis of symmetry. The 

shear center for a beam cross section having two axes of symmetry coincides with the cen-

troid of the section. For cross sections that are unsymmetrical about one axis or both axes, 

the shear center must be determined by computation or observation. The method of solu-

tion for thin-walled cross sections is conceptually simple. We will fi rst assume that the 

beam cross section bends, but does not twist. On the basis of this assumption, the resultant 

internal shear forces in the thin-walled shape will be determined by consideration of the 

shear fl ow produced in the shape. Equilibrium between the external load and the internal 

resultant forces must be maintained. From this requirement, the location of the external 

load necessary to satisfy equilibrium can then be computed.

Shear Center for a Channel Section 

Consider the thin-walled channel shape used as a cantilever beam, as shown in Figure 

9.24a. A vertical external load P that acts through the centroid of the cross section will 

The exact location of the 

shear center for thick-walled 

unsymmetrical cross 

sections is diffi cult to obtain 

and is known only for a few 

cases.

FIGURE 9.24 Bending and twisting of the cantilever beam. 

(b)  Bending and twisting in response to the 

applied load

P

(a) Vertical load P acting through centroid

P

c09ShearStressInBeams.indd Page 394  29/03/12  8:57 PM user-F391c09ShearStressInBeams.indd Page 394  29/03/12  8:57 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



395
SHEAR CENTERS OF 

THIN-WALLED OPEN 
SECTIONS

cause the beam to both bend and twist, as depicted in Figure 9.24b. To better understand 

what causes the channel shape to twist, it is instructive to look at the internal shear fl ow 

produced in the beam in response to the applied load P.

The beam of Figure 9.24 is shown from the rear in Figure 9.25. The shear fl ow pro-

duced at Section A-A� in response to the external load P will be examined. 

For the cantilever beam loaded as shown in Figure 9.26a, the upward internal shear 

force V must equal the downward external load P. The shear force V creates shear fl ow q 

that acts in the web and in the fl anges in the directions shown in the fi gure. 

FIGURE 9.25 Rear view of cantilever beam. 

P

A

A

FIGURE 9.26 Internal shear fl ow and resultant forces acting on Section A-A�.

(a) Shear fl ow in the channel shape
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(b)  Resultant shear forces in the fl anges 
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SHEAR STRESS IN BEAMS

FIGURE 9.27 Shifting load 

P away from the centroid. 
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z
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FIGURE 9.28 Bending of the cantilever beam without twisting. 

(a)  External load P acting through the shear 

center O

P

O

e

(b)  Bending without twisting in response to 

the applied load

P

O

e

 The thickness of each fl ange is thin compared with the overall depth d of the channel 

shape; therefore, the vertical shearing force transmitted by each fl ange is small and can be 

neglected. (See Figure 9.16.) Consequently, the resultant shear force Fw determined by in-

tegrating the shear fl ow in the web must equal V. The resultant shear force Ff produced in 

each fl ange by the shear fl ow can be determined by integrating q over the width b of the 

channel fl ange. The directions of the resultant shear forces in the fl anges and in the web are 

shown in Figure 9.26b. Since the forces Ff are equal in magnitude, but act in opposite direc-

tions, they form a couple that tends to twist the channel section about its longitudinal axis 

x. This couple, which arises from the resultant shear forces in the fl anges, causes the chan-

nel to twist as it bends, as depicted in Figure 9.24b.

In Figure 9.27, the couple formed by the fl ange forces Ff causes the channel to 

twist in a counterclockwise direction. To counterbalance this twist, an equal clockwise 

torsional moment is required. A torsional moment can be produced by moving the external 

load P away from the centroid (i.e., to the right in Figure 9.27). Because there is moment 

equilibrium about point B (located at the top of the channel web), the beam will no 

longer have a tendency to twist when the clockwise moment Pe equals the counter-

clockwise moment Ff d. The distance e measured from the centerline of the channel 

web defi nes the location of the shear center O. Furthermore, the location of the shear 

center is solely a function of the cross-sectional geometry and dimensions, and does 

not depend upon the magnitude of the applied loading, as will be demonstrated in 

Example 9.9.

When the vertical external load P acts through the shear center O of the channel 

(Figure 9.28a), the cantilever beam bends without twisting (Figure 9.28b). 

The shear center of a cross section is always located on an axis of symmetry. Thus, 

if the external load is applied in the horizontal direction through the centroid of the chan-

nel, as shown in Figure 9.29a, there is no tendency for the channel to twist as it bends 

(Figure 9.29b). The resultant shear forces in the fl anges are equal in magnitude, and both 

act to oppose the applied load P. In the channel web, there are two equal resultant shear 

forces that act in opposite directions above and below the axis of symmetry.
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In conclusion, as long as the external loads act through the shear center, the beam will 

bend without twisting. When this requirement is met, the stresses in the beam can be deter-

mined from the fl exure formula.

Determination of the Shear Center Location 

The location of the shear center for an unsymmetrical shape is computed by the procedure 

outlined as follows:

•  Determine how the shear “fl ows” in the various portions of the cross section.

•  Determine the distribution of shear fl ow q for each portion of the cross section from 

the shear fl ow equation q � VQ/I. Convert the shear fl ow into a force resultant by 

integrating q along the length of the cross-sectional element. The shear fl ow q will 

vary (a) linearly in elements that are perpendicular to the direction of the internal 

shear force V and (b) parabolically in elements that are parallel to or inclined toward 

the direction of V.

•  Alternatively, determine the distribution of shear stress � from the shear stress 

equation � � VQ/It and convert the shear stress into a force resultant by integrating 

� over the area of the cross-sectional element. 

• Sketch the shear force resultants that act in each element of the cross section.

•  Determine the shear center location by summing moments about an arbitrary point 

(for instance, point B) on the cross section. Choose a convenient location for 

point B—one that eliminates as many force resultants from the moment equilibrium 

equation as possible.

•  Study the direction of rotation of the shear forces, and place the external force P at an 

eccentricity e from point B so that the direction of the moment Pe is opposite to that 

caused by the resultant shear forces.

• Sum moments about point B, and solve for the eccentricity e.

•  If the cross section has an axis of symmetry, then the shear center lies at the point 

where this axis intersects the line of action of the external load. If the shape has no 

axes of symmetry, then rotate the cross section 90° and repeat the process to obtain 

another line of action for the external loads. The shear center lies at the intersection of 

these two lines.

FIGURE 9.29 External load acting in a plane of symmetry. 

(a)  External load P applied horizontally 

through the centroid

(b) Cantilever beam bends without twisting

P P
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EXAMPLE 9.9

Derive an expression for the location of the shear center O for the channel 

shape shown.

Plan the Solution
From the concept of shear fl ow, the horizontal shear force produced in each 

channel fl ange will be determined. The twisting moment produced by these 

forces will be counteracted by the moment produced by the vertical external 

load P acting at a distance of e from the centerline of the channel web.

SOLUTION
Since the applied load P is assumed to act at the shear center O, the channel 

shape will bend about the z axis (i.e., the neutral axis), but it will not twist 

about the x axis. To better understand the forces that cause twisting in the 

thin-walled channel and the forces that counteract this twisting tendency, 

consider the rear face of the channel cross section.

The internal shear force V creates shear fl ow q in the web and in the 

fl anges, which is expressed by

q �
VQ

Iz

The shear force V and the shear fl ow q act in the directions shown in the fi g-

ure to the left. The shear fl ow at any location in the thin-walled shape de-

pends only on the fi rst moment of area Q. 

Consider the shear fl ow in the upper fl ange that acts in the shaded area, 

which is located a horizontal distance of s from the tip of the fl ange. The 

shear fl ow acting at s can be calculated as

 

d
2

q �       �        st f        �          s
VQ
Iz

Vdt f

2Iz

V
Iz

 

(9.18)

Notice that the magnitude of the shear fl ow varies linearly from the free sur-

face at the fl ange tip, where s � 0, to a maximum value at the web, where 

s � b. The total horizontal force acting on the upper fl ange is determined by 

integrating the shear fl ow over the width of the top fl ange:

 Ff �   q ds �                s ds �
Vt f d

2Iz

Vb2dtf
4Iz

b

0  (a)

The force Ff in the lower fl ange will be the same magnitude; however, it will 

act in the opposite direction, thus maintaining equilibrium in the z direction. 

The couple created by the fl ange forces Ff tends to twist the channel shape in 

a clockwise direction, as shown in the fi gure to the right.

The thickness tf of each fl ange is thin compared with the overall depth d 

of the channel shape; therefore, the vertical shearing force transmitted by 

each fl ange is small and can be neglected. (See Figure 9.16.) Consequently, 

the resultant force Fw of the shear fl ow in the web must equal V. Moreover, 

the upward internal shear force V must equal the downward external load P 

to satisfy equilibrium in the y direction; hence, P � V.
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O
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EXAMPLE 9.10

For the channel shape of Example 9.10, assume that d � 8.00 in., b � 

3.00 in., tf � 0.125 in., and tw � 0.125 in. Determine the distribution of shear 

stress  produced in the channel if a load of P � 900 lb is applied at the shear 

center.

Plan the Solution
The moment of inertia of the thin-walled channel shape will be determined. 

The shear stress produced in each channel fl ange is linearly distributed; thus, 

only the maximum value, which occurs at points B and D, will need to be 

determined. The distribution of shear stress in the fl ange is parabolically dis-

tributed, with its minimum value occurring at points B ant D and its maxi-

mum value occurring at point C.

SOLUTION
Moment of Inertia
The moment of inertia for the channel shape can be expressed by the 

following:

Iz �          � 2          �         bt f
d   2

2
twd3

12

 fbt3

12

399

The forces P and V, which are separated by a distance of e, create a couple that tends 

to twist the channel shape in a counterclockwise direction. A moment equilibrium equa-

tion about point B can thus be written as

MB  � �Ff d � Pe � 0 

In this equation, substitute P � V and replace Ff with the expression derived in Equation 

(a) to get

Ve �                d
Vb2dt f

4Iz

and then solve for e:

 e �
b2d2t f

4Iz
 (9.19) Ans.

The distance e from the centerline of the channel web defi nes the location of the shear 

center O. Notice that the shear center location is dependent only on the dimensions and 

geometry of the cross section.
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Note that since the shape is thin walled, the centerline dimensions can be used in this 

calculation. Furthermore, the term containing t3
f can be neglected since it is very small; 

thus, the moment of inertia is calculated as

Iz �          �

�                                    �

� 17.33 in.4

twd3

12

(0.125 in.) (8.00 in.)3

12
(0.125 in.) (3.00 in.) (8.00 in.)2

2

t f bd2

2

Shear Stress in the Flanges 
The shear stress in the fl anges will be distributed linearly, from zero at the fl ange tips 

(i.e., A and E) to a maximum value at the junction of the fl ange and the web (i.e., B 

and D). The fi rst moment of area Q for point B can be calculated as

QB � (bt f)

� (3.00 in.)(0.125 in.)(4.00 in.) � 1.50 in.3

d
2

and the shear stress � at point B is thus

�B �

�                                      � 623 psi

VQB

Izt f

(900 lb)(1.50 in.3)
(17.33 in.4)(0.125 in.)

Shear Stress in the Web
The shear stress in the web will be distributed parabolically, from minimum values 

at points B and D to its maximum value at point C. The shear stress at point B in the 

web is

�B �

�                                      � 623 psi

VQB

Iztw

(900 lb)(1.50 in.3)
(17.33 in.4)(0.125 in.)

The fi rst moment of area Q for point C can be calculated as

� 1.50 in.3 � (0.125 in.) (4.00 in.) (2.00 in.) � 2.50 in.3

Qc � (bt f )     �  tw
d

2

d

2

d

4

and the shear stress at point C is

�c �

�                                      � 1,039 psi

VQc

Iztw

(900 lb)(2.50 in.3)
(17.33 in.4)(0.125 in.)
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Distribution of Shear Stress
The distribution of shear stress over the entire channel shape has been 

plotted in the fi gure to the right.

A B

D

C

E

623 psi

623 psi

623 psi

623 psi

1,039 psi

EXAMPLE 9.11

Consider the channel shape of Example 9.10, shown again here. Neglecting 

stress concentrations, determine the maximum shear stress created in the 

shape if the load P � 900 lb is applied at the centroid of the section, which 

is located 0.75 in. to the left of the web centerline.

Plan the Solution
This example illustrates the considerable additional shear stress created 

in the channel when the external load does not act through the shear cen-

ter. The distance from the channel centroid to the shear center O will be 

calculated and used to determine the magnitude of the torque that acts on 

the section. The shear stress created by this torque will be calculated from 

Equation (6.25). The total shear stress will be the sum of the shear stress 

due to bending, as determined in Equation 9.10, and the shear stress due 

to twisting.

SOLUTION
Shear Center
From Equation (9.19), the location of the shear center O for the channel is calculated as

e �            �                                                      � 0.584 in.
b2d2t f

4Iz

(3.00 in.)2(6.00 in.)2(0.125 in.)
4(17.33 in.4)

Equivalent Loading
We know that the channel will bend without twisting if load P is applied at the shear 

center O, and furthermore, we know how to determine the shear stresses in the channel 
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shape for a load applied at the shear center. 

Therefore, it will be valuable to determine an 

equivalent loading that acts at the shear center. 

This equivalent loading will enable us to sepa-

rate the loading into components that cause (a) 

bending and (b) torsion.

The actual load acts through the centroid, 

as shown in Figure (a) to the left. The equivalent 

load at the shear center consists of a force and a 

concentrated moment, as shown in Figure (b). 

The equivalent force at O is simply equal to the 

applied load P. The concentrated moment will 

be a torque of magnitude

T � (900 lb)(0.75 in. � 0.584 in.) � 1,200 lb-in.

Shear Stress due to Bending 
The maximum shear stress due to bending 

caused by the 900-lb load was determined in 

Example 9.10. The fl ow of the shear stress is 

shown in Figure (c). Recall that the maximum 

shear stress due to this load occurred at the hor-

izontal axis of symmetry and had a value of

 �c � 1,039 psi

Shear Stress due to Torsion 
The torque T causes the member to twist, and 

the shear stress is greatest along the edges of the 

cross section. Recall that torsion of noncircular 

sections—particularly, narrow rectangular cross 

sections—was discussed in Section 6.11. This 

discussion revealed that the maximum shear stress 

and the shear stress distribution for a member of 

uniform thickness and arbitrary shape is equivalent to that of a rectangular bar with a large 

aspect ratio. (See Figure 6.20.) For the channel shape considered here, the shear stress can 

be calculated from Equation (6.25):

�max �         �                                      � 16,460 psi
3T
a2b

3(1,200 lb-in.)
(0.125 in.)2(14.00 in.)

a � 0.125 in.

b � 3.00 in. � 8.00 in. � 3.00 in. � 14.00 in.

Maximum Combined Shear Stress
The maximum stress due to the combined bending and twisting occurs at the neutral axis 

(i.e., point C) on the inside surface of the web. The value of this combined shear stress is

 �max � �bend � �twist � 1,039 psi � 16,460 psi � 17,500 psi Ans.

y

z

A B

DE

P

0.75 in. 0.584 in.

O

(a) Load acting through centroid.

y

z

A B
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T

P

0.75 in. 0.584 in.

O

(b) Equivalent loading at shear center.
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(d) Shear stress due to torsion.(c) Shear stress due to bending.
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EXAMPLE 9.12

Find the shear center O for the semicircular thin-walled cross section shown.

Plan the Solution
Shear stresses are created in the wall of the semicircular cross section in response to the 

applied load P. The moment produced by these shear stresses about the center C of the 

thin-walled cross section must equal the moment of the load P about center C if the sec-

tion is to bend without twisting. We will develop an expression for the differential mo-

ment dM acting on an area dA of the wall. Then, we will integrate dM to determine the 

total twisting moment produced by the shear stresses and equate that expression to the 

moment created by the external load P acting at the shear center O. From this, the location 

of the shear center O can be derived.

SOLUTION
Moment of Inertia
From the sketch, observe that the distance y from the z axis to a differential area dA of the 

wall can be expressed as y � r cos �. The differential area dA can be expressed as the 

product of the differential arclength ds and the thickness t; thus, dA � t ds. Furthermore, 

the differential arclength can be expressed as ds � r d�. As a result, the differential area 

can be expressed in polar coordinates of r and � as dA � r t d�. From these relationships 

for y and dA, the moment of inertia of the semicircular thin-walled cross section can be 

derived as follows:

1
2

�r3t
2

1
2

Iz �   y2dA �        (rcos �)2rt d� � r3t       cos2�d�

� r3t      � �     sin� cos �

� 

�

0

�

0

�

0

First Moment of Area Q 
The value of Q can also be determined by integration in polar coordinates. From the 

sketch on the right, the value of Q for the area of the cross section above an arbitrarily 

chosen angle � is to be determined. 

From the defi nition of Q, the fi rst moment of area dA about the neutral axis (N.A.) 

can be expressed as dQ � y dA. Substituting the previous expressions for y and dA into 

this defi nition gives the following expression of dQ in terms of r and �:

dQ � y dA � (rcos�) rt d�

Integrating dQ between � � 0 and � � � gives a general expression for Q:

Q �     dQ �     r2t cos � d�

� r2t  sin�

� r2t  sin�

�

�

0

�

0

0

r

t

P

O

y

z

e
C

r

t

y

z
N.A. C

yd

ds dA

r

t

y

z
C

yd

dA

N.A.
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Sections Consisting of Two Intersecting Thin Rectangles

Next, we will consider thin-walled open sections made up of two intersecting rectangles. 

Consider an equal-leg angle section, such as that shown in Figure 9.30. When a vertical 

Shear Stress
The variation of shear stress � can now be expressed in terms of the angle �:

t
� �        �                     �        sin�

VQ
It

2V
�rt

V(r2tsin�)

�r3t
2

Moments about C
The resultant force dF acting on the element of area dA is expressed as dF � 

�dA � � (r t d�) or

dF �          sin� d� �       sin� d�
2rtV
�rt

2V
�

The moment of dF about point C is

dMC � r dF �         sin� d�
2rV
�

Integrate this expression between � � 0 and � � � to determine the moment produced 

by the shear stresses:

MC �    dMC �                sin� d� �
2rV
�

4rV
�

�

0

To satisfy moment equilibrium, the moment MC of the shear stress � about the center C of 

the thin-walled cross section must equal the moment of the load P about that same point:

 MC � Pe 

The resultant of the shear stress is the shear force V, and the shear force V must equal the 

applied load P to satisfy vertical equilibrium. Therefore, it follows that the distance e to 

the shear center is

   
e �       �       �       � 1.27r

MC

P
MC

V
4r
�  

Ans.

This result shows that the shear center O is located outside of the semicircular cross section.

r
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FIGURE 9.30 Shear center of equal leg angle shapes.
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shear force V is applied to the cross section, the shear fl ow q is directed along the center-

line of each leg, parallel to the walls of the angle shape, as shown in Figure 9.30a. The 

resultant shear forces in the two legs are F1 and F2, as shown in Figure 9.30b. Horizontal 

equilibrium must be satisfi ed; therefore, the sum of the horizontal force components of 

F1 and F2 must be zero. Accordingly, forces F1 and F2 must be equal in magnitude. The 

sum of the vertical force components of F1 and F2 must equal the vertical shear force 

acting in the beam.

Given that transverse loads applied through the shear center cause no torsion of the 

beam, where must a vertical load be placed so that the beam will not twist? The load must 

be placed at the point of intersection of forces F1 and F2. The intersection of the centerlines 

for the two legs must be the shear center since the sum of the moments of force components 

of F1 and F2 and shear force V about point O is zero.

A similar line of reasoning is applicable for all cross sections consisting of two inter-

secting thin rectangles, such as those shown in Figure 9.31. In each case, the resultant shear 

force must act along the centerline of the rectangle. Consequently, the point of intersection 

of these two centerlines defi nes the location of the shear center O.

O O O

O

FIGURE 9.31 Various cross sections, each consisting of two thin rectangles.
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SHEAR CENTERS OF 

THIN-WALLED OPEN 
SECTIONS

P9.58 A shear force of V � 260 kN is applied to the rectangular 

tube shape shown in Figure P9.58/59. Determine the magnitude of 

the shear fl ow at points A and B.

P9.59 A shear force of V � 375 kN is applied to the rectangular 

tube shape shown in Figure P9.58/59. Determine the magnitude of 

the shear fl ow at points C and D. 

PROBLEMSPROBLEMS

200 mm200 mm

100 mm

200 mm

10 mmy

z

A C

B

D

V

FIGURE P9.58/59

P9.60 A shear force of V � 4,200 lb acts on the thin-walled 

 section shown in Figure P9.60. Using dimensions of a � 2 in., b � 
3 in., h � 4 in., and t � 0.25 in. (where t is constant throughout the 

entire cross section), determine the shear fl ow magnitude at points 

A, B, and C.

FIGURE P9.60

h

a abb

b
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t

N.A.

V

AB

C
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P9.65 The channel section shown in Figure P9.65 is subjected to 

a vertical shear force of V � 7 kips. Calculate the horizontal shear 

stress �A at point A, and the vertical shear stress �B at point B.

P9.66 Determine the location of the shear center O for the cross 

section shown in Figure P9.66.

P9.67 An extruded beam has the cross section shown in Fig-

ure P9.67. Determine (a) the location of the shear center O, and 

(b) the distribution of shear stress created by P � 30 kN.

406

P9.62 The vertical shear force V acts on the thin-walled section 

shown in Figure P9.62. Sketch the shear fl ow diagram for the cross 

section. Assume that the wall thickness of the section is constant.

P9.63 The angle shown in Figure P9.63 is subjected to a vertical 

shear force of V � 3.5 kips. Sketch the distribution of shear fl ow 

along the leg AB. Indicate the numerical value at all peaks.

P9.61 The thin-walled cross section shown in Figure P9.61 has a 

constant wall thickness of t � 0.5 in. Assume that b1 � 12 in., b2 � 

8 in., and h � 8 in. If the shear force acting on the cross section is V � 

2,100 lb, directed in the negative y direction, determine the shear fl ow

(a) at point B in the upper fl ange.

(b) at point C in the web.

(c) at point F in the lower fl ange.

FIGURE P9.61
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FIGURE P9.62

FIGURE P9.63
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V

P9.64 The channel section shown in Figure P9.64 is subjected to 

a vertical shear force of V � 31 kN. Calculate the horizontal shear 

stress �A at point A, and the vertical shear stress �B at point B.
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z

V
A

B

FIGURE P9.64
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0.25 in.

8 in.

2 in.
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y

z

V

A

B

FIGURE P9.65 

FIGURE P9.66
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P9.68 An extruded beam has the cross section shown in Figure 

P9.68. Using dimensions of b � 30 mm, h � 36 mm, and t � 5 mm, 

calculate the location of the shear center O.

P9.69 An extruded beam has the cross section shown in Figure 

P9.69. For this shape, use dimensions of b � 50 mm, h � 40 mm, 

and t � 3 mm. What is the distance e to the shear center O?

P9.70 An extruded beam has the cross section shown in Figure 

P9.70. The dimensions of this shape are b � 75 mm, h � 90 mm, 

407

FIGURE P9.67

FIGURE P9.68

b

t h
2

h
2

h
2

h
2

e

O

FIGURE P9.69

b

t

h
2

h
2

e

O

FIGURE P9.70

P9.71 Determine the location of the shear center for the cross 

section shown in Figure P9.71. Use dimensions of a � 50 mm, b � 

100 mm, h � 300 mm, and t � 5 mm. Assume that the thickness t 
is constant for all portions of the cross section.

and t � 6 mm. Assume that the thickness t is constant for all 

portions of the cross section. What is the distance e from the left-

most element to the shear center O?

P9.72 Locate the shear center for the cross section shown in Fig-

ure P9.72. Assume that the web thickness is the same as the fl ange 

thickness.

FIGURE P9.71

h

t

ba

e

O

FIGURE P9.72
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t

h 2h
e

O
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FIGURE P9.73
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FIGURE P9.75

t
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P9.74–P9.78 Determine the location of the shear center O of a 

thin-walled beam of uniform thickness having the cross section 

shown in Figures P9.74–P9.78.

t

e

O
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C 60°
60°

b

b

b

b

FIGURE P9.76
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FIGURE P9.77
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D

E
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FIGURE P9.78

P9.73 Show that the shear center for the zee-shaped section 

shown in Figure P9.73 is located at the centroid of the section.
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Beam Defl ections

v, y

x

P

Mw

FIGURE 10.1 Coordinate 

system

CHAPTER 10

Important relations between applied load and both normal and shear stresses developed 

in a beam were presented in Chapters 8 and 9. However, a design is normally not com-

plete until the defl ection of the beam has been determined for its particular load. While 

they generally do not create a safety risk in themselves, excessive beam defl ections may 

impair the successful function of a structure in other ways. In building construction, ex-

cessive defl ections can cause cracks in walls and ceilings. Doors and windows may not 

close properly. Floors may sag or vibrate noticeably as people walk on them. In many 

machines, beams and fl exural components must defl ect just the right amount for gears or 

other parts to make proper contact. In summary, the satisfactory design of a fl exural com-

ponent usually includes a specifi ed maximum defl ection in addition to a minimum load-

carrying capacity.

The defl ection of a beam depends on the stiffness of the material and the cross- 

sectional dimensions of the beam, as well as the confi guration of the applied loads and 

supports. Three common methods for calculating beam defl ections are presented here: 

(1) the integration method, (2) the use of discontinuity functions, and (3) the superposi-

tion method.

In the discussion that follows, three coordinates will be used. As shown in Figure 10.1, 

the x axis (positive to the right) extends along the initially straight longitudinal axis of the 

beam. The x coordinate is used to locate a differential beam element, which has an unde-

formed width of dx. The v axis extends positive upward from the x axis. The v coordinate 

measures the displacement of the beam’s neutral surface. The third coordinate is y, which is 

a localized coordinate with its origin at the neutral surface of the beam cross section. The y 

coordinate is measured positive upwards, and it is used to describe specifi c locations within 

the beam cross section. The x and y coordinates are the same as those used in deriving the 

fl exure formula in Chapter 8.

10.1 Introduction
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FIGURE 10.2 Radius of 

curvature � related to sign of M.

When a straight beam is loaded and the action is elastic, the longitudinal centroidal axis of 

the beam becomes a curve, which is termed the elastic curve. The relationship between 

internal bending moment and curvature of the elastic curve was developed in Section 8.4. 

Equation 8.5 summarized the moment–curvature relationship:

 

1 M

EIz�
� ��

 
(8.5)

This equation relates the radius of curvature � of the neutral surface of the beam to the in-

ternal bending moment M (about the z axis), the elastic modulus of the material E, and the 

moment of inertia of the cross-sectional area Iz. Since E and Iz are always positive, the sign 

for � is consistent with the sign of the bending moment. As shown in Figure 10.2, a positive 

bending moment M creates a radius of curvature � that extends above the beam—that is, in 

the positive v direction. When M is negative, � extends below the beam in a negative v 

direction.

10.2 Moment–Curvature Relationship

The relationship between bending moment and radius of curvature is applicable when the 

bending moment M is constant for a fl exural component. For most beams, however, the 

bending moment varies along its span and a more general expression is required to express 

the defl ection v as a function of the coordinate x.

From calculus, curvature � is defi ned as

1

2 2

2

d v dx

dv dx( )
3/ 2

1

�
� �

�
�

For typical beams, the slope dv�dx is very small, and its square can be neglected in com-

parison to unity. This approximation simplifi es the curvature expression

1 2

2

d v

dx�
� ��

and Equation (8.5) becomes

 EI
d v

dx
M x

2

2
( )�  (10.1)

This is the differential equation of the elastic curve for a beam. In general, the bending 

moment M will be a function of position x along the beam’s span.

The differential equation of the elastic curve can also be obtained from the geometry of 

the defl ected beam, as shown in Figure 10.3. The defl ection v at point A on the elastic curve 

is shown in Figure 10.3a. Point A is located at a distance of x from the origin. A second point, 

B, is located at a distance of x � dx from the origin, and it has a defl ection of v � dv.

10.3 The Differential Equation of the Elastic Curve
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411
When the beam is bent, points along the beam both defl ect and rotate. 

The angle of rotation � of the elastic curve is the angle between the x axis and 

the tangent to the elastic curve, as shown for point A in the enlarged view of 

Figure 10.3b. Similarly, the angle of rotation at point B is � � d�, where d� is 

the increase in rotation angle between points A and B.

The slope of the elastic curve is the fi rst derivative dv�dx of the defl ection v. 

From Figure 10.3b, the slope can also be defi ned as the vertical increment dv di-

vided by the horizontal increment dx between points A and B. Since dv and dx are 

infi nitesimally small, the fi rst derivative dv�dx can be related to the rotation angle 

� by the tangent function:

 
dv

dx
tan��  (a)

Note that the slope dv�dx is positive when the tangent to the elastic curve slopes 

upward to the right.

In Figure 10.3b, the distance along the elastic curve between points A and B 

is denoted as ds, and from the defi nition of arc length, ds � � d�. If the angle of 

rotation �  is very small (as it would be for a beam with small defl ections), then the 

distance ds along the elastic curve in Figure 10.3b is essentially the same as the 

increment dx along the x axis. Therefore, dx � � d�, or

 
1 d

dx

�

�
�  (b)

Since tan � � � for small angles, Equation (a) can be approximated as

 
dv

dx
��  (c)

Therefore, the beam angle of rotation � (measured in radians) and the slope dv�dx 

are equal if beam defl ections are small.

Taking the derivative of Equation (c) with respect to x gives

 
d v

dx

d

dx

2

2

�
�  (d)

From Equation (b), d�/dx � 1/�. Additionally, Equation (8.5) gives the relationship  between 

M and �. Combining these expressions gives

 
d v

dx

d

dx

M

EI

2

2

1�

�
� � �  (e)

or

 EI
d v

dx
M x

2

2
( )�  (10.1)

In general, the bending moment M will be a function of position x along the beam’s span.

v

A B

O

v

x

x

dx

ds

d�
�

v dv�

FIGURE 10.3a Elastic curve.

FIGURE 10.3b Enlarged region around 

point A. 

x
x

dx

v

A

B
ds

v dv

d�

d�

�

�
�

�

�

THE DIFFERENTIAL EQUATION 
OF THE ELASTIC CURVE

c10BeamsDeflection.indd Page 411  3/6/12  8:30 PM user-F393c10BeamsDeflection.indd Page 411  3/6/12  8:30 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



412
BEAM DEFLECTIONS Sign Conventions

The sign convention for bending moments established in Section 7.3 (see Figure 10.4) will 

be used for Equation (10.1). Both E and I are always positive; therefore, the signs of the 

bending moment and the second derivative must be consistent. With the coordinate axes as 

shown in Figure 10.5, the beam slope changes from positive to negative in the segment 

from A to B; therefore, the second derivative is negative, which agrees with the sign con-

vention of Section 7.3. For segment BC, both d2v/dx2 and M are seen to be positive.

Careful study of Figure 10.5 reveals that the signs of the bending moment and the 

second derivative are also consistent when the origin is selected at the right with x positive 

to the left and v positive upward. However, the signs are inconsistent when v is positive 

downward. Consequently, v will always be chosen as positive upward for horizontal beams 

in this book.

Relationship of Derivatives

Before proceeding with the solution of Equation (10.1), it is instructive to associate the 

successive derivatives of the elastic curve defl ection v with the physical quantities that they 

represent in beam action. They are

FIGURE 10.4 Bending-

moment sign convention.

M M

Positive internal moment
concave upwards

� �

M M

Negative internal moment
concave downwards

� �

FIGURE 10.5  Relationship of 

d 2v�dx2 to sign of M. 

v

x

A B
C

Negative M

Positive Md 2 v
dx2

Negative

d 2 v
dx2

Positive

where the signs are as defi ned in Sections 7.2 and 7.3.

Starting from the load diagram, a method based on these differential relations was 

presented in Section 7.3 for constructing fi rst the shear diagram V and then the moment 

diagram M. This method can be readily extended to the construction of the slope diagram 

� and the beam defl ection diagram v. From Equation (e),

 
d

dx

M

EI

�
�  (f)

This equation can be integrated to give

d
M

EI
dx

M

EI
dx

A

B

A

B

A

B

x

x

B A
x

x
��

�

�
� �� ��

This relation shows that the area under the moment diagram between any two points along 

the beam (with the added consideration of EI) gives the change in slope between the same 

two points. Likewise, the area under the slope diagram between two points along the beam 

gives the change in defl ection between these points. These relations have been used to con-

struct the complete series of diagrams shown in Figure 10.6 for a simply supported beam 
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413
THE DIFFERENTIAL EQUATION 

OF THE ELASTIC CURVE

with a concentrated load at midspan. The geometry of the beam was used to locate the 

points of zero slope and defl ection, required as starting points for the construction. More 

commonly used methods for calculating beam defl ections will be developed in succeeding 

sections.

Recap of Assumptions

Before proceeding with specifi c methods for calculating beam defl ections, it is helpful to 

keep in mind the assumptions used in developing the differential equation of the elastic 

curve. All of the limitations that apply to the fl exure formula also apply to the calculation 

of defl ections because the fl exure formula was used in the derivation of Equation (10.1). It 

is further assumed that

1.  The square of the slope of the beam is negligible compared with unity. This assumption 

means that beam defl ections must be relatively small.

2.  Plane cross sections of the beam remain planar as the beam defl ects. This assumption 

means that beam defl ections due to shear stresses are assumed negligible.

3.  The values of E and I remain constant for any segment along the beam. If either E or I 
varies along the beam span, and if this variation can be expressed as a function of the 

distance x along the beam, a solution of Equation (10.1) that considers this variation 

may be possible.

A CB
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16EI
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16EI
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48EI
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2
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FIGURE 10.6 Relationship between beam diagrams.
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Boundary conditions are known slopes and defl ections at the limits of the bending-
moment equation M(x). The term “boundary” refers to the bounds of M(x), not nec-

essarily the bounds of the beam. Although boundary conditions are found at beam 

supports, only those supports within the bounds of M(x) can be used as boundary 

conditions.

Figure 10.7 shows several support conditions and lists the boundary conditions associated 

with each. A pin or roller support represents a simple support at which the beam is restrained 

from defl ecting transversely (either upward or downward for a horizontal beam); conse-

quently, the beam defl ection at either a pin or a roller must be v � 0. Neither a pin nor a 

roller, however, restrains a beam against rotation, and consequently, the beam slope at a 

simple support cannot be a boundary condition. At a fi xed connection, the beam is restrained 

against both defl ection and rotation; therefore, v � 0 and dv�dx � 0 at a fi xed connection.

While boundary conditions involving defl ection v and slope dv�dx are normally equal 

to zero at supports, there may be instances in which the engineer wishes to analyze the ef-

fects of support displacement on the beam. For instance, a common design concern is the 

possibility of support settlement, in which compression of soil underneath a foundation 

causes the support to displace downward. To examine possibilities of this sort, nonzero 

boundary conditions may sometimes be specifi ed.

One boundary condition can be used to determine one and only one constant of integration.

FIGURE 10.7 Boundary  

conditions. 

Whenever the assumptions of the previous section are satisfi ed and the bending moment 

can be readily expressed as an integrable function of x, Equation (10.1) can be solved for 

the defl ection v of the elastic curve at any location x along the beam’s span. The procedure 

begins with the derivation of a bending-moment function M(x) based on equilibrium con-

siderations. A single function that is applicable for the entire span may be derived, or it may 

be necessary to derive several functions, each applicable only to a specifi c region of the 

beam span. The moment function is substituted into Equation (10.1) to defi ne the differen-

tial equation. This type of differential equation can be solved by integration. Integration of 

Equation (10.1) produces an equation that defi nes the beam slope dv�dx. Integrating again 

produces an equation that defi nes the defl ection v of the elastic curve. This approach for 

determining the elastic curve equation is called the double-integration method.

Each integration produces a constant of integration, and these constants must be eval-

uated from known conditions of slope and defl ection. The types of conditions for which 

values of v and dv�dx are known can be grouped into three categories: boundary conditions, 

continuity conditions, and symmetry conditions.

Boundary Conditions

Boundary conditions are specifi c values of defl ection v or slope dv�dx that are known at 

particular locations along the beam span. As the term implies, boundary conditions are 

found at the lower and upper limits of the interval being considered. For example, a bending-

moment equation M(x) may be derived for a particular beam within a region of x1 � x � x2. 

The boundary conditions, in this instance, would be found at x � x1 and x � x2.

10.4  Defl ections by Integration 
of a Moment Equation
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415
DEFLECTIONS BY INTEGRATION 

OF A MOMENT EQUATION
Continuity Conditions

Many beams are subjected to abrupt changes in loading along the beam, such as concen-

trated loads, reactions, or even distinct changes in the intensity of a uniformly distributed 

load. The M(x) equation for the region just to the left of an abrupt change will be different 

from the M(x) equation for the region just to the right. As a result, it is not possible to derive 

a single equation for the bending moment (in terms of ordinary algebraic functions) that is 

valid for the entire beam length. This can be resolved by writing separate bending-moment 

equations for each segment of the beam. Although the segments are bounded by abrupt 

changes in load, the beam itself is continuous at such locations and, consequently, the de-

fl ection and the slope at the junction of two adjacent segments must match. This is termed 

a continuity condition.

Symmetry Conditions

In some instances, beam supports and applied loads may be confi gured so that symmetry 

exists for the span. When symmetry exists, the value of the beam slope will be known at 

certain locations. For instance, a simply supported beam with a uniformly distributed load 

is symmetric. From symmetry, the slope of the beam at midspan must equal zero. Sym-

metry may also abbreviate the defl ection analysis in that the elastic curve need only be 

determined for half of the span.

Each boundary, continuity, and symmetry condition produces an equation containing 

one or more of the constants of integration. In the double-integration method, two con-

stants of integration are produced for each beam segment; therefore, two conditions are 

required to evaluate the constants.

Procedure for Double-Integration Method

Calculating the defl ection of a beam by the double-integration method involves several 

defi nite steps, and the following sequence is strongly recommended:

1.  Sketch: Sketch the beam including supports, loads, and the x–v coordinate system. 

Sketch the approximate shape of the elastic curve. Pay particular attention to the slope 

and defl ection of the beam at the supports.

2.  Support reactions: For some beam confi gurations, it may be necessary to deter-

mine support reactions before proceeding to analysis of specifi c beam segments. For 

these instances, determine the beam reactions by considering the equilibrium of the 

entire beam. Show these reactions in their proper direction on the beam sketch.

3.  Equilibrium: Select the segment or segments of the beam to be considered. For each 

segment, draw a free-body diagram (FBD) that cuts through the beam segment at some 

distance x from the origin. Show all loads acting on the FBD. If distributed loads act on 

the beam, then that portion of the distributed loading, which acts on the FBD, must be 

shown at the outset. Include the internal bending moment M acting at the cut surface of 

the beam, and always show M acting in the positive direction. (See Figure 10.5.) This 

ensures that the bending-moment equation will have the correct sign. From the FBD, 

derive the bending-moment equation, taking care to note the interval for which it is 

applicable (e.g., x1 � x � x2).

4.  Integration: For each segment, set the bending-moment equation equal to EI d2v�dx2. 

Integrate this differential equation twice, obtaining a slope equation dv�dx, a defl ection 

equation v, and two constants of integration.
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416
BEAM DEFLECTIONS 5.  Boundary and continuity conditions: List the boundary conditions that are ap-

plicable for the bending-moment equation. If the analysis involves two or more beam 

segments, also list the continuity conditions. Remember that two conditions are re-

quired to evaluate the two constants of integration produced in each beam segment.

6.  Evaluate constants: Use the boundary and continuity conditions to evaluate all 

constants of integration.

7.  Elastic curve and slope equations: Replace the constants of integration in step 4 

with the values obtained from the boundary and continuity conditions in step 6. Check 

the resulting equations for dimensional homogeneity.

8.  Defl ections and slopes at specifi c points: Calculate the defl ection at specifi c 

points when required.

The following examples illustrate the use of the double-integration method for calcu-

lating beam defl ections:

The cantilever beam shown is subjected to a concentrated 

load P at its free end. Determine the equation of the elas-

tic curve as well as the defl ection and slope of the beam at 

A. Assume that EI is constant for the beam.

Plan the Solution
Consider a free-body diagram that cuts through the beam at 

a distance x from the free end of the cantilever. Write an 

equilibrium equation for the sum of moments, and from 

this, determine the equation for the bending moment M as it 

varies with x. Substitute M into Equation (10.1), and inte-

grate twice. Use the boundary conditions known at the fi xed 

end of the cantilever to evaluate the constants of integration.

SOLUTION
Equilibrium
Cut through the beam at an arbitrary distance x from the origin, and draw a free-body dia-

gram, taking care to show the internal moment M acting in the positive sense. The equilib-

rium equation for the sum of moments about section a–a is

M Px Ma a �Σ ��� 0

Therefore, the bending-moment equation for this beam is simply

 M Px� �  (a)

Notice that moment equation (a) is valid for all values of x for this particular beam. In other 

words, Equation (a) is valid in the interval 0 � x � L. Substitute the expression for M into 

Equation (10.1) to obtain

 EI
d v

dx
Px

2

2
� �  (b)

EXAMPLE 10.1
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Integration
Equation (b) will be integrated twice. The fi rst integration gives a general equation for 

the beam slope dv�dx:

 EI
dv

dx

Px
C

2

12
� � �  (c)

Here, C1 is a constant of integration. A second integration gives a general equation for 

the elastic curve v:

 EIv
Px

C x C
3

1 26
� � � �  (d)

Here, C2 is a second constant of integration. The constants C1 and C2 must be evaluated 

before the slope and elastic curve equations are complete.

Boundary Conditions
Boundary conditions are values of defl ection v or slope dv�dx that are known at particu-

lar locations along the beam span. For this beam, the bending-moment equation M in 

Equation (a) is valid in the interval 0 � x � L. The boundary conditions, therefore, are 

found either at x � 0 or x � L.

Consider the interval 0 � x � L for this beam and loading. At x � 0, the beam is 

unsupported. The beam will defl ect downward, and as it defl ects, the slope of the beam 

will no longer be zero. Consequently, neither the defl ection v nor the slope dv�dx is 

known at x � 0. At x � L, the beam is supported by a fi xed support. The fi xed support 

at B prevents defl ection and rotation; therefore, we know two bits of information with 

absolute certainty at x � L: v � 0 and dv�dx � 0. These are the two boundary conditions 

that will be used to evaluate the constants of integration C1 and C2.

Evaluate Constants
Substitute the boundary condition dv�dx � 0 at x � L into Equation (c) to evaluate 

the constant C1:

EI
dv

dx

Px
C EI

P L
C C

PL
⇒ ∴

2

1

2

1 1

2

2
0

2 2
( )

( )
� � � � ���

Next, substitute the value of C1 and the boundary condition v � 0 at x � L into Equation 

(d), and solve for the second constant of integration C2:

EIv
Px

C x C EI
P L PL

L C C
P

⇒ ∴
3

1 2

3 2

2 26
0

6 2
( )

( )
( )

LL3

3
� � � � � � � � � �

Elastic Curve Equation
Substitute the expressions obtained for C1 and C2 into Equation (d) to complete the 

elastic curve equation:

EIv
Px PL

x
PL

v
P

EI
x� � � � � � � �

2 3
3

6
3that simplifies to LL x L2 32[ ]

2 3 6

3

 (e)

Similarly, the beam slope equation from Equation (c) can be completed with the expres-

sion derived for C1:

 EI
dv

dx

Px PL dv

dx

P

EI
L x� � � � �

2 2
2 2

2 2 2
that simplifies to [[ ]  (f )
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Beam Defl ection and Slope at A
The defl ection and slope of the beam at A are obtained by setting x � 0 in Equations (e) 

and (f). The beam defl ection and slope at the free end of the cantilever are

 v
PL

EI

dv

dx

PL

EIA
A

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

3 2

3 2
and� ��  Ans.

418

Derive the equation for the elastic curve, and determine expressions for the slope 

and defl ection of the beam at B. Use the double-integration method.

 MecMovies Example M10.2

A simply supported beam is subjected to the linearly distrib-

uted load shown. Determine the equation of the elastic curve. 

Also, determine the defl ection of the beam at midspan B and 

the slope of the beam at support A. Assume that EI is constant 

for the beam.

Plan the Solution
Generally, two moment equations would be needed to defi ne 

the complete variation of M over the entire span. However, in 

this case, the beam and loading are symmetrical. On the basis of symmetry, we 

need only solve for the elastic curve in the interval 0 � x � L�2. The boundary 

conditions for this interval will be found at the pin support A and at midspan B.

SOLUTION
Support Reactions
Since the beam is symmetrically supported and symmetrically loaded, the 

beam reactions at A and C are identical:

A C
w L

y y� � 0

4

No loads act in the x direction; therefore, Ax � 0.

Equilibrium
Cut through the beam at an arbitrary distance x from the origin, and draw a 

free-body diagram, taking care to show the internal moment M acting in a 

positive direction. The equilibrium equation for the sum of moments about 

section a–a is

EXAMPLE 10.2

v

x

A CB

w0

Elastic curve

2
L—

2
L—

A

x     L
4

w0

     x2

L
w0x

2w
L

0 x1
2

3
—x

2w
L

0 xw

V

M

a

a

�

�
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M
w x

L
x

x w L
a a �Σ � � ��

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞1

2

2

3 4
0 0

⎠⎠
⎟⎟⎟

Hence, the bending-moment equation for this beam is

 M
w Lx w x

L
x L� � � � /0 0

3

4 3
0 2(valid for )  (a)

Substitute this expression for M into Equation (10.1) to obtain

 EI
d v

dx

w Lx w x

L

2

2
0 0

3

4 3
� �  (b)

Integration
To obtain the elastic curve equation, Equation (b) will be integrated twice. The fi rst 

integration gives

 EI
dv

dx

w Lx w x

L
C0

2
0

4

18 12
� � �  (c)

where C1 is a constant of integration. Integrating again gives

 EIv
w Lx w x

L
C x C0

3
0

5

1 224 60
� � � �  (d)

where C2 is a second constant of integration.

Boundary Conditions
Moment equation (a) is valid only in the interval 0 � x � L�2; therefore, the boundary 

conditions must be found in this same interval. At x � 0, the beam is supported by a pin 

connection; consequently, v � 0 at x � 0.

A common mistake for this type of problem is to try to use the roller support at C 

as the second boundary condition. Although it is certainly true that the beam’s defl ection 

at C will be zero, we cannot use v � 0 at x � L as a boundary condition for this problem. 

Why? We must choose a boundary condition that is within the bounds of the moment 

equation—that is, within the interval 0 � x � L�2.

The second boundary condition required for evaluation of the constants of integra-

tion can be found from symmetry. The beam is symmetrically supported, and the load-

ing is symmetrically placed on the span. Therefore, the slope of the beam at x � L�2 

must be dv�dx � 0.

Evaluate Constants
Substitute the boundary condition v � 0 at x � 0 into Equation (d) to fi nd that C2 � 0.

Next, substitute the value of C2 and the boundary condition dv�dx � 0 at x � L�2 

into Equation (c), and solve for the constant of integration C1:

EI
dv

dx

w Lx x

L
C EI

w L L L
⇒

/ /0
2

0
4

1
0

2
0

8 2
0

8
( )

( ) (2 22)4

1

1
0

3

12
5

192

L
C

C
w L

∴

� � � �

� �

� �
1

w w
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Elastic Curve Equation
Substitute the expressions obtained for C1 and C2 into Equation (d) to complete the elastic 

curve equation:

 (e)

Similarly, the beam slope equation from Equation (c) can be completed with the expres-

sion derived for C1:

 (f)

Beam Defl ection at Midspan
The defl ection of the beam at midspan B is obtained by setting x � L�2 in Equation (e):

 
EIv

w L L w L

L

w L
L

v

B

B

/ /
/

∴

0
3

0
5

0
32

24

2

60

5

192
2

( ) ( )
( )

116

120
0

4
0

4w L

EI

w L

EI1,920

� �

� � � �

�
 Ans.

Beam Slope at A
The slope of the beam at A is obtained by setting x � 0 in Equation (f):

 EI
dv

dx

w L w

L

w L d

A

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ∴0

2
0

4
0

30

8

0

12

5

192

( ) ( ) vv

dx

w L

A

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

5

192
0

3

� � � � �  Ans.

EIv
w Lx w x

L

w L
x v0

3
0

5
0

3

24 60

5

192
that simplifies to

ww x

EI
Lx

x

L
L0 2

4
3

960
40

16
25

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

� � � � � �

x

v

L

B

vBElastic curveA B

w

�

The cantilever beam shown is subjected to a uniformly distributed load w. 

Determine the equation of the elastic curve as well as the defl ection vB 

and rotation angle �B of the beam at the free end of the cantilever. 

Assume that EI is constant for the beam.

Plan the Solution
In this example, we will consider a free-body diagram of the tip of the 

cantilever to illustrate how a simple coordinate transformation can sim-

plify the analysis.

SOLUTION
Equilibrium
Before the elastic curve equation can be obtained, an equation describ-

ing the variation of bending moment must be derived. Typically, one 

would begin this process by drawing a free-body diagram (FBD) of 

the left portion of the beam, such as the accompanying sketch. In order 

EXAMPLE 10.3

420

EI
dv

dx

w Lx w x

L

w L d0
2

0
4

0
3

8 12

5

192
that simplifies to

vv

dx

w x

EI
Lx

x

L
L

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0 2
4

3

192
24

16
5� � � � � �
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to complete this FBD, however, the vertical reaction force Ay and 

the moment reaction MA must be determined. Perhaps it might be 

simpler to consider a FBD of the right portion of the cantilever, 

since the reactions at fi xed support A do not appear on 

that FBD.

A FBD of the right portion of the cantilever beam is shown. 

A common mistake at this stage of the analysis is to defi ne the 

beam length between section a–a and B as x. The origin of the x–v 

coordinate system is located at support A, with positive x extend-

ing to the right. To be consistent with the defi ned coordinate sys-

tem, the length of the beam segment must be denoted L � x. This 

simple coordinate transformation is the key to success for this 

type of problem.

Cut through the beam at section a–a, and consider the beam 

and its loading between a–a and the free end of the cantilever at 

B. Note that a clockwise internal moment M is shown acting on 

the beam segment at a–a. Clockwise is the positive direction for 

an internal moment acting on the left face of a bending element, 

and this direction is consistent with the sign convention shown 

in Figure 10.5.

The equilibrium equation for the sum of moments about a–a is

 
ΣM w L x

L x
Ma a � � � � �

�
�

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( )

2
0

 

Therefore, the bending-moment equation for this beam is

 M
w

� �
2

L x 2�( )  (a)

Notice that this equation is valid for the interval 0 � x � L. Substitute the expression for 

M into Equation (10.1) to obtain

 EI
d v

dx

w
L x

2

2
2

2
� � �( )  (b)

Integration
The fi rst integration of Equation (b) gives

 EI
dv

dx

w
L x C� � ��

6
3

1( )  (c)

where C1 is a constant of integration. Note the sign change on the fi rst term. Integrating 

again gives

 EIv
w

L x C x C� � � � �
24

4
1 2( )  (d)

where C2 is a second constant of integration.

x

v

L

L � x x
V

M

a

a

w

A B

MA

Ay

x

v

x

L x
V

M

a

a

w

A B

w (L x)

a

�

�

Free-body diagram of the left portion 
of the cantilever beam.

Free-body diagram of the right portion 
of the cantilever beam.
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Boundary Conditions
Boundary conditions for the cantilever beam are

x v x dv dx� � � �0 0 0 0, and ,

Evaluate Constants
Substitute the boundary condition dv/dx � 0 at x � 0 into Equation (c) to evaluate the 

constant C1:

EI
dv

dx

w
L x C EI

w
L C C

wL
� � � � � � ��⇒ ∴

6
0

6
0

6
3

1
3

1 1

3
( ) ( ) ( )

Next, substitute the value of C1 and the boundary condition v � 0 at x � 0 into Equation 

(d) and solve for the second constant of integration C2:

EIv
w

L x C x C EI
w

L
wL

� � � � �

��

� � � �� ⇒
24

0
24

0
6

04
1 2

4
3

( ) ( ) ( ) ( ) CC

C
wL

2

2

4

24

Elastic Curve Equation
Substitute the expressions obtained for C1 and C2 into Equation (d) to complete the elastic 

curve equation,

 EIv
w

L x
wL

x
wL

v
wx

� � �� � � �� � �
24 6 24

4
3 4

( ) ,       which simplifies to
22

2 2

24
6 4

EI
L Lx x( )  (e)

Similarly, the beam slope equation from Equation (c) can be completed with the expres-

sion derived for C1,

 EI
dv

dx

w
L x

wL dv

dx

wx

EI
� � � � � � �

6 6 6
3

3
( ) 3 32 2L Lx x( ),     which simplifies to  (f)

Beam Defl ection at B
At the tip of the cantilever, x � L. Substituting this value into Equation (e) gives

 EIv
w

L L
wL

L
wL

v
wL

EIB � � � � � � ��
24 6 24 8

4
3 4 4

[ ( )] ( ) B  Ans.

Beam Rotation Angle at B
If beam defl ections are small, the rotation angle � is equal to the slope dv�dx. Substituting 

x � L into Equation (f) gives

 EI
dv

dx

w
L L

wL dv

dxB

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ �

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟

66
3

3
[ ( )] ⎟⎟

B
B

wL

EI

3

6
� � � � � ��  Ans.
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M

a
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EXAMPLE 10.4

The simple beam supports a concentrated load P acting at 

distances a and b from the left and right supports, respec-

tively. Determine the equations of the elastic curve. Also, de-

termine the beam slopes at supports A and C. Assume that EI 
is constant for the beam.

Plan the Solution
Two elastic curve equations will be required for this beam 

and loading: one curve that applies to the interval 0 � x � a 

and a second curve that applies to a � x � L. Altogether, four 

constants of integration will result from the double integra-

tion of two equations. Two of these constants can be evaluated from boundary conditions 

at the beam supports, where the beam defl ections are known (v � 0 at x � 0 and v � 0 

at x � L). The two remaining constants of integration will be found from continuity 
conditions. Since the beam is continuous, both sets of equations must produce the same 

beam slope and defl ection at x � a, where the two elastic curves meet.

SOLUTION
Support Reactions
From equilibrium of the entire beam, the reactions at pin A and roller C are

A
Pb

L
C

Pa

Lx y� � �0 Ay
 

Equilibrium
In this example, the bending moments are expressed by two 

equations, one for each segment of the beam. Based on the 

free-body diagrams shown here, the bending-moment equa-

tions for this beam are

 M
Pbx

L
x a� � �( )0  (a)

 M
Pbx

L
P x a a x L� � � � �( ) ( )  (b)

Integration for the Interval 0 � x � a
Substitute Equation (a) into Equation (10.1) to obtain

 EI
d v

dx

Pbx

L

2

2
�   (c)

Integrate Equation (c) twice to obtain

 EI
dv

dx

Pbx

L
C

2

12
� �

 (d)

 
EIv

Pbx

L
C x C

3

1 26
� � �  

(e)

v

x

Elastic curve
a b

L

A CB

P
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Integration for the Interval a � x � L
Substitute Equation (b) into Equation (10.1) to obtain 

 EI
d v

dx

Pbx

L
P x a

2

2
( )� � �  (f)

Integration
Integrate Equation (f) twice to obtain

 EI
dv

dx

Pbx

L

P
x a C

2
2

32 2
( )� � � �  (g)

 EIv
Pbx

L

P
x a C x C

3
3

3 46 6
( )� � � � �  (h)

Equations (d), (e), (g), and (h) contain four constants of integration; therefore, four 

boundary and continuity conditions are required to evaluate the constants.

Continuity Conditions
The beam is a single, continuous member. Consequently, the two sets of equations must 

produce the same slope and the same defl ection at x � a. Consider slope equations 

(d) and (g). At x � a, these two equations must produce the same slope; therefore, set 

the two equations equal to each other and substitute the value a for each variable x:

 Pb a

L
C

Pb a

L

P
a a C C C

( ) ( )
[( ) ]

2

1

2
2

3 1 32 2 2
� � � � � ��

 (i)

Likewise, defl ection equations (e) and (h) must give the same defl ection v at x � a. Set-

ting these equations equal to each other and substituting x � a give

Pb a

L
C a C

Pb a

L

P
a a C a C

( )
( )

( )
[( ) ] ( )

3

1 2

3
3

3 4666
CC2� � � � � � � �� 4C

 
( j)

Boundary Conditions
At x � 0, the beam is supported by a pin connection; consequently, v � 0 at x � 0. 

Substitute this boundary condition into Equation (e) to fi nd

EIv
Pbx

L
C x C EI

Pb

L
C C C⇒

3

1 2

3

1 2 26
0

0

6
0 0( )

( )
( )� � � � � � ��

Since C2 � C4 from Equation ( j),

 C C2 4 0� �  (k)

At x � L, the beam is supported by a roller connection; consequently, v � 0 at x � L. 

Substitute this boundary condition into Equation (h) to fi nd

EIv
Pbx

L

P
x a C x C EI

Pb L

L

P
L⇒

3
3

3 4

3

6 6
0

6 6
( ) ( )

( )
( aa C L C( )3

3 4� � � � � � � � � �)

Noting that (L � a) � b, simplify this equation to obtain

EI
PbL Pb

C L C
PbL

L

Pb

L

Pb L b
( )0

6 6 6 6

2 3

3 3

2 3 2 2( ))
6L

� � � � � � � �
�

�
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Since C1 � C3,

 C C
Pb L b

L1 3

2 2

6

( )
� � �

�
 (l)

Elastic Curve Equation
Substitute the expressions obtained for the constants of integration [i.e., Equations (k) 

and (l)] into Equations (e) and (h) to complete the elastic curve equations,

 

EIv
Pbx

L

Pb L b

L
x

v
Pbx

L

3 2 2

6 6

6

( )

EEI
L b x x a2 2 2 0[ ] ( )

�

� � � � � �

�
�

,       which simplifies to
 (m)

and

 

EIv
Pbx

L

P
x a

Pb L b

L
x

( )3
3

2 2

6 6 6
( )

( )
( )v

Pbx

LEI
L b x

P x a

EI
a x L[ ]

6 6
2 2 2

3

�

� � � � �
�

� �

� � �
� , which simplifies to

 
(n)

The slopes for the two portions of the beam can be determined by substituting the values 

for C1 and C3 into Equations (d) and (g), respectively, to obtain

 

EI
dv

dx

Pbx

L

Pb L b

L
dv

dx

Pb

LEI
L b x

( )2 2 2

2 2 2

2 6

6
3(( ) ( )0 x a

� �
�

�� � � � � �

 (o)

and

 

EI
dv

dx

Pbx

L

P
x a

Pb L b

L
dv

dx

Pb

LEI

( )2
2

2 2

2 2 6

6

( )

LL b x
P x a

EI
a x L2 2 2

2
3

2
( )

( )
( )

� � � �
�

�� � � � � � �
�

 (p)

The defl ection v and slope dv�dx can be computed for any location x along the beam span 

from Equations (m), (n), (o), and (p).

Beam Slope at Supports
The slope of the beam can be determined at each support from Equations (o) and (p). 

At pin support A, the beam slope is found from Equation (o), using x � 0 and recogniz-

ing that a � L � b:

 
dv

dx

Pb

LEI
L b

Pb

LEI
L b L b

A

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ( )

6 6
2 2 ( )( ))

( )Pab L b

LEI6
� � � � � � � � �

�
 

Ans.

At roller support C, the beam slope is found from Equation (p), using x � L:

 

dv

dx

Pb

LEI
L b L

P L a

EI

P
C

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ( )

6
3

2
2 2 2

2( )

bb L bL b

LEI

Pab L a

LEI

2 3

6 6

2 2( ) ( )

�

�
� � �

�

� � � �
�

 
Ans.
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M10.1 Beam Boundary Condition Game. Determine appro-

priate boundary conditions needed to determine constants of inte-

gration for the double-integration method.

FIGURE M10.1

P10.4 For the beam and loading shown in Figure P10.4, use the 

double-integration method to determine

(a)  the equation of the elastic curve for segment AB of the beam.

(b) the defl ection at B.

(c) the slope at A. 

Assume that EI is constant for the beam.

v

x

A B

L

0M

FIGURE P10.1

v

x

A B

L

w

FIGURE P10.2

v

x

A B

L

w0

FIGURE P10.3

v

x

A CB

P

2
L—

2
L—

FIGURE P10.4
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 MecMovies ExercisesMM

PROBLEMSPROBLEMS
P10.1–P10.3 For the loading shown in Figure P10.1–P10.3, use 

the double-integration method to determine

(a) the equation of the elastic curve for the cantilever beam. 

(b) the defl ection at the free end.

(c) the slope at the free end. 

Assume that EI is constant for each beam.
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P10.5 For the beam and loading shown in Figure P10.5, use the 

double-integration method to determine

(a) the equation of the elastic curve for the beam.

(b) the slope at A.

(c) the slope at B.

(d) the defl ection at midspan.

Assume that EI is constant for the beam.

P10.8 For the beam and loading shown in Figure P10.8, use the 

double-integration method to determine

(a) the equation of the elastic curve for segment BC of the beam. 

(b) the defl ection midway between B and C.

(c) the slope at C. 

Assume that EI is constant for the beam.
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FIGURE P10.6

P10.6 For the beam and loading shown in Figure P10.6, use the 

double-integration method to determine

(a) the equation of the elastic curve for the beam.

(b) the maximum defl ection.

(c) the slope at A. 

Assume that EI is constant for the beam.

P10.7 For the beam and loading shown in Figure P10.7, use the 

double-integration method to determine

(a)  the equation of the elastic curve for segment AB of the beam.

(b) the defl ection midway between the two supports.

(c)  the slope at A.

(d) the slope at B. 

Assume that EI is constant for the beam.
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FIGURE P10.8

P10.9 For the beam and loading shown in Figure P10.9, use the 

double-integration method to determine

(a) the equation of the elastic curve for segment AB of the beam.

(b) the defl ection midway between A and B.

(c) the slope at B.

Assume that EI is constant for the beam.
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FIGURE P10.9

P10.10 For the beam and loading shown in Figure P10.10, use 

the double-integration method to determine

(a) the equation of the elastic curve for segment AC of the beam. 

(b) the defl ection at B.

(c) the slope at A. 

Assume that EI is constant for the beam.
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FIGURE P10.10
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FIGURE P10.11

P10.12 For the cantilever steel beam [E � 200 GPa; I � 129 � 

106 mm4] shown in Figure P10.12, use the double-integration 

method to determine the defl ection at A. Assume that L � 2.5 m, 

P � 50 kN, and w � 30 kN/m.

P10.13 For the cantilever steel beam [E � 200 GPa; I � 129 � 

106 mm4] shown in Figure P10.13, use the double-integration method 

to determine the defl ection at B. Assume that L � 3 m, M0 � 70 kN-m, 

and w � 15 kN/m.

P10.14 For the cantilever steel beam [E � 200 GPa; I � 129 � 

106 mm4] shown in Figure P10.14, use the double-integration method 

to determine the defl ection at A. Assume that L � 2.5 m, P � 50 kN, 

and w0 � 90 kN/m.

P10.15 For the beam and loading shown in Figure P10.15, use 

the double-integration method to determine

(a) the equation of the elastic curve for the cantilever beam.

(b) the defl ection at the free end.

(c) the slope at the free end. 

Assume that EI is constant for the beam.
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P10.16 For the beam and loading shown in Figure P10.16, use 

the double-integration method to determine

(a) the equation of the elastic curve for the cantilever beam.

(b) the defl ection at the free end.

(c) the slope at the free end. 

Assume that EI is constant for the beam.
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FIGURE P10.16

P10.17 For the beam and loading shown in Figure P10.17, use 

the double-integration method to determine

(a) the equation of the elastic curve for the cantilever beam.

(b) the defl ection at B.

(c) the defl ection at the free end.

(d) the slope at the free end.

Assume that EI is constant for the beam.
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FIGURE P10.17
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P10.11 For the simply supported steel beam [E � 200 GPa; 

I � 129 � 106 mm4] shown in Figure P10.11, use the double-

integration method to determine the defl ection at B. Assume that 

L � 4 m, P � 60 kN, and w � 40 kN/m.
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P10.18 For the beam and loading shown in Figure P10.18, use 

the double-integration method to determine

(a) the equation of the elastic curve for the beam.

(b) the defl ection at B.

Assume that EI is constant for the beam.
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FIGURE P10.18

P10.19 For the beam and loading shown in Figure P10.19, use 

the double-integration method to determine

(a) the equation of the elastic curve for the entire beam.

(b) the defl ection at C.

(c) the slope at B. 

Assume that EI is constant for the beam.
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FIGURE P10.19

P10.20 For the beam and loading shown in Figure P10.20, use 

the double-integration method to determine

(a) the equation of the elastic curve for the beam.

(b) the location of the maximum defl ection.

(c) the maximum beam defl ection.

Assume that EI is constant for the beam.
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FIGURE P10.20
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In Section 10.3, the equation of the elastic curve was obtained by integrating the differen-

tial equation

 EI
d v

dx
M

2

2
�   (10.1)

and applying the appropriate bounding conditions to evaluate the two constants of integra-

tion. In a similar manner, the equation of the elastic curve can be obtained from shear-force 

or load equations. The differential equations that relate defl ection v to shear force V or load 

w are thus

 
EI

d v

dx
V

3

3
�  

(10.2)

 EI
d v

dx
w

4

4
�  (10.3)

where both V and w are functions of x. When Equations (10.2) or (10.3) are used to obtain 

the equation of the elastic curve, either three or four integrations will be required instead 

of the two integrations required with Equation (10.1). These additional integrations will 

introduce additional constants of integration. The boundary conditions, however, now in-

clude conditions on the shear forces and bending moments, in addition to the conditions 

10.5  Defl ections by Integration of Shear-Force 
or Load Equations
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430
BEAM DEFLECTIONS on slopes and defl ections. The selection of a particular differential equation is usually 

based on mathematical convenience or personal preference. In those instances when the 

expression for the load is easier to write than the expression for the moment, Equation 

(10.3) would be preferred over Equation (10.1). The following example illustrates the use 

of Equation (10.3) for calculating beam defl ections:

A beam is loaded and supported as shown. Assume that EI is 

constant for the beam. Determine

(a)  the equation of the elastic curve in terms of w0, L, x, E, and I.
(b) the defl ection of the right end of the beam.

(c) the support reactions Ay and MA at the left end of the beam.

Plan the Solution
Since the equation for the load distribution is given and the mo-

ment equation is not easy to derive, Equation (10.3) will be 

used to determine the defl ections.

SOLUTION
The upward direction is considered positive for a distributed load w; therefore, 

Equation (10.3) is written as

 EI
d v

dx
w x w

x

L

4

4 0 2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( ) cos� � �

�
 (a)

Integration
Equation (a) will be integrated four times to obtain the elastic curve equation.

 
EI

d v

dx
V x

w L x

L

3

3
02

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟( ) sin C1� � � �

�

�
 

(b)

 EI
d v

dx
M x

w L x

L

2

2
0

2

2

4

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟( ) cos ⎟⎟ C x C1 2� � � �

�

�
 (c)

 EI
dv

dx
EI

w L x

L
C

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

8

2
0

3

3
sin 11

2

2 32

x
C x C� � � � �

�

�
�  (d)

 EIv
w L x

L
C

x⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

16

2 6
0

4

4 1

3
cos CC

x
C x C2

2

3 42
� � � � � �

�

�
 (e)

EXAMPLE 10.5

x

A B

v

L

w0
w0w(x) cos

x
L2

�
�
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Boundary Conditions and Constants
The four constants of integration are determined by applying the boundary conditions. 

Thus,

 At , therefore,

At , ; the

x v C
w L

x
dv

dx

� � �

� �

0 0
16

0 0

4
0

4

4�

rrefore,

At , ; therefore,

At ,

C

x L V C
w L

x L M

3

1
0

0

0
2

�

� � �

�

�

� �0
2

2
0

2
; therefore, C

w L

�

;  

Elastic Curve Equation
Substitute the expressions obtained for the constants of integration into Equation (e) to 

complete the elastic curve equation:

 v
w

EI
L

x

L
Lx L x� � � � �0

4
4 3 3 3 2 2

3
48

2
3 4

�

�
��cos 8 4L  Ans.

Beam Defl ection at Right End of Beam
The defl ection of the beam at B is obtained by setting x � L in the elastic curve equation:

 v
w

EI
L L L

w L

EB � � � � � � �
�0

4
3 4 3 4 4

3
0

4

43
3 48

2 48

3�
� �

�

� II

w L

EI
� �0 04795 0

4
.  

Ans.

Support Reactions at A
The shear force V and the bending moment M at any distance x from the support are given 

by the following equations derived from Equations (b) and (c):

V x
w L x

L
( ) sin� �

2
1

2
0

�

�

M x
w L

L
x

L
x L( ) cos� � �

2
2

2
0
2�

�
� �

Thus, the support reactions at the left end of the beam (i.e., x � 0) are

 A
w L

y � �
2 0

�
AV  Ans.

 M
w L

A � �
�2 2 0

2

2

( )�

�
 Ans.
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FIGURE P10.21
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P10.21 For the beam and loading shown in Figure P10.21, 

integrate the load distribution to determine

(a) the equation of the elastic curve for the beam. 

(b) the maximum defl ection for the beam. 

Assume that EI is constant for the beam.

PROBLEMSPROBLEMS
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FIGURE P10.22

P10.23 For the beam and loading shown in Figure P10.23, 

integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the defl ection at the left end of the beam.

(c) the support reactions By and MB. 

Assume that EI is constant for the beam.

FIGURE P10.23
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L3

x3w0w(x) � 

P10.24 For the beam and loading shown in Figure P10.24, 

integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the defl ection midway between the supports.

(c) the support reactions Ay and By. 

Assume that EI is constant for the beam.
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FIGURE P10.25

P10.26 For the beam and loading shown in Figure P10.26, 

integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the defl ection midway between the supports.

(c) the slope at the left end of the beam.

(d) the support reactions Ay and By. 

Assume that EI is constant for the beam.
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FIGURE P10.26

P10.27 For the beam and loading shown in Figure P10.27, 

integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the defl ection midway between the supports.

(c) the slope at the left end of the beam.

(d) the support reactions Ay and By. 

Assume that EI is constant for the beam.

P10.25 For the beam and loading shown in Figure P10.25, 

integrate the load distribution to determine

(a) the equation of the elastic curve.
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FIGURE P10.27

(b) the defl ection at the left end of the beam.

(c) the support reactions By and MB. 

Assume that EI is constant for the beam.

432

P10.22 For the beam and loading shown in Figure P10.22, 

integrate the load distribution to determine

(a) the equation of the elastic curve for the beam.

(b) the defl ection midway between the supports. 

Assume that EI is constant for the beam.
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FIGURE P10.24
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P10.28 For the beam and loading shown in Figure P10.28, 

integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the defl ection at the left end of the beam.

(c) the support reactions By and MB. 

Assume that EI is constant for the beam.
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FIGURE P10.28
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The integration procedures used to derive the elastic curve equations are relatively straight-

forward if the beam loading can be expressed as a single continuous function acting over 

the entire length of the beam. However, the procedures discussed in Sections 10.4 and 10.5 

can become quite complicated and tedious for beams that carry multiple concentrated loads 

or segmented distributed loads. For example, the beam in Example 10.4 was loaded by a 

single concentrated load. In order to determine the elastic curve for this relatively uncom-

plicated beam and loading, moment equations had to be derived for two beam segments. 

Double integration of these two moment equations generated four constants of integration 

that had to be evaluated using boundary conditions and continuity conditions. For beams 

that are more complicated such as those with multiple concentrated loads or segmented 

distributed loads, it is evident that the computations required to derive all of the necessary 

equations and to solve for all of the constants of integration can become quite lengthy. The 

use of discontinuity functions greatly simplifi es this process. In this section, discontinuity 

functions will be used to determine the elastic curve for beams with several loads. These 

functions provide a versatile and effi cient technique for the computation of defl ections for 

both statically determinate and statically indeterminate beams with constant fl exural rigidity 

EI. The use of discontinuity functions for statically indeterminate beams will be discussed 

in Section 11.4.

As discussed in Section 7.4, discontinuity functions allow all loads that act on the 

beam to be incorporated into a single load function w(x) that is continuous for the entire 

length of the beam even though the loads may not be. Since w(x) is a continuous function, 

the need for continuity conditions is eliminated, thus simplifying the calculation process. 

When the beam reaction forces and moments are included in w(x), the constants of integra-

tion for both V(x) or M(x) are automatically determined without the need for explicit refer-

ence to boundary conditions. However, additional constants of integration arise in the 

double integration of M(x) to obtain the elastic curve v(x). Each integration produces one 

constant, and these two constants must be evaluated using the beam boundary conditions. 

Beginning with the moment–curvature relationship expressed in Equation (10.1), M(x) is 

integrated to obtain EIv �(x), producing a constant of integration that has the value 

C1 � EIv �(0). A second integration gives EIv(x), and the resulting constant has the value 

C2 � EIv(0). For some beams, the slope or defl ection or both may be known at x � 0, mak-

ing it effortless to determine either C1 or C2. More typically, boundary conditions such as 

pin supports, roller supports, and fi xed supports occur at locations other than x � 0. For 

such beams, it will be necessary to use two beam boundary conditions to develop equations 

containing the unknown constants C1 and C2. These equations are then solved simultane-

ously to compute C1 and C2.

Application of discontinuity functions to compute beam slopes and defl ections is 

 illustrated in the following examples:

10.6 Defl ections Using Discontinuity Functions
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For the beam shown, use discontinuity functions to compute the 

defl ection of the beam

(a) at A.

(b) at C.

Assume a constant value of EI � 17 � 103 kN-m2 for the beam.

Plan the Solution
Determine the reactions at simple supports B and D. Using 

Table 7.2, write w(x) expressions for the 25-kN concentrated 

load as well as the two support reactions. Integrate w(x) four 

times to determine equations for the beam slope and defl ection. 

Use the boundary conditions known at the simple supports to 

evaluate the constants of integration.

SOLUTION
Support Reactions
A FBD of the beam is shown to the left. Based on this FBD, the 

beam reaction forces can be computed as

 ΣM

D

B

y

� �

� � �

( kN)( m) ( m)

kN

25 2 5 0

10

� yD

 ΣF B D

B

y y y

y

� � � �

� �

25 0

35

kN

kN

Discontinuity Expressions

25-kN concentrated load: Use case 2 of Table 7.2 to write the following expression for the 

25-kN concentrated load:

w x x( ) kN m� � �
�25 0 1

Reaction forces By and Dy: The upward reaction forces at B and D are expressed by using 

case 2 of Table 7.2:

w x x( ) kN m kN m� � � �
� �35 2 10 71 1

x

Note that the term for reaction force Dy will always have a value of zero in this example, 

since the beam is only 7 m long; therefore, this term may be omitted here.

Integrate the beam loading expression: Integrate the load expression w(x) for the beam,

w x x x( ) kN m kN m�� � � �
� �25 0 35 21 1

to obtain the shear-force function V(x):

V x w x dx x x( ) ( ) kN m kN m� � � � � �25 0 35 20 0∫
and again to obtain the bending-moment function M(x):

M x V x dx x x( ) ( ) kN m kN m� � � � �25 0 35 21 1∫ �

EXAMPLE 10.6
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Note that, since w(x) is written in terms of both the loads and the reactions, no constants 

of integration have been needed up to this point in the calculation. However, the next two 

integrations (which will produce functions for beam slope and defl ection) will require 

constants of integration that must be evaluated from the beam boundary conditions.

From Equation (10.1), we can write

EI
d v

dx
M x x x

2

2

1 125 0 35 2� � � � � �( ) kN m kN m

Integrate the moment function to obtain an expression for the beam slope:

 

EI
dv

dx
x x C� � � �� �

25

2
0

35

2
22 2

1
kN

m
kN

m
 

(a)

Integrate again to obtain the beam defl ection function:

 

EIv x x C x C� � � � � � �
25

6
0

35

6
23 3

1 2
kN

m
kN

m
 

(b)

Evaluate constants, using boundary conditions: Boundary conditions are specifi c values 

of defl ection v or slope dv�dx that are known at particular locations along the beam span. 

For this beam, the defl ection v is known at the roller support (x � 2 m) and at the pin 

support (x � 7 m). Substitute the boundary condition v � 0 at x � 2 m into Equation (b) 

to obtain

 
� � � � �

25

6
2

35

6
0 2 03 3

1 2
kN

( m)
kN

( m) ( m)C C
 

(c)

Next, substitute the boundary condition v � 0 at x � 7 m into Equation (b) to obtain

 
� � � � �

25

6
7

35

6
5 7 03 3

1 2
kN

( m)
kN

( m) ( m)C C
 

(d)

Solve Equations (c) and (d) simultaneously for the two constants of integration C1 and C2:

C C1
2

2
3133 3333 233 3333� � �. and .kN-m kN-m

The beam slope and elastic curve equations are now complete:

EI
dv

dx
x x

EIv

� � � � � �

�

25

2
0

35

2
2 133 33332 2 2kN

m
kN

m . kN-m

� � � � � ( ) �
25

6
0

35

6
2 133 3333 233 333 3 2kN

m
kN

m . .x x xkN-m 333 3kN-m

(a) Beam Defl ection at A
At the tip of the overhang where x � 0 m, the beam defl ection is

 
EIv x x xA � � � � � � ( ) �

25

6
0

35

2
2 133 3333 233 3 2kN

m
kN

m . kN-m 33 3333

233 3333

233 3333

17

3

3

3

.

.

.

kN-m

kN-m

kN-m

� �

� � �vA
�

� � � ↓
10

0 013725 13 73
3 2kN-m

. m . mm

 

Ans.

435

c10BeamsDeflection.indd Page 435  3/6/12  8:49 PM user-F393c10BeamsDeflection.indd Page 435  3/6/12  8:49 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



(b) Beam Defl ection at C
At C where x � 4.5 m, the beam defl ection is

EIvC � � � � ( )
25

6
4 5

35

6
2 5 133 33333 3 2kN

( . m)
kN

( . m) . kN-m (( . m) .

.

.

4 5 233 3333

78 1249

78 1249

3

3

�

�

� �

kN-m

kN-m

kN
vC

--m

kN-m

3

3 217 10
0 004596 4 60

�
� � ↑. m . mm Ans.
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For the beam shown, use discontinuity functions to compute

(a) the slope of the beam at A.

(b) the defl ection of the beam at B. 

Assume a constant value of EI � 125 � 103 kN-m2 for the beam.

Plan the Solution
Determine the reactions at simple supports A and D. Using 

Table 7.2, write w(x) expressions for the two uniformly distrib-

uted loadings as well as the two support reactions. Integrate 

w(x) four times to determine equations for the beam slope and 

defl ection. Use the boundary conditions known at the simple 

supports to evaluate the constants of integration.

SOLUTION
Support Reactions
A FBD of the beam is shown to the left. From this FBD, the 

beam reaction forces can be computed as

ΣM DA y� � � �( )( m)( m) ( )( m)( m) ( m)60 4 2 40 6 12 12kN/m kN/m �

� �

� � � �

0

280

60 4 40 6

D

F A D

y

y y y

kN

( )( m) ( )( m)Σ kN/m kN/m �

� �

0

200Ay kN

Discontinuity Expressions
Distributed load between A and B: Use case 5 of Table 7.2 to write the following expres-

sion for the 60-kN/m distributed load:

w x x x( ) m m� � � � �60 0 60 40 0kN/m kN/m

Note that the second term in this expression is required to cancel out the fi rst term 

for x 	 4 m.

Distributed load between C and E: Again, use case 5 of Table 7.2 to write the following 

expression for the 40-kN/m distributed load:

w x x x( ) m m� � � � �40 9 40 150 0kN/m kN/m

The second term in this expression will have no effect, since the beam is only 15 m long; 

therefore, this term will be omitted from further consideration.

EXAMPLE 10.7

v

x

A DB EC

4 m 3 m5 m 3 m

60 kN/m 40 kN/m

v

x

A DB EC

4 m 3 m5 m 3 m

60 kN/m 40 kN/m

Ay yD
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Reaction forces Ay and Dy: The upward reaction forces at A and D are expressed by using 

case 2 of Table 7.2:

w x x x( ) kN m kN m� � � �
� �200 0 280 121 1

Integrate the beam loading expression: The load expression w(x) for the beam is thus

w x x x x( ) kN m m m� � � � � �

�

�200 0 60 0 60 4

40

1 0 0kN/m kN/m

kN/m xx x� � �
�9 280 120 1m kN m

Integrate w(x) to obtain the shear-force function V(x):

V x w x dx x x x( ) ( ) kN m m m� � � � � � �∫ 200 0 60 0 60 40 1 1kN/m kN/m

� � � �40 9 280 121 0kN/m x xm kN m

Then integrate again to obtain the bending-moment function M(x):

M x V x dx x x x( ) ( ) kN m m� � � � � � �∫ 200 0
60

2
0

60

2
41 2kN/m kN/m

mm

m kN m

2

2 140

2
9 280 12� � � �

kN/m
x x

The inclusion of the reaction forces in the expression for w(x) has automatically ac-

counted for the constants of integration up to this point. However, the next two integra-

tions (which will produce functions for beam slope and defl ection) will require constants 

of integration that must be evaluated from the beam boundary conditions.

From Equation (10.1), we can write

EI
d v

dx
M x x x x

2

2

1 2200 0
60

2
0

60

2
� � � � � � �( ) kN m m

kN/m kN/m
44

40

2
9 280 12

2

2 1

m

m kN m� � � �
kN/m

x x

Integrate the moment function to obtain an expression for the beam slope:

 

EI
dv

dx
x x x� � � � � �

�

200

2
0

60

6
0

60

6
4

40

2 3 3kN
m m m

kN/m kN/m

kkN/m

6
9

280

2
123 2

1x x C� � � �m
kN

m
 

(a)

Integrate again to obtain the beam defl ection function:

 

EIv x x x� � � � � �

�

200

6
0

60

24
0

60

24
4

40

3 4 4kN
m m m

kN/m kN/m

kNN/m

24
9

280

3
124 3

1 2x x C x C� � � � �m
kN

m
 

(b)

Evaluate constants, using boundary conditions: Boundary conditions are specifi c values of 

defl ection v or slope dv�dx that are known at particular locations along the beam span. For 

this beam, the defl ection v is known at the pin support (x � 0 m) and at the roller support 

(x � 12 m). Substitute the boundary condition v � 0 at x � 0 m into Equation (b) to obtain

C2 0�
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Next, substitute the boundary condition v � 0 at x � 12 m into Equation (b) to obtain 

constant C1:

200

6
12

60

24
12

60

24
8

403 4 4kN
( m) ( m) ( m)� � �

kN/m kN/m kN/mm

kN-m
24

3 12 0

1 322 0833

4
1

1
2

( m) ( m)

, .

� �

� � �

C

C

The beam slope and elastic curve equations are now complete:

EI
dv

dx
x x x� � � � � �

�

200

2
0

60

6
0

60

6
4

40

2 3 3kN
m m m

kN/m kN/m

kkN/m
kN-m

6
9

280

2
12 1 322 08333 2 2x x� � � �m

kN
m , .

EIv x x x� � � � � �

�

200

6
0

60

24
0

60

24
4

40

3 4 4kN
m m m

kN/m kN/m

kNN/m
1,322.0833 kN-m

24
9

280

3
124 3 2x x x� � � � ( )m

kN
m

(a) Beam Slope at A
The beam slope at A (x � 0 m) is

 

EI
dv

dx

dv

dx

A

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ � �

�
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟

1,322.0833 kN-m2

⎟⎟⎟ � � � �
�A

1,322.0833 kN-m

kN-m
rad

2

3 2125 10
0 01058.

 
Ans.

(b) Beam Defl ection at B
The beam defl ection at B (x � 4 m) is

EIvB (
200

6
4

60

24
43 4 2kN

( m) ( m)
kN/m

1,322.0833 kN-m ))

�

( m)4

125 10

3

3

3 2

3,795 kN-m

3,795 kN-m

kN-m
vB 00 030360 30 4. m . mm ↓

�

�

���

� ��
�

�

�

Ans.
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y

x

A B C D

v

x

6 kips/ft

4 ft 8 ft 4 ft

v

x

A B C D

v
6 kips/ft

4 ft 8 ft 4 ft

Ay

MA

For the beam shown, use discontinuity functions to compute 

the defl ection of the beam at D. Assume a constant value of 

EI � 192,000 kip-ft2 for the beam.

Plan the Solution
Determine the reactions at fi xed support A. Using Table 7.2, 

write w(x) expressions for the linearly distributed load as 

well as the two support reactions. Integrate w(x) four times 

to determine equations for the beam slope and defl ection. 

Use the boundary conditions known at the fi xed support to 

evaluate the constants of integration.

SOLUTION
Support Reactions
A FBD of the beam is shown to the left. Based on this FBD, 

the beam reaction forces can be computed as

EXAMPLE 10.8
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F A

A

M M

y y

y

A A

1

2
6 8 0

24

1

2

( ) ( )

kips

(

kips/ft ft

66 8 4
2 8

3
0

224

kips/ft ft ft
ft

kip-f

) ( )
( )⎡

⎣
⎢

⎤
⎦
⎥

MA tt

Σ

Σ

�

�

�

� � � � �

� �

��

�

Discontinuity Expressions

Distributed load between B and C: Use case 6 of Table 7.2 to write the following expres-

sion for the distributed load:

w x x x( )
6

8
4

6

8
12 61 1kips/ft

ft
ft

kips/ft

ft
ft kipss/ft ftx 12 0

� � � � � � �

Reaction forces Ay and MA: The reaction forces at A are expressed with the use of cases 1 

and 2 of Table 7.2:

w x x x( ) kips224 0 24 02 1kip-ft ft ft� � � � �
��

Integrate the beam loading expression: The load expression w(x) for the beam is thus

w x x x( ) kips224 0 24 0

6

8

2 1kip-ft ft ft

kips/ft

ftt
ft

kips/ft

ft
ft kips/ft ftx x x4

6

8
12 6 121 1 0

� �

� � � � � �

� � �
��

Integrate w(x) to obtain the shear-force function V(x):

V x w x dx x x( ) ( ) kips∫ 224 0 24 0

6

1 0kip-ft ft ft

kipps/ft

ft
ft

kips/ft

ft
ft kips/

2 8
4

6

2 8
12 62 2

( ) ( )
x x fft ftx 12 1

�

� � � � � �

� � �
�

� �

Then integrate again to obtain the bending-moment function M(x):

M x V x dx x x( ) ( ) kips∫ 224 0 24 0

6

0 1kip-ft ft ft

kipss/ft
ft

kips/ft
ft

kips/f

6 8
4

6

6 8
12

63 3

( ft) ( ft)
x x

tt
ft

2
12 2

x

� �

� � � � � �

�� � �

The inclusion of the reaction forces in the expression for w(x) has automatically ac-

counted for the constants of integration up to this point. However, the next two integra-

tions (which will produce functions for beam slope and defl ection) will require constants 

of integration that must be evaluated from the beam boundary conditions.

From Equation (10.1), we can write

EI
d v

dx
M x x x

2

2

0 1224 0 24 0

6

( ) kipskip-ft ft ft

kipps/ft

ft
ft

kips/ft

ft
ft

kips/

6 8
4

6

6 8
12

63 3

( ) ( )
x x

fft
ft

2
12 2

x

� � �

� � � � � �

� � �

Integrate the moment function to obtain an expression for the beam slope:

EI
dv

dx
x x224 0

24

2
0

6

2

1 2kip-ft ft ft

kips/ft

kips

44 8
4

6

24 8
12

6

6
4 4

( ) ( )ft
ft

kips/ft

ft
ft

kips/ft
x x x 12 3

1ft C

� �

� � � � � ��

� � �

 

(a)
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v

x

A DB C

4 ft 3 ft6 ft

5 kips 3 kips

FIGURE P10.29

250 mm 350 mm

A
B

C

800 N
500 NFIGURE P10.30

PROBLEMSPROBLEMS
P10.29 For the beam and loading shown in Figure P10.29, use 

discontinuity functions to compute the defl ection of the beam at D. 

Assume a constant value of EI � 1,750 kip-ft2 for the beam.

P10.30 The solid 30-mm-diameter steel [E � 200 GPa] shaft 

shown in Figure P10.30 supports two pulleys. For the loading 

shown, use discontinuity functions to compute

(a) the shaft defl ection at pulley B.

(b) the shaft defl ection at pulley C.

440

Integrate again to obtain the beam defl ection function:

EIv x x
224

2
0

24

6
0

6

120

2 3kip-ft
ft ft

kips/ft

kips

(( ) ( )8
4

6

120 8
12

6

24
5 5

ft
ft

kips/ft

ft
ft

kips/ft
x x xx C x C12 4

1 2ft

� �

� � � � � � ��

� � �

 

(b)

Evaluate constants, using boundary conditions: For this beam, the slope and the defl ec-

tion are known at x � 0 ft. Substitute the boundary condition dv�dx � 0 at x � 0 ft into 

Equation (a) to obtain

C1 0�

Next, substitute the boundary condition v � 0 at x � 0 ft into Equation (b) to obtain 

constant C2:

C2 0�

The beam slope and elastic curve equations are now complete:

EI
dv

dx
x x224 0

24

2
0

6

2

1 2kip-ft ft ft

kips/ft

kips

44 8
4

6

24 8
12

6

6
4 4

( ) ( )
ft
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kips/ft
x x x 12

224

2
0

24

6
0

6

3

2 3
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kip-ft
ft ft

kip

EIv x x
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kips/ft
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ki

120 8
4

6

120 8
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65 5

( ) ( )
x x

pps/ft
ft

24
12 4

x

� �

�

�

� � � � � �

� � � �

� � � � �

� � �

Beam defl ection at D: The beam defl ection at D (x � 16 ft) is computed as follows:

EIvD
224

2
16

24

6
16

62 3kip-ft
ft ft

kips/ft
( )

kips
( )

1120 8
12

6

120 8
4

65 5

( )
( )
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kips/ftt
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13,772.8 kip-ft

13,772. kip-ft

24
4

8

4

3

3

( )

vD 1192,000 kip-ft
ft

2
0 071733 0 861 ↓. . in.

� �
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� � � �

� � � � ��

 

.
Ans.
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P10.31 For the beam and loading shown in Figure P10.31, use 

discontinuity functions to compute

(a) the slope of the beam at C.

(b) the defl ection of the beam at C. 

Assume a constant value of EI � 560 � 106 N-mm2 for the beam.

v

x

A ECB D

210 N-m

200 mm 150 mm 250 mm
100 mm

1,400 N

FIGURE P10.31

P10.32 The solid 30-mm-diameter steel [E � 200 GPa] shaft 

shown in Figure P10.32 supports two belt pulleys. Assume that the 

bearing at A can be idealized as a pin support and that the bearing 

at E can be idealized as a roller support. For the loading shown, use 

discontinuity functions to compute

(a) the shaft defl ection at pulley B.

(b) the shaft defl ection at point C.

300 mm 200 mm300 mm 200 mm

A B

C

D E

800 N600 N

FIGURE P10.32

P10.33 The cantilever beam shown in Figure P10.33 consists 

of a W530 � 74 structural steel wide-fl ange shape [E � 200 GPa; 

I � 410 � 106 mm4]. Use discontinuity functions to compute the 

defl ection of the beam at C for the loading shown.

v

x

A B C
3 m 2 m

40 kN

30 kN/m

FIGURE P10.33

P10.34 The cantilever beam shown in Figure P10.34 consists of 

a W21 � 50 structural steel wide-fl ange shape [E � 29,000 ksi; 

I � 984 in.4]. Use discontinuity functions to compute the defl ection 

of the beam at D for the loading shown.

P10.35 The simply supported beam shown in Figure P10.35 

consists of a W410 � 85 structural steel wide-fl ange shape 

[E � 200 GPa; I � 316 � 106 mm4]. For the loading shown, use 

discontinuity functions to compute

(a) the slope of the beam at A.

(b) the defl ection of the beam at midspan.

v

x

A B DC

75 kN/m 75 kN/m

2.5 m3.0 m2.5 m

FIGURE P10.35

P10.36 The simply supported beam shown in Figure P10.36 

consists of a W14 � 30 structural steel wide-fl ange shape 

[E � 29,000 ksi; I � 291 in.4]. For the loading shown, use discon-

tinuity functions to compute

(a) the slope of the beam at A.

(b) the defl ection of the beam at midspan.

v

x

A CB D

6 ft 12 ft 6 ft

2.5 kips/ft

FIGURE P10.36

P10.37 The simply supported beam shown in Figure P10.37 

consists of a W21 � 50 structural steel wide-fl ange shape 

[E � 29,000 ksi; I � 984 in.4]. For the loading shown, use discon-

tinuity functions to compute

(a) the slope of the beam at A.

(b) the defl ection of the beam at B.

v

x

A B C D
4 ft 9 ft3 ft

9 kips
4 kips/ft

FIGURE P10.34

v

x

A CB

11 ft 9 ft

4 kips/ft
7 kips/ft

FIGURE P10.37
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P10.38 The simply supported beam shown in Figure P10.38 

consists of a W200 � 59 structural steel wide-fl ange shape 

[E � 200 GPa; I � 60.8 � 106 mm4]. For the loading shown, use 

discontinuity functions to compute

(a) the defl ection of the beam at C.

(b) the defl ection of the beam at F.

x

v

A DB EC F

2 m2 m 2 m 2 m4 m

20 kN 10 kN

8 kN/m

FIGURE P10.38

P10.39 The solid 0.50-in.-diameter steel [E � 30,000 ksi] shaft 

shown in Figure P10.39 supports two belt pulleys. Assume that the 

bearing at B can be idealized as a pin support and that the bearing 

at D can be idealized as a roller support. For the loading shown, use 

discontinuity functions to compute

(a) the shaft defl ection at pulley A.

(b) the shaft defl ection at pulley C.

10 in.5 in. 10 in.

A B C D

90 lb 120 lb

FIGURE P10.39

P10.40 The cantilever beam shown in Figure P10.40 consists of 

a W8 � 31 structural steel wide-fl ange shape [E � 29,000 ksi; 

I � 110 in.4]. For the loading shown, use discontinuity functions 

to compute

(a) the slope of the beam at A.

(b) the defl ection of the beam at A.

v

x

A B C

10 ft5 ft

3.5 kips/ft75 kip-ft

v

x

A DB EC

8 ft 8 ft 10 ft 4 ft

4 kips/ft
6 kips/ft

FIGURE P10.41

P10.42 For the beam and loading shown in Figure P10.42, use 

discontinuity functions to compute

(a) the defl ection of the beam at A.

(b) the defl ection of the beam at midspan (i.e., x � 2.5 m). 

Assume a constant value of EI � 1,500 kN-m2 for the beam.

v

x

A CB

3 m1 m

9 kN-m
18 kN/m

FIGURE P10.42

P10.43 For the beam and loading shown in Figure P10.43, use 

discontinuity functions to compute

(a) the slope of the beam at B.

(b) the defl ection of the beam at A. 

Assume a constant value of EI � 133,000 kip-ft2 for the beam.

v

x

A CB

4 kips/ft

9 ft 5 ft

FIGURE P10.43

P10.44 For the beam and loading shown in Figure P10.44, use 

discontinuity functions to compute

(a) the slope of the beam at B.

(b) the defl ection of the beam at C. 

Assume a constant value of EI � 34 � 106 lb-ft2 for the beam.

v

x

A DB C

9 ft4 ft 5 ft

7,000 lb/ft

FIGURE P10.44

P10.41 The simply supported beam shown in Figure P10.41 

consists of a W14 � 34 structural steel wide-fl ange shape 

[E � 29,000 ksi; I � 340 in.4]. For the loading shown, use discon-

tinuity functions to compute

FIGURE P10.40

(a) the slope of the beam at E.

(b) the defl ection of the beam at C.
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P10.45 For the beam and loading shown in Figure P10.45, use 

discontinuity functions to compute

(a) the slope of the beam at A.

(b) the defl ection of the beam at B. 

Assume a constant value of EI � 370,000 kip-ft2 for the beam.

v

x

A B C

12 ft 12 ft

8 kips/ft

FIGURE P10.45

P10.46 For the beam and loading shown in Figure P10.46, use 

discontinuity functions to compute

(a) the slope of the beam at B. 

(b) the defl ection of the beam at B. 

Assume a constant value of EI � 110,000 kN-m2 for the beam.

v

x

A B

4 m

40 kN/m
15 kN/m

FIGURE P10.46

v

x

A CB

3 m 1 m

20 kN/m

50 kN/m

FIGURE P10.48

v

x

A B DC

1.5 m4.0 m2.5 m

25 kN/m

70 kN/m35 kN

FIGURE P10.47

P10.48 For the beam and loading shown in Figure P10.48, use 

discontinuity functions to compute

(a) the slope of the beam at B.

(b) the defl ection of the beam at A. 

Assume a constant value of EI � 54,000 kN-m2 for the beam.

P10.47 For the beam and loading shown in Figure P10.47, use 

discontinuity functions to compute

(a) the defl ection of the beam at A.

(b) the defl ection of the beam at C. 

Assume a constant value of EI � 24,000 kN-m2 for the beam.

The method of superposition is a practical and convenient method for obtaining beam 

defl ections. The principle of superposition states that the combined effect of several 

loads acting simultaneously on an object can be computed from the sum of the effects 

produced by each load acting individually. How can this principle be used to compute 

beam defl ections? Consider a cantilever beam subjected to a uniformly distributed load 

and a concentrated load at its free end. To compute the defl ection at B (Figure 10.8a), two 

separate defl ection calculations can be performed. First, the cantilever beam defl ection at 

B is calculated considering only the uniformly distributed load w (Figure 10.8b). Next, the 

defl ection caused by the concentrated load P alone is computed (Figure 10.8c). The re-

sults of these two calculations are then added algebraically to give the defl ection at B for 

the total load.

Beam defl ection and slope equations for common support and load confi gurations 

are frequently tabulated in engineering handbooks and other reference materials. A table 

of equations for frequently used simply supported and cantilever beams is presented in 

Appendix C. (This table of common beam formulas is often referred to as a beam table.) 

Appropriate application of these equations enables the analyst to determine beam defl ec-

tions for a wide variety of support and load confi gurations.

10.7 Method of Superposition
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Several conditions must be satisfi ed if the principle of superposition is to be valid for 

beam defl ections.

1.  The defl ection must be linearly related to the loading. Inspection of the equations 

found in Appendix C shows that all load variables (i.e., w, P, and M) are fi rst-order 

variables.

2.  Hooke’s Law must apply for the material, meaning that the relationship between stress 

and strain remains linear.

3.  The loading must not signifi cantly change the original geometry of the beam. This 

condition is satisfi ed if beam defl ections are small.

4.  Boundary conditions resulting from the sum of individual cases must be the same as 

the boundary conditions in the original beam confi guration. In this context, boundary 

conditions are normally defl ection or slope values at beam supports.

Applying the Superposition Method

The superposition method can be a quick and powerful method for calculating beam de-

fl ections; however, application of this method may initially seem more like an art than an 

engineering calculation. Before proceeding, it may be helpful to consider various calcula-

tion skills that are often used in typical beam and loading confi gurations.

Skill 1—Using slope to calculate defl ection: The beam slope at location A may be 

needed in order to calculate the beam defl ection at location B.

FIGURE 10.8 Superposition principle applied to beam defl ections.

x

v

A

B

L
(    )vB P

P

�x

v

A

B

L

w

(    )vB w

�x

v

A

B

L

w
P

vB

(a) Total load (b) Distributed load only (c) Concentrated load only

Introduction to the superposition method with two elementary examples—one 

cantilever beam example and one simply supported beam example.

 MecMovies Example M10.7 M10.7
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445
METHOD OF SUPERPOSITIONSkill 2—Using both defl ection and slope values to calculate defl ections: Both 

the beam slope and defl ection at location A may be needed to calculate the beam defl ec-

tion at location B.

Skill 3—Using the elastic curve: Equations are given in beam tables for beam slope 

and defl ection at key locations, such as at the free end of a cantilever beam and at 

midspan of a simply supported beam. There are many instances, however, when defl ections 

must be computed at other locations. In these instances, defl ections can be calculated 

from the elastic curve equation.

Skill 4—Using both cantilever and simply supported beam cases: For a simply 

supported beam with an overhang, both cantilever and simply supported beam equations 

are required to compute the defl ection at the free end of the overhang.

Skill 5—Subtracting load: For a beam with distributed loads over only a portion of a 

span, it may be expedient to consider fi rst the distributed load on the entire span. Then, 

the load can be cancelled out in a portion of the span by adding the inverse of the load 

(i.e., a load equal in magnitude, but opposite in direction). This skill may also be useful 

for cases involving linearly distributed loadings (i.e., triangular loads).

Skill 6—Using known defl ections at specifi c locations to compute  unknown 
forces or moments: This skill is particularly useful in analyzing statically indeter-

minate beams.

Skill 7—Using known slopes at specifi c locations to compute unknown forces 
or moments: This skill is useful in analyzing statically indeterminate beams.

Skill 8—A beam and loading confi guration may often be subdivided in more 
than one manner: A given beam and loading may be subdivided and added in any 

manner that yields the same boundary conditions (i.e., defl ection and/or slope at the sup-

ports) as those in the original beam confi guration. Alternative approaches may require 

fewer calculations to produce the same results.

The skills in the preceding list are presented with examples and interactive prob-

lems in MecMovies M10.3 and M10.4 (8 Skills: Parts I and II) and in MecMovies 

M10.5 (Superposition Warm-Up).

8 Skills: Parts I and II

 MecMovies Examples M10.3 and M10.4
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Superposition Warm-Up. A series of examples and exercises that 

illustrate basic skills required for successful application of the super-

position method to beam defl ection problems.

 MecMovies Example M10.5 M10.5

The cantilever beam shown consists of a structural steel wide-fl ange 

shape [E � 200 GPa; I � 650 � 106 mm4]. For the loading shown, 

determine

(a) the beam defl ection at point B.

(b) the beam defl ection at point C.

Plan the Solution
To solve this problem, the given loading will be separated into two 

cases: (1) a cantilever beam with a uniformly distributed load and (2) 

a cantilever beam with a concentrated moment acting at the free end. 

Pertinent equations for these two cases are given in the beam table 

found in Appendix C. For case 1, we will use equations for the defl ec-

tion and rotation angle at the free end of the cantilever to determine 

the beam defl ections at B and C. For case 2, the elastic curve equation 

will be used to compute beam defl ections at both locations.

SOLUTION
For this beam, the elastic modulus is E � 200 GPa and the moment 

of inertia is I � 650 � 106 mm4. Since the term EI will appear in all 

of the equations, it may be helpful to start by computing this value:

 
EI � � ��

��

( )( GPa) mm200 650 10 130 10

130 10

6 4 12 2

3

N-mm

kN--m2

As in all calculations, it is essential to use consistent units throughout the computations. 

This is particularly important in the superposition method. When substituting numbers into 

the various equations obtained from the beam table, it is easy to lose track of the units. If 

this happens, you may fi nd that you have calculated a beam defl ection that seems absurd, 

such as a defl ection of 1,000,000 mm for a beam that spans only 3 m. To avoid this situa-

tion, always be aware of the units associated with each variable and make sure that all units 

are consistent.

EXAMPLE 10.9

v

x

2 m3 m

A CB 150 kN-m

80 kN/m

v

x

2 m3 m

A CB

80 kN/m

Case 1—Cantilever with uniform load.

Case 2—Cantilever with concentrated moment.

v

x

2 m3 m

A CB 150 kN-m
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Case 1—Cantilever with Uniform Load
From the beam table in Appendix C, the defl ection at the free end of a 

cantilever beam that is subjected to a uniformly distributed load over 

its entire span is given as

 v
wL

EImax � �
4

8
 (a)

The beam defl ection at B can be calculated with this equation; however, 

this equation alone will not be suffi cient to calculate the defl ection 

at C. For the beam considered here, the uniform load extends only 

between A and B. There are no loads acting on the beam between B 

and C, which means that there will be no bending moment in the beam 

in this region. Since there is no moment, the beam will not be bent 

(i.e., curved), and its slope between B and C will be constant. Since 

the beam is continuous, its slope between B and C must equal the 

rotation angle of the beam at B caused by the uniformly distributed 

load. (Note: Since small defl ections are assumed, the beam slope 

dv�dx is equal to the rotation angle � and the terms “slope” and 

“rotation angle” will be used synonymously.)

From the beam table in Appendix C, the slope at the free end of 

this cantilever beam is given as

 �max � �
wL

EI

3

6
 (b)

The beam defl ection at C will be calculated from both Equations (a) 

and (b).

Problem-Solving Tip: Before beginning the calculation, it is helpful to sketch the 

defl ected shape of the beam. Next, make a list of the variables that appear in the stan-

dard equations along with the values applicable for the specifi c beam being analyzed. 

Make sure that the units are consistent at this point in the process. In this example, for 

instance, all force units will be expressed in terms of kilonewtons (kN) and all length 

units will be stated in terms of meters (m). Making a simple list of the variables ap-

pearing in the equations will greatly increase your likelihood of success, and it will 

save you a lot of time in checking your work.

Beam defl ection at B: Equation (a) will be used to compute the beam 

defl ection at B. For this beam,

w

L

EI

� �

�

� �

80

3

130 103

kN/m

kN-m2

m

Note: The distributed load w is negative in this instance because the 

distributed load on the beam acts opposite to the direction shown in 

the beam table. The cantilever span length L is taken as 3 m because 

this is the length of the uniformly distributed load.

v

x

2 m3 m

A CB

80 kN/m

vB

vCB�

Although the beam is rotated in
this region, it remains straight.

v

x

2 m3 m

A CB

80 kN/m
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Substitute these values into Equation (a) to fi nd

v
wL

EIB
�

( )

4 4

3 28

80 3

8 130 10
6 231

( )( m)
.

kN/m

kN-m
�10 6 2313 m . mm� � � � � ��

�

The positive value indicates an upward defl ection, as expected.

Beam defl ection at C: The beam defl ection at C will be equal to the beam defl ection at B 

plus an additional defl ection caused by the slope of the beam between B and C. The rota-

tion angle of the beam at B is given by Equation (b), using the same variables as before:

�B
wL

EI

�

( )

3 3

3 26

80 3

6 130 10
2 769

( )( m)
.

kN/m

kN-m
�10 3 rad� � �� � �

�

The defl ection at C is computed from vB, �B, and the length of the beam between 

B and C:

v vC B B ( ) ( )� ( m) . m . ( m)2 6 231 10 2 769 10 23 3 rad

111 769 10 11 7693. m . mm

� � ��

�

��

� ��

��

The positive value indicates an upward defl ection.

Case 2—Cantilever with Concentrated Moment
From the beam table in Appendix C, the elastic curve equation for 

a cantilever beam subjected to a concentrated moment applied at 

its free end is given as

 v
Mx

EI

2

2
� �  (c)

Beam defl ection at B: The elastic curve equation will be used to 

compute the beam defl ections at both B and C for this case. For 

this beam,

M � �150 kN-m

 EI � 130 � 103 kN-m2

Note: The concentrated moment M is negative because it acts in 

the opposite direction to that shown in the beam table.

Substitute these values into Equation (c), using x � 3 m to 

compute the beam defl ection at B:

Beam defl ection at C: Substitute the same values into Equation (c), 

using x � 5 m to compute the beam defl ection at C:

Combine the Two Cases
The defl ections at B and C are found from the sum of cases 1 and 2:

 vB 6 231 5 192 11 42. . mm . mmmm� � �  Ans.

 vC 11 769 14 423 26 2. . mm . mmmm� � �  Ans.

v

x

2 m3 m

A CB 150 kN-m

v
Mx

EIB ( )

2 2

3 22

150 3

2 130 10
5 19

( )( m)
.

kN-m

kN-m
22 10 5 1923� m . mm� � � � ���

�

�

v

x

2 m3 m

A CB 150 kN-m

vB

vC

v
Mx

EIC ( )

2 2

3 22

150 5

2 130 10
14 4

( )( m)
.

kN-m

kN-m
223 10 14 4233� m . mm� � � � � ��

�

�

v

x

2 m3 m

A CB 150 kN-m

80 kN/m
vB

vC
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Determine the maximum defl ection of the cantilever beam. Assume that EI is 

constant for the beam.

 MecMovies Example M10.8 M10.8

Determine the defl ection at point C on the beam shown. Assume that EI is constant 

for the beam.

 MecMovies Example M10.9 M10.9

v

x

4 ft 6 ft 3 ft 7 ft

20 kips 30 kips

A EB DC

EXAMPLE 10.10

The simply supported beam shown consists of a W16 � 40

structural steel wide-fl ange shape [E � 29,000 ksi; I � 

518 in.4]. For the loading shown, determine the beam defl ec-

tion at point C.

Plan the Solution
One of the standard confi gurations found in the beam tables is 

a simply supported beam with a concentrated load acting at a 

location other than the middle of the span. The elastic curve 

equation from this standard beam confi guration will be used to compute the defl ection for 

the beam considered here, which has two concentrated loads. However, the elastic curve 

equation must be applied differently for each load because it is applicable only for a por-

tion of the total span.

SOLUTION
The solution of this beam defl ection problem will be subdivided into two cases. In case 1, the 

30-kip load acting on the simply supported beam will be considered. Case 2 will consider the 

20-kip load. The elastic curve equation for a simply supported beam with a single concen-

trated load acting at a location other than the middle of the span is given in the beam table as

 
v

Pbx

LEI
L b x x a( )

6
02 2 2 for� � � � � �

 
(a)
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For this beam, the elastic modulus is E � 29,000 ksi and the moment of inertia is 

I � 518 in.4. The term EI, which appears in all calculations, has the value

 EI ( )( ksi) in. .29,000 kip-in.518 15 022 104 6 2� � �

Case 1—30-kip Load on Simple Span
It is essential to note the interval upon which the elastic curve 

equation is applicable. Equation (a) gives the beam defl ection 

at any distance x from the origin up to, but not past, the loca-

tion of the concentrated load, which is denoted by the term 

a in the equation. For this beam, a � 13 ft. Since point C is 

located at x � 10 ft, the elastic curve equation is applicable for 

this case.

The defl ected shape of the beam is shown. List the vari-

ables that appear in the elastic curve equation along with their 

corresponding values:

P � 30 kips

b � 7 ft � 84 in.

L � 20 ft � 240 in.

 EI � 15.022 � 106 kip-in.2

Beam defl ection at C: At point C, x � 10 ft � 120 in. There-

fore, the beam defl ection at C for this case is

v
Pbx

LEI
L b xC ( )

6
30 84 120

6

2 2 2

( kips)( )( )in. in.

(( ) .
( ) ( )

240 15 022 10
240 84

6 2
2 2

in. kip-in.
in. in.

( )
[ ]( )

.

120

0 5053

2in.

in.

�

� �

� �

� �
�

� � �

Case 2—20-kip Load on Simple Span
Next, consider the simply supported beam with only the 

20-kip load. From this sketch, it is apparent that the distance a 

from the origin to the point of application of the 20-kip load is 

a � 4 ft. Since C is located at x � 10 ft, the elastic curve equa-

tion is not applicable for this case, because x � a.

However, the elastic curve equation can be used for this 

case if we make a simple transformation. The origin of the x–v 

coordinate axes will be repositioned at the right end of the 

beam, and the positive x direction will be redefi ned as extend-

ing toward the pin support at the left end of the span. With 

this transformation, x � a, and the elastic curve equation can 

be used.

The variables that appear in the elastic curve equation 

and their corresponding values are

 P � 20 kips

  b � 4 ft � 48 in.

  L � 20 ft � 240 in.

 EI � 15.022 � 106 kip-in.2

v

x

A EB DC

4 ft 6 ft 3 ft 7 ft

L 20 ft

a 13 ft b 7 ft

30 kips

� �

�

v

x

L

x

a 13 ft b

30 kips

vC

�

10 ft�

20 ft�

7 ft�

v

x

A EB DC

4 ft 6 ft 3 ft 7 ft

L

b 4 ft a 16 ft

20 ft

20 kips

� �

�

v

x

A EB DC

4 ft 6 ft 3 ft 7 ft

L 20 ft

a 4 ft b 16 ft

20 kips

� �

�
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Beam defl ection at C: At point C, x � 10 ft � 120 in., and the 

beam defl ection at C for this case is

v
Pbx

LEI
L b xC ( )

6
20 48 120

6

2 2 2

( kips)( )( )in. in.

(( )( . )
( ) ( )

240 15 022 10
240 48

6 2
2 2

in. kip-in.
in. in.[ ]( )

.

120

0 2178

2in.

in.

�

� �

� �

� �
�

� � �

Combine the Two Cases
The defl ection at C is the sum of cases 1 and 2.

 vC 0 5053 0 2178 0 723. . .in. in. in.� � � � �  Ans.

v

x

L 20 ft

x 10 ft

b 4 ft a 16 ft

20 kips

vC

� �

�

�

v

x

A EB DC

4 ft 6 ft 3 ft 7 ft

20 kips 30 kips

vC

v

x

A CB ED

8 ft 8 ft 8 ft8 ft

40 kips

v

x

A CB ED

8 ft 8 ft 8 ft8 ft

40 kips

EXAMPLE 10.11

The simply supported beam shown consists of a W24 � 76 struc-

tural steel wide-fl ange shape [E � 29,000 ksi; I � 2,100 in.4]. For the 

loading shown, determine

(a) the beam defl ection at point C.

(b) the beam defl ection at point A.

(c) the beam defl ection at point E.

Plan the Solution
Before starting to solve this problem, sketch the defl ected shape 

of the elastic curve. The 40-kip load will cause the beam to bend 

downward at E, which in turn will cause the beam to bend upward 

between the simple supports. Since B is a pin support, the defl ec-

tion of the beam at B will be zero, but the slope will not be zero.

Let us consider the beam span between B and C in more 

detail. What is it exactly that causes the beam to bend upward in 

this region? Certainly, the 40-kip load is involved, but more pre-

cisely, the 40-kip load creates a bending moment, and it is this 

bending moment that causes the beam to bend upward. For that reason, the effect of a con-

centrated moment applied at one end of a simply supported span is the only consideration 

required to compute the beam defl ection at C.
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Next, consider the overhang span between A and B. No bending moments act in this 

portion of the beam; thus, the beam does not bend, but it does rotate because it is attached 

to the center span. The overhang portion AB rotates by an angle equal to the rotation angle 

�B, which occurs at the left end of the center span. The defl ection of overhang AB is due 

exclusively to this rotation, and accordingly, the beam defl ection at A can be calculated 

from the rotation angle �B of the center span.

Finally, consider the overhang span between D and E. The defl ection at E is a com-

bination of two effects. The more obvious effect is the defl ection at the free end of a 

cantilever beam subjected to a concentrated load. This defl ection, however, does not ac-

count for all of the defl ection at E. The standard cantilever beam cases found in Appendix 

C assume that the beam does not rotate at the fi xed support; or in other words, the canti-

lever cases assume that the support is rigid. Overhang DE, however, is not connected to a 

rigid support. It is connected to center span BD, which is fl exible. As the center span 

fl exes, the overhang rotates downward, and this is the second effect that causes defl ection 

at E. To calculate the beam defl ection at E, we must consider both cantilever and simply 

supported beam cases.

SOLUTION
For this beam, the elastic modulus is E � 29,000 ksi and the moment of inertia is 

I � 2,100 in.4. The term EI, which appears in all calculations, has the value

EI ( )( ksi) .29,000 2,100 in. kip-in.4 6 260 9 10� � �

The bending moment produced at D by the 40-kip load is M � (40 kips)(8 ft) � 320 kip-ft � 

3,840 kip-in.

Case 1—Upward Defl ection of Center Span
The upward defl ection of point C in the center span is computed from the elastic curve 

equation for a simply supported beam subjected to a concentrated moment at D:

 

v
Mx

LEI
x Lx L( )

6
3 22 2� � � �

 

(a)

Beam defl ection at C: Substitute the following values into 

Equation (a):

M

x

L

320

8 96

16 192

kip-ft 3,840 kip-in.

ft in.

ft iin.

kip-in.EI 60 9 106 2.

�

�

�

� �

�

�

� � �

Use these values to compute the beam defl ection at C:

v

x

A CB ED

8 ft 8 ft 8 ft8 ft

40 kips

320 kip-ft

vC

v
Mx

LEI
x Lx LC ( )

6
3 2

3 840 96

6

2 2

( , )( )kip-in. in.

(( ) .
( ) ( )(

192 60 9 10
96 3 192 9

6 2
2

in. kip-in.
in. in.

( )
66 2 192 0 14532in. in. in.) ( ) .[ ]

� �

� � � � � �
�

�

� �

 

Ans.

Case 2—Downward Defl ection of Overhang AB
The downward defl ection of point A on the overhang span is computed from the rotation 

angle produced at support B of the center span by the concentrated moment, which acts at 

D. In the beam table, the magnitude of the rotation angle at the end of the span opposite 

from the concentrated moment is given by
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�

ML

EI6
�

 
(b)

By the values defi ned previously, the rotation angle magnitude 

at B is

B
ML

EI
� � �

�6

192

6 60 9 106

( )( )

.

3,840 kip-in. in.

kip-in.22
0 0020177

( )
. rad�

Beam defl ection at A: By inspection, the rotation angle at B must be positive; that is, the 

beam slopes upward to the right at the pin support. Since there is no bending moment in 

overhang span AB, the beam will not bend between A and B. Its slope will be constant and 

equal to �B. The magnitude of the beam defl ection at A is computed from the beam slope:

 v LA B AB� � �( . )( ) .0 0020177 96 0 1937rad in. in.�

By inspection, the overhang will defl ect downward at A; therefore, vA � �0.1937 in. Ans.

Case 3—Downward Defl ection of Overhang DE
The downward defl ection of point E on the overhang span is computed from two consid-

erations. First, consider a cantilever beam subjected to a concentrated load at its free end. 

The defl ection at the tip of the cantilever is given by the equation

 

v
PL

EImax � �
3

3  

(c)

From the values

P

L

EI

�

�

� �

�

40

8 96

60 9 106 2

kips

. kip-

ft in.

in.

one component of the beam defl ection at E can be computed as

 

v
PL

EIE � � �
�

� ��
( )

3 3

6 23

40 96

3 60 9 10

( kips)( )

.

in.

kip-in.
0 1937. in.

 

(d)

As discussed previously, this cantilever beam case does not account for all of the defl ec-

tion at E. Equation (c) assumes that the cantilever beam does not rotate at its support. 

Since center span BD is fl exible, overhang DE rotates downward as the center span bends. 

The magnitude of the rotation angle of the center span caused by the concentrated mo-

ment M can be computed from the following equation:

 
�

ML

EI3
�

 
(e)

Note: Equation (e) gives the beam rotation angle at the location 
of M for a simply supported beam subjected to a concentrated 

moment applied at one end. With the values defi ned for case 2, 

the rotation angle of the center span at roller support D can be 

calculated as

D
ML

EI
� � �

�3

192

3 60 9 106

( )( )

.

3,840 kip-in. in.

kip-in.22
0 0040355

( )
. rad�

v

x

A CB ED

8 ft 8 ft 8 ft8 ft

40 kips

B� 320 kip-ft

vA

v

x

A CB ED

8 ft 8 ft 8 ft8 ft

40 kips

D
320 kip-ft

vE

�

v

x

A CB ED

8 ft 8 ft 8 ft8 ft

40 kips

vE

v
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By inspection, the rotation angle at D must be negative; that is, the beam slopes down-

ward to the right at the roller support. The magnitude of the beam defl ection at E due to the 

center span rotation at D is computed from the beam slope and the length of overhang DE:

v LE D DE� � �( . )( ) .0 0040355 96 0 3874rad in. in.�

By inspection, the overhang will defl ect downward at E; consequently, this defl ection 

component is

 
vE 0 3874. in.� �  

(f)

The total defl ection at E is the sum of defl ections (d) and (f):

 vE 0 1937 0 3874 0 581. . .in. in. in.� � � � �  Ans.

454

Determine expressions for the slope �C and the defl ection vC at end C 

of the beam shown. Assume that EI is constant for the beam.

 MecMovies Example M10.10 

EXAMPLE 10.12

The simply supported beam shown consists of a W410 � 60 struc-

tural steel wide-fl ange shape [E � 200 GPa; I � 216 � 106 mm4]. 

For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.

(c) the beam defl ection at point E.

Plan the Solution
Although the loading in this example is more complicated, the 

same general approach used to solve Example 10.8 will be used 

for this beam. The loading will be separated into three cases:

v

x

A DB EC

3 m 3 m 3 m 2 m

80 kN/m

70 kN

Case 1—Concentrated load on left overhang.

v

x

A DB EC

3 m 3 m 3 m 2 m

70 kN v

x

A DB EC

3 m 3 m 3 m 2 m

80 kN/m

Case 2—Uniformly distributed load on center span.
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The beam defl ections at A, C, and E will be computed for each 

case with the use of standard equations from Appendix C for both 

defl ection and slope. Cases 1 and 3 will require equations for both 

simply supported and cantilever beams, whereas case 2 will re-

quire only simply supported beam equations. After completing the 

calculations for all three cases, the results will be added to give the 

fi nal defl ections at the three locations.

SOLUTION
For this beam, the elastic modulus is E � 200 GPa and the 

moment of inertia is I � 216 � 106 mm4. Therefore,

EI � ( ) � � �( GPa) mm . .200 216 10 43 2 10 43 2 106 4 12 2 3N-mm kkN-m2� �

Case 1—Concentrated Load on Left Overhang
Both simply supported and cantilever beam equations will be required to compute defl ec-

tions at A, but only simply supported beam equations will be necessary to compute the 

beam defl ections at C and E.

Beam defl ection at A: Consider the cantilever beam defl ection at 

A of the 3-m-long overhang. From Appendix C, the maximum 

defl ection of a cantilever beam with a concentrated load applied 

at the tip is given as

 
v

PL

EImax � �
3

3  
(a)

Equation (a) will be used to compute one portion of the beam defl ection at A. We set

P

L

EI

�

�

� �

70

3

43 2 103 2

kN

m

. kN-m

The cantilever beam defl ection at A will then be

v
PL

EIA � � � � � � � �
�( )

3 3

3 23

70 3

3 43 2 10
14 583

( kN)( m)

.
.

kN-m
� �10 14 5833 m . mm

This calculation implicitly assumes that the beam is fi xed to a rigid support at B. How-

ever, the overhang is not attached to a rigid support at B, but rather to a fl exible beam that 

rotates in response to the moment produced by the 70-kN load. The rotation of the over-

hang at B must be accounted for in determining the defl ection at A.

The moment at B due to the 70-kN load is M � (70 kN)(3 m) � 210 kN-m, which 

acts counterclockwise as shown. The rotation angles at the ends of the span of a simply 

supported beam subjected to a concentrated moment can be obtained from Appendix C:

 
�1 3

� �
ML

EI
M(at the end where is applied)

 
(b)

 
�2 6

� �
ML

EI
M(opposite the end where is applied)

 
(c)

The rotation angle at B is required to obtain the defl ection at A. The rotation angle at D 

will be used later to calculate the defl ection at E.

v

x

A DB EC

3 m 3 m 3 m 2 m

80 kN/m

Case 3—Uniformly distributed load on right overhang.

v

x

A DB EC

3 m 3 m 3 m 2 m

70 kN

vA
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Using the variables and values,

M

L

EI

� �

�

210

6

kN-m

i.e.,m ( the length of the center span)

�         �43 2 103. kN-m2

the rotation angle at B is calculated from Equation (b):

�B
ML

EI
� � � �

�

�( )
�

3

210 6

3 43 2 10
9 722

3 2

( )( m)

.
.

kN-m

kN-m
� �10 3 rad

The beam defl ection at A is computed from the rotation angle �B and the overhang 

length:

v xA B AB�            � �( ) �         � � � � ��� 9 722 10 3 29 167 10 293 �3. ( m) . mrad .. mm167

Beam defl ection at C: The beam defl ection at C for this case is found from the elastic 

curve equation for a simply supported beam with a concentrated moment applied at one 

end. From Appendix C, the elastic curve equation is

 
v

Mx

LEI
x Lx L� � �        �( )

6
3 22 2

 
(d)

With the variables and values

M

x

L

� �

�

�

210

3

6

kN-m

i.e.,

m

m ( the length of the center spann)

.EI �         �43 2 103 2kN-m

the beam defl ection at C is calculated from Equation (d):

v
Mx

LEI
x Lx LC � �

� �

� �

�        �( )

�

6
3 2

210 3

6 6 43 2

2 2

( kN-m)( m)

( m) . �( )
�                      � [ ]

�

10
3 3 6 3 2 6

10 938 10

3 2
2 2

kN-m
( m) ( m)( m) ( m)

. 33 10 938m . mm�

Beam defl ection at E: For this case, the overhang at the right end of the span has no bend-

ing moment; therefore, it does not bend. The rotation angle at D given by Equation (c) and 

the overhang length are used to compute the defl ection at E. With the variables and values

M

L

EI

� �

�

210

6

kN-m

i.e.,m ( the length of the simple span)

�         �43 2 103 2. kN-m

the rotation angle at D is calculated from Equation (c):

�D
ML

EI
� � �

�

�( )
� �

6

210 6

6 43 2 10
4 861

3 2

( )( m)

.
.

kN-m

kN-m
� �10 3 rad

v

x

A DB EC

3 m 3 m 3 m 2 m

70 kN

D�B�

vE

vC
vA

210 kN-m
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The beam defl ection at E is computed from the rotation angle �D and the overhang 

length:

v xE D DE�             � �          �( ) � � �              � �� �� 4 861 10 2 9 722 10 9 73 3. ( m) . m .rad 222 mm

Case 2—Uniformly Distributed Load on Center Span
For the uniformly distributed load acting on the center span, equations for the maximum 

defl ection acting at midspan and the slopes at the ends of the span will be required.

Beam defl ection at A: Since the uniformly distributed load acts only between the sup-

ports, there is no bending moment in the overhang spans. To compute the defl ection at A, 

begin by computing the slope at the end of the simple span. From Appendix C, the rota-

tion angles at the ends of the span are given by

 
� �1 2

3

24
� � � �

wL

EI  
(e)

To compute the rotation angle at B, let

w

L

EI

�

�

�         �

80

6

43 2 103 2

kN/m

kN-m

m

.

and compute �B from Equation (e):

�B
wL

EI
� � � � � �

�( )

3 3

3 224

80 6

24 43 2 10
16

( )( m)

.

kN/m

kN-m
..667 10 3� � rad

The beam defl ection at A is computed from the rotation angle �B and the overhang 

length:

v xA B AB�            � �            �( ) �         � �             �� �� 16 667 10 3 50 001 10 503 3. ( m) . mrad .. mm001

Beam defl ection at C: The equation for the midspan defl ection of a simply supported 

beam subjected to a uniformly distributed load can be obtained from Appendix C:

 
v

wL

EImax � �
5

384

4

 
(f)

From Equation (f), the defl ection at C for case 2 is

v
wL

EIC � � � � � �� �
�( )

5

384

5 80 6

384 43 2 10

4 4

3 2

( )( m)

.

kN/m

kN-m
� �31 250 10 31 2503. m . mm

Beam defl ection at E: The rotation angle at D is calculated from Equation (e):

�D
wL

EI
�            � �             �

�( )

3 3

3 224

80 6

24 43 2 10
16 66

( )( m)

.
.

kN/m

kN-m
77 10 3� rad

The beam defl ection at E is computed from the rotation angle �D and the overhang 

length:

v xE D DE�             � �( ) �             � ��                                                              �� 16 667 10 2 33 334 10 33 33 3. ( m) . m .rad 334 mm

v

x

A DB EC

3 m 3 m 3 m 2 m

80 kN/m

vE

vC

vA

D�B�

457

c10BeamsDeflection.indd Page 457  3/6/12  8:31 PM user-F393c10BeamsDeflection.indd Page 457  3/6/12  8:31 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



Case 3—Uniformly Distributed Load on Right Overhang
Both simply supported and cantilever beam equations will be required to compute defl ec-

tions at E; only simply supported beam equations will be necessary to compute the beam 

defl ections at A and C.

Beam defl ection at E: Consider the cantilever beam defl ection at E of the 2-m-long over-

hang. From Appendix C, the maximum defl ection of a cantilever beam with a uniformly 

distributed load is given as

 
v

wL

EImax � �
4

8  
(g)

Let 

 

w

L

EI

� �

�

�         �

80

2

43 2 103 2

kN/m

kN-m

m

.

and use Equation (g) to compute one portion of the beam defl ec-

tion at E:

v
wL

EIE � � � � � �
�( )

4 4

3 28

80 2

8 43 2 10
3 70

( )( m)

.
.

kN/m

kN-m
44 10 3 0743�              � �� m . mm

This calculation implicitly assumes that the beam is fi xed to a 

rigid support at D. However, the overhang is not attached to a 

rigid support at D, but rather to a fl exible beam that rotates in 

response to the moment produced by the 80-kN uniformly dis-

tributed load. The rotation of the overhang at D must be ac-

counted for in determining the defl ection at E.

The moment at D due to the 80-kN distributed load is 

M � (0.5)(80 kN/m)(2 m)2 � 160 kN-m, which acts clockwise 

as shown. The rotation angles at the ends of the span of a simply 

supported beam subjected to a concentrated moment are given 

by Equations (b) and (c). Let 

M

L

EI

� �

�

�         �

160

6

kN-m

i.e.m ( , the length of the center span)

43 2 103 2. kN-m

and use Equation (b) to compute the rotation angle at D:

�D
ML

EI
�         � � � �

�

�( )3

160 6

3 43 2 10
7 407

3 2

( )( m)

.
.

kN-m

kN-m
� �10 3 rad

The beam defl ection at E is computed from the rotation angle �D and the overhang 

length:

v xE D DE�             � �          �( ) � � � � � �                                                                  �� 7 407 10 2 14 814 10 143 3. ( m) . mrad .. mm814

v

x

A DB EC

3 m 3 m 3 m 2 m

80 kN/m

vE

v

v

x

A DB EC

3 m 3 m 3 m 2 m

80 kN/m

vE

vC
vA

D�
B�

160 kN-mN6
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Ans.

459

Determine an expression for the defl ection of the beam at the midpoint 

of span BD. Assume that EI for the beam is constant throughout all 

spans.

 MecMovies Example M10.11MM

Beam defl ection at C: The beam defl ection at C for this case is found from the elastic 

curve equation [Equation (d)] for a simply supported beam with a concentrated moment 

applied at one end. With the variables and values

M

x

L

� �

�

�

�         �

160

3

6

kN-m

m

m ( , the length of the center spai.e. nn)

. kN-mEI 43 2 103 2

the beam defl ection at C is calculated from Equation (d):

v
Mx

LEI
x Lx LC � �

� �

�           �

�         �( )

�

6
3 2

160 3

6 6 43 2

2 2

( ) ( m)

( m) .

kN-m

�( )
�                      �[ ]

�

10
3 3 6 3 2 6

8 333 10

3 2
2 2

3

kN-m
( m) ( m)( m) ( m)

. mm . mm� 8 333

Beam defl ection at A: Use Equation (c) to compute the rotation angle at B:

�B
ML

EI
� �� �

�

�( )
�

6

160 6

6 43 2 10
3 704

3 2

( )( m)

.
.

kN-m

kN-m
� �10 3 rad

The beam defl ection at A is computed from the rotation angle �B and the overhang length:

v xA B AB�            � �( ) � � �            �             � ��                                                                      �� 3 704 10 3 11 112 10 113 3. ( m) . mrad .. mm112

Superposition Case
vA

(mm)
vC

(mm)
vE

(mm)

Case 1—Concentrated load on left overhang
 �14.583

 10.938  �9.722
�29.167

Case 2—Uniformly distributed load on center span  50.001  �31.250  33.334

Case 3—Uniformly distributed load on right overhang  �11.112  8.333
 �3.704

 �14.814

Total Beam Defl ection  �4.86  �11.98  5.09
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460

Use the superposition method to determine the magnitude of force P 

required to make the defl ection of the beam equal to zero at B. Assume that EI 
is constant for the beam.

 MecMovies Example M10.13

Determine the maximum for the moment M0 such that the beam slope at 

A is zero. Assume that EI is constant for the beam.

 MecMovies Example M10.14

Use the superposition method to determine the defl ection of the beam at 

A. Assume that EI is constant for the beam.

 MecMovies Example M10.12
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M10.5 Superposition Warm-Up. Examples and concept check 

points pertaining to four basic superposition skills.

M10.3 8 Skills. Part I: Skills 1–4. Series of skills necessary to 

solve beam defl ection problems by the superposition method.

FIGURE M10.3

M10.4 8 Skills. Part II: Skills 5–8. Series of skills necessary to 

solve beam defl ection problems by the superposition method.

FIGURE M10.4

FIGURE M10.5

M10.6 One Simple Beam, One Load, Three Cases. Determine 

numeric values of beam defl ections at various points in a simply sup-

ported beam with two overhangs. All defl ections can be determined 

with superposition of no more than three basic defl ection cases.

FIGURE M10.6

 MecMovies ExercisesMM
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P10.49 For the beams and loadings shown in Figures 

P10.49a–d, determine the beam defl ection at point H. Assume that 

EI � 8 � 104 kN-m2 is constant for each beam.

v

x

H A CB

150 kN-m

3 m 2 m8 m

FIGURE P10.49a

v

x

H BA

4 m2 m

6 kN/m

FIGURE P10.49b

v

x

A C HB

12 ft 7 ft6 ft

25 kips

v

x

A CH B

4 m4 m 4 m

30 kN

FIGURE P10.49c

v

x

A B H

8 m 4 m

15 kN

FIGURE P10.49d

P10.50 For the beams and loadings shown in Figures P10.50a–d,

determine the beam defl ection at point H. Assume that EI � 

1.2 � 107 kip-in.2 is constant for each beam.

v

x

A HB

40 kip-ft

6 ft9 ft

FIGURE P10.50a

FIGURE P10.50b

v

x

A BH

9 ft6 ft

2.5 kips/ft

FIGURE P10.50c

v

x

H A B

8 ft 22 ft

5 kips/ft

FIGURE P10.50d

P10.51 For the beams and loadings shown in Figures 

P10.51a–d, determine the beam defl ection at point H. Assume that 

EI � 6 � 104 kN-m2 is constant for each beam.

v

x

A BH

60 kN-m

3 m 6 m 6 m

FIGURE P10.51a

v

x

A BH

3 m 6 m

7.5 kN/m

FIGURE P10.51b
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v

x

A HB

3 m 3 m

30 kN

FIGURE P10.51c

v

x

A CB H

3 m 3 m6 m

5 kN/m

FIGURE P10.51d

P10.52 For the beams and loadings shown in Figures P10.52a–d, 

determine the beam defl ection at point H. Assume that EI � 3.0 � 

106 kip-in.2 is constant for each beam.

v

x

A BH

7 ft3 ft

10 kips

FIGURE P10.52b

v

x

H A CB

2 kips/ft

6 ft 8 ft18 ft

FIGURE P10.52c

v

x

A BH

50 kip-ft

6 ft 18 ft

FIGURE P10.52a

v

x

A HB

4 ft10 ft

1.5 kips/ft

FIGURE P10.52d

P10.53 The simply supported beam shown in Figure P10.53 

consists of a W24 � 94 structural steel wide-fl ange shape 

[E � 29,000 ksi; I � 2,700 in.4]. For the loading shown, determine 

the beam defl ection at point C.

v

x

A DB C

14 ft 7 ft 7 ft

36 kips

3.2 kips/ft

FIGURE P10.53

v

x

A DB C

3 m 3 m 2 m

60 kN

26 kN/m

FIGURE P10.54

v

x

A CB

45 kN-m

3 m 6 m

60 kN

FIGURE P10.55

P10.54 The simply supported beam shown in Figure P10.54 

consists of a W460 � 82 structural steel wide-fl ange shape 

[E � 200 GPa; I � 370 � 106 mm4]. For the loading shown, deter-

mine the beam defl ection at point C.

P10.55 The simply supported beam shown in Figure P10.55 

consists of a W410 � 60 structural steel wide-fl ange shape 

[E � 200 GPa; I � 216 � 106 mm4]. For the loading shown, deter-

mine the beam defl ection at point B.
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P10.56 The simply supported beam shown in Figure P10.56 

consists of a W21 � 44 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 843 in.4]. For the loading shown, determine the 

beam defl ection at point B.

v

x

v

A CB

200 kip-ft

8 ft 16 ft

5 kips/ft

FIGURE P10.56

v

x

A CB

6 ft 4 ft

12 kips

2 kips/ft

FIGURE P10.57

10 in.
15 in.

A
B

C

200 lb
120 lb

FIGURE P10.59

v

x

200 kip-ft

A CB

6 ft 9 ft

18 kips

FIGURE P10.60

v

x

4 kips/ft

A B DC

8 ft 11 ft 11 ft

45 kips

FIGURE P10.61

P10.57 The cantilever beam shown in Figure P10.57 consists 

of a rectangular structural steel tube shape [E � 29,000 ksi; 

I � 476 in.4]. For the loading shown, determine

(a) the beam defl ection at point B.

(b) the beam defl ection at point C.

FIGURE P10.58

v

x

A CB

1.5 m 2.5 m

55 kN

25 kN/m

P10.58 The cantilever beam shown in Figure P10.58 con-

sists of a rectangular structural steel tube shape [E � 200 GPa; 

I � 400 � 106 mm4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point B.

P10.59 The solid 1.25-in.-diameter steel [E � 29,000 ksi] shaft 

shown in Figure P10.59 supports two pulleys. For the loading 

shown, determine

(a) the shaft defl ection at point B.

(b) the shaft defl ection at point C.

P10.60 The cantilever beam shown in Figure P10.60 consists 

of a rectangular structural steel tube shape [E � 29,000 ksi; 

I � 1,710 in.4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point B.

P10.61 The simply supported beam shown in Figure P10.61 

consists of a W21  �  44 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 843 in.4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.
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P10.62 The simply supported beam shown in Figure P10.62 

consists of a W530 � 66 structural steel wide-fl ange shape [E � 

200 GPa; I � 351 � 106 mm4]. For the loading shown, determine

(a) the beam defl ection at point B.

(b) the beam defl ection at point D.

v

x

A B DC

55 kN/m

2.8 m3.6 m3.6 m

FIGURE P10.62

v

x

A EB DC

w kips/ft

9 ft 6 ft9 ft12 ft

FIGURE P10.63/64

900 mm 900 mm500 mm

A B C D

1,000 N700 N

FIGURE P10.65
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FIGURE P10.67/68

P10.63 The simply supported beam shown in Figure P10.63/64 

consists of a W21 � 44 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 843 in.4]. For a loading of w � 6 kips/ft, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.

P10.64 The simply supported beam shown in Figure P10.63/64 

consists of a W21 � 44 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 843 in.4]. For a loading of w � 8 kips/ft, determine

(a) the beam defl ection at point C.

(b) the beam defl ection at point E.

P10.65 The solid 30-mm-diameter steel [E � 200 GPa] shaft 

shown in Figure P10.65 supports two belt pulleys. Assume that the 

bearing at B can be idealized as a roller support and that the bearing 

at D can be idealized as a pin support. For the loading shown, 

 determine

(a) the shaft defl ection at pulley A.

(b) the shaft defl ection at pulley C.

P10.66 The cantilever beam shown in Figure P10.66 consists 

of a W530 � 92 structural steel wide-fl ange shape [E � 200 GPa; 

I � 552 � 106 mm4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point B.

P10.67 The solid 30-mm-diameter steel [E � 200 GPa] shaft 

shown in Figure P10.67/68 supports two belt pulleys. Assume that 

the bearing at A can be idealized as a pin support and that the bear-

ing at E can be idealized as a roller support. For the loading shown, 

determine the shaft defl ection at pulley B.

P10.68 The solid 30-mm-diameter steel [E � 200 GPa] shaft 

shown in Figure P10.67/68 supports two belt pulleys. Assume that 

the bearing at A can be idealized as a pin support and that the bear-

ing at E can be idealized as a roller support. For the loading shown, 

determine the shaft defl ection at pulley D.

v

x

A EB C D

v

180 kN-m

1.5 m 1.5 m1.5 m 1.5 m

70 kN

80 kN/m

FIGURE P10.69/70

P10.69 The simply supported beam shown in Figure P10.69/70 

consists of a W410 � 60 structural steel wide-fl ange shape [E � 

200 GPa; I � 216 � 106 mm4]. For the loading shown, determine 

the beam defl ection at point B.

P10.70 The simply supported beam shown in Figure P10.69/70 

consists of a W410 � 60 structural steel wide-fl ange shape [E � 

200 GPa; I � 216 � 106 mm4]. For the loading shown, determine the 

beam defl ection at point C.
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v

x
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4 ft 4 ft 4 ft 6 ft 6 ft

40 kips 30 kips 20 kips

FIGURE P10.73

P10.73 The simply supported beam shown in Figure P10.73 

consists of a W16 � 40 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 518 in.4]. For the loading shown, determine

(a) the beam defl ection at point C.

(b) the beam defl ection at point F.

P10.74 The cantilever beam shown in Figure P10.74 

consists of a rectangular structural steel tube shape [E � 

200 GPa; I � 170 � 106 mm4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point B.

x

225 kN-m
A CB

2.5 m 3.5 m

30 kN90 kN

65 kN/m

FIGURE P10.74

v

x

A B EDC

60 kN/m
120 kN/m

3 m 3 m 3 m 3 m

315 kN-m

100 kN

FIGURE P10.75

P10.75 The simply supported beam shown in Figure P10.75 

consists of a rectangular structural steel tube shape [E � 200 GPa; 

I � 350 � 106 mm4]. For the loading shown, determine

(a) the beam defl ection at point C.

(b) the beam defl ection at point E.

v

x

A CB

2 m 3 m

20 kN 50 kN
50 kN/m

25 kN/m

FIGURE P10.76/77

P10.76 The cantilever beam shown in Figure P10.76/77

consists of a rectangular structural steel tube shape [E � 

200 GPa; I � 95 � 106 mm4]. For the loading shown, determine 

the beam deflection at point B.

P10.77 The cantilever beam shown in Figure P10.76/77 

consists of a rectangular structural steel tube shape [E � 

200 GPa; I � 95 � 106 mm4]. For the loading shown, determine 

the beam deflection at point C.

v

x

A B EDC

w kips/ft

3 ft 5 ft 5 ft 5 ft

85 kip-ft

25 kips

FIGURE P10.78/79

P10.78 The simply supported beam shown in Figure P10.78/79

consists of a W10 � 30 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 170 in.4]. If w � 5 kips/ft, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.

P10.71 The simply supported beam shown in Figure P10.71/72 

consists of a W530 � 66 structural steel wide-fl ange shape [E � 

200 GPa; I � 351 � 106 mm4]. If w � 80 kN/m, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.

v

x

A DB EC

4 m 4 m 4 m 2 m

w kN/m

35 kN

FIGURE P10.71/72

P10.72 The simply supported beam shown in Figure P10.71/72 

consists of a W530 � 66 structural steel wide-fl ange shape [E � 

200 GPa; I � 351 � 106 mm4]. If w � 90 kN/m, determine

(a) the beam defl ection at point C.

(b) the beam defl ection at point E.

P10.79 The simply supported beam shown in Figure P10.78/79 

consists of a W10 � 30 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 170 in.4]. If w � 9 kips/ft, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point D.
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P10.80 The simply supported beam shown in Figure P10.80 

consists of a W10 � 30 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 170 in.4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.

v

x

A DCB

4 kips/ft

8 kips/ft 8 kips/ft

4 kips/ft

9 ft 9 ft 9 ft

FIGURE P10.80
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x

A B DC

4 kips/ft 4 kips/ft

6 ft 6 ft 6 ft 6 ft6 ft 6 ft

42 kips

FIGURE P10.81

P10.81 The simply supported beam shown in Figure P10.81 

consists of a W21 � 44 structural steel wide-fl ange shape [E � 

29,000 ksi; I � 843 in.4]. For the loading shown, determine

(a) the beam defl ection at point A.

(b) the beam defl ection at point C.

v

x

w kN/m

2 m4 m 3 m

A DB C300
kN-m

175
kN-m

140 kN

FIGURE P10.82/83

P10.82 The simply supported beam shown in Figure P10.82/83 

consists of a W530 � 66 structural steel wide-fl ange shape [E � 

200 GPa; I � 351 � 106 mm4]. If w � 85 kN/m, determine the beam 

defl ection at point B.

P10.83 The simply supported beam shown in Figure P10.82/83 

consists of a W530 � 66 structural steel wide-fl ange shape [E � 

200 GPa; I � 351 � 106 mm4]. If w � 115 kN/m, determine the 

beam defl ection at point C.

P10.84 A 25-ft-long soldier beam is used as a key component of 

an earth retention system at an excavation site. The soldier beam is 

subjected to a soil loading that is linearly distributed from 520 lb/ft 

to 260 lb/ft as shown in Figure P10.84. The soldier beam can be 

idealized as a cantilever with a fi xed support at A. Added support is 

supplied by a tieback anchor at B, which exerts a force of 5,000 lb on 

the soldier beam. Determine the horizontal defl ection of the soldier 

beam at point C. Assume that EI � 5 � 108 lb-in.2.

Tieback
anchor

Soldier
beam

25 ft

260 lb/ft

18 ft

5,000 lb

520 lb/ft A

B

C

FIGURE P10.84

P10.85 A 25-ft-long soldier beam is used as a key component of 

an earth retention system at an excavation site. The soldier beam is 

subjected to a uniformly distributed soil loading of 260 lb/ft as 

shown in Figure P10.85. The soldier beam can be idealized as a 

cantilever with a fi xed support at A. Added support is supplied by a 

tieback anchor at B, which exerts a force of 4,000 lb on the soldier 

beam. Determine the horizontal defl ection of the soldier beam at 

point C. Assume that EI � 5 � 108 lb-in.2.

Tieback
anchor

Soldier
beam

25 ft

260 lb/ft

18 ft

4,000 lb

A

B

C

FIGURE P10.85

467

c10BeamsDeflection.indd Page 467  3/6/12  8:32 PM user-F393c10BeamsDeflection.indd Page 467  3/6/12  8:32 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



c10BeamsDeflection.indd Page 468  3/6/12  8:32 PM user-F393c10BeamsDeflection.indd Page 468  3/6/12  8:32 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop

This page is intentionally left blank



Statically Indeterminate Beams

CHAPTER

469

11

A beam is classifi ed as statically indeterminate if the number of unknown support reactions 

exceeds the available number of equilibrium equations. In such cases, the deformation of 

the loaded beam is used to derive additional relationships that are needed to evaluate the 

unknown reactions (or other unknown forces). The calculation methods presented in 

Chapter 10 will be employed along with known beam slopes and defl ections at supports 

(and other constraints) to develop compatibility equations. Together, the compatibility and 

equilibrium equations provide the basis needed to determine all beam reactions. Once all 

loads acting on the beam are known, the methods of Chapters 7 through 10 can be used to 

determine the required beam stresses and defl ections.

A statically indeterminate beam is typically identifi ed by the arrangement of its supports. 

Figure 11.1a shows a propped cantilever beam. This type of beam has a fi xed support at one 

end and a roller support at the opposite end. The fi xed support provides three reactions: transla-

tion restraints Ax and Ay in the horizontal and vertical directions, respectively, and a restraint 

against rotation MA. The roller support prevents translation in the vertical direction (By). Con-

sequently, the propped cantilever has four unknown reactions. Three equilibrium equations 

11.1 Introduction

11.2 Types of Statically Indeterminate Beams
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470
STATICALLY INDETERMINATE 
BEAMS

can be developed for the beam (�Fx � 0, �Fy � 0, and �M � 0). Since there are more 

unknown reactions than there are equilibrium equations, the propped cantilever is classifi ed 

as statically indeterminate. The number of reactions in excess of the number of equilib-

rium equations is termed the degree of static indeterminacy. Thus, the propped cantilever 

is said to be statically indeterminate to the fi rst degree. The excess reactions are called 

redundant reactions or simply redundants because the extra reactions are not  essential to 

maintain the equilibrium of the beam.

The general approach used to solve statically indeterminate beams involves selecting 

redundant reactions and developing an equation pertinent to each redundant on the basis of the 

deformed confi guration of the loaded beam. To develop these geometry equations, redun-

dant reactions are selected and removed from the beam. The beam that remains is called the 

released beam. The released beam must be stable (i.e., capable of supporting the loads) and 

statically determinate so that the reactions of the released beam can be determined by equi-

librium considerations. The effect of the redundant reactions is addressed separately, through 

knowledge about the defl ections or rotations that must occur at the redundant support. For 

instance, we can know with certainty that the beam defl ection at B must be zero, since the 

redundant support By prevents movement either up or down at this location.

As mentioned in the previous paragraph, the released beam must be stable and statically 

determinate. For instance, the roller reaction By could be removed from the propped cantilever 

beam (Figure 11.1b), leaving a cantilever beam that is still capable of supporting the applied 

loads. In other words, the cantilever beam is stable. Alternatively, the moment reaction MA 

could be removed from the propped cantilever (Figure 11.1c), leaving a simply supported 

beam with a pin support at A and a roller support at B. This released beam is also stable.

A special case arises if all of the loads act transverse to the longitudinal axis of the 

beam. The propped cantilever shown in Figure 11.2 is subjected to vertical loads only. In 

this case, the equilibrium equation �Fx � Ax � 0 is trivial so that the horizontal reaction at 

A vanishes, leaving only three unknown reactions: Ay, By, and MA. Even so, this beam is still 

statically indeterminate to the fi rst degree because only two equilibrium equations 

are available.

Another type of statically indeterminate beam is called a fi xed-end beam or a fi xed-
fi xed beam (Figure 11.3). The fi xed connections at A and B each provide three reactions. 

Since there are only three equilibrium equations, this beam is statically indeterminate to the 

third degree. In the special case of transverse loads only (Figure 11.4), the fi xed-end beam 

has four nonzero reactions but only two available equilibrium equations. Therefore, the 

fi xed-end beam in Figure 11.4 is statically indeterminate to the second degree.

The beam shown in Figure 11.5a is called a continuous beam because it has more 

than one span and the beam is uninterrupted over the interior support. If only transverse 

loads act on the beam, it is statically indeterminate to the fi rst degree. This beam could be 

released in two ways. In Figure 11.5b, the interior roller support at B is removed so that the 

released beam is simply supported at A and C, a stable confi guration. In Figure 11.5c, 

the exterior support at C is removed. This released beam is also simply supported; however, the 

beam now has an overhang (from B to C). Nevertheless, this is a stable confi guration.

A B
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Ax

Ay By

MA

(a)  Actual beam with loads 

and reactions

A B

P
w

Ax

Ay

MA

(b)  Released beam if By is 

chosen as the redundant

A B

P
w

Ay

Ax

(c)  Released beam if MA is 

chosen as the redundant

FIGURE 11.1 Propped 

cantilever beam.

A B

P
w

Ax

Ay By

MA

FIGURE 11.2 Propped cantilever 

subjected to transverse loads only.

A B

P
w

Ax

Ay By

MA

Bx

BM

FIGURE 11.3 Fixed-end beam with 

load and reactions.

A BAx

Ay By

MA

Bx

BM
1P 2P

FIGURE 11.4 Fixed-end beam with 

transverse loads only.
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471
THE INTEGRATION METHOD 

In the sections that follow, three methods for analyzing statically indeterminate beams 

will be discussed. In each case, the initial objective will be to determine the magnitude of 

the redundant reactions. After the redundants have been determined, the remaining reac-

tions can be determined from equilibrium equations. After all of the reactions are known, 

the beam shear forces, bending moments, bending and shear stresses, and transverse 

 defl ections can be determined by the methods presented in Chapters 7 through 10.

A CB

1P 2P

Ay By yC

FIGURE 11.5a Continu-

ous beam on three supports.

A C

1P 2P

Ay yC

FIGURE 11.5b Released 

beam created by removing 

redundant By.

A CB

1P 2P

Ay By

FIGURE 11.5c Released 

beam created by removing 

redundant Cy.

v

x

A B

L

w0

For statically determinate beams, known slopes and defl ections were used to obtain 

boundary and continuity conditions, from which the constants of integration in the elastic 

curve equation could be evaluated. For statically indeterminate beams, the procedure is 

identical. However, the bending-moment equations derived at the outset of the procedure 

will contain reactions (or loads) that cannot be evaluated with the available equations of 

equilibrium. One additional boundary condition will be needed for the evaluation of each 

such unknown. For example, consider a transversely loaded beam with four unknown 

reactions that is to be solved by the double-integration method. Two constants of integra-

tion will appear as the bending-moment equation is integrated twice; consequently, this 

statically indeterminate beam has six unknowns. Since a transversely loaded beam has 

only two nontrivial equilibrium equations, four additional equations must be derived 

from boundary (or continuity) conditions. Two boundary (or continuity) conditions will 

be required to solve for the constants of integration, and two extra boundary (or continuity) 

conditions will be needed to solve for two of the unknown reactions. The following 

examples illustrate the method:

11.3 The Integration Method

EXAMPLE 11.1

A propped cantilever beam is loaded and supported as shown. 

Assume that EI is constant for the beam. Determine the reactions 

at supports A and B.

Plan the Solution
First, draw a free-body diagram (FBD) of the entire beam and 

write three equilibrium equations in terms of the four unknown 

reactions Ax, Ay, By, and MA. Next, consider a FBD that cuts 

through the beam at a distance x from the origin. Write an equilibrium equation for the 

sum of moments, and from this, determine the equation for the bending moment M as it 

varies with x. Substitute M into Equation (10.4) and integrate twice, producing two con-

stants of integration. At this point in the solution, there will be six unknowns, which will 
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require six equations for solution. In addition to the three equilibrium equations, three 

more equations will be obtained from three boundary conditions. These six equations 

will be solved to yield the constants of integration and the unknown beam reactions.

SOLUTION
Equilibrium
Consider a FBD of the entire beam. The equation for the sum of forces in the horizontal 

direction is trivial, since there are no loads in the x direction:

ΣF Ax x 0� �

The sum of forces in the vertical direction yields

 ΣF A B w Ly y y
1

2
00� � � �  (a)

The sum of moments about roller support B gives

 ΣM w L
L

A L MB y A
1

2 3
00� � � �  (b)

Next, cut a section through the beam at an arbitrary 

distance x from the origin and draw a free-body dia-

gram, taking care to show the internal moment M act-

ing in a positive direction on the exposed beam sur-

face. The equilibrium equation for the sum of moments 

about section a–a is

ΣM w
x

L
x

x
A x M My A

1

2 3
00� � � � �

From this, the bending-moment equation can be 

expressed as

  
M

w

L
x A x M x Ly A

0 3

6
0( )� � � � � �

 
(c)

Substitute the expression for M into Equation (10.4) to 

obtain

 EI
d v

dx

w

L
x A x My A

2

2
0 3

6
� � � �  (d)

Integration
Equation (d) will be integrated twice to give

 EI
dv

dx

w

L
x

A
x M x Cy

A
0 4 2

124 2
� � � � �  (e)

 EIv
w

L
x

A
x

M
x C x Cy A0 5 3 2

1 2120 6 2
� � � � � �  (f)

Boundary Conditions
For this beam, the bending-moment equation M in Equation (c) is valid for the interval 

0 � x � L. The boundary conditions, therefore, are found at x � 0 and x � L. From the 

fi xed support at A, the boundary conditions are x � 0, dv/dx � 0 and x � 0, v � 0. At roller 

support B, the boundary condition is x � L, v � 0.
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Evaluate Constants
Substitute the boundary condition x � 0, dv/dx � 0 into Equation (e) to fi nd C1 � 0. 

Substitution of the boundary condition x � 0, v � 0 into Equation (f) gives C2 � 0. Next, 

substitute the values of C1 and C2 and the boundary condition x � L, v � 0 into Equation 

(f) to obtain

EI
w

L
L

A
L

M
Ly A( ) ( ) ( ) ( )0

120 6 2
0 5 3 2� � � �

Solve this equation for MA in terms of the reaction Ay:

 M
w L A L

A
y0

2

60 3
� �  (g)

From equilibrium Equation (b), MA can also be written as

 M
w L

A LA y
0

2

6
� �  (h)

Solve for Reactions
Equate Equations (g) and (h):

w L A L w L
A Ly

y
0

2
0

2

60 3 6
� � �

Then solve for the vertical reaction force at A:

 A w L w Ly
27

120

9

400 0� �  Ans.

Backsubstitute this result into either Equation (g) or Equation (h) to determine the moment MA:

 M w LA
7

120 0
2� �  

Ans.

To determine the reaction force at roller B, substitute the result for Ay into Equation (a) 

and solve for By:

 
B w L w Ly

33

120

11

400 0� �
 

Ans.

v

x

A CB

w

2
L—

2
L—

EXAMPLE 11.2

A beam is loaded and supported as shown. Assume that EI is 

constant for the beam. Determine the reactions at supports A 

and C.

Plan the Solution
First, draw a free-body diagram (FBD) of the entire beam and 

develop two equilibrium equations in terms of the four unknown 

reactions Ay, Cy, MA, and MC. Two elastic curve equations must 

be derived for this beam and loading. One curve applies to the interval 0 � x � L /2, and 

the second curve applies to L/2 � x � L. Four constants of  integration will result from the 

double integration of two equations; therefore, a total of eight unknowns must be deter-

mined. To solve for eight variables, eight equations are required. Four equations are ob-

tained from the boundary conditions at the beam supports, where the beam defl ection and 

slope are known. At the junction between the two  intervals, two equations can be obtained 
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from the continuity conditions at x � L/2. Finally, two  nontrivial equations were derived 

from equilibrium for the entire beam. These eight equations will be solved to yield the 

constants of integration and the unknown beam reactions.

SOLUTION
Equilibrium
Draw a FBD of the entire beam. Since no loads act in the horizontal direction, the 

reactions Ax and Cx will be omitted. Write two equilibrium equations:

 Σ � � � �F A C
wL

y y y 2
0  (a)

 
Σ � � � � �M

wL L
A L M MC y A C2 4

0
 

(b)

For this beam, two equations are required to describe the 

bending moments for the entire span. Draw two FBDs: 

one FBD that cuts through the beam between A and B 

and the second FBD that cuts through the beam between 

B and C. From these two FBDs, derive the bending- 

moment equations and, in turn, the differential equations 

of the elastic curve.

For the Interval 0 � x � L/2 Between A and B,

M A x My A� �

which gives the differential equation

 EI
d v

dx
A x My A

2

2
� �  (c)

Integration
Integrate Equation (c) twice to obtain

 EI
dv

dx

A
x M x Cy

A2
2

1� � �
 (d)

 EIv
A

x
M

x C x Cy A

6 2
3 2

1 2� � � �  (e)

For the Interval L/2 � x � L Between B and C,

M
w

x
L

A x My A2 2

2

� � � � �

which gives the differential equation

 EI
d v

dx

w
x

L
A x My A

2

2

2

2 2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟� � � � �  (f)
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Integration
Integrate Equation (f) twice to obtain

 EI
dv

dx

w
x

L A
x M x Cy

A
6 2 2

3

2
3� � � � � �  (g)

 EIv
w

x
L A

x
M

x C x Cy A

24 2 6 2

4

3 2
3 4� � � � � � �  (h)

Boundary Conditions
There are four boundary conditions for this beam. Substituting x � 0, dv/dx � 0 into 

Equation (d) gives C1 � 0, and substituting x � 0, v � 0 into Equation (e) gives C2 � 0. 

Next, substitute the boundary condition x � L, dv/dx � 0 into Equation (g) to obtain the 

following expression for C3:

C
wL A L

M Ly
A3

3 2

48 2
� � �

Finally, substitute the boundary condition x � L, v � 0 and the expression obtained for 

C3 into Equation (h) to obtain the following expression for C4:

C
wL A L M Ly A

4

4 3 27

384 3 2
� � � �

Continuity Conditions
The beam is a single, continuous member. Consequently, the two sets of equations must 

produce the same slope and the same defl ection at x � L/2. Consider slope equations (d) 

and (g). At x � L/2, these two equations must produce the same slope; therefore, set the 

two equations equal to each other and substitute the value L/2 for each variable x:

A L
M

L w A Ly
A

y

2 2 2 6
0

2 2

2

3( )

2

3
2

M
L

CA� � � � ��

This reduces to

 0
48 2 2 48

3

3 2 2 3

C
wL A L

M L
A L

M L
wLy

A
y

A� � � � � ��  (i)

Similarly, defl ection equations (e) and (h) must produce the same defl ection at x � L/2:

A L M L w A Ly A y

6 2 2 2 24
0

6

3 2

4( )
22 2 2 2

3 2

3

M L
C

L
CA

44�� � � � � �

This reduces to

C C
L wL A L M L wLy A

4 3

4 3 2 3

2

7

384 3 2 48

AA L
M L

Ly
A

2

2 2
� � �� � � � � � ��  (j)

Solve for Reactions
Solve Equation (j) for the reaction force Ay:

 A
wL wL

y
36

384

3

32
� �  Ans.
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Substitute the reaction force Ay into Equation (i) to solve for the moment at A:

 M
wL A L wL wL wL wL

A
y

2 2 2 2 2

48 2 48

3

64

10

384

5

192
� � � � � � � �  Ans.

Substitute the reaction force Ay into Equation (a) to determine the reaction force Cy:

 
C

wL
A

wL wL wL
y y2 2

3

32

13

32
� � � � �

 
Ans.

Finally, determine the reaction moment MC from Equation (b):

M M A L
wL wL wL wL wL

C A y

2 2 2 2 2

8

10

384

3

32 8

22

384

11

192

2wL
� � � � � � � � � � �  

Ans.

P11.1 A beam is loaded and supported as shown in Figure 

P11.1. Use the double-integration method to determine the magnitude 

of the moment M0 required to make the slope at the left end of the 

beam equal to zero.

v

x

A B

L

P

w

FIGURE P11.3

v

x

0M

A B

L

w

FIGURE P11.1

P11.2 When moment M0 is applied to the left end of the cantilever 

beam shown in Figure P11.2, the slope of the beam at A is zero. Use 

the double-integration method to determine the magnitude of the 

moment M0.

P11.3 When the load P is applied to the right end of the cantile-

ver beam shown in Figure P11.3, the defl ection at the right end of 

the beam is zero. Use the double-integration method to determine 

the magnitude of the load P.

P11.4 A beam is loaded and supported as shown in Figure 

P11.4. Use the double-integration method to determine the reac-

tions at supports A and B.

P11.5 A beam is loaded and supported as shown in Figure P11.5.

(a)  Use the double-integration method to determine the reactions 

at supports A and B.

(b)  Draw the shear-force and bending-moment diagrams for the 

beam.

v

x

A B
0M

L

P

FIGURE P11.2

v

x

A B

L

0M

FIGURE P11.4

v

x

A B

L

w

FIGURE P11.5

PROBLEMSPROBLEMS
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P11.6 A beam is loaded and supported as shown in Figure 

P11.6. Use the double-integration method to determine the reac-

tions at supports A and B.

P11.10 A beam is loaded and supported as shown in Figure 

P11.10. Use the fourth-order integration method to determine the 

reactions at supports A and B.

v

x

A B

L

w0

FIGURE P11.6

v

x

A B

L

w0L2—
x2w0w(x)  �

FIGURE P11.7

P11.7 A beam is loaded and supported as shown in Figure 

P11.7. Use the fourth-order integration method to determine the 

reaction at roller support B.

P11.8–P11.9 A beam is loaded and supported as shown in 

Figures P11.8 and P11.9. Use the fourth-order integration method 

to determine the reaction at roller support A.

v

x

A B

L

�
w0

L2—
x2w0w(x)  

FIGURE P11.8

v

x

A B

L

w0

w0w(x)  � cos �x
2
—

L

FIGURE P11.10

P11.11 A beam is loaded and supported as shown in Figure 

P11.11. Use the fourth-order integration method to determine the 

reactions at supports A and B.

v

x

A B

L

w0

w0w(x)  � sin �x—
L

FIGURE P11.11

P11.12 A beam is loaded and supported as shown in Figure 

P11.12.

(a)  Use the double-integration method to determine the reactions 

at supports A and C.

(b)  Draw the shear-force and bending-moment diagrams for the 

beam.

(c)  Determine the defl ection in the middle of the span.

v

x

A CB

P

2
L—

2
L—

FIGURE P11.12

v

x

A B

L

w0

w0w(x) � sin �x
2
—

L

FIGURE P11.9
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P11.15 A beam is loaded and supported as shown in Figure 

P11.15.

(a)  Use the double-integration method to determine the reactions 

at supports A and C.

(b)  Draw the shear-force and bending-moment diagrams for 

the beam.

(c) Determine the defl ection in the middle of the span.

v

x

A CB

P

2
L—

2
L—

FIGURE P11.15

P11.13 A beam is loaded and supported as shown in Figure 

P11.13.

(a)  Use the double-integration method to determine the reactions 

at supports A and B.

(b)  Draw the shear-force and bending-moment diagrams for the 

beam.

(c) Determine the defl ection in the middle of the span.

FIGURE P11.13

P11.14 A beam is loaded and supported as shown in Figure 

P11.14.

(a)  Use the double-integration method to determine the reactions 

at supports A and C.

(b) Determine the defl ection in the middle of the span.

v

x

A B

L

w

v

x

A CB

L L

w0

FIGURE P11.14

P11.16–P11.17 A beam is loaded and supported as shown in 

Figures P11.16 and P11.17.

(a)  Use the double-integration method to determine the reactions 

at supports A and C.

(b)  Draw the shear-force and bending-moment diagrams for the 

beam.

v

x

A CB

0M

2
L—

2
L—

FIGURE P11.16

v

x

A CB

w

2
L—

2
L—

FIGURE P11.17
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The use of discontinuity functions for statically determinate beam analysis has been dis-

cussed in Chapters 7 and 10. In Section 7.4, discontinuity functions were used to derive 

functions expressing shear force and bending moment in beams. Beam defl ections for 

statically determinate beams were computed with discontinuity functions in Section 

10.6. In both sections, the reaction forces and moments were computed beforehand from 

equilibrium considerations, making it possible to incorporate known values into the load 

function w(x) from the outset of the calculation process. The added diffi culty posed by 

statically indeterminate beams is that the reactions cannot be determined from equilibrium 

11.4  Use of Discontinuity Functions for Statically 
Indeterminate Beams
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479
considerations alone and, thus, known values for the reaction forces and moments cannot 

be included in w(x). 

For statically indeterminate beams, reaction forces and moments are initially expressed 

as unknown quantities in the load function w(x). The integration process then proceeds in the 

manner described in Section 10.6, producing two constants of integration C1 and C2. These 

integration constants, as well as the unknown beam reactions, must be computed in order to 

complete the elastic curve equation. Equations containing the constants C1 and C2 can be 

derived from the boundary conditions, and these equations, along with the beam equilibrium 

equations, are then solved simultaneously to evaluate C1 and C2 as well as the beam reaction 

forces and moments. The solution process is demonstrated in the following examples:

v

x

A B C D

3 m5 m2 m

80 kN/m

v

x

DyAy

DM

A B C D

3 m5 m2 m

80 kN/m

USE OF DISCONTINUITY 
FUNCTIONS FOR STATICALLY 

INDETERMINATE BEAMS

EXAMPLE 11.13

For the statically indeterminate beam shown, use discontinuity 

functions to determine:

(a) the force and moment reactions at A and D.

(b) the defl ection of the beam at C.

Assume a constant value of EI � 120,000 kN-m2 for the beam.

Plan the Solution
The beam is statically indeterminate; therefore, the reaction forces at A and D cannot be 

determined solely from equilibrium considerations. From a FBD of the beam, two non-

trivial equilibrium equations can be derived. However, since the beam is statically indeter-

minate, the reaction forces and moments can be stated only as unknowns. The distributed 

load on the beam, as well as the unknown reactions, will be expressed by discontinuity 

functions. This loading function will be integrated twice to obtain the  bending-moment 

function for the beam. In these fi rst two integrations, constants of integration will not be 

necessary. The bending-moment function will then be integrated twice more to obtain the 

elastic curve equation. Constants of integration must be considered in these two integra-

tions. The three boundary conditions known at A and D along with the two nontrivial equi-

librium equations will produce fi ve equations that can be solved simultaneously to determine 

the three unknown reactions and the two constants of integration. After these quantities are 

found, the beam defl ection at any location can be computed from the elastic curve equation.

SOLUTION
(a) Support Reactions
A FBD of the beam is shown to the right. Since no forces act 

in the x direction, the �Fx equation will be omitted here. 

From the FBD, the beam reaction forces can be expressed by 

the following relationships:

    
ΣF A D A Dy y y y y( ) ( m) kN80 5 0 400kN/m� � � � � � �  (a)

 
ΣM A M

M A

D y D

D y

( m) ( ) ( m)( . m)

( m)

10 80 5 5 5 0

10

kN/m

2,200 kN-m

� �

� � ��

� � �
 (b)

c11StaticallyIndeterminateBeams.indd Page 479  3/19/12  8:03 PM user-F393c11StaticallyIndeterminateBeams.indd Page 479  3/19/12  8:03 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



480

Discontinuity Expressions
Distributed load between B and C: Use case 5 of Table 7.2 to write the following 

expression for the distributed load:

w x x x( ) m m80 2 80 70 0kN/m kN/m� � � � �

Reaction forces Ay, Dy, and MA: Since the beam is statically indeterminate, the reaction 

forces at A and D can be expressed only as unknown quantities at this time:

w x A x D x M xy y D( ) m m m0 10 101 1 2
� � � � � �

� ��

Note that the terms for reaction force Dy and MD will always have a value of zero in this 

example, since the beam is only 10 m long; therefore, these terms may be omitted here.

Integrate the beam loading expression: The complete load expression w(x) for the beam 

is thus

w x A x x xy( ) m m m0 80 2 80 71 0 0kN/m kN/m� � � � � �
�

The function w(x) will be integrated to obtain the shear-force function V(x):

V x w x dx A x x xy( ) ( ) m m m0 80 2 80 70 1 1kN/m kN/m� � � � � � �

Note that a constant of integration is not needed here, since the unknown reaction at A 

has been included in the function. The shear-force function is integrated to obtain the 

bending-moment function M(x):

M x V x dx A x x xy( ) ( ) m m m0
80

2
2

80

2
71 2 2kN/m kN/m

� � � � � � �

As before, a constant of integration is not needed for this result. However, the next two 

integrations (which will produce functions for beam slope and defl ection) will require 

constants of integration that must be evaluated from the beam boundary conditions.

From Equation (10.1), we can write

EI
d v

dx
M x A x x xy

2

2

1 2 20
80

2
2

80

2
7( ) m m m

kN/m kN/m
� � � � � � �

Integrate the moment function to obtain an expression for the beam slope:

 EI
dv

dx

A
x x x Cy

2
0

80

6
2

80

6
72 3 3

1m m m
kN/m kN/m

� � � � � � �  (c)

Integrate again to obtain the beam defl ection function:

 
EIv

A
x x x C x Cy

6
0

80

24
2

80

24
73 4 4

1 2m m m
kN/m kN/m

� � � � � � � �  (d)
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M AD y ( m) ( . kN)( m)10 153 85 102,200 kN-m 2,200 kN-m

661 50. kN-m

� � �

� �

�
 

Ans.

Equation (c) for the beam slope and Equation (d) for the elastic curve can now be completed:

Evaluate constants, using boundary conditions: For this beam, the defl ection is known at 

x � 0 m. Substitute the boundary condition v � 0 at x � 0 m into Equation (d) to obtain 

constant C2:

 C2 0�  (e)

Next, substitute the boundary condition v � 0 at x � 10 m into Equation (d):

 
0

6
10

80

24
8

80

24
3 103 4 4

1

A
Cy ( m) ( m) ( m) ( m)

kN/m kN/m

( )166 6667 103
1. m ( m) 3A Cy 13,383.3333 kN-m

� � � �

���

 (f )

Finally, substitute the boundary condition dv/dx � 0 at x � 10 m into Equation (c) 

to  obtain

 
0

2
10

80

6
8

80

6
3

50

2 3 3
1

2

A
Cy ( m) (

(           )

m) ( m)

m

kN/m kN/m

AA Cy 1
26,466.6667 kN-m

�

�

� �

� �

�
 (g)

Equations (f) and (g) can be solved simultaneously to compute C1 and Ay:

 C Ay1
3 153 851,225.8333 kN-m and . kN� � �  Ans.

Now that Ay is known, the reactions Dy and MD can be determined from Equations 

(a) and (b):

D Ay y400 400 153 85 246 15kN kN . kN . kN� � � ��  Ans.
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EI
dv

dx
x x x

153 85

2
0

80

6
2

80

6
72 3 3. kN

m m m
kN/m kN/m

1,225.8333 kN-m3� � � � � � �
 

(h)

 

EIv x x x
153 85

6
0

80

24
2

80

24
73 4 4. kN

m m m
kN/m kN/m

11,225.8333 kN-m3( )x� � � � � � �

 

(i)

(b) Beam Defl ection at C
From Equation (i), the beam defl ection at C (x � 7 m) is computed as follows:

EIvC
153 85

6
7

80

24
53 4. kN

( m) ( m)
kN/m

1,225.8333 kN-mm

1,869.075 kN-m

3

3

7( )( m)� � �

� �

 vC
1,869.075 kN-m

120,000 kN-m

3

2
0 015576 15 5. m . 88 mm�� � � ��   Ans.
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v

x

A B DC E

By Dy Ey

2 m 5 m 5 m5 m

90 kN/m

v

x

A B DC E

2 m 5 m 5 m5 m

90 kN/m

For the statically indeterminate beam shown, use discontinuity 

functions to determine

(a) the force reactions at B, D, and E.

(b) the defl ection of the beam at A.

(c) the defl ection of the beam at C.

Assume a constant value of EI � 120,000 kN-m2 for the beam.

Plan the Solution
The beam is statically indeterminate; therefore, the reaction forces cannot be deter-

mined solely from equilibrium considerations. From a FBD of the beam, two nontrivial 

equilibrium equations can be derived. However, since the beam is statically indetermi-

nate, the reaction forces can be stated only as unknowns. The distributed load on the 

beam, as well as the unknown reactions, will be expressed by discontinuity functions. 

This loading function will be integrated twice to obtain the bending-moment function 

for the beam. In these fi rst two integrations, constants of integration will not be neces-

sary. The bending-moment function will then be integrated twice more to obtain the 

elastic curve equation. Constants of integration must be considered in these two inte-

grations. The three boundary conditions known at B, D, and E, along with the two 

nontrivial equilibrium equations, will produce fi ve equations that can be solved simultaneously 

to determine the three unknown reactions and the two constants of integration. After 

these quantities are found, the beam defl ection at any location can be computed from 

the elastic curve equation.

SOLUTION
(a) Support Reactions
A FBD of the beam is shown. Since no forces act in the x direction, the �Fx equation will 

be omitted here. From the FBD, the beam reaction forces can be expressed by the follow-

ing relationships:

F B D E B D Ey y y y y y y( )( m)90 12 0kN/m 1,080� � � � � � � ��Σ kN  (a)

 

ΣM B D

B

E y y

y

( m) ( m) ( ) ( m)( m)

( m

15 5 90 12 11 0

15

kN/m

)) ( m)Dy 5 11,880 kN-m

�

� ��

� � � �

 
(b)

Discontinuity Expressions
Distributed load between A and D: Use case 5 of Table 7.2 to 

write the following expression for the distributed load:

w x x x( ) m m90 0 90 120 0kN/m kN/m� � � � �

Reaction forces By , Dy , and Ey: Since the beam is statically 

indeterminate, the reaction forces at B, D, and E can be expressed 

only as unknown quantities at this time:

w x B x D x E xy y y( ) m m m2 12 171 1 1
� � � � � �

� � �

Note that the term for reaction force Ey will always have a value 

of zero in this example, since the beam is only 17 m long; there-

fore, this term may be omitted here.

EXAMPLE 11.4
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Integrate the beam loading expression: The complete load expression w(x) for the beam 

is thus

w x x B x x D xy y( ) m m m m90 0 2 90 12 120 1 0kN/m kN/m 1
� � � � � � � � �

� �

The function w(x) will be integrated to obtain the shear-force function V(x):

V x w x dx x B x xy( ) ( ) m m m90 0 2 90 121 0 1kN/m kN/m DD xy 12 0m� � � � � � � � � �

The shear-force function is integrated to obtain the bending-moment function M(x):

M x V x dx x B x xy( ) ( ) m m m
90

2
0 2

90

2
122 1kN/m kN/m 22 112D xy m� � � � � � � � � �

Since the reactions have been included in these functions, constants of integration are not 

needed up to this point. However, the next two integrations (which will produce functions 

for beam slope and defl ection) will require constants of integration that must be evaluated 

from the beam boundary conditions.

From Equation (10.1), we can write

EI
d v

dx
M x x B x xy

2

2

2 190

2
0 2

90

2
12( ) m m

kN/m kN/m
mm m2 112D xy� � � � � � � � � �

Integrate the moment function to obtain an expression for the beam slope:

 
EI

dv

dx
x

B
x x

Dy y90

6
0

2
2

90

6
12

2
3 2 3kN/m kN/m

m m m xx C12 2
1m� � � � � � � � � �

 

(c)

Integrate again to obtain the beam defl ection function:

 

EIv x
B

x x
D

xy y90

24
0

6
2

90

24
12

6
4 3 4kN/m kN/m

m m m 12 3
1 2m C x C� � � � � � � � � � �

 

(d)

 
0

90

24
2 2

2 60

4
1 2

1 2

kN/m

kN-m

( m) ( m)

( m) 3

C C

C C

� � � �

���

 (e)

Next, substitute the boundary condition v � 0 at x � 12 m into Equation (d):

 
0

90

24
12

6
10 12

166 66

4 3
1 2

kN/m
( m) ( m) ( m)

.

B
C C

B

y

y 667 123
1 2m (( ) m) 3C C 77,760 kN-m

� � � � �

����
 (f )

Finally, substitute the boundary condition v � 0 at x � 17 m into Equation (d):

Five equations—Equations (a), (b), (e), (f), and (g)—must be solved simultaneously to de-

termine the beam reaction forces at B, D, and E, as well as the two constants of integration 

C1 and C2:

 

C C

B D Ey y

1
2

2

579 639

1,880 kN-m 3,820 kN-mand

kN kN

3

yy 138 kN

�

� � �

�

�

�
 Ans.
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Evaluate constants, using boundary conditions: For this beam, substitute the boundary 

condition v � 0 at x � 2 m into Equation (d):

 0
90

24
17

6
15

90

24
5

6
54 3 4kN/m kN/m

( m) ( m) ( m) (
B Dy y mm) ( m)

. m . m (

3
1 2

3 3
1

17

562 5 20 8333 17( ) ( )

C C

B D Cy y mm) 3C2 310,860 kN-m

� �

�

�

� � � �

� � � �  (g)
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Equation (c) for the beam slope and Equation (d) for the elastic curve can now be 

completed:

EI
dv

dx
x x x

90

6
0

579

2
2

90

6
123 2 3kN/m kN/m

m
kN

m m

6639

2
12 2kN

m 2x 1,880 kN-m

� �

� � �

� � � � �

 (h)

EIv x x x
90

24
0

579

6
2

90

24
12

6

4 3 4kN/m kN/m
m

kN
m m

339

6
12 3 3kN

m 2x x( )1,880 kN-m 3,820 kN-m

�

� � � �

� � � � � �

 
(i)

(b) Beam Defl ection at A
The beam defl ection at A (x � 0 m) is computed from Equation (i):

 EIvA 3,820 kN-m3�  

 
vA

3,820 kN-m

120,000 kN-m

3

2
0 031833 31 8. m . mm� � ��

 
Ans.

(c) Beam Defl ection at C
From Equation (i), the beam defl ection at C (x � 7 m) is computed as follows:

EIvC ( )
90

24
7

579

6
5 74 3kN/m

1,880 kN-m( m)
kN

( m) ( m2 )) 3,820 kN-m

6,281.250 kN-m

3

3

� �

� �

� � �

 
vC

6,281.250 kN-m

120,000 kN-m

3

2
0 052344 52 3. m . mmm� � ����

 
Ans.

P11.18 A propped cantilever beam is loaded as shown in 

Figure P11.18. Assume that EI � 200,000 kN-m2, and use dis-

continuity functions to determine

(a) the reactions at A and C.

(b) the beam defl ection at B.

P11.19 A propped cantilever beam is loaded as shown in 

Figure P11.19. Assume that EI � 200,000 kN-m2, and use discon-

tinuity functions to determine

v

x

A B C

5 m7 m

150 kN

FIGURE P11.18

x

v

A B C

2.5 m5 m

750 kN-m

FIGURE P11.19

P11.20 A propped cantilever beam is loaded as shown in 

Figure P11.20. Assume that EI � 100,000 kip-ft2, and use discon-

tinuity functions to determine

(a) the reactions at A and E.

(b) the beam defl ection at C.

(a) the reactions at A and B.

(b) the beam defl ection at C.

PROBLEMSPROBLEMS
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P11.24 For the beam shown in Figure P11.24, assume that 

EI � 100,000 kip-ft2 and use discontinuity functions to determine

(a) the reactions at A, C, and D.

(b) the beam defl ection at B.

v

x

A B C D E

7 ft 7 ft7 ft7 ft

20 kips 20 kips30 kips

FIGURE P11.20

P11.21 A propped cantilever beam is loaded as shown in 

Figure P11.21. Assume that EI � 100,000 kip-ft2, and use discon-

tinuity functions to determine

(a) the reactions at A and B.

(b) the beam defl ection at x � 7 ft.

v

x

16 ft

A B

12 kips/ft

FIGURE P11.21

v

x

A B C

2 m6 m

120 kN/m

FIGURE P11.22

P11.22 A propped cantilever beam is loaded as shown in 

Figure P11.22. Assume that EI � 200,000 kN-m2, and use discon-

tinuity functions to determine

(a) the reactions at A and B.

(b) the beam defl ection at C.

P11.23 For the beam shown in Figure P11.23, assume that 

EI � 200,000 kN-m2 and use discontinuity functions to determine

(a) the reactions at A, C, and D.

(b) the beam defl ection at B.

v

x

A C DB

120 kN/m

4 m3 m 3 m

FIGURE P11.23

v

x

A C DB

7 kips/ft

8 ft 8 ft 16 ft

75 kips

FIGURE P11.24

P11.25 For the propped cantilever beam shown in Figure 

P11.25, assume that EI � 100,000 kip-ft2 and use discontinuity 

functions to determine

(a) the reactions at B and D.

(b) the beam defl ection at C.

v

x

A B C D

10 ft 8 ft12 ft

5 kips/ft

FIGURE P11.25

P11.26–P11.27 For the beams shown in Figures P11.26 and 

P11.27, assume that EI � 200,000 kN-m2 and use discontinuity 

functions to determine

(a) the reactions at B, C, and D.

(b) the beam defl ection at A.

x

A C DB

60 kN/m

6 m3 m 6 m

120 kN

FIGURE P11.26

x

v

A C DB

60 kN/m420 kN-m

6 m3 m 6 m

FIGURE P11.27
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v

x
A B

P

2
L—

2
L—

(a) actual beam

v

x
A B

P

Ay By

Ax

MA

2
L—

2
L—

(b) Free-body diagram

v

x
A B

P

vB

2
L—

2
L—

(c) Released beam subjected to actual loads

v

x
A B

L

vB�

By

(d) Released beam subjected to redundant By

FIGURE 11.6 Superposition method applied to a propped cantilever beam.

The concepts of redundant reactions and a released beam were introduced in 

Section 11.2. These notions can be combined with the principle of superposition to create 

a very powerful method for determining the support reactions of statically indeterminate 

beams. The general approach can be outlined as follows:

•  Redundant support reactions acting on the statically indeterminate beam are identifi ed.

•  The selected redundant is removed from the structure, leaving a released beam that is 

stable and statically determinate.

•  The released beam subjected to the applied load is considered. The defl ection or 

rotation (depending on the nature of the redundant) of the beam at the location of the 

redundant is determined.

•  Next, the released beam (without the applied load) is subjected to one of the redundant 

reactions and the defl ection or the rotation of this beam-and-loading combination is 

determined at the location of the redundant. If more than one redundant exists, this 

step is repeated for each redundant.

•  By the principle of superposition, the actual loaded beam is equivalent to the sum of 

these individual cases.

•  To solve for the redundants, geometry-of-deformation equations are written for each of 

the locations where redundants act. The magnitude of the redundant can be obtained 

from this deformation equation.

•  Once the redundants are known, the other beam reactions can be determined from the 

equilibrium equations.

To clarify this approach, consider the propped cantilever beam shown in Figure 11.6a. The 

free-body diagram for this beam (Figure 11.6b) shows four unknown reactions. Three equi-

librium equations can be written for this beam (�Fx � 0, �Fy � 0, and �M � 0); therefore, 

this beam is statically indeterminate to the fi rst degree. One additional equation must be 

developed in order to compute the reactions for the propped cantilever.

11.5 The Superposition Method
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487
THE SUPERPOSITION METHODThe roller reaction By will be selected as the redundant. This reaction force is removed 

from the beam, leaving a cantilever as the released beam. Note that the released beam 

is stable and that it is statically determinate. Next, the defl ection of the released beam at the 

location of the redundant is analyzed for two loading cases. The fi rst case consists of 

the cantilever beam with applied load P, and the downward defl ection vB at the location of 

the redundant is determined (Figure 11.6c). The second case consists of the cantilever 

beam with only the redundant reaction force By, and the upward defl ection v�B caused by By 

is determined (Figure 11.6d).

By the principle of superposition, the sum of these two loading cases 

(Figures 11.6c and 11.6d) is equivalent to the actual beam (Figure 11.6a) if the sum of vB and 

v�B equals the actual beam defl ection at B. The actual beam defl ection at B is known before-

hand: The defl ection must be zero, since the beam is supported by a roller at B. From this fact, 

a geometry-of-deformation equation can be written for B in terms of the two loading cases:

  v vB B 0�� �  (a)

The defl ections vB and v�B can be determined from equations given in the beam table found 

in Appendix C.

 v
PL

EI
v

B L

EIB B
y5

48 3

3 3

and� ���  (b)

These defl ection expressions are substituted into Equation (a) to produce an equation based 

on the defl ected geometry of the beam, but expressed in terms of the unknown reaction By. 

This compatibility equation can be solved for the value of the redundant:

 
5

48 3
0

5

16

3 3PL

EI

B L

EI
B Py

y� � � ��  (c)

Once the magnitude of By has been determined, the remaining reactions can be found from 

the equilibrium equations. The results are

 A A P M PLx y A0
11

16

3

16
� � �  (d)

The choice of redundant is arbitrary, provided that the primary beam remains stable. 

 Consider the previous propped cantilever beam (Figure 11.6a), which has four reactions 

(Figure 11.6b). Instead of roller B, suppose that the moment reaction MA is chosen as the re-

dundant, leaving a simply supported span as the released beam. Removing MA allows the 

beam to rotate freely at A; therefore, the rotation angle �A must be determined for the released 

beam subjected to the applied load P (Figure 11.7b). Next, the simple span is subjected to 

redundant MA alone and the resulting rotation angle ��A
 is determined (Figure 11.2c).

Just as before, the sum of these two loading cases (Figures 11.7b and 11.7c) is equiv-

alent to the actual beam (Figure 11.7a), provided that the rotations produced by the two 

separate loading cases add up to be the same as the actual beam rotation at A. Since the 

actual beam is fi xed at A, the rotation angle must be zero, which leads to the following 

geometry-of-deformation equation:

 A A� 0��� �  (e)

Again from the beam table in Appendix C, the rotation angles for the two cases can be 

expressed as

 

A A
APL

EI

M L

EI

2

16 3
and �� ��� �

 
(f)
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Substituting these expressions into Equation (e) gives the following compatibility equa-

tion, which can be solved for the unknown redundant magnitude:

 
PL

EI

M L

EI
M PLA

A

2

16 3
0

3

16
� � � ��  (g)

The value for MA is the same result computed previously. Once MA has been determined, 

the remaining reactions can be computed from the equilibrium equations.

The following examples illustrate application of the superposition method to deter-

mine support reactions for statically indeterminate beams:

v

x
A B

P

2
L—

2
L—

v

x
A B

P

A

2
L—

2
L—

�

v

x

L

A B

A� �

MA

(a) Actual beam

FIGURE 11.7 Superposition method for a propped cantilever beam, using a simply supported released beam.

(b) Simply supported released beam (c) Redundant MA applied to released beam
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Use two different approaches of the superposition method to determine the roller 

reaction at A.

 MecMovies Example M11.3 

For the beam and loading shown, derive an expression for the 

reaction at support B. Assume that EI is constant for the beam.

Plan the Solution
The propped cantilever has four unknown reaction forces (hori-

zontal and vertical reaction forces at fi xed reaction A, moment 

reaction at A, and vertical reaction force at roller B). Since only 

three equilibrium equations can be written for the beam, one addi-

tional equation must be developed in order to solve this problem. This additional equation will 

be developed by considering the defl ected shape of the beam and, in particular, the known 

beam defl ection at roller B. The roller support at B will be chosen as the redundant; therefore, 

the released beam will be a cantilever supported at A. The analysis will be subdivided into two 

EXAMPLE 11.5

v

x

A CB

L

0M

2
L—
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cases. In the fi rst case, the defl ection at B produced by the concentrated moment M0 will 

be determined. In the second case, the unknown roller reaction force will be applied to the 

cantilever beam at B and an expression for the corresponding beam defl ection will be de-

rived. These two defl ection expressions will be added together in a compatibility equation 

to express the total beam defl ection at B, which must equal zero, since B is a roller sup-

port. From this compatibility equation, the magnitude of the unknown roller reaction 

force at B can be determined.

SOLUTION
This beam will be analyzed with two cantilever beam cases. In both cases, the roller sup-

port at B will be removed, reducing the propped cantilever beam to a cantilever beam. In 

the fi rst case, the concentrated moment M0 acting at the tip of the 

cantilever will be considered. In the second case, the defl ection 

caused by the roller reaction force at B will be considered.

Case 1—Concentrated Moment at Tip of Cantilever
Remove the roller support at B and consider the cantilever beam 

ABC. From Appendix C, the elastic curve equation for a cantile-

ver beam subjected to a concentrated moment acting at its free 

end is given by

 v
Mx

EI

2

2
� �  

(a)

Use the elastic curve equation to compute the beam defl ection at B. In Equation (a), let 

M � M0 and x � L, and assume that EI is a constant for the beam. Substitute these values 

into Equation (a) to derive an expression for the beam defl ection at B:

 v
M L

EIB
0

2

2
� �  (b)

Case 2—Concentrated Force at Roller Support Location
By applying only redundant By to the cantilever beam, an expres-

sion for the resulting defl ection at B is derived. From Appendix 

C, the maximum cantilever beam defl ection produced by a con-

centrated force acting at its tip is given by the expression

 v
PL

EImax

3

3
� �  (c)

In Equation (c), let P � �By and L � L. Note that By is negative, since it acts upward, 

opposite to the direction assumed in the beam table. Substitute these values into Equation 

(c) to obtain an expression for the beam defl ection at B in terms of the unknown roller 

reaction force By:

 v
B L

EI

B L

EIB
y y( ) 3 3

3 3
� ��

�  (d)

Compatibility Equation
Two expressions have been developed for the beam defl ection at B [Equations (b) and (d)]. 

Add these two expressions, and set the result equal to the beam defl ection at B, which is 

known to be zero at the roller support:

 v
M L

EI

B L

EIB
y0

2 3

2 3
0� � ��

 
(e)

L

v

x

A CB

0M

vB

2
L—

v

x

A CB

L

vB

By

2
L—

vBBvBvB
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v

x

A DB C

L

P

2
L—

2
L—

vB

v

x

A DB C
x L

P

2
L—

2
3L

�

490

Notice that EI appears in both terms; hence, it cancels out. The specifi c value of EI has no 

effect on the roller force magnitude for this particular beam. The roller reaction By is the 

only unknown quantity in the compatibility equation, and thus, the roller reaction at B is

 B
M

Ly
3

2
0�  Ans.

Once the reaction force at B is known, the beam is no longer statically indeterminate. The 

three remaining unknown reactions at fi xed support A can be determined from the equi-

librium equations.

For the beam and loading shown, derive an expression for the 

reaction at support B. Assume that EI is constant for 

the beam.

Plan the Solution
The beam considered here has four unknown reaction forces 

(horizontal and vertical reaction forces at pin A and vertical 

reaction forces at rollers B and D). Since there are only three 

equilibrium equations, a fourth equation must be developed. 

Although there are several approaches that could be used to 

develop this fourth equation, we will focus our attention on the roller at B. The roller at B 

will be chosen as the redundant reaction. Removing this redundant leaves a released beam 

that is simply supported at A and D. Two cases will then be analyzed. The fi rst case consists 

of simple beam AD subjected to load P. The second case consists of simple beam AD 

loaded at B with the unknown roller reaction. In both cases, expressions for the beam de-

fl ection at B will be developed. These expressions will be combined in a compatibility 

equation using the fact that the beam defl ection at B is known to be zero. From this compat-

ibility equation, an expression for the unknown reaction force at B can be derived.

SOLUTION
Case 1—Simply Supported Beam with a Concentrated Load at C
Remove the roller support at B, and consider the simply supported beam AD with a 

concentrated load at C. The defl ection of this beam at B must be determined. From 

Appendix C, the elastic curve equation for this beam is given as

 v
Pbx

LEI
L b x( )

6
2 2 2�� � �  (a)

In this equation, the following values will be used:

 P � P

 b � L/2

 x � L

 L � 2L

 EI � constant

EXAMPLE 11.6
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v

x

A DB

L L
By

vB

Substitute these values into Equation (a), and derive the beam defl ection at B:

 v
P L L

L EI
L L L

PL

EIB
( ) ( )

( )
( ) ( ) ( )

2

6 2
2 2

24

112 2 2

44

11

96
2

3
L

PL

EI
� � � � � � � �  (b)

Case 2—Simply Supported Beam with Unknown Reaction Force at B
Consider the simply supported beam AD with the unknown roller reaction applied as a 

concentrated load at B. From Appendix C, the maximum defl ection for a simply sup-

ported beam with a concentrated load at midspan is given as

 v
PL

EImax

3

48
� �  (c)

For this beam, let

 
P B B

L L

EI

y y(negative, since acts upward)

constant

2

�

�

�

�
 

Substitute these values into Equation (c) to obtain the following 

expression for the beam defl ection at B:

 v
B L

EI

B L

EIB
y y( )( ) 2

48 6

3 3

� ��
�  (d)

Compatibility Equation
Add Equations (b) and (d) to obtain an expression for the beam defl ection at B. Since B is 

a roller support, the defl ection at this location must be zero.

 v
PL

EI

B L

EIB
y11

96 6
0

3 3

� � ��  (e)

As in the previous example, EI appears in both terms, so it can be cancelled out. The spe-

cifi c value of EI has no effect on the reaction magnitude for the roller support at B. From 

the compatibility equation, the unknown roller reaction force By can be expressed as

 B Py
11

16
�  Ans.

v

x

A DB C

L

P

2
L—

2
L—

Consider the beam and loading from Example 11.6. The beam 

consists of a structural steel W530 � 66 wide-fl ange shape 

[E � 200 GPa; I � 351 � 106 mm4]. Assume that 

P � 240 kN and L � 5 m. Determine

(a) the reaction force at roller support B.

(b) the reaction force at B if the roller support settles 5 mm.

Plan the Solution
To answer part (a) of this problem, the equation developed for By in Example 11.6 will be 

used to calculate the reaction force. In part (b) of this example, the middle roller settles 5 mm, 

which means that the roller support displaces downward by 5 mm. The compatibility 

EXAMPLE 11.7
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equation developed in Example 11.6 assumed that the beam defl ection at B was zero. In 

this instance, however, the compatibility equation must be revised to account for the 

5-mm downward displacement.

SOLUTION
(a)  From Example 11.6, the reaction force at B for this beam and loading confi guration 

is given by

B Py
11

16
�

   Given that P � 240 kN, the reaction force at B is By � 165 kN.

(b) The compatibility equation derived in Example 11.6 was

v
PL

EI

B L

EIB
y11

96 6
0

3 3

� �� �

This equation was based on the assumption that the beam defl ection at roller support B 

would be zero. In part (b) of this example, however, the possibility that the support settles 

by 5 mm is being investigated. This is a very practical consideration. All building struc-

tures rest on foundations. If these foundations are constructed on solid rock, there may be 

little or no settlement; however, foundations that rest on soil or sand will always settle to 

some extent. If all supports settle by the same amount, the structure will displace as a 

rigid body and there will be no effect on the internal forces and moments of the structure. 

However, if one support settles more that the others, then the reactions and internal forces 

in the structure will be affected. Part (b) of this example examines the change in reaction 

forces that would occur if the roller support at B displaces downward 5 mm more than the 

displacements of supports A and C. This situation is termed differential settlement.
Roller support B settles 5 mm. The beam is connected to this support; therefore, the 

beam defl ection at B must be vB � –5 mm. The compatibility equation from Example 

11.6 will be revised to account for this nonzero beam defl ection at B, giving

v
PL

EI

B L

EIB
y11

96 6
5

3 3

mm� � � � �

and an expression for the reaction force at B can be derived:

 
B

EI

L

PL

EIy
6

5
11

963

3
mm� � �

 (a)

Unlike previous examples, EI does not cancel out of this equation. The magnitude of By 

will depend not only on the magnitude of the support settlement, but also on the fl exural 

properties of the beam. In this equation, the following values will be used:

 P

L

I

E

240

5

351 10

200

6 4

kN N

m mm

mm

GP

240,000

5,000

aa MPa200,000

�

�

�

� �

�

�

�  

Substitute these values into Equation (a), and compute By. Pay particular attention to the 

units associated with each variable, and make sure that the calculation is dimensionally 

consistent. In this example, all force units will be converted to newtons and all length 

units will be expressed in millimeters.
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The 5-mm settlement at support B decreases the reaction force By from 165 kN to 

148.2 kN. The bending moments in the beam will also change because of the support 

settlement. If the roller support at B does not settle, the maximum positive bending 

moment in the beam is 243.75 kN-m and the maximum negative bending moment is 

�112.5 kN-m. A 5-mm settlement at roller B changes the maximum positive bending 

moment to 264.81 kN-m (an 8.6 percent increase) and the maximum negative bending 

moment to �70.38 kN-m (a 37 percent decrease). These values show that a relatively 

small differential settlement can produce signifi cant changes in the bending moments 

produced in the beam. The engineer must be attentive to these potential variations.

(1)

9 m

x

v

A B

6 m

40 kN/m

x

v

A B

6 m

40 kN/m

vB

By
6

5
200,000 N/mm

5,000

2 6 4

3

(351 10 mm

mm)
mm

)

(

N)( mm)

10

3

2

11

96 200 000 351

(

,

240,000 5,000

N/mm 66 mm

) mm 48.967 mm

4

5

1

(3,369.6 N/mm

448 152 103. N 148.2 kN

�
�

�

��

�

��
�

�

�

( )
( ) ( )

  
 Ans.
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A structural steel tube [E � 200 GPa; I � 300 � 106 mm4] beam 

supports a uniformly distributed load of 40 kN/m. The beam is 

fi xed at the left end and supported by a 30-mm-diameter, 9-m-

long solid aluminum [E1 � 70 GPa] tie rod. Determine the ten-

sion in the tie rod and the defl ection of the beam at B.

Plan the Solution
The cantilever beam is supported at B by a tie rod. Unlike a roller 

support, the tie rod is not rigid—it stretches in response to its in-

ternal tension force. Supports such as this are termed elastic sup-
ports. The beam defl ection at B will not be zero in this instance; 

rather, the beam defl ection will equal the elongation of the tie 

rod. To analyze this beam, select the reaction force provided by the tie rod as the redundant 

reaction. Removing this redundant leaves a cantilever as the released beam. Two cantilever 

beam cases will then be considered. In the fi rst case, the downward defl ection of the canti-

lever beam at B due to the distributed load will be calculated. The second case will consider 

the upward defl ection at B produced by the internal force in the tie rod. These two expres-

sions will be added together in a compatibility equation with the sum set equal to the 

downward defl ection of the lower end of the tie rod, which is simply equal to the rod elon-

gation. Since the rod elongation depends on its internal force, the compatibility equation 

will contain two terms that include the unknown tie rod force. Once the tie rod force has 

been computed from the compatibility equation, the defl ection of the beam at B can be 

computed.

SOLUTION
Case 1—Cantilever Beam with Uniformly Distributed Load
Remove the redundant tie rod support at B, and consider a cantilever 

beam subjected to a uniformly distributed load. The defl ection of this 

beam must be determined at B. From Appendix C, the maximum 

beam defl ection (which occurs at B) is given by

 v v
wL

EIBmax

4

8
� � �  (a)

EXAMPLE 11.8
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Case 2—Cantilever Beam with Concentrated Load
The tie rod provides the reaction force for the cantilever beam at B. Consider the canti-

lever beam subjected to this upward reaction force By. From Appendix C, the maximum 

beam defl ection (which occurs at B) due to a concentrated load applied at the tip of the 

cantilever is given by

 v v
PL

EI

B L

EI

B L

EIB
y y

max

3 3 3

3 3 3
� � �

(     )
�� �

�  (b)

Compatibility Equation
The expressions developed for vB from the two cases [Equations 

(a) and (b)] are combined in a compatibility equation:

 v
wL

EI

B L

EIB
y

4 3

8 3
0� � � �   (c)

In this instance, however, the beam defl ection at B will not equal 

zero, as it would if there were a roller support at B. The beam 

is supported at B by an axial member that will stretch; conse-

quently, we must determine how much the rod will stretch in 

this situation.

Consider a free-body diagram of the aluminum tie rod. In 

general, the elongation produced in rod (1) is given by

 1
1 1

1 1

F L

A E
��

The tie rod exerts an upward force By on the cantilever beam. In 

turn, the cantilever beam exerts an equal magnitude force, oppo-

site in direction, on the tie rod. Therefore, the deformation of rod 

(1) can be stated in terms of the unknown reaction force By as

 1
1

1 1

B L

A E
y

��

As rod (1) elongates due to the force it carries, the lower end of 

the rod defl ects downward. Since the beam is supported by the 

rod, the beam also defl ects downward at this point. The compat-

ibility equation [Equation (c)] must be adjusted to account for the 

elongation of the tie rod.

 v
wL

EI

B L

EI

B L

A EB
y y

4 3
1

1 18 3
� �� �  (d)

This equation is not quite correct. The error is a subtle, but 

important, one. How is Equation (d) incorrect?
The upward direction has been defi ned as positive for beam 

defl ections. When tie rod (1) elongates, point B (the lower end of 

the rod) moves downward. Since the compatibility equation per-

tains to defl ections of the beam, the tie-rod term on the right-hand 

side of the equation should have a negative sign:

 v
wL

EI

B L

EI

B L

A EB
y y

4 3
1

1 18 3
� � � � �   (e)

(1)

9 m

x

v

A B

6 m

vB

By

x

v

A B

6 m

40 kN/m

By

By

(1)

9 m

(1)

9 m

x

v

A

6 m

40 kN/m

vBB
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The only unknown term in this equation is the force in the tie rod—that is, By. Rearrange 

this equation to obtain

 B
L

EI

L

A E

wL

EIy

3
1

1 1

4

3 8
��  (f)

Before beginning the calculation, pay special attention to the terms L1, A1, and E1. These 

are properties of the tie rod—not the beam. A common mistake in this type of problem is 

using the beam elastic modulus E for both the beam and the rod.

Calculate the reaction force applied to the beam by the tie rod, using the following 

values:

Beam Properties Tie Rod Properties

 w � 40 kN/m � 40 N/mm L1 � 9 m � 9,000 mm

 L � 6 m � 6,000 mm d1 � 30 mm

 I � 300 � 106 mm4 A1 � 706.858 mm2

 E � 200 GPa � 200,000 N/mm2 E1 � 70 GPa � 70,000 N/mm2

Substitute these values into Equation (f), and compute By � 78,153.8 N � 78.2 kN. 

Therefore, the internal axial force in the tie rod is 78.2 kN (T).  Ans.
The defl ection of the beam at B can be calculated from Equation (e) as

v
B L

A EB
y 1

1 1
2706 858

( N

( )( )
) ( mm)

. mm

78,153.8 9,000

700,000 N/mm2
14 22 14 22. mm . mm� � � � ���  Ans.
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A

B
C

E

D

1,500 lb/ft

5 ft

5 ft

(2)

(1)

A 24-ft-long W12 � 30 steel beam is supported at its ends by simple 

pin and roller supports and at midspan by a wood beam, as shown in 

the fi gure to the right. Steel [E � 29 � 106 psi] beam (1) supports a 

uniformly distributed load of 1,500 lb/ft.  Wood [E � 1.8 � 106 psi] 

beam (2) spans 10 ft between simple supports C and E. The steel 

beam rests on top of the wood beam at the middle of the 10-ft span. 

The wood beam has a cross section that is 6 in. wide and 10 in. deep. 

Determine

(a)  the reaction force applied by the wood beam to the steel beam 

at point D.

(b) the defl ection of point D.

Plan the Solution
The wood beam acts as an elastic support to the steel beam. This 

means that the fi nal defl ection of the system will be determined by how much the wood 

beam defl ects downward in response to the force exerted on it by the steel beam. Begin by 

considering the steel beam. Remove the reaction force provided by the wood beam so that 

the released beam is a simply supported span with a uniformly distributed load. Determine 

an expression for this downward defl ection. Next, consider the released beam with only the 

EXAMPLE 11.9
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unknown upward reaction force provided by the wood beam at point D. Determine an 

expression for the upward defl ection of the simply supported steel beam due to a concen-

trated load acting at midspan. Next, consider the wood beam. The upward reaction force 

exerted on the steel beam by the wood beam causes the wood beam to defl ect downward. 

Determine an expression for the downward defl ection of the wood beam due to this un-

known reaction force. Combine these three expressions for the defl ection at D in a com-

patibility equation, and solve for the reaction force. Once the magnitude of the reaction 

force is known, the defl ection at point D can be computed.

SOLUTION
Case 1—Simply Supported Steel Beam with Uniformly 
Distributed Load
Remove wood beam (2), and consider simply supported steel 

beam (1) subjected to a uniformly distributed load of 1,500 lb/ft. 

The defl ection of this beam must be determined at point D. 

From Appendix C, the defl ection of beam (1) at midspan is 

given by

v
384E1I1

5wL4
1

D � �  (a) 

Case 2—Simply Supported Steel Beam with 
Concentrated Load
Wood beam (2) exerts an upward reaction force on the steel 

beam at D. Consider steel beam (1) subjected to this upward 

reaction force Dy. From Appendix C, the midspan defl ection 

of a simply supported beam due to a concentrated load 

applied at midspan is given by

 v
48E1I1

PL3
1

48E1I1

(�Dy)L
3
1

48E1I1

DyL3
1

D � � � ��  (b)

Case 3—Simply Supported Wood Beam with 
Concentrated Load
Wood beam (2) supplies an upward force to the steel beam at 

D. Conversely, steel beam (1) exerts an equal magnitude force 

on the wood beam, causing it to defl ect downward. The down-

ward defl ection of beam (2) that is produced by reaction force 

Dy is given by

 v
48E2I2

DyL3
2

D � �  (c)

Compatibility Equation
The sum of the downward defl ection of the steel beam due to the distributed load [Equation 

(a)] and the upward defl ection produced by the reaction force supplied by the wood beam 

[Equation (b)] must equal the downward defl ection of the wood beam [Equation (c)]. 

These three equations for the defl ection at D are combined in a compatibility equation:

 
384E1I1

5wL4
1

� � �
48E1I1

DyL3
1

48E2I2

DyL3
2

�  (d)
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v

x

A BD

12 ft 12 ft

1,500 lb/ft

vD

(1)

v

x

A BD

12 ft 12 ft
Dy

vD (1)

v

x

C ED

5 ft 5 ft

Dy

vD

(2)
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The only unknown term in this equation is the reaction force Dy. Rearrange this equation 

to obtain

384E1I1

5wL4
1Dy 48E1I1

L3
1

48E2I2

L3
2

��  (e)

Before beginning the calculation, pay special attention to the distinction between those 

properties that apply to the steel beam (i.e., L1, I1, and E1) and those that apply to the wood 

beam (i.e., L2, I2, and E2). For instance, the fl exural stiffness term EI appears in each term, 

but EI for the wood beam is much different than EI for the steel beam.

Calculate the reaction force exerted on steel beam (1), using the following values:

Steel Beam Properties Wood Beam (2) Properties

w � 1,500 lb/ft � 125 lb/in. L2 � 10 ft � 120 in.

L1 � 20 ft � 240 in. 
12

(6 in.)(10 in.)3

I2 500 in.4� �

I1 � 238 in.4 (from Appendix B for W12 × 30) E2 � 1.8 � 106 psi

E1 � 29 � 106 psi 

Substitute these values into Eq. (e), and compute Dy � 14,471.766 lb � 14,470 lb. Ans.

The defl ection of the system at D can be calculated from Eq. (c) as

v 0.579 in. 0.579 in. ↓
48E2I2

DyL3
2

D � �
(14,471.766 lb)(120 in.)3

�
48(1.8 106 psi)(500 in.4)�

� � ��  Ans.

Determine the beam reactions for a simply supported beam with an elastic 

support at midspan.

 MecMovies Example M11.4. 

�

�

�
�

�
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M11.1 Propped Cantilevers. Determine the roller reaction for 

a propped cantilever. In each confi guration, the roller reaction can 

be determined by superposition of two cantilever cases: cantilever 

with P and cantilever with w.

M11.2 Beam on Three Supports. Use superposition to deter-

mine one roller reaction for a simply supported beam on three 

supports.

FIGURE M11.1 FIGURE M11.2

P11.28 For the beams and loadings shown, assume that EI � 

3.0 � 104 kN-m2 is constant for each beam.

(a)  For the beam in Figure P11.28a, determine the concentrated 

upward force P required to make the total beam defl ection at 

B equal to zero (i.e., vB � 0).

(b)  For the beam in Figure P11.28b, determine the concentrated 

moment M required to make the total beam slope at A equal 

to zero (i.e., �A � 0).

P11.29 For the beams and loadings shown, assume that EI �
5.0 � 106 kip-in.2 is constant for each beam.

(a)  For the beam in Figure P11.29a, determine the concentrated 

upward force P required to make the total beam defl ection at 

B equal to zero (i.e., vB � 0).

(b)  For the beam in Figure P11.29b, determine the concentrated 

moment M required to make the total beam slope at C equal 

to zero (i.e., �C � 0).

v

x

A CB

3.5 m 3.5 m

P

15 kN/m

FIGURE P11.28a

v

x

A B

4 m

32 kN

M

FIGURE P11.28b

v

x

A B

13 ft

P

4 kips/ft

FIGURE P11.29a

v

x

A CB

M

9 ft 9 ft

40 kips

FIGURE P11.29b
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P11.30 For the beams and loadings shown, assume that EI � 

5.0 � 104 kN-m2 is constant for each beam.

(a)  For the beam in Figure P11.30a, determine the concentrated 

downward force P required to make the total beam defl ection 

at B equal to zero (i.e., vB � 0).

(b)  For the beam in Figure P11.30b, determine the concentrated 

moment M required to make the total beam slope at A equal 

to zero (i.e., �A � 0).

P11.32–P11.36 For the beams and loadings shown in Figures 

P11.32–P11.36, derive an expression for the reactions at supports A 

and B. Assume that EI is constant for the beam.

v

x

A CB

105 kN-m

4 m4 m

P

FIGURE P11.30a

P11.31 For the beams and loadings shown, assume that EI � 

8.0 � 106 kip-in.2 is constant for each beam.

(a)  For the beam in Figure P11.31a, determine the concentrated 

downward force P required to make the total beam defl ection 

at B equal to zero (i.e., vB � 0).

(b)  For the beam in Figure P11.31b, determine the concentrated 

moment M required to make the total beam slope at A equal 

to zero (i.e., �A � 0).

v

x

A B

M

5 m

6 kN/m

FIGURE P11.30b

v

x

A B
125 kip-ft

15 ft

P

FIGURE P11.31a

v

x

v

A CB

M

8 ft 15 ft

7 kips/ft

FIGURE P11.31b

v

x

A B

0M

L

FIGURE P11.32

v

x

A B

L

w0

FIGURE P11.33

v

x

A B

L

P

2
L—

FIGURE P11.34

v

x

A B

L

w

2
L—

FIGURE P11.35

v

x

A B

LL

P

FIGURE P11.36
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P11.37–P11.38 For the beams and loadings shown in Figures 

P11.37 and P11.38, derive an expression for the reactions at sup-

ports A and C. Assume that EI is constant for the beam.

P11.45 The beam shown in Figure P11.45 consists of a W360 � 79 

structural steel wide-fl ange shape [E � 200 GPa; I � 225 � 106 mm4]. 

For the loading shown, determine

(a) the reactions at A, B, and C.

(b) the magnitude of the maximum bending stress in the beam.

v

x

A B C

L L

0M

FIGURE P11.37

v

x

A CB

L L

w

FIGURE P11.38

P11.39 For the beam and loading shown in Figure P11.39, derive 

an expression for the reaction forces at A, C, and D. Assume that EI 
is constant for the beam. (Reminder: The roller symbol implies that 

both upward and downward displacements are restrained.)

v

x

A DCB

LLL

P

FIGURE P11.39

P11.40–P11.44 For the beams and loadings shown in Figures 

P11.40–P11.44, derive an expression for the reaction force at B. 

Assume that EI is constant for the beam. (Reminder: The roller 

symbol implies that both upward and downward displacements are 

restrained.)

FIGURE P11.40

v

x

A CB

0M

L L

v

x

A CB

2LL

w

FIGURE P11.41

v

x

A B C

L L

w

2
L—

FIGURE P11.42

v

x

A CB

LL L L

PP

FIGURE P11.43

v

x

A CB

w

3L LL

wL
3

FIGURE P11.44

v

x

v

A B C

180 kN-m

3 m 6 m

90 kN/m

FIGURE P11.45

P11.46 The beam shown in Figure P11.46 consists of a 

W610 � 140 structural steel wide-fl ange shape [E � 200 GPa; 

I � 1,120 � 106 mm4]. For the loading shown, determine

500500
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(a) the reactions at A, B, and D.

(b) the magnitude of the maximum bending stress in the beam.

v

x

A C DB

60 kN/m

2.5 m3.5 m1.5 m

125 kN

FIGURE P11.46

P11.47 A propped cantilever beam is loaded as shown in 

Figure P11.47. Determine the reactions at A and D for the beam. 

Assume that EI � 12.8 � 106 lb-in.2.

v

x

A DCB

24 in. 24 in. 24 in.

360 lb

25 lb/in.

FIGURE P11.47

P11.48 A propped cantilever beam is loaded as shown in 

Figure P11.48. Assume that EI � 24 � 106 kip-in.2. Determine

(a) the reactions at B and C for the beam.

(b) the beam defl ection at A.

v

x

A CB

12 ft 24 ft

40 kips

8 kips/ft

FIGURE P11.48

P11.49 A propped cantilever beam is loaded as shown in 

Figure P11.49. Assume that EI � 86.4 � 106 N-mm2. Determine 

(a) the reactions at A and C for the beam.

(b) the beam defl ection at B.

P11.50 The beam shown in Figure P11.50 consists of a 

W610 � 82 structural steel wide-fl ange shape [E � 200 GPa; 

I � 562 � 106 mm4]. For the loading shown, determine

(a) the reaction force at C.

(b) the beam defl ection at A.

105 kN/m
v

x

A C DB

7 m7 m3 m

FIGURE P11.50

P11.51 The beam shown in Figure P11.51 consists of a W8 � 15 

structural steel wide-fl ange shape [E � 29,000 ksi; I � 48 in.4]. For 

the loading shown, determine

(a) the reactions at A and B.

(b) the magnitude of the maximum bending stress in the beam.

(Reminder: The roller symbol implies that both upward and downward 

displacements are restrained.)

v

x

A B C

100 in. 50 in.

80 lb/in.
140 lb/in.

FIGURE P11.51

v

x

A DB C

120 mm 180 mm 100 mm

4,000 N

25 N/mm

FIGURE P11.49

P11.52 The beam shown in Figure P11.52 consists of a W24 � 94 

structural steel wide-fl ange shape [E � 29,000 ksi; I � 2,700 in.4]. 

For the loading shown, determine

(a) the reactions at A and D.

(b) the magnitude of the maximum bending stress in the beam.

v

x

A DB C

14 ft6 ft 6 ft

50 kips

4 kips/ft

FIGURE P11.52

501501
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P11.56 The beam shown in Figure P11.56 consists of a 

W360 � 101 structural steel wide-fl ange shape [E � 200 GPa; 

I � 301 � 106 mm4]. For the loading shown, determine

(a) the reactions at A and B.

(b) the magnitude of the maximum bending stress in the beam.

P11.54 The solid 1.00-in.-diameter steel [E � 29,000 ksi] shaft 

shown in Figure P11.54 supports three belt pulleys. Assume that 

the bearing at A can be idealized as a pin support and that the bear-

ings at C and E can be idealized as roller supports. For the loading 

shown, determine

(a) the reaction forces at bearings A, C, and E.

(b) the magnitude of the maximum bending stress in the shaft.

600 mm 400 mm600 mm 400 mm

A B C D E

850 N 600 N

FIGURE P11.53

15 in. 15 in. 15 in. 15 in. 10 in.

A B C D E F

120 lb280 lb200 lb

FIGURE P11.54

P11.55 The solid 1.00-in.-diameter steel [E � 29,000 ksi] shaft 

shown in Figure P11.55 supports two belt pulleys. Assume that the 

bearing at E can be idealized as a pin support and that the bearings 

at B and C can be idealized as roller supports. For the loading 

shown, determine

(a) the reaction forces at bearings B, C, and E.

(b) the magnitude of the maximum bending stress in the shaft.

15 in.15 in. 15 in.7 in.

A B C D E

240 lb90 lb

FIGURE P11.55

P11.53 The solid 20-mm-diameter steel [E � 200 GPa] shaft 

shown in Figure P11.53 supports two belt pulleys. Assume that the 

bearing at A can be idealized as a pin support and that the bearings 

at C and E can be idealized as roller supports. For the loading 

shown, determine

(a) the reaction forces at bearings A, C, and E.

(b) the magnitude of the maximum bending stress in the shaft.

P11.57–P11.58 A W530 � 92 structural steel wide-fl ange 

shape [E � 200 GPa; I � 554 � 106 mm4] is loaded and supported 

as shown in Figures P11.57 and P11.58. Determine

(a) the force and moment reactions at supports A and C.
(b) the maximum bending stress in the beam.

(c) the defl ection of the beam at B.

x

v

A CB

5.5 m 2.5 m

30 kN/m

90 kN/m

FIGURE P11.56

v

x

A CB

6 m 4 m

150 kN

FIGURE P11.57

v

x

A B C

4.5 m 4.5 m

80 kN/m

FIGURE P11.58

P11.59 A timber [E � 1,800 ksi] beam is loaded and supported 

as shown in Figure P11.59. The cross section of the timber beam is 

4 in. wide and 8 in. deep. The beam is supported at B by a 

1/2 in.-diameter steel [E � 30,000 ksi] rod, which has no load be-

fore the distributed load is applied to the beam. After a distributed 

load of 900 lb/ft is applied to the beam, determine
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P11.61 A W18 � 55 structural steel [E � 29,000 ksi] wide-

fl ange shape is loaded and supported as shown in Figure P11.61. 

The beam is supported at C by a 3/4-in.-diameter aluminum 

[E � 10,000 ksi] rod, which has no load before the distributed load 

is applied to the beam. After a distributed load of 4 kips/ft is applied 

to the beam, determine

(a) the force carried by the aluminum rod.

(b) the maximum bending stress in the steel beam.

(c) the defl ection of the beam at C.

x

v

A B C

7 ft 7 ft

900 lb/ft

8 in.

4 in.
(1)

16 ft

FIGURE P11.59

P11.60 A W360 � 72 structural steel [E � 200 GPa] wide-

fl ange shape is loaded and supported as shown in Figure P11.60. 

The beam is supported at B by a 20-mm-diameter solid aluminum 

[E � 70 GPa] rod. After a concentrated load of 40 kN is applied to 

the tip of the cantilever, determine

(a) the force produced in the aluminum rod.

(b) the maximum bending stress in the beam.

(c) the defl ection of the beam at B.

x

A B C

1.4 m 3.6 m

40 kN

(1)

3 m

FIGURE P11.60

x

v

A CB

5 ft11 ft

4 kips/ft

(1)

14 ft

FIGURE P11.61

P11.62 A W250 � 32.7 structural steel [E � 200 GPa] wide-

fl ange shape is loaded and supported as shown in Figure P11.62. 

A uniformly distributed load of 16 kN/m is applied to the beam, 

causing the roller support at B to settle downward (i.e., displace 

downward) by 15 mm. Determine

(a) the reactions at supports A, B, and C.

(b) the maximum bending stress in the beam.

v

x

A B C

16 kN/m

6 m4 m

15 mm

FIGURE P11.62

P11.63 A W10 � 22 structural steel [E � 29,000 ksi] wide-

fl ange shape is loaded and supported as shown in Figure P11.63. 

The beam is supported at C by a timber [E � 1,800 ksi] post having 

a cross-sectional area of 16 in.2. After a concentrated load of 10 

kips is applied to the beam, determine

(a) the reactions at supports A and C.
(b) the maximum bending stress in the beam.

(c) the defl ection of the beam at C.

v

x

(1)
12 ft

A B C

14 ft 6 ft

10 kips

FIGURE P11.63

(a) the force carried by the steel rod.

(b) the maximum bending stress in the timber beam.

(c) the defl ection of the beam at B.
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P11.64 A timber [E � 12 GPa] beam is loaded and supported as 

shown in Figure P11.64. The cross section of the timber beam is 

100 mm wide and 300 mm deep. The beam is supported at B by a 

12-mm-diameter steel [E � 200 GPa] rod, which has no load be-

fore the distributed load is applied to the beam. After a distributed 

load of 7 kN/m is applied to the beam, determine

(a) the force carried by the steel rod.

(b) the maximum bending stress in the timber beam.

(c) the defl ection of the beam at B.

(a) the force carried by the aluminum rod.

(b) the maximum bending stress in the timber beam.

(c) the defl ection of the beam at B.

P11.65 A W360 � 72 structural steel [E � 200 GPa] wide-

fl ange shape is loaded and supported as shown in Figure P11.65. 

The beam is supported at B by a timber [E � 12 GPa] post having 

a cross-sectional area of 20,000 mm2. After a uniformly distributed 

load of 50 kN/m is applied to the beam, determine

(a) the reactions at supports A, B, and C.

(b) the maximum bending stress in the beam.

(c) the defl ection of the beam at B.

P11.67 A W530 � 66 structural steel [E � 200 GPa] wide-

fl ange shape is loaded and supported as shown in Figure P11.67. A 

uniformly distributed load of 70 kN/m is applied to the beam, caus-

ing the roller support at B to settle downward (i.e., displace down-

ward) by 10 mm. Determine

(a) the reactions at supports A and B.
(b) the maximum bending stress in the beam.

x

v

A B C

2 m4 m

7 kN/m

300 mm

100
mm

(1)

5 m

FIGURE P11.64

v

x

(1) 5 m

A B C

6 m 7 m

50 kN/m

FIGURE P11.65

x

v

A B C

4 ft 12 ft

800 lb/ft

8 in.

4 in.
(1)

14 ft

FIGURE P11.66

v

x

A B C

70 kN/m

1.5 m4.5 m

10 mm

FIGURE P11.67

P11.66 A timber [E � 1,800 ksi] beam is loaded and supported 

as shown in Figure P11.66. The cross section of the timber beam 

is 4 in. wide and 8 in. deep. The beam is supported at B by a 

3/4-in.-diameter aluminum [E � 10,000 ksi] rod, which has no 

load before the distributed load is applied to the beam. After a dis-

tributed load of 800 lb/ft is applied to the beam, determine

P11.68 Steel beam (1) carries a concentrated load of P � 

13 kips that is applied at midspan, as shown in Figure P11.68/69. 

The steel beam is supported at ends A and B by nondefl ecting sup-

ports and at its middle by simply supported timber beam (2). In the 

unloaded condition, steel beam (1) touches, but exerts no force on, 

timber beam (2). The length of the steel beam is L1 � 30 ft, and its 

fl exural rigidity is EI1 � 7.2 � 106 kip-in.2. The length and the 

fl exural rigidity of the timber beam are L2 � 20 ft and EI2 � 1.0 � 

106 kip-in.2, respectively. Determine the vertical reaction force that 

acts

(a) on the steel beam at A.

(b) on the timber beam at C.  
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P11.69 In Figure P11.68/69, a W10 � 45 steel beam (1) carries 

a concentrated load of P � 9 kips that is applied at midspan. The 

steel beam is supported at ends A and B by nondefl ecting supports 

and at its middle by simply supported timber beam (2) that is 8-in.-

wide and 12-in.-deep. In the unloaded condition, steel beam 

(1) touches, but exerts no force on, timber beam (2). The length of 

the steel beam is L1 � 24 ft, and its modulus of elasticity is E1 � 

29 � 103 ksi. The length and the modulus of elasticity of the timber 

beam are L2 � 15 ft and E2 � 1.8 � 103 ksi, respectively. Deter-

mine the maximum fl exural stress

(a) in the steel beam.

(b) in the timber beam.

(c) in the steel beam if the timber beam is removed. 

tion, beam (1) touches, but exerts no force on, beam (2).  The beam 

lengths are a � 4.0 m, b � 1.5 m, and L2 � 6 m.  The fl exural rigidities 

of the beams are EI1 � 40,000 kN-m2 and EI2 � 14,000 kN-m2. Deter-

mine the defl ection of beam (1) (a) at D and (b) at B.

P11.71 Two steel beams support a concentrated load of P � 60 kN, 

as shown in Figure P11.70/71. Beam (1) is supported by a fi xed 

support at A and by a simply supported beam (2) at D. In the un-

loaded condition, beam (1) touches, but exerts no force on, beam 

(2). The beam lengths are a � 5.0 m, b � 2.0 m, and L2 � 8 m. The 

fl exural rigidities of the beams are EI1 � 40,000 kN-m2 and 

EI2 � 25,000 kN-m2. Determine 

(a) the reactions that act on beam (1) at A. 

(b) the reaction on beam (2) at C.

11.72 Two beams support a uniformly distributed load of w � 

30 kN/m, as shown in Figure P11.72/73. Beam (1) is supported by 

a fi xed support at A and by a simply supported beam (2) at D. In the 

unloaded condition, beam (1) touches, but exerts no force on, beam 

(2). Beam (1) has a depth of 400 mm, a moment of inertia of I1 � 

130 × 106 mm4, a length of L1 � 3.5 m, and an elastic modulus of 

E1 � 200 GPa. Beam (2) is a timber beam 175-mm wide and 

300-mm deep. The elastic modulus of the timber beam is E2 � 12 GPa, 

and its length is L2 � 5 m. Determine the maximum fl exural stress

(a) in steel beam (1).

(b) in timber beam (2).

(c) in steel beam (1) if the timber beam is removed.

P11.73 Two beams support a uniformly distributed load of w � 

40 kN/m, as shown in Figure P11.72/73. Beam (1) is supported by a 

fi xed support at A and by a simply supported beam (2) at D. In the 

unloaded condition, beam (1) touches, but exerts no force on, beam 

(2). Beam (1) consists of a W310 � 60 shape that has a length of L1 � 

3 m and an elastic modulus of E1 � 200 GPa. Beam (2) is a timber 

beam 150-mm wide and 300-mm deep. The elastic modulus of the 

timber beam is E2 � 12 GPa, and its length is L2 � 4 m. Determine 

(a) the reactions that act on beam (1) at A.

(b) the reaction on beam (2) at C.
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P11.70 Two steel beams support a concentrated load of P � 45 kN, 

as shown in Figure P11.70/71. Beam (1) is supported by a fi xed support 

at A and by a simply supported beam (2) at D. In the unloaded condi-

FIGURE P11.70/71
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12CHAPTER

507

In previous chapters, formulas were developed for normal and shear stresses that act on 

specifi c planes in axially loaded bars, circular shafts, and beams. For axially loaded bars, 

additional expressions were developed in Section 1.5 for the normal [Equation (1.8)] and 

shear [Equation (1.9)] stresses that act on inclined planes through the bar. This analysis 

revealed that maximum normal stresses occur on transverse planes and that maximum shear 

stresses occur on planes inclined at 45� to the axis of the bar. (See Figure 1.4.) Similar 

expressions were developed for the case of pure torsion in a circular shaft. It was shown that 

maximum shear stresses [Equation (6.9)] occur on transverse planes of the torsion member, 

but that maximum tensile and compressive stresses [Equation (6.10)] occur on planes 

inclined at 45� to the axis of the member. (See Figure 6.9.) For both axial and torsion mem-

bers, normal and shear stresses acting on specifi ed planes were determined from a free-body 

diagram approach. This approach, while instructive, is not effi cient for the determination of 

maximum normal and shear stresses, which are often required in a stress analysis. In this 

chapter, methods that are more powerful will be developed to determine

(a)  normal and shear stresses acting on any specifi c plane passing through a point of 

interest, and

(b)  maximum normal and shear stresses acting at any possible orientation at a point of interest.

12.1 Introduction

Stress Transformations

c12StressTransformations.indd Page 507  22/03/12  4:40 PM user-F391c12StressTransformations.indd Page 507  22/03/12  4:40 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



To reiterate, the fi rst subscript for stresses �x, �xy, and �xz indicates that these stresses 

act on a plane whose normal is in the x direction. The second subscript in �xy and �xz 

indicates the direction in which the shear stress acts on the x plane.

Next, suppose that a cutting plane parallel to the x–z plane is passed through the 

original body (from Figure 12.1). This cutting plane exposes a surface whose normal is 

in the y direction (Figure 12.4). According to the previous reasoning, three stresses are 

obtained on the y plane at Q: a normal stress �y acting in the y direction, a shear stress 

�yx acting on the y plane in the x direction, and a shear stress �yz acting on the y plane in 

the z direction.

Finally, a cutting plane parallel to the x–y plane is passed through the original body 

to expose a surface whose normal is in the z direction (Figure 12.5). Again, three stresses 

are obtained on the z plane at Q: a normal stress �z acting in the z direction, a shear 

stress �zx acting on the z plane in the x direction, and a shear stress �zy acting on the z 

plane in the y direction.

FIGURE 12.2a Resultant forces 

on area �A.
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Q

FIGURE 12.2b Resultant forces 

on area �A resolved into x, y, and z 

components.

2P

3P

4P

5P

x

y

z

�Vxz

�Vxy

�Fx
Q

FIGURE 12.1 Solid body in 

equilibrium
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In Chapter 1, the concept of stress was introduced by considering the internal force 

distribution required to satisfy equilibrium in a portion of a bar under axial load. The 

nature of the force distribution led to uniformly distributed normal and shear stresses on 

transverse planes through the bar. (See Section 1.5.) In more complicated structural 

members or machine components, the stress distributions will not be uniform on arbi-

trary internal planes; therefore, a more general concept of the state of stress at a point is 

needed.

Consider a body of arbitrary shape that is in equilibrium under the action of a 

system of several applied loads P1, P2, and so on (Figure 12.1). The nature of the 

stresses created at an arbitrary interior point Q can be studied by cutting a section 

through the body at Q, using a cutting plane that is parallel to the y–z plane, as shown 

in Figure 12.2a. This free body is subjected to some of the original loads (P1, P2, etc.), 

as well as to normal and shearing forces, distributed on the exposed plane surface. We 

will focus on a small portion of the exposed plane surface �A. The resultant force act-

ing on �A can be resolved into components that act perpendicular and parallel to the 

surface. The perpendicular component is a normal force �Fx, and the parallel compo-

nent is a shear force �Vx. The subscript x is used to indicate that these forces act on a 

plane whose normal is in the x direction (termed the x plane).

Although the direction of the normal force �Fx is well defi ned, the shear force 

�Vx could be oriented in any direction on the x plane. Therefore, the shear force �Vx 

will be resolved into two component forces, �Vxy and �Vxz, where the second subscript 

indicates that the shear forces on the x plane act in the y and z directions, respectively. 

The x, y, and z components of the normal and shear forces acting on �A are shown in 

Figure 12.2b.

If each force component is divided by the area �A, an average force per unit area 

is obtained. As �A is made smaller and smaller, three stress components are defi ned at 

point Q (Figure 12.3):

 � � �x
A

x
xy

A

xy
xz

A

F

A

V
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���

→ → →
lim lim lim
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�
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xzV
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�

�0 0 0

 (12.1)

12.2  Stress at a General Point in an Arbitrarily 
Loaded Body
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If a different set of coordinate axes (say, 

x�–y�–z�) had been chosen in the previous discus-

sion, then the stresses found at point Q would be 

different from those determined on the x, y, and z 

planes. Stresses in the x�–y�–z� coordinate system, 

however, are related to those in the x–y–z coordi-

nate system, and through a mathematical process 

called stress transformation, stresses can be con-

verted from one coordinate system to another. If 

the normal and shear stresses on the x, y, and z 

planes at point Q are known (Figures 12.3, 12.4, 

and 12.5), then the normal and shear stresses on 

any plane passing through point Q can be deter-

mined. For this reason, the stresses on these planes 

are called the state of stress at a point. The state of stress can be uniquely defi ned by 

three stress components acting on each of three mutually perpendicular planes.

The state of stress at a point (such as point Q in the preceding fi gures) is conve-

niently represented by stress components acting on an infi nitesimally small cubic element 

of material known as a stress element (Figure 12.6). The stress element is a graphical 
symbol that represents a point of interest in an object (such as a shaft or a beam). The six 

faces of the cubic element are each identifi ed by the outward normal to the face. For 

example, the positive x face is the face whose outward normal is in the direction of the 

positive x axis. The coordinate axes x, y, and z are arranged as a right-handed system.

The stress components �x, �y, and �z are normal stresses that act on the faces that 

are perpendicular to the x, y, and z coordinate axes, respectively. There are six shear 

stress components acting on the cubic element: �xy, �xz, �yx, �yz, �zx, and �zy. However, only 

three of these shear stresses are independent, as will be demonstrated subsequently. Spe-
cifi c values associated with stress components are dependent upon the orientation of the 
coordinate axes. The state of stress shown in Figure 12.6 would be represented by a dif-

ferent set of stress components if the coordinate axes were rotated.

Stress Sign Conventions

Normal stresses are indicated by the symbol � and a single subscript that indicates the 

plane on which the stress acts. The normal stress acting on a face of the stress element is 

positive if it points in the outward normal direction. In other words, normal stresses are 

positive if they cause tension in the material. Compression normal stresses are negative.

Shear stresses are denoted by the symbol � followed by two subscripts. The fi rst 

subscript designates the plane on which the shear stress acts. The second subscript indi-

cates the direction in which the stress acts. For example, �xz is shear stress on an x face 

acting in the z direction. The distinction between a positive and a negative shear stress 

depends on two considerations: (1) the face of the stress element upon which the shear 

stress acts and (2) the direction in which the stress acts.

FIGURE 12.3 Stresses acting on 

an x plane at point Q in the body.
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FIGURE 12.5 Stresses acting on a 

z plane at point Q in the body.
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FIGURE 12.6 Stress element 

representing the state of stress 

at a point.

A shear stress is positive if it

•  acts in the positive coordinate direction on a positive face of the stress element, or

•  acts in the negative coordinate direction on a negative face of the stress element.

For example, a shear stress on a positive x face that acts in a positive z direction is a positive 

shear stress. Similarly, a shear stress that acts in a negative x direction on a negative y face is also 

considered positive. The stresses shown on the stress element in Figure 12.6 are all positive.
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FIGURE 12.4 Stresses acting on a 

y plane at point Q in the body.

MecMovies 12.5 presents 

an animated discussion of 

terminology used in stress 

transformations.
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Keep in mind that the square 

shown in Figure 12.7 is simply a 

two-dimensional projection of 

the cube shown in Figure 12.6. In 

other words, we are seeing only 

one side of the infi nitesimally 

small cube in Figure 12.7, but the 

stress element we are talking 

about is still a cube.

Although the shear stress and 

shear force arrows in Figure 12.7 

are shown slightly offset from 

the faces of the stress element, it 

should be understood that the 

shear stresses and the shear 

forces act directly on the face. 

The arrows are shown offset 

from the faces of the stress 

element for clarity.
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Figure 12.7a shows a two-dimensional projection of a stress element having width dx and 

height dy. The thickness of the stress element perpendicular to the x–y plane is dz. The 

stress element represents an infi nitesimally small portion of a physical object. If an object 

is in equilibrium, then any portion of the object that one chooses to examine must also be 

in equilibrium, no matter how small that portion may be. Consequently, the stress element 

must be in equilibrium.

Equilibrium involves forces, not stresses. To consider equilibrium of the stress ele-

ment in Figure 12.7a, the forces produced by the stresses that act on each face must be 

found by multiplying the stress acting on each face by the area of the face. These forces can 

then be considered on a free-body diagram of the element.

Since the stress element is infi nitesimally small, we can assert that the normal 

stresses �x and �y acting on opposite faces of the stress element are equal in magnitude 

and aligned collinearly in pairs. Consequently, the forces arising from normal stresses 

counteract each other, and equilibrium is assured with respect to both translation (�F � 0) 

and rotation (�M � 0).

Next, consider the shear stresses acting on the x and y faces of the stress element 

(Figure 12.7b). Suppose that a positive shear stress �xy acts on the positive x face of the 

stress element. The shear force produced on the x face in the y direction by this stress is 

Vxy � �xy (dy dz) (where dz is the out-of-plane thickness of the element). To satisfy equi-

librium in the y direction (�Fy � 0), the shear stress on the –x face must act in the –y direc-

tion. Similarly, a positive shear stress �yx acting on the positive y face of the stress element 

produces a shear force in the x direction of Vyx � �yx (dx dz). To satisfy equilibrium in the 

x direction (�Fx � 0), the shear stress on the –y face must act in the –x direction. There-

fore, the shear stresses shown in Figure 12.7 satisfy equilibrium in the x and y directions.

The moments created by the shear stresses must also satisfy equilibrium. Consider the 

moments produced about point O, located at the lower left corner of the stress element. The 

lines-of-action of the shear forces acting on the –x and –y faces pass through point O; there-

fore, these forces do not produce moments. The shear force Vyx acting on the �y face (a 

distance of dy from point O) produces a clockwise moment of Vyx dy. The shear force Vxy 

acting on the �x face (a distance of dx from point O) produces a counterclockwise moment 

equal to Vxy dx. Application of the equation �MO � 0 yields

Σ M V dx V dy dy dz dx dx dz dyO x� � � � �� �y yx xy yx( ) ( ) 0

which reduces to

 
yx xy�� �

 (12.2)

12.3 Equilibrium of the Stress Element
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GENERATING THE STRESS 
ELEMENT

511
The result of this simple equilibrium analysis produces a signifi cant conclusion:

If a shear stress exists on any plane, there must also be a shear 
stress of the same magnitude acting on an orthogonal plane (i.e., 
a perpendicular plane).

From this conclusion, we can also assert that

yx xy yz zy xz zx� �� � �� � � �

This analysis shows that the subscripts for shear stresses are commutative, meaning that the 

order of the subscripts may be interchanged. Consequently, only three of the six shear 

stress components acting on the cubic element in Figure 12.6 are independent.
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FIGURE 12.8

Signifi cant insight into the nature of stress in a body can be gained from the study of a state 

known as two-dimensional stress or plane stress. For this case, two parallel faces of the 

stress element shown in Figure 12.6 are assumed to be free of stress. For purposes of 

analysis, assume that the faces perpendicular to the z axis (i.e., the �z and –z faces) are free 

of stress. Thus,

z zx zy 0� � �� � �

From Equation (12.2), however, the plane stress assumption also implies that

xz yz 0� �� �

since shear stresses acting on orthogonal planes must have the same magnitude. There-

fore, only the �x, �y, and �xy � �yx stress components appear in a plane stress analysis. For 

convenience, this state of stress is usually represented by the two-dimensional sketch 

shown in Figure 12.8. Keep in mind, however, that this type of sketch represents a three-

dimensional block having thickness in the out-of-plane direction even though it is drawn 

as a two-dimensional square.

Many components commonly found in engineering design are subjected to plane 

stress. Thin plate elements such as beam webs and fl anges are typically loaded in the plane 

of the element. Plane stress also describes the state of stress for all free surfaces of struc-

tural elements and machine components.

Sections 12.6 through 12.11 of this chapter discuss stress transformations, which are methods 

used to determine

(a)  normal and shear stresses acting on any specifi c plane passing through a point of 

interest, and

(b)  maximum normal and shear stresses acting at any possible orientation at a point of 

interest.

In discussing these methods, it is convenient to represent the state of stress at any particular 

point in a solid body by a stress element, such as that shown in Figure 12.8. While the stress 

element is a convenient representation, it may be diffi cult at fi rst for the student to connect 

the concept of the stress element to the topics presented in the previous chapters, such as 

12.4 Plane Stress

12.5 Generating the Stress Element
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512
STRESS TRANSFORMATIONS the normal stresses produced by axial loads or bending moments, or the shear stresses pro-

duced by torsion or transverse shear in beams. Before proceeding to the methods used for 

stress transformations, it is helpful to consider how the analyst determines the stresses that 

appear on a stress element. This section focuses on solid components in which several in-

ternal loads or moments act simultaneously on a member’s cross section. The method of 

superposition will be used to combine the various stresses acting at a particular point, and 

the results will be summarized on a stress element.

The analysis of the stresses produced by multiple internal loads or moments that act 

simultaneously on a member’s cross section is usually referred to as combined loadings. 

In Chapter 15, combined loadings will be examined more completely. For instance, struc-

tures with multiple external loads will be considered in Chapter 15, along with solid com-

ponents that have three-dimensional geometry and loadings. Stress transformations will 

also be incorporated into the analysis in that discussion. The intention of this section is 

simply to introduce the reader to the process of evaluating the state of stress at a specifi c 

point. Using geometrically simple components and basic loadings, the process of putting 

together the stress element is demonstrated.

Column cross-sectional 
dimensions.

A vertical pipe column with an outside diameter of D � 114 mm and 

an inside diameter of d � 102 mm supports the loads shown. Deter-

mine the normal and shear stresses acting at point H, and show these 

stresses on a stress element.

Plan the Solution
The cross-sectional properties will be 

computed for the pipe column. Each of 

the applied loads will be considered in 

turn. The normal and/or shear stresses 

created by each at point H will be com-

puted. Both the stress magnitude and 

its direction must be evaluated and 

shown on the proper face of a stress 

element. By the principle of superposi-

tion, the stresses will be combined 

appropriately so that the state of stress 

at point H is summarized succinctly by 

the stress element.

SOLUTION
Section Properties
The outside diameter of the pipe is D � 114 mm, and the inside diameter is d � 102 mm. 

The area, the moment of inertia, and the polar moment of inertia for the cross 

section are

A D d

I

[ ]
4 4

114 1022 2 2 2 2[ ] ( mm) ( mm) mm2,035.752

[ ]
64 64

114 1024 4 4 4[ ] ( mm) ( mm) mmD d 2,977,287 44

4 4 4 4

32 32
114 102J D d [ ][ ] ( mm) ( mm) 5,954,575 mmm4

� �
�

�

��

�

�
� ��

�

� � � � �

� � ��

EXAMPLE 12.1
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Multiple stresses acting at H. Summary of stresses acting at H.

Stresses at H
The forces and moments acting at the section of interest will be evaluated sequen-

tially to determine the type, magnitude, and direction of any stresses created at H.

The 17-kN axial force creates compression normal stress, which acts in the 

y direction:

σy
yF

A

17,000

2,035.752

N

mm
. MPa (C)

2
8 351� � � �

The 3.2-kN force acting in the positive z direction creates transverse shear stress 

(i.e., � � VQ/It) throughout the cross section of the pipe. However, the magnitude of 

the transverse shear stress is zero at point H.

The 3.2-kN force acting in the positive z direction also creates a bending  moment 

at the section where H is located. The magnitude of the bending moment is

Mx ( . kN) ( . m) .3 2 0 8 2 56 kN-m� �

By inspection, we observe that this bending moment about the x axis creates com-

pression normal stress on the horizontal faces of the stress element at H:

y
x

x

M c

I

( . ) ( mm)( ) ( )2 56 57kN-m 1,000 mm/m 1,000 N/kN

22,977,287 mm

. MPa (C)

4

49 011

�

�

�

�

The 3.75 kN-m torque acting about the y axis creates shear stress at H. The mag-

nitude of this shear stress can be calculated from the elastic torsion formula:

Tc

J
( . ) ( mm)( ) ( )3 75 57kN-m 1,000 mm/m 1,000 N/kN

5,9554,575 mm

. MPa

4

35 897

��

�

�

Combined Stresses at H
The normal and shear stresses acting at point H can be summarized on a stress 

element. Note that at point H, the torsion shear stress acts in the –x direction on 

the �y face of the stress element. After the proper shear stress direction has been 

established on one face, the shear stress directions on the other three faces are 

known.
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c12StressTransformations.indd Page 513  4/4/12  7:41 PM user-F393c12StressTransformations.indd Page 513  4/4/12  7:41 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



P12.2 A hollow shaft with an outside diameter of 142 mm 

and an inside diameter of 128 mm is subjected to both a torque 

of T � 7 kN-m and an axial tension load of P � 90 kN as shown 

in Figure P12.2. Determine the normal and shear stresses at 

point H, and show them on a stress element.

x

y

z

A
B

H P

T

(1)

FIGURE P12.1

x

y

z
A

B

H

T

P

(1)

FIGURE P12.2

P12.3 A solid compound shaft consists of segment (1), which 

has a diameter of 1.5 in., and segment (2), which has a diameter 

of 1.0 in. The shaft is subjected to an axial compression load of 

P � 7 kips and torques TB � 5 kip-in. and TC � 1.5 kip-in., 

which act in the directions shown in Figure P12.3/4. Determine 

the normal and shear stresses at

(a) point H.

(b) point K.

For each point, show the stresses on a stress element.

x

y

z
A

B

C

H

K

BT

CT

P

(1)

(2)

FIGURE P12.3/4

P12.4 A solid compound shaft consists of segment (1), 

which has a diameter of 40 mm, and segment (2), which has a 

diameter of 25 mm. The shaft is subjected to an axial compres-

sion load of P � 22 kN and torques TB � 725 N-m and TC � 

175 N-m, which act in the directions shown in Figure P12.3/4. 

Determine the normal and shear stresses at

(a) point H.

(b) point K.

For each point, show the stresses on a stress element.

P12.5 A tee-shaped fl exural member (Figure P12.5b) is sub-

jected to an internal axial force of 2,200 lb, an internal shear force of 

1,600 lb, and an internal bending moment of 4,000 lb-ft as shown in 

Figure P12.5a. Determine the normal and shear stresses at point H, 

which is located 1.5 in. below the top surface of the tee shape. Show 

these stresses on a stress element.

P12.6 A fl anged-shaped fl exural member is subjected to an inter-

nal axial force of 12.7 kN, an internal shear force of 9.4 kN, and an 

internal bending moment of 1.6 kN-m as shown in Figure 

P12.6a. Determine the normal and shear stresses at points H and K 

as shown in Figure P12.6b. For each point, show these stresses on 

a stress element.

H

2,200 lb

1,600 lb

4,000 lb-ft

x

y

z

FIGURE P12.5a 

1 in.

6 in.

1 in.

6 in.

1.50 in.

H

y

z

FIGURE P12.5b 

PROBLEMSPROBLEMS
P12.1 A 25-mm-diameter solid shaft is subjected to both a 

torque of T � 150 N-m and an axial tension load of P � 13 kN as 

shown in Figure P12.1. Determine the normal and shear stresses at 

point H, and show them on a stress element.
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H

K

9.4 kN

1.6 kN-m

12.7 kN
x

y

z

FIGURE P12.6a 

y

z
65 mm

6 mm

6 mm

6 mm

35 mm

15 mm

15 mm

50 mm

H

K

FIGURE P12.6b 

P12.7 A fl anged-shaped fl exural member is subjected to an in-

ternal axial force of 6,300 lb, an internal shear force of 8,500 lb, 

and an internal bending moment of 18,200 lb-ft as shown in Figure 

P12.7a. Determine the normal and shear stresses at points H and K 

as shown in Figure P12.7b. Show these stresses on a stress element 

for each point.

H

K

8,500 lb

18,200 lb-ft

6,300 lb
x

y

z

FIGURE P12.7a 

y

z
9 in.

1 in.

1 in.

1 in.

5 in.

2 in.

2 in.

8 in.

H

K

FIGURE P12.7b 

P12.8 A hollow structural steel fl exural member is subjected to 

the load shown in Figure P12.8a. Determine the normal and shear 

stresses at points H and K as shown in Figure P12.8b. Show these 

stresses on a stress element for each point.

x

y

z

KH

13 kips

25 in.

FIGURE P12.8a 

x
z

8 in.

0.25 in.

4 in.

2 in. 1.5 in.

KH

FIGURE P12.8b 

P12.9 A machine component is subjected to a load of 

4,700 N. Determine the normal and shear stresses acting at point H 

as shown in Figures P12.9a and P12.9b. Show these stresses on a 

stress element.

x

y

50 mm

25 mm

5 mm

H

40°

4,700 N

FIGURE P12.9a 

18 mm

12 mmx

z

5 mm

H

FIGURE P12.9b Cross section at point H. 
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P12.10 A load of 6,100 N acts on the machine part shown in 

Figure P12.10a. The machine part has a uniform thickness of 

15 mm (i.e., 15-mm thickness in the z direction). Determine the 

normal and shear stresses acting at points H and K, which are 

shown in detail in Figure P12.10b. For each point, show these 

stresses on a stress element.

x

y

40 mm

50 mm

135 mm

50 mm

H

K

40°

6,100 N

A

B

C

D

FIGURE P12.10a 

x

y

15 mm

40 mm

10 mm

40 mm
H

K

A

FIGURE P12.10b Detail at pin A.

P12.11 A load of 2,700 N acts on the machine part shown in 

Figure P12.11a. The machine part has a uniform thickness of 12 

mm (i.e., 12-mm thickness in the z direction). Determine the nor-

mal and shear stresses acting at points H and K, which are shown 

in detail in Figure P12.11b. For each point, show these stresses on 

a stress element.

P12.12 A 2.5-in.-diameter solid aluminum post is subjected to a 

horizontal force of V � 6 kips, a vertical force of P � 15 kips, and 

a concentrated torque of T � 22 kip-in., acting in the directions 

shown in Figure P12.12/13. Assume that L � 4.5 in. Determine the 

normal and shear stresses at

(a) point H.

(b) point K.

For each point, show these stresses on a stress element.

x

y

50 mm

75 mm

135 mm

50 mm

H

K

60°

2,700 N

A B

C

FIGURE P12.11a

x

y

12 mm

40 mm

40 mm

15 mm

B

H

K

FIGURE P12.11b Detail at pin B.

x

y

z

L

P

T V

H K

FIGURE P12.12/13

P12.13 A 60-mm-diameter solid aluminum post is subjected to 

a horizontal force of V � 25 kN, a vertical force of P � 70 kN, and 

a concentrated torque of T � 3.25 kN-m, acting in the directions 

shown in Figure P12.12/13. Assume that L � 90 mm. Determine 

the normal and shear stresses at

(a) point H.

(b) point K.

For each point, show these stresses on a stress element.
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P12.14 A 1.25-in.-diameter solid shaft is subjected to an axial 

force of P � 520 lb, a horizontal shear force of V � 275 lb, and a 

concentrated torque of T � 880 lb-in., acting in the directions 

shown in Figure P12.14/15. Assume that L � 7.0 in. Determine the 

normal and shear stresses at

(a) point H.

(b) point K.

For each point, show these stresses on a stress element.

x

y

z

P

T

V

L

H

K

FIGURE P12.14/15

P12.15 A 30-mm-diameter solid shaft is subjected to an axial 

force of P � 4,000 N, a horizontal shear force of V � 2,200 N, and 

a concentrated torque of T � 100 N-m, acting in the directions 

shown in Figure P12.14/15. Assume that L � 125 mm. Determine 

the normal and shear stresses at

(a) point H.

(b) point K.

For each point, show these stresses on a stress element.

P12.16 A steel pipe with an outside diameter of 114 mm and 

an inside diameter of 102 mm supports the loadings shown in Fig-

ure P12.16. Determine the normal and shear stresses at

(a) point H.

(b) point K.

For each point, show these stresses on a stress element.

x

y

z

400 mm

20 kN

7.5 kN

5.2 kN-m

H

K

FIGURE P12.16
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As discussed in Sections 1.5 and 12.2, stress is not simply a vector quantity. Stress is 

dependent on the orientation of the plane surface upon which the stress acts. As shown in 

Section 12.2, the state of stress at a point in a material object subjected to plane stress is 

completely defi ned by three stress components—�x, �y, and �xy—acting on two orthogo-

nal planes x and y defi ned with respect to x–y coordinate axes. The same state of stress at 

a point can be represented by different stress components—�n, �t, and �nt—acting on a 

different pair of orthogonal planes n and t, which are rotated with respect to the x and y 

planes. In other words, there is only one unique state of stress at a point, but the state of 

stress can have different representations, depending on the orientation of the axes used. 

The process of changing stresses from one set of coordinate axes to another is termed 

stress transformation.

In some ways, the concept of stress transformation is analogous to vector addition. 

Suppose that there are two force components Fx and Fy, which are oriented parallel to the 

12.6  Equilibrium Method for Plane Stress
Transformations
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518
STRESS TRANSFORMATIONS

n

ty

x

Fx

Fy

Fn

Ft

FR

FIGURE 12.9

y

x

150 MPa

30 MPa

4

3

nt dA

(30 MPa)(dA sin 53.13°)

(150 MPa)(dA cos 53.13°)

dAn

53.13°

dA �

�

x and y axes, respectively (Figure 12.9). The sum of these two vectors is the resultant force 

FR. Two different force components Fn and Ft, defi ned in an n–t coordinate system, could 

also be added together to produce the same resultant force FR. In other words, the resultant 

force FR could be expressed either as the sum of components Fx and Fy in an x–y coordinate 

system or as the sum of components Fn and Ft in an n–t coordinate system. The compo-

nents are different in the two coordinate systems, but both sets of components represent 

the same resultant force.

In this vector addition illustration, the transformation of forces from one coordinate 

system (i.e., the x–y coordinate system) to a rotated n–t coordinate system must take into 

account the magnitude and direction of each force component. The transformation of stress 

components, however, is more complicated than vector addition. In considering stresses, the 

transformation must account for not only the magnitude and direction of each stress compo-

nent, but also the orientation of the area upon which the stress component acts.

A more general approach for stress transformations will be developed in Section 12.7; 

however, at the outset, it is instructive to use equilibrium considerations to determine nor-

mal and shear stresses that act on an arbitrary plane. The solution method used here is 

similar to that developed in Section 1.5 for stresses on inclined sections of axial members. 

The following example illustrates this method for plane stress conditions:

EXAMPLE 12.2

At a given point in a machine component, the following stresses were determined: 

150 MPa (T) on a vertical plane, 30 MPa (C) on a horizontal plane, and zero shear 

stress. Determine the stresses at this point on a plane having a slope of 3 vertical 

to 4 horizontal.

Plan the Solution
A free-body diagram of a wedge-shaped portion of the stress element will be 

investigated. Forces acting on vertical and horizontal planes will be derived 

from the given stresses and the areas of the wedge faces. Since the wedge-shaped 

portion of the stress element must satisfy equilibrium, the normal and shear 

stresses acting on the inclined surface can be determined.

SOLUTION
Sketch a free-body diagram of the wedge-shaped portion of the stress element. From 

the 3:4 slope of the inclined surface, the angle between the vertical face and the in-

clined surface is 53.13�. The area of the inclined surface will be designated dA. Ac-

cordingly, the area of the vertical face can be expressed as dA cos 53.13�, and the area 

of the horizontal face can be expressed as dA sin 53.13�. The forces acting on these 

areas are found from the product of the given stresses and the areas.
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n

t

53.13°

53.13°

53.13°

dAn
nt dA

(30 MPa)(dA sin 53.13°)

(150 MPa)(dA cos 53.13°)

(150 MPa)(dA cos 53.13°) sin 53.13°

(150 MPa)(dA cos 53.13°) cos 53.13°

(30 MPa)(dA sin 53.13°) sin 53.13°

(30 MPa)(dA sin 53.13°) cos 53.13°

�
�

519

The forces acting on the vertical and horizontal faces of the wedge can be 

resolved into components acting in the n direction (i.e., the direction normal to the 

inclined plane) and the t direction (i.e., the direction parallel or tangential to the 

inclined plane).

From these force components, the sum of forces acting in the direction perpendicu-

lar to the inclined plane is

ΣF dA dAn n ( MPa) ( sin . ) sin .

( MPa)

30 53 13 53 13

150

° °

(( cos . ) cos .dA 53 13 53 13 0° °

�� �

� �

Notice that the area dA appears in each term; consequently, it will cancel out of the equa-

tion. From this equilibrium equation, the normal stress acting in the n direction is found 

to be

 n 34 80. MPa (T)� �  Ans.

When forces are summed in the t direction, the equilibrium equation is

ΣF dA dAt nt ( MPa) ( sin . ) cos .

( MPa

30 53 13 53 13

150

° °

)) ( cos . ) sin .dA 53 13 53 13 0° °

� � �

� �

Therefore, the shear stress on the n face of the wedge acting in the t direction is

 nt 86 4. MPa� � �  Ans.

The negative sign indicates that the shear stress really acts in the negative t direction on 

the positive n face. Note that the normal stress should be designated as tension or com-
pression. The presence of shear stresses on the horizontal and vertical planes, had there 

been any, would merely have required two more forces on the free-body diagram: one 

parallel to the vertical face and one parallel to the horizontal face. Note, however, that 

the magnitude of the shear stresses (not the forces) must be the same on any two or-

thogonal planes.
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P12.17–P12.24 The stresses shown in Figures P12.17– P12.24 

act at a point in a stressed body. Using the equilibrium equation 

approach, determine the normal and shear stresses at this point on 

the inclined plane shown.

FIGURE P12.17 FIGURE P12.18

FIGURE P12.19 FIGURE P12.20

FIGURE P12.21 FIGURE P12.22

FIGURE P12.23 FIGURE P12.24

520

For a successful design, an engineer must be able to determine critical stresses at any 

point of interest in a material object. By the mechanics of materials theory developed for 

axial members, torsion members, and beams, normal and shear stresses at a point in a 

material object can be computed in reference to a particular coordinate system, such as an 

x–y coordinate system. Such a coordinate system, however, has no inherent signifi cance 

for the material used in a structural member. Failure of the material will occur in response 

to the largest stresses that are developed in the object, regardless of the orientation at 

which those critical stresses are acting. For instance, a designer has no assurance that a 

horizontal bending stress computed at a point in the web of a wide-fl ange beam will be the 

largest normal stress possible at the point. To fi nd the critical stresses at a point in a mate-

rial object, methods must be developed so that stresses acting at all possible orientations 

can be investigated.

Consider a state of stress represented by a plane stress element subjected to stresses 

�x, �y, and �xy � �yx, as shown in Figure 12.10a. Keep in mind that the stress element is 
simply a convenient graphical symbol used to represent the state of stress at a specifi c point 
of interest in an object (such as a shaft or a beam). To derive equations applicable for any 

orientation, we begin by defi ning a plane surface A–A oriented at some angle � with respect 

12.7  General Equations of Plane Stress 
Transformation

MecMovies 12.1 presents an 

animated discovery example 

that illustrates the need for 

stress transformations.

65° 245 MPa

115 MPa

20°

2,000 psi

3,600 psi

50° 75 MPa

210 MPa

55°
14 ksi

27 ksi

60° 185 MPa

110 MPa

35° 2,800 psi

1,200 psi

800 psi

75°

90 MPa

42 MPa
65°

5.6 ksi

11.2 ksi

6.7 ksi

PROBLEMSPROBLEMS
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521
GENERAL EQUATIONS 

OF PLANE STRESS 
TRANSFORMATION

to a reference axis x. The normal to surface A–A is termed the n axis. The axis par-

allel to surface A–A is termed the t axis. The z axis extends out of the plane of the 

stress element. Both the x–y–z and the n–t–z axes are arranged as right-handed 

coordinate systems. Given the �x, �y, and �xy � �yx stresses acting on the x and y
faces of the stress element, we will determine the normal and shear stress acting on 

surface A–A, known as the n face of the stress element. This process of changing 

stresses from one set of coordinate axes (i.e., x–y–z) to another set of axes (i.e., 

n–t–z) is termed stress transformation.

Figure 12.10b is a free-body diagram of a wedge-shaped element in which the 

areas of the faces are dA for the inclined face (plane A–A), dA cos � for the vertical 

face (i.e., the x face), and dA sin � for the horizontal face (i.e., the y face). The equi-

librium equation for the sum of forces in the n direction gives

F dA dA dA

dA

n n yx xy

x

( sin ) cos ( cos ) sin

( coos ) cos ( sin ) siny dA 0

� �

� �

� � ����

����

� �

���

Σ

Since �yx � �xy, this equation can be simplifi ed to give the following expression for 

the normal stress acting on the n face of the wedge element:

 n x y xycos sin sin cos2 2 2� � �� � �� � � � �  (12.3)

From the free-body diagram in Figure 12.10b, the equilibrium equation for the sum 

of forces in the t direction gives

F dA dA dA

dA

t nt xy yx

x

( cos ) cos ( sin ) sin

( ccos ) sin ( sin ) cosy dA 0

Σ � �

� �

�

�

� � �� � �

����� �

�

Again from �yx � �xy, this equation can be simplifi ed to give the following expres-

sion for the shear stress acting in the t direction on the n face of the wedge element:

 nt x y xy( ) sin cos (cos sin )2 2� � � � � � � �� � � ��  (12.4)

These two equations can be written in an equivalent form by substituting the fol-

lowing double-angle identities from trigonometry:

cos ( cos )

sin ( cos )

sin cos sin

2

2

1

2
1 2

1

2
1 2

2 22

�

� �

�

� �

�

�

�

�

��

Using these double-angle identities, Equation (12.3) can be written as

 n
x y x y

xy+
2 2

2 2cos sin�
�

�
�

��
� � � �

� ��  (12.5)

and Equation (12.4) can be written as

 nt
x y

xy2
2 2sin cos� �

�
�� �

� �
� �  (12.6)

nt dA

n dA

yx dA sin 

y dA sin 

x dA cos 

xy dA cos 

n
t

x

y

�

�

�

�
�

�

�

�
�

�

�

�

�

FIGURE 12.10b

x

x

y

y

xy

yx

xy

yx

y

x

A

A

�

�

�

�

�

�

�

� �

FIGURE 12.10a

MecMovies 12.6 presents an 

animated derivation of the plane 

stress transformation equations.
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522
STRESS TRANSFORMATIONS Equations (12.3), (12.4), (12.5), and (12.6) are called the plane stress transformation 

equations. They provide a means for determining normal and shear stresses on any plane 

whose outward normal is

(a) perpendicular to the z axis (i.e., the out-of-plane axis), and

(b) oriented at an angle � with respect to the reference x axis.

Since the transformation equations were derived solely from equilibrium considerations, 

they are applicable to stresses in any kind of material, whether it is linear or nonlinear, 

elastic or inelastic.

Stress Invariance

The normal stress acting on the n face of the stress element shown in Figure 12.11 can be 

determined from Equation (12.5). The normal stress acting on the t face can also be ob-

tained from Equation (12.5) by substituting � � 90° in place of �, giving the following 

equation:

 t
x y x y

xy2 2
2 2cos sin�

� �
���

� � � �
� ��  (12.7)

If the expressions for �n and �t [Equations (12.5) and (12.7)] are added, the following 

relationship is obtained:

 n t x y�� �� � � �  (12.8)

This equation shows that the sum of the normal stresses acting on any two orthogonal faces 

of a plane stress element is a constant value, independent of the angle �. This mathematical 

characteristic of stress is termed stress invariance.

Stress is expressed with reference to specifi c coordinate systems. The stress transfor-

mation equations show that the n–t components of stress are different from the x–y compo-

nents, even though both are representations of the same stress state. However, certain func-

tions of stress components are not dependent on the orientation of the coordinate system. 

These functions, called stress invariants, have the same value regardless of which coordi-

nate system is used. Two invariants, denoted I1 and I2, exist for plane stress:

 
I I

I I

x y n t

x y xy n t nt

1 1

2
2

2
2

(or )

(or ))

� �

� �

��

�

� � �

� � �

�

� � � �
 (12.9)

Sign Conventions

The sign conventions used in the development of the stress transformation equations must 

be rigorously followed. The sign conventions can be summarized as follows:

1.  Tension normal stresses are positive; compression normal stresses are negative. All of 

the normal stresses shown in Figure 12.11 are positive.

2. A shear stress is positive if it

 • acts in the positive coordinate direction on a positive face of the stress element or

 • acts in the negative coordinate direction on a negative face of the stress element.

All of the shear stresses shown in Figure 12.11 are positive. Shear stresses pointing in 

opposite directions are negative.

n

t

x

y

n

n

t

t

nt

tn

nt

tn

�

� �

�

�

�

�
�

�
�

FIGURE 12.11

MecMovies 12.5 presents 

an animated discussion of 

terminology used in stress 

transformations.

MecMovies 12.2 presents an 

interactive activity that focuses 

on the proper determination of 

the angle �.
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523
GENERAL EQUATIONS 

OF PLANE STRESS 
TRANSFORMATION

An easy way to remember the shear stress sign convention is to use the directions 

associated with the two subscripts. The fi rst subscript indicates the face of the stress ele-

ment on which the shear stress acts. It will be either a positive face (plus) or a negative 

face (minus). The second subscript indicates the direction in which the stress acts, and it 

will be either a positive direction (plus) or a negative direction (minus).

 •  A positive shear stress has subscripts that are either plus-plus or minus-minus.

 • A negative shear stress has subscripts that are either plus-minus or minus-plus.

3.  An angle measured counterclockwise from the reference x axis is positive. Conversely, 

angles measured clockwise from the reference x axis are negative.

4.  The n–t–z axes have the same order as the x–y–z axes. Both sets of axes form a right-

handed coordinate system.

y

x
16 MPa

42 MPa

50 MPa

8

5

� � �58° 

58°
x

ny

t

MecMovies 12.3 presents a 

game that tests understanding 

of the proper sign conventions 

and their use in the stress 

transformation equations.

EXAMPLE 12.3

At a point on a structural member subjected to plane stress, normal and shear 

stresses exist on horizontal and vertical planes through the point as shown. Use 

the stress transformation equations to determine the normal and shear stress on 

the indicated plane surface.

Plan the Solution
Problems of this type are straightforward; however, the sign conventions used in 

deriving the stress transformation equations must be rigorously followed for a 

successful result. Particular attention should be given to identifying the proper 

value of �, which is required to designate the inclination of the plane surface.

SOLUTION
The normal stress acting on the x face creates tension in the element; therefore, it is consid-

ered a positive normal stress (�x � �16 MPa) in the stress transformation equations. Like-

wise, the normal stress on the y face has a positive value of �y � �42 MPa.

The 50-MPa shear stress on the positive x face acts in the negative y direction; there-

fore, this shear stress is considered negative when used in the stress transformation equa-

tions (�xy � �50 MPa). Note that the shear stress on the horizontal face is also negative. 

On the positive y face, the shear stress acts in the negative x direction; hence, �yx �
�50 MPa � �xy.

In this example, normal and shear stresses are to be calculated for a plane surface that 

has a slope of �5 (vertical) to 8 (horizontal). This slope information must be converted to 

the proper value of � for use in the stress transformation equations.

A convenient way to determine � is to fi nd the angle between a vertical plane and the 

inclined surface. This angle will always be the same as the angle between the x axis and the 

n axis. For the surface specifi ed here, the magnitude of the angle between a vertical plane 

and the inclined surface is

tan
8

5
58°�� ���

Notice that the preceding calculation determines only the magnitude of the angle. The 

proper sign for � is determined by inspection. If the angle from the vertical plane to the 

inclined plane turns in a counterclockwise direction, the value of � is positive. Therefore, 

� � �58� for this example.
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58°

n

t 10.24 MPa

33.6 MPa

20°

28 ksi

42 ksi
66 ksi

x

y

xy

�

�

�

EXAMPLE 12.4

The stresses shown act at a point on the free surface of a machine 

component. Determine the normal stresses �x and �y and the shear 

stress �xy at the point.

Plan the Solution
The stress transformation equations are written in terms of �x, �y, and 

�xy; however, the x and y directions do not necessarily have to be the 

horizontal and vertical directions, respectively. Any two orthogonal 

directions can be taken as x and y as long as they defi ne a right-handed 

coordinate system. To solve this problem, we will redefi ne the x and y 

axes, aligning them with the rotated element. The faces of the unro-

tated element will be redefi ned as the n and t faces.

524

 With the proper values for �x, �y, �xy, and � now established, the normal and shear 

stresses acting on the inclined surface can be calculated. The normal stress in the n direc-

tion is found from Equation (12.3):

n x y xycos sin sin cos

( ) cos

2 2

2

2

16 58MPa ° (( ) sin ( ) sin

.

42 58 50 58 58

10 24

2MPa ° 2 MPa ° cos °

MPaa

�

�

� �

� �

� � �

� � �� � �� �

Note that Equation (12.5) could also be used to obtain the same result:

n
x y x y

xy2 2
2 2

16 42

2

cos sin

( ) ( )MPa MPa ( ) ( )
cos ( ( ) sin (

16 42

2
2 58 50 2 58

MPa MPa
°) MPa °)

110 24. MPa

�

�

� �

� �
�

�
� � �

�

��
� � � �

� ��

The choice of either Equation (12.3) or Equation (12.5) to calculate the normal stress act-

ing on the inclined plane is a matter of personal preference.

The shear stress �nt acting on the n face in the t direction can be computed from 

Equation (12.4):

nt x y xy( ) sin cos (cos sin )

[( )

2 2

16 MPa ( )]sin ( )[cos sin42 58 58 50 58 582 2MPa ° cos ° MPa ° °]]

33 MPa.6

�

�

� �

�

� � � � �

� � �� � � � � �� �

Alternatively, Equation (12.6) may be used:

nt
x y

xy2
2 2

16 42

2
2

sin cos

( ) ( )
sin

MPa MPa
(( ( ) cos (

.

58 50 2 58

6

°) MPa °)

33 MPa

�

�

� �

�
�

� �

� �

�� �
� ���

To complete the problem, the stresses acting on the inclined plane are shown in a sketch. 

Since �n is negative, the normal stress acting in the n direction is shown as a compression 

stress. The positive value of �nt indicates that the stress arrow points in the positive t direc-

tion on the positive n face. The arrows are labeled with the stress magnitude (i.e., absolute 

value). The signs associated with the stresses are indicated by the directions of the arrows.
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SOLUTION
Redefi ne the x and y directions, aligning them with the rotated 

element. The axes of the unrotated element will be defi ned as the n
and t directions.

Accordingly, the stresses acting on the rotated element are 

now defi ned as

x

y

xy

66

28

42

ksi

ksi

ksi

�� �

��

�� �

�

The angle � from the redefi ned x axis to the n axis is 20� in a clockwise sense; there-

fore, � � 	20�.
The normal stress on the vertical face of the unrotated element can be computed 

from Equation (12.3):

n x y xycos sin sin cos

( ) cos (

2 2

2

2

66 20ksi °°) ( 28 ksi) °) 2 ksi °)sin ( ( ) sin ( cos (2 20 42 20 20°°)

28.0 ksi

�

�

� �

�

� � � � � � �

�� � �� � �� �

The normal stress on the horizontal face of the unrotated element can be computed 

from Equation (12.3) if the angle � is changed to a value of � � 	20� � 90� � 70�:

n x y xycos sin sin cos

( ) cos

2 2

2

2

66 70ksi ° (( 28 ksi) ° 2 ksi ° °

9.99 ksi

sin ( ) sin cos2 70 42 70 70

�

�

� �

� � �

� �� � � �� � � �

The shear stress on the unrotated element can be computed from 

Equation (12.4):

� �nt x y xy( ) sin cos (cos sin )

[( )

2 2

66 ksi ( 28 ksi)]sin ( °) cos ( °)

ksi ( °

20 20

42 202( )[cos )) ( °)]

62.4 ksi

sin2 20

�

�

�

� �� � � � � ��

�

�

� � � �

� � � �

�

The stresses acting on the horizontal and vertical planes are shown in 

the sketch.

20°

28 ksi

42 ksi
66 ksi
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t

nt
t

n
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x

�

�

�

20°

28 ksi

42 ksi
66 ksi
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28.0 ksi

62.4 ksi
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Determine the normal and shear stress acting on a specifi ed plane surface.

 MecMovies Example M12.7MM
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M12.2 Top-Drop-Sweep the Clock. Animated instruction 

teaching the proper method for determining �. Eight easy multiple-

choice questions.

FIGURE M12.1

M12.3 Sign, Sign, Everywhere a Sign. A game that focuses on 

the correct sign conventions needed in the stress transformation 

equations. The game is won when two calculations for �n and �nt

are correctly completed.

FIGURE M12.2

FIGURE M12.3

Determine the normal and shear stress acting on a specifi ed plane surface in a wooden 

object.

 MecMovies Example M12.8 

MecMovies Exercises

M12.1 The Amazing Stress Camera. Interactive discovery ac-

tivity that introduces the topic of stress transformations.
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P12.25–P12.36 The stresses shown in Figures P12.25– P12.36 

act at a point in a stressed body. Determine the normal and shear 

stresses at this point on the inclined plane shown.

P12.37–P12.38 The stresses shown in Figures P12.37a and 

P12.38a act at a point on the free surface of a stressed body. Deter-

mine the normal stresses �n and �t, and the shear stress �nt at this 

point if they act on the rotated stress element shown in Figures 

P12.37b and P12.38b.

FIGURE P12.25 FIGURE P12.26

FIGURE P12.27 FIGURE P12.28

FIGURE P12.29 FIGURE P12.30

FIGURE P12.31 FIGURE P12.32

FIGURE P12.33 FIGURE P12.34

FIGURE P12.35 FIGURE P12.36

FIGURE P12.37a FIGURE P12.37b

FIGURE P12.38a FIGURE P12.38b

50°
6,500 psi

2,700 psi

25° 40 MPa

105 MPa

70°

7.2 ksi

13.6 ksi

30° 13,600 psi

9,850 psi

75°

13 ksi

9 ksi

14 ksi
65°

115 MPa

72 MPa

56 MPa

50°
77 MPa

32 MPa

44 MPa

50° 2,885 psi

1,305 psi

2,115 psi

5
2

45 MPa

86 MPa

58 MPa

3
2 40 MPa

120 MPa

70 MPa

5
3

8,400 psi

3,100 psi

13,600 psi
4

5
8.3 ksi

13.9 ksi

11.8 ksi
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P12.39–P12.40 The stresses shown in Figures P12.39 and 

P12.40 act at a point on the free surface of a machine component. 

Determine the normal stresses �x and �y, and the shear stress �xy at 

the point.

FIGURE P12.39 FIGURE P12.40

528

The transformation equations for plane stress [Equations (12.3), (12.4), (12.5), and (12.6)] 

provide a means for determining the normal stress �n and the shear stress �nt acting on any 

plane through a point in a stressed body. For design purposes, the critical stresses at a point 

are often the maximum and minimum normal stresses and the maximum shear stress. The 

stress transformation equations can be used to develop additional relationships that indicate

(a) the orientation of planes where maximum and minimum normal stresses occur,

(b) the magnitude of maximum and minimum normal stresses,

(c) the magnitude of maximum shear stresses, and

(d) the orientation of planes where maximum shear stresses occur.

The transformation equations for plane stress were developed in Section 12.7. The 

equations for normal stress �n and shear stress �nt are

 n x y xycos sin sin cos2 2 2�� � �� � � ��� �  (12.3)

 nt x y xy( ) sin cos (cos sin )2 2� � � � �� � �� � � ��  (12.4)

These same equations can also be expressed in terms of double-angle trigonometric 

functions as

 n
x y x y

xy2 2
2 2cos sin�

� �
���

� � � �
� ��  (12.5)

 nt
x y

xy

−

2
2 2sin cos� �

�
�

� �
�� ��  (12.6)

12.8 Principal Stresses and Maximum Shear Stress

c12StressTransformations.indd Page 528  4/4/12  4:15 PM user-F393c12StressTransformations.indd Page 528  4/4/12  4:15 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop



529
Principal Planes

For a given state of plane stress, the stress components �x, �y, and �xy are constants. The depen-

dent variables �n and �nt are actually functions of only one independent variable, �. Therefore, 

the value of � for which the normal stress �n is a maximum or a minimum can be determined 

by differentiating Equation (12.5) with respect to � and setting the derivative equal to zero:

 
d

d
n x y

xy2
2 2 2 2 0( sin ) cos� �

�
� �

� � �
�

�
��  (12.10)

The solution of this equation gives the orientation � � �p of a plane where either a maxi-

mum or a minimum normal stress occurs:

 tan
( )

2
2p

xy

x y

�
�� �

�
�  (12.11)

For a given set of stress components �x, �y, and �xy, Equation (12.11) can be satisfi ed by two 

values of 2�p, and these two values will be separated by 180�. Accordingly, the values of �p 

will differ by 90�. From this result, we can conclude that

(a)  there will be only two planes where either a maximum or a minimum normal stress 

occurs, and

(b) these two planes will be 90� apart (i.e., orthogonal to each other).

Notice the similarity between the expressions for d�n �d� in Equation (12.10) and �nt in 

Equation (12.6). Setting the derivative of �n equal to zero is equivalent to setting �nt equal 

to zero; therefore, the values of �p that are solutions of Equation (12.11) produce values of 

�nt � 0 in Equation (12.6). This leads us to another important conclusion:

Shear stress vanishes on planes where maximum 
and minimum normal stresses occur.

Planes free of shear stress are termed principal planes. The normal stresses acting on these 

planes—the maximum and minimum normal stresses—are called principal stresses.

The two values of �p that satisfy Equation (12.11) are called the principal angles. 

When tan 2�p is positive, �p is positive and the principal plane defi ned by �p is rotated in a 

counterclockwise sense from the reference x axis. When tan 2�p is negative, the rotation is 

clockwise. Observe that one value of �p will always be between positive and negative 

45� (inclusive), and the second value will differ by 90�.

Magnitude of Principal Stresses

The normal stresses acting on the principal planes at a point in a stressed body are called 

principal stresses. The maximum normal stress (i.e., the most positive value algebraically) 

acting at a point is denoted as �p1, and the minimum normal stress (i.e., the most negative 

value algebraically) is denoted as �p2. There are two methods for computing the magni-

tudes of the normal stresses acting on the principal planes.

Method One. The fi rst method is simply to substitute each of the �p values into either 

Equation (12.3) or Equation (12.5) and compute the corresponding normal stress. In addi-

tion to the value of the principal stress, this method has the advantage that it directly associ-

ates a principal stress magnitude with each of the principal angles.

Method Two. A general equation can be derived to give values for both �p1 and �p2. 

To derive this general equation, values of 2�p must be substituted into Equation (12.5). 

Equation (12.11) can be represented geometrically by the triangles shown in Figure 12.12. 

In this fi gure, we will assume that �xy and (�x � �y) are both positive or both negative 

xy

�x
�y

2

� xy2
2

x y

2

2 p
2 p  180°�

�

�
�

� �

�

�
�

FIGURE 12.12

PRINCIPAL STRESSES AND 
MAXIMUM SHEAR STRESS
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STRESS TRANSFORMATIONS quantities. From the triangle geometry, expressions can be developed for sin 2�p and cos 

2�p, two terms that are needed for the solution of Equation (12.5):

sin cos
( )

2

2

2
2

2

2

p
xy

x y
xy

p
x y

x y
xy2

2

2

�

�
�

�
�

�
�

� �
�

� �

��

� �
� �

When these functions of 2�p are substituted into Equation (12.5) and simplifi ed, one 

obtains

p
x y x y

xy1

2

2

2 2
�

�
�

�
��

� � � �
�

A similar expression is obtained for �p2 by repeating these steps with the principal angle 

2�p � 180°:

p
x y x y

xy2

2

2

2 2
�

�
�

�
��

� � � �
�

These two equations can then be combined into a single equation for the two in-plane prin-

cipal stresses �p1 and �p2:

 p p
x y x y

xy1 2

2

2

2 2, �
�

�
�

��
� � � �

�  (12.12)

Equation (12.12) does not directly indicate which principal stress, either �p1 or �p2, is as-

sociated with each principal angle, and this is an important consideration. The solution of 

Equation (12.11) always gives a value of �p between �45° and �45� (inclusive). The 

principal stress associated with this value of �p can be determined from the following two-

part rule:

• If the term �x � �y is positive, �p indicates the orientation of �p1.

• If the term �x � �y is negative, �p indicates the orientation of �p2.

The other principal stress is oriented perpendicular to �p.

The principal stresses determined from Equation (12.12) may both be positive, they 

may both be negative, or they may be of opposite signs. In naming the principal stresses, 

�p1 is the more positive value algebraically. If one or both of the principal stresses from 

Equation (12.12) are negative, �p1 can have a smaller absolute value than �p2.

Shear Stresses on Principal Planes

As shown in the previous discussion, the values of �p that are solutions of Equation (12.11) 

will produce values of �nt � 0 in Equation (12.6). Therefore, the shear stress on a principal 

plane must be zero. This is a very important conclusion.

This characteristic of principal planes can be restated in the following manner:

If a plane is a principal plane, then the shear stress 
acting on the plane must be zero.

The converse of this statement is also true:

If the shear stress on a plane is zero, then that 
plane must be a principal plane.

In many situations, a stress element (which represents the state of stress at a specifi c 

point) will have only normal stresses acting on its x and y faces. In these instances, one 
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531
can conclude that the x and y faces must be principal planes because there is no shear 

stress acting on them.

Another important application of this statement concerns the state of plane stress. As 

discussed in Section 12.4, a state of plane stress in the x–y plane means that there are no 

stresses acting on the z face of the stress element. Therefore,

z zx zy 0� � �� � �

If the shear stress on the z face is zero, one can conclude that the z face must be a principal 

plane. Consequently, the normal stress acting on the z face must be a principal stress—the 

third principal stress.

The Third Principal Stress

In the previous discussion, the principal planes and principal stresses were determined for 

a state of plane stress. The two principal planes found from Equation (12.11) were oriented 

at angles of �p and �p � 90° with respect to the reference x axis, and they were oriented so 

that their outward normal was perpendicular to the z axis (i.e., the out-of-plane axis). The 

corresponding principal stresses determined from Equation (12.12) are called the in-plane 
principal stresses.

Although it is convenient to represent the stress element as a two-dimensional 

square, it is actually a three-dimensional cube with x, y, and z faces. For a state of plane 

stress, the stresses acting on the z face—�z, �zx, and �zy—are zero. Since the shear 

stresses on the z face are zero, the normal stress acting on the z face must be a principal 

stress, even though its magnitude is zero. A point subjected to plane stress therefore, 
has three principal stresses: the two in-plane principal stresses �p1 and �p2, plus a 
third principal stress �p3, which acts in the out-of-plane direction and has a magni-
tude of zero.

Orientation of Maximum In-Plane Shear Stress

To determine the planes where the maximum in-plane shear stress �max occurs, 

Equation (12.6) is differentiated with respect to � and set equal to zero, yielding

 
d

d
nt

x y xy( ) cos sin2 2 2 0� � � � �� �
�

� �
�

�  (12.13)

The solution of this equation gives the orientation � � �s of a plane where the shear stress 

is either a maximum or a minimum:

 
tan

( )
2

2
s

x y

xy
�

�
��

�

�

�

 (12.14)

This equation defi nes two angles 2�s that are 180� apart. Thus, the two values of �s are 

90� apart. Comparison of Equations (12.14) and (12.11) reveals that the two tangent 

functions are negative reciprocals. For that reason, the values of 2�p that satisfy Equa-

tion (12.11) are 90� away from the corresponding solutions 2�s of Equation (12.14). 

Consequently, �p and �s are 45� apart. This means that the planes on which the maximum 
in-plane shear stresses occur are rotated 45� from the principal planes.

Maximum In-Plane Shear Stress Magnitude

Similar to the principal stresses, there are two methods for computing the magnitude of the 

maximum in-plane shear stress �max.

If the normal of a surface lies in 

the x–y plane, then the stresses 

that act on that surface are 

termed in-plane stresses.

PRINCIPAL STRESSES AND 
MAXIMUM SHEAR STRESS
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532
STRESS TRANSFORMATIONS Method One. The fi rst method is simply to substitute one of the �s values into either 

Equation (12.4) or Equation (12.6) and compute the corresponding shear stress. In addition 

to the value of the maximum in-plane shear stress, an advantage to this method is that it 

directly associates a shear stress magnitude (including the proper sign) with the �s angle. 

Given that shear stresses on orthogonal planes must be equal, determination of the stress 

for only one �s angle is suffi cient to defi ne uniquely the shear stresses on both planes.

Since one is typically interested in fi nding both the principal stresses and the maxi-

mum in-plane shear stress, an effi cient computational approach for fi nding both the magni-

tude and orientation of the maximum in-plane shear stress is as follows:

(a) From Equation (12.11), a specifi c value for �p will be known.

(b)  Depending on the sign of �p and recognizing that �p and �s are always 45� apart, 

either add or subtract 45� to fi nd an orientation of a maximum in-plane shear stress 

plane �s. To obtain an angle �s between �45� and 	45� (inclusive), subtract 45� from 

a positive value of �p or add 45° to a negative value of �p.

(c)  Substitute this value of �s into either Equation (12.4) or Equation (12.6), and compute 

the corresponding shear stress. The result is �max, the maximum in-plane shear stress.

(d)  The result obtained from either Equation (12.4) or Equation (12.6) for �s will furnish 

both the magnitude and the sign of the maximum in-plane shear stress �max. Obtaining 

the sign is particularly valuable in this method because Method Two offers no direct 

means for establishing the sign of �max.

Method Two. A general equation can be derived to give the magnitude of �max by 

substituting angle functions obtained from Equation (12.14) into Equation (12.6). The 

results are

max

( )
x y

x y

x y
xy

2

2

2

2

2
xy

xy

x y
xy2

2

2
�

�
�

�
�

� �
�

� �

�
�

�
�

�

� �
�

�

�

� �

�

�

which reduces to

 max
x y

xy2

2

2
�

� � �
� �

��  (12.15)

Note that Equation (12.15) has the same magnitude as the second term of Equation (12.12).

From Equation (12.15), the sign of �max is ambiguous. The maximum shear stress dif-

fers from the minimum shear stress only in sign. Unlike normal stress, which can be either 

tension or compression, the sign of the maximum in-plane shear stress has no physical 

signifi cance for the material behavior of a stressed body. The sign simply indicates the 

direction in which the shear stress acts on a particular plane surface.

A useful relation between the principal and the maximum in-plane shear stress is ob-

tained from Equations (12.12) and (12.15) by subtracting the values for the two in-plane prin-

cipal stresses and substituting the value of the radical from Equation (12.15). The result is

 
max

−p p1 2

2

�
�

�
�

�
 (12.16)
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533
PRINCIPAL STRESSES AND 

MAXIMUM SHEAR STRESS
In words, the maximum in-plane shear stress �max is equal in magnitude to one-half of the 

difference between the two in-plane principal stresses.

Normal Stresses on Maximum In-Plane 
Shear Stress Surfaces

Unlike principal planes, which are free of shear stress, planes subjected to �max usually 

have normal stresses. After substituting angle functions obtained from Equation (12.14) 

into Equation (12.5) and simplifying, the normal stresses acting on planes of maximum 

in-plane shear stress are found to be

 avg
x y

2
�

�
�

� �
 (12.17)

The normal stress �avg is the same on both �max planes.

Absolute Maximum Shear Stress

In Equation (12.15), we derived an expression for the maximum shear stress magnitude 

acting in the plane of a body subjected to plane stress. We also found that the maximum 

in-plane shear stress �max is equal in magnitude to one-half the difference between the two 

in-plane principal stresses [Equation (12.16)]. Let us briefl y consider a point in a stressed 

body in which stresses act in three directions, asking the question “What is the maximum 

shear stress for this more general state of stress?” We will denote the maximum shear stress 

magnitude on any plane that could be passed through the point as �abs max to differentiate it 

from the maximum in-plane shear stress �max. In the body at the point of interest, there will 

be three orthogonal planes with no shear stress—the principal planes. (See Section 12.11.) 

The normal stresses acting on these planes are termed principal stresses, and in general, 

they each have unique algebraic values (i.e., �p1 ≠ �p2 ≠ �p3). Consequently, one principal 

stress will be the maximum algebraically (�max), one principal stress will be the minimum 

algebraically (�min), and the third principal stress will have a value in between these two 

extremes. The magnitude of the absolute maximum shear stress �abs max is equal to one-half 

of the difference between the maximum and minimum principal stresses:

 abs max
max min

2
�

��
�

�
 (12.18)

Furthermore, �abs max acts on planes that bisect the angles between the maximum and mini-

mum principal planes.

When a state of plane stress exists, normal and shear stresses on the out-of-plane face 

of a stress element are zero. Since no shear stresses act on it, the out-of-plane face is a 

principal plane and the principal stress acting on it is designated �p3. Therefore, two prin-

cipal stresses �p1 and �p2 act in the plane of the stress and the third principal stress, which 

acts in the out-of-plane direction, has a magnitude of �p3 � 0. Thus, for plane stress, the 

magnitude of the absolute maximum shear stress can be determined from one of the follow-

ing three conditions:

(a) If both �p1 and �p2 are positive, then

abs max
p p p p1 3 1 1

2

0

2 2
� � �

���
�

� � �

For example, if stresses act 

only in the x–y plane, then the 

z face of a stress element is a 

principal plane.
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(b) If both �p1 and �p2 are negative, then

abs max
p p p p3 2 2 2

2

0

2 2
� � �

� �
�

�
�

� � �

(c) If �p1 is positive and �p2 is negative, then

abs max
p p1 2

2
�

��
�

�

These three possibilities are illustrated in Figure 12.13, in which one of the two orthogonal 

planes on which the maximum shear stress acts is highlighted for each example. Note that 

�p3 � 0 in all three cases.

The direction of the absolute maximum shear stress can be determined by drawing a 

wedge-shaped block with two sides parallel to the planes having the maximum and mini-

mum principal stresses, and with the third side at an angle of 45� with the other two sides. 

The direction of the maximum shear stress must oppose the larger of the two principal 

stresses.

Stress Invariance

A useful relationship between the principal stresses and the normal 

stresses on the orthogonal planes, shown in Figure 12.14, is obtained 

by adding the values for the two principal stresses as given in 

Equation (12.12). The result is

 p p x y1 2� � �� � � �  (12.19)

In words, for plane stress, the sum of the normal stresses on any two 
orthogonal planes through a point in a body is constant and indepen-
dent of the angle �.

�

�
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p2�
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(a) If both �p1 and �p2 are positive (b) If both �p1 and �p2 are negative (c) If �p1 is positive and �p2 is negative

FIGURE 12.13 Planes of absolute maximum shear stress for plane stress.
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FIGURE 12.15
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Principal stress and maximum in-plane shear stress results should be presented with a 

sketch that depicts the orientation of all stresses. Two sketch formats are generally used:

(a) two square stress elements or

(b) a single wedge-shaped element.

Two Square Stress Elements

Two square stress elements are sketched, as shown in Figure 12.15. 

One stress element shows the orientation and magnitude of the 

 principal stresses, and a second element shows the orientation and 

magnitude of the maximum in-plane shear stress along with the 

 associated normal stresses.

Principal Stress Element

•  The principal stress element is shown rotated at the angle �p 

calculated from Equation (12.11), which yields a value between 

�45� and –45� (inclusive).

 tan
( )

2
2p

xy

x y�
�

�

�

�
�  (12.11)

•  When �p is positive, the stress element is rotated in a counter-

clockwise sense from the reference x axis. When �p is negative, 

the rotation is clockwise.

•  Note that the angle calculated from Equation (12.11) does not necessarily give the 

orientation of the �p1 plane. Either �p1 or �p2 may act on the �p plane. The principal 

stress oriented at �p can be determined from the following rule:

•  If �x � �y is positive, �p indicates the orientation of �p1.

• If �x � �y is negative, �p indicates the orientation of �p2.

• The other principal stress is shown on the perpendicular faces of the stress element.

•  In the sketch, use the arrow direction to indicate whether the principal stress is 

tension or compression. Label the arrow with the absolute value of either �p1 or �p2.

•  There is never a shear stress on the principal planes; therefore, show no shear stress 

arrows on the principal stress element.

Maximum In-Plane Shear Stress Element

• Draw the maximum shear stress element rotated 45° from the principal stress element.

•  If the principal stress element is rotated in a counterclockwise sense (i.e., positive �p) 

from the reference x axis, then the maximum shear stress element should be 

shown rotated 45� clockwise from the principal stress element. Therefore, the 

maximum shear stress element will be oriented an angle of �s � �p � 45� 
relative to the x axis.

•  If the principal stress element is rotated in a clockwise sense (i.e., negative �p) from the 

reference x axis, then the maximum shear stress element should be shown rotated 

45� counterclockwise from the principal stress element. Therefore, the maximum shear 

stress element will be oriented an angle of �s � �p � 45� relative to the x axis.

12.9 Presentation of Stress Transformation Results
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536
STRESS TRANSFORMATIONS •  Substitute the value of �s into either Equation (12.4) or (12.6), and compute �max.

•  If �max is positive, draw the shear stress arrow on the �s face in the direction that tends 

to rotate the stress element counterclockwise. If �max is negative, the shear stress 

arrow on the �s face should tend to rotate the stress element clockwise. Label this 

arrow with the absolute value of �max.

•  Once the shear stress arrow on the �s face has been established, draw appropriate 

shear stress arrows on the other three faces.

•  Compute the average normal stress acting on the maximum in-plane shear stress 

planes from Equation (12.17).

•  Show the average normal stress with arrows acting on all four faces. Use the arrow 

direction to indicate whether the average normal stress is tension or compression. 

Label a pair of the arrows with the magnitude of this stress.

•  In general, the maximum in-plane shear stress element will include both normal and 
shear stress arrows on all four faces.

Wedge-Shaped Stress Element

A wedge-shaped stress element can be used to report both the principal stress and maxi-

mum in-plane shear stress results on a single element, as shown in Figure 12.16.

•  The two orthogonal faces of the wedge element are used to report the orientation and 

magnitude of the principal stresses.

•  Follow the procedures given previously for the principal stress element to specify the 

principal stresses acting on the two orthogonal faces of the wedge element. Since 

these two faces are principal planes, there should not be a shear stress arrow on 
either of these faces.

•  The sloped face of the wedge is oriented 45� away from the two orthogonal faces, and it 

is used to specify the maximum in-plane shear stress and the associated normal stress.

•  Draw a shear stress arrow on the sloped face, and label it with the magnitude of the 

maximum in-plane shear stress computed from Equation (12.15).

•  There are several ways to determine the proper direction for the maximum in-plane 

shear stress arrow. One particularly easy way to construct a proper sketch is as 

follows: Begin the tail of the shear stress arrow at the �p1 side of the wedge, and point 

the arrow toward the �p2 side of the wedge.

•  Compute the average normal stress acting on the maximum in-plane shear stress 

planes from Equation (12.17).

•  Show the average normal stress on the sloped face of the wedge. Use the arrow 

direction to indicate whether the average normal stress is tension or compression. 

Label this arrow with the average normal stress magnitude.
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FIGURE 12.16
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EXAMPLE 12.5

Consider a point in a structural member that is subjected to plane stress. Normal and shear 

stresses acting on horizontal and vertical planes at the point are shown.

(a)  Determine the principal stresses and the maximum in-plane shear stress acting at 

the point.

(b) Show these stresses in an appropriate sketch.

(c) Determine the absolute maximum shear stress at the point.

Plan the Solution
The stress transformation equations derived in the preceding section will be used to com-

pute the principal stresses and the maximum shear stress acting at the point.

SOLUTION
(a)  From the given stresses, the values to be used in the stress transformation equations 

are �x � �11 ksi, �y � �9 ksi, and �xy � �7 ksi. The in-plane principal stress 
magnitudes can be calculated from Equation (12.12):

p p
x y x y

xy1 2

2

2

2 2

11

,

( ksi) ( 99
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2
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2
2ksi) ( ksi) ( ksi)

( ksi)

.. ksi, . ksi21 11 21

�
� �
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� � �
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 The maximum in-plane shear stress can be computed from Equation (12.15):

max
( ksi) ( ksi)x y

xy2
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2
2
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12 21
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. ksi

�
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��

� �

�
�

�

 On the planes of maximum in-plane shear stress, the normal stress is simply the 

average normal stress, as given by Equation (12.17):

avg
( ksi) ( ksi)

ksi ksi (T)x y

2

11 9

2
1 1�

��
�

� �
� �

�
�

(b)  The principal stresses and the maximum in-plane shear stress must be shown in an 

appropriate sketch. The angle �p indicates the orientation of one principal plane rela-

tive to the reference x face. From Equation (12.11),

tan
( )

ksi

[( ksi) ( ksi)]

ks
2

2

7

11 9 2

7
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x y
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Since �p is negative, the angle is turned clockwise. In other 

words, the normal of one principal plane is rotated 17.5° 

below the reference x axis. One of the in-plane principal 

stresses—either �p1 or �p2—acts on this principal plane. To 

determine which principal stress acts at �p � �17.5°, use the 

following two-part rule:

•  If the term �x � �y is positive, �p indicates the orientation 

of �p1.

•  If the term �x � �y is negative, �p indicates the orientation 

of �p2.

Since �x � �y is positive, �p indicates the orientation of 

�p1 � 13.21 ksi. The other principal stress, �p2 � �11.21 ksi, 

acts on a perpendicular plane. The in-plane principal stresses 

are shown on the element labeled “P” in the fi gure. Note that 

there are never shear stresses acting on the principal planes.

The planes of maximum in-plane shear stress are always located 45� away from the 

principal planes; therefore, �s � �27.5�. Although Equation (12.15) gives the magnitude 

of the maximum in-plane shear stress, it does not indicate the direction in which the shear 

stress acts on the plane defi ned by �s. To determine the direction of the shear stress, solve 

Equation (12.4) for �nt, using the values �x � �11 ksi, �y � �9 ksi, �xy � �7 ksi, and 

� � �s � �27.5�:

nt x y xy( ) sin cos (cos sin )

[( ksi)

2 2

11 ( ksi)]sin . cos . ( ksi)[cos . si9 27 5 27 5 7 27 52° ° ° nn . ]

. ksi

2 27 5

12 21

°

� � � � � �� ��

�

�

�

�

� � � � �

� � � �

Since �nt is negative, the shear stress acts in a negative t direction on a positive n face. 

Once the shear stress direction has been determined for one face, then the shear stress 

direction is known for all four faces of the stress element. The maximum in-plane shear 

stress and the average normal stress are shown on the stress element labeled “S.” Note that 

unlike the principal stress element, there usually will be normal stress acting on the planes 

of maximum in-plane shear stress.

The principal stresses and the maximum in-plane 

shear stress can also be reported on a single wedge-

shaped element, as shown on the left. This format can be 

somewhat easier to use than the two-element sketch for-

mat, particularly with regard to the direction of the max-

imum in-plane shear stress. The maximum in-plane 

shear stress and the associated average normal stress are 

shown on the sloped face of the wedge, which is rotated 

45� from the principal planes. The shear stress arrow on 
this face always starts on the �p1 side of the wedge and 
points toward the �p2 side of the wedge. Once again, 

there is never a shear stress on the principal planes (i.e., 

the �p1 and �p2 sides of the wedge).

(c)  For plane stress, such as the example presented here, the z face is free of stress. There-

fore, �zx � 0, �zy � 0, and �z � 0. Since the shear stress on the z face is zero, the z face 

must be a principal plane with a principal stress �p3 � �z � 0. The absolute maximum 

shear stress (considering all possible planes rather than simply those planes whose 

x
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EXAMPLE 12.6

normal is perpendicular to the z axis) can be determined from the three principal 

stresses: �p1 � 13.21 ksi, �p2 � �11.21 ksi, and �p3 � 0. The maximum principal 

stress (in an algebraic sense) is �max � 13.21 ksi, and the minimum principal stress is 

�min � �11.21 ksi. The absolute maximum shear stress can be computed from Equa-

tion (12.18):

       
abs max

max min ksi ksi

22

13 21 11 21
12 21

. .
.

( )
kssi

� �
� � � �

� � �

 In this instance, the absolute maximum shear stress is equal to the maximum in-plane 

shear stress. This will always be the case whenever �p1 is a positive value and �p2 is a 

negative value. The absolute maximum shear stress will be greater than the maximum 

in-plane shear stress whenever �p1 and �p2 are either both positive or both negative.

Consider a point in a structural member that is subjected to plane stress. Normal and shear 

stresses acting on horizontal and vertical planes at the point are shown.

(a)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(b) Show these stresses in an appropriate sketch.

(c) Determine the absolute maximum shear stress at the point.

Plan the Solution
The stress transformation equations derived in the preceding section will be used to com-

pute the principal stresses and the maximum shear stress acting at the point.

SOLUTION
(a)  From the given stresses, the values to be used in the stress transformation equations 

are �x � �70 MPa, �y � �150 MPa, and �xy � �55 MPa. The in-plane principal 
stresses can be calculated from Equation (12.12):

p p
x y x y

xy1 2

2

2

2 2
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,
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 The maximum in-plane shear stress can be computed from Equation (12.15):

�
� ��

�
� � ���

� �

�
�
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x y

xy2
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2
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2 MPa MPa 2
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���
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 On the planes of maximum in-plane shear stress, the normal stress is simply the aver-
age normal stress, as given by Equation (12.17):

avg
MPa MPa

MPax y

2

70 150

2
110 110 MPa (T)�

� �
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��
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Stress Transformation Learning Tool
Illustrates the correct usage of the stress transformation equations 

in determining stresses acting on a specifi ed plane, principal 

stresses, and the maximum in-plane shear stress state for stress 

values specifi ed by the user.

 MecMovies Example M12.9 

(b)  The principal stresses and the maximum in-plane shear stress must be shown in an 

appropriate sketch. The angle �p indicates the orientation of one principal plane rela-

tive to the reference x face. From Equation (12.11),

tan
( )

MPa

( )

MPa
2

2

55

70 150 2

55
p

xy

x y MPa MPa 40

27 0
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The angle �p is positive; consequently, the angle is turned 

counterclockwise from the x axis. Since �x 	 �y is negative, 

�p indicates the orientation of �p2 � 42.0 MPa. The other 

principal stress, �p1 � 178.0 MPa, acts on a perpendicular 

plane. The in-plane principal stresses are shown in the fi gure 

on the left.

The maximum in-plane shear stress and the associated 

average normal stress are shown on the sloped face of the 

wedge, which is rotated 45° from the principal planes. Note 

that the arrow for �max starts on the �p1 side of the wedge and 

points toward the �p2 side.

(c)  Since �p1 and �p2 are both positive values, the absolute maximum shear stress will be 

greater than the maximum in-plane shear stress. In this example, the three principal 

stresses are �p1 � 178 MPa, �p2 � 42 MPa, and �p3 � 0. The maximum principal 

stress is �max � 178 MPa, and the minimum principal stress is �min � 0. The absolute 

maximum shear stress can be computed from Equation (12.18):

 abs max
max min

22

178 0
89 0

MPa
MPa.

�
�

�� �
� � �  Ans.

 The absolute maximum shear stress acts on a plane whose normal does not lie in 

the x–y plane.
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M12.4 Sketching Stress Transformation Results. Score at 

least 100 points in this interactive activity. (Learning tool)

FIGURE M12.4

P12.41–P12.44 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on horizontal 

and vertical planes at the point are shown in Figures P12.41–P12.44.

(a) Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(b) Show these stresses in an appropriate sketch (e.g., see 

Figure 12.15 or Figure 12.16).

FIGURE P12.41 FIGURE P12.42

FIGURE P12.43 FIGURE P12.44

P12.45–P12.48 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on hori-

zontal and vertical planes at the point are shown in Figures P12.45–

P12.48.

(a) Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(b) Show these stresses in an appropriate sketch (e.g., see Figure 

12.15 or Figure 12.16).

(c) Compute the absolute shear stress at the point.

FIGURE P12.45 FIGURE P12.46

FIGURE P12.47 FIGURE P12.48
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 MecMovies ExercisesMM

PROBLEMSPROBLEMS

45 MPa

17 MPa

36 MPa

32 MPa

55 MPa

42 MPa

13.1 ksi

18.4 ksi

27.9 ksi

79 ksi

43 ksi

37 ksi

62 MPa

94 MPa

42 MPa

31 MPa

67 MPa

17 MPa

106 MPa

172 MPa

144 MPa

29 ksi

17 ksi

7 ksi
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P12.49–P12.52 Consider a point in a structural member that 

is subjected to plane stress. Normal and shear stresses acting on 

horizontal and vertical planes at the point are shown in Figures 

P12.49–P12.52.

(a)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(b)  Show these stresses in an appropriate sketch (e.g., see Figure 

12.15 or Figure 12.16).

(c) Compute the absolute maximum shear stress at the point.

P12.57 The principal compressive stress on a vertical plane 

through a point in a wooden block is equal to three times the princi-

pal compression stress on a horizontal plane. The plane of the grain 

is 25� clockwise from the vertical plane. If the normal and shear 

stresses must not exceed 400 psi (C) and 90 psi shear, determine the 

maximum allowable compressive stress on the horizontal plane.

P12.58 At a point on the free surface of a stressed body, a nor-

mal stress of 64 MPa (C) and an unknown positive shear stress exist 

on a horizontal plane. One principal stress at the point is 8 MPa (C). 

The absolute maximum shear stress at the point has a magnitude of 

95 MPa. Determine the unknown stresses on the horizontal and ver-

tical planes and the unknown principal stress at the point.

P12.59 At a point on the free surface of a stressed body, the 

normal stresses are 20 ksi (T) on a vertical plane and 30 ksi (C) on 

a horizontal plane. An unknown negative shear stress exists on the 

vertical plane. The absolute maximum shear stress at the point has 

a magnitude of 32 ksi. Determine the principal stresses and the 

shear stress on the vertical plane at the point.

P12.60 At a point on the free surface of a stressed body, a nor-

mal stress of 75 MPa (T) and an unknown negative shear stress 

exist on a horizontal plane. One principal stress at the point is 

200 MPa (T). The maximum in-plane shear stress at the point has a 

magnitude of 85 MPa. Determine the unknown stresses on the ver-

tical plane, the unknown principal stress, and the absolute maxi-

mum shear stress at the point.

P12.61 For the state of plane stress shown in Figure P12.61, 

determine

(a)  the largest value of �y for which the maximum in-plane shear 

stress is equal to or less than 16 ksi.

(b) the corresponding principal stresses.

P12.53–P12.56 Consider a point in a structural member that 

is subjected to plane stress. Normal and shear stresses acting on 

horizontal and vertical planes at the point are shown in Figures 

P12.53–P12.56.

(a)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(b)  Show these stresses in an appropriate sketch (e.g., see 

Figure 12.15 or Figure 12.16).

(c) Compute the absolute maximum shear stress at the point.
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FIGURE P12.49

54 ksi

22 ksi

15 ksi

FIGURE P12.50

21.6 ksi

6.8 ksi

22.4 ksi

FIGURE P12.52

109.2 MPa

176.4 MPa

91.3 MPa

FIGURE P12.51

117.5 MPa

96.3 MPa

45.6 MPa

FIGURE P12.53

3.5 ksi

12.5 ksi

10 ksi

FIGURE P12.54

9 ksi

13.4 ksi

5.6 ksi

FIGURE P12.55

17.6 ksi

20.4 ksi

13.8 ksi

FIGURE P12.56

114.8 MPa

154.8 MPa

87 MPa

FIGURE P12.61
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P12.62 For the state of plane stress shown in Figure P12.62, 

determine

(a)  the largest value of �xy for which the maximum in-plane shear 

stress is equal to or less than 150 MPa.

(b) the corresponding principal stresses.

FIGURE P12.62
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The process of changing stresses from one set of coordinate axes (i.e., x–y–z) to another 

set of axes (i.e., n–t–z) is termed stress transformation, and the general equations for 

plane stress transformation were developed in Section 12.7. The equations for computing 

the principal stresses and the maximum in-plane shear stress at a point in a stressed body 

were developed in Section 12.8. In this section, a graphical procedure for plane stress 

transformations will be developed. In comparison with the various equations derived in 

Sections 12.7 and 12.8, this graphical procedure is much easier to remember and it pro-

vides a functional depiction of the relationships between stress components acting on 

different planes at a point.

The German civil engineer Otto Christian Mohr (1835–1918) developed a useful 

graphical interpretation of the stress transformation equation. This method is known as 

Mohr’s circle. Although it will be used for plane stress transformations here, the Mohr’s 

circle method is also valid for other transformations that are similar mathematically, such 

as area moments of inertia, mass moments of inertia, strain transformations, and three-

dimensional stress transformations.

Derivation of the Circle Equation

Mohr’s circle for plane stress is constructed with normal stress � plotted along the horizon-

tal axis and shear stress � plotted along the vertical axis. The circle is constructed such that 

each point on the circle represents a combination of normal stress � and shear stress � that 

acts on one specifi c plane through a point in a stressed body. The general plane stress trans-

formation equations, expressed with double-angle trigonometric functions, were presented 

in Section 12.7:

 � �� �
� � � �

n
x y x y

xy� ��
� �

2 2
2cos 2 sin  (12.5)

 � �� �nt
x y

xy2
2sin 2 cos

� �
� ��

�
 (12.6)

Equations (12.5) and (12.6) can be rewritten with terms involving 2� on the right-hand side 

of the equations:

� �� �
� � � �

n
x y x y

xy� ��
� �

2 2
2cos 2 sin

� �� �nt
x y

xy2
2sin 2 cos

� �
� ��

�

12.10 Mohr’s Circle for Plane Stress

MecMovies 12.15 presents an 

animated derivation of the Mohr’s 

circle stress transformation 

equations.
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STRESS TRANSFORMATIONS Both equations can be squared, then added together, and simplifi ed to give

 � �n nt xy
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟2 2

2

2

2

22� � ���
�x y� � �x y� �

 (12.20)

This is the equation of a circle in terms of the variables �n and �nt . The center of the circle 

is located on the � axis (i.e., � � 0) at

 C
2

�
�x y� �

 (12.21)

The radius of the circle is given by the right-hand side of Equation (12.20):

 R xy
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟2

2

2���
�x y� �  (12.22)

Equation (12.20) can be written in terms of C and R as

 ( )2
n ntC R2 2�� � � �  (12.23)

which is the standard algebraic equation for a circle with radius R and center C.

Utility of Mohr’s Circle

Mohr’s circle provides an extremely useful aid in the visualization of the stresses on various 

planes through a point in a stressed body. Mohr’s circle can be used to determine stresses 

acting on any plane passing through a point. It is quite convenient for determining principal 

stresses and maximum shear stresses (both in-plane and absolute maximum shear stresses). 

If Mohr’s circle is plotted to scale, measurements taken directly from the plot can be used to 

obtain stress values. However, it is probably most useful as a pictorial aid for the analyst who 

is performing analytical determinations of stresses and their directions at a point.

Sign Conventions Used in Plotting Mohr’s Circle

In constructing Mohr’s circle, normal stresses are plotted as horizontal coordinates and 

shear stresses are plotted as vertical coordinates. Consequently, the horizontal axis is 

termed the � axis and the vertical axis is termed the � axis. To reiterate, Mohr’s circle for 

plane stress is a circle plotted entirely in terms of normal stress � and shear stress �.

Normal Stresses. Tension normal stresses are plotted on the right side of the � axis, 

and compression normal stresses are plotted on the left side of the � axis. In other words, 

tension normal stress is plotted as a positive value (algebraically) and compression normal 

stress is plotted as a negative value.

Shear Stresses. A unique sign convention is required to determine whether a particu-

lar shear stress plots above or below the � axis. The shear stress �xy acting on the x face 

MecMovies 12.16 presents 

a step-by-step guide to 

constructing Mohr’s circle 

for plane stress.

MecMovies 12.17 shows 

how principal stresses and 

principal planes are found 

with Mohr’s circle.

MecMovies 12.18 illustrates 

how the maximum in-plane 

shear stress is found from 

Mohr’s circle.
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MOHR’S CIRCLE FOR 

PLANE STRESS
must always equal the shear stress �yx acting on the y face. (See Section 12.3.) If a positive 

shear stress acts on the x face of the stress element, then a positive shear stress will also act 

on the y face, and vice versa. For shear stress, therefore, an ordinary sign convention (such 

as positive � plots above the � axis and negative � plots below the � axis) is not suffi cient 

because

(a) the shear stresses on both the x and y faces will always have the same sign and

(b) the center of Mohr’s circle must be located on the � axis. [See Equation (12.20).]

To determine how a shear stress value should be plotted, one must consider both the face 

that the shear stress acts on and the direction in which the shear stress acts.

•  If the shear stress acting on a face of the stress element tends to rotate the stress 

 element in a clockwise direction, then the shear stress is plotted above the � axis.

•  If the shear stress tends to rotate the stress element in a counterclockwise direction, 

then the shear stress is plotted below the � axis.

Basic Construction of Mohr’s Circle

Mohr’s circle can be constructed in several ways, depending on which stresses are known 

and which stresses are to be found. To illustrate the basic construction of Mohr’s circle for 

plane stress, assume that stresses �x, �y, and �xy are known. The following procedure can be 

used to construct the circle:

1.  Identify the stresses acting on orthogonal planes at a point. These are usually the 

stresses �x, �y, and �xy acting on the x and y faces of the stress element. It is help-

ful to draw a stress element before beginning construction of Mohr’s circle.

2.  Draw a pair of coordinate axes. The � axis is horizontal. The � axis is vertical. 

It is not mandatory, but it is helpful, to construct Mohr’s circle at least ap-

proximately to scale. Pick an appropriate stress interval for the data, and use 

the same interval for both � and �.

  Label the upper half of the � axis with a clockwise arrow. Label the lower 

half with a counterclockwise arrow. These symbols will help you remember 

the sign convention used in plotting shear stresses.

3.  Plot the state of stress acting on the x face. If �x is positive (i.e., tension), then 

the point is plotted to the right of the � axis. Conversely, a negative �x plots to 

the left of the � axis.

  Correctly plotting the value of �xy is easier if you use the clockwise/coun-

terclockwise sign convention. Look at the shear stress arrow on the x face. If 

this arrow tends to rotate the stress element clockwise, plot the point above 

the � axis. For the stress element shown here, the shear stress acting on the 

x face tends to rotate the element counterclockwise; therefore, the point should 

be plotted below the � axis.

4.  Label this point x. This point represents the combination of normal and shear 

stress on a specifi c plane surface, specifi cally the x face of the stress element. 

Keep in mind that the coordinates used in plotting Mohr’s circle are not 

 spatial coordinates like x and y distances, which are more commonly used 

in other settings. Rather, the coordinates of Mohr’s circle are � and �. To 

 establish orientations of specifi c planes by using Mohr’s circle, we must 

x

y

�xy
y

x

�

�

�

�

�

x

�

�

�
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STRESS TRANSFORMATIONS
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y
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�
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C
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�
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�

(�p1, 0)

(�p2, 0) 2 p
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R

C

�

�

�
�

   determine angles relative to some reference point, such as the point x, which 

represents the state of stress on the x face of the stress element. Conse-

quently, it is very important to label the points as they are plotted.

5.  Plot the state of stress acting on the y face. Look at the shear stress arrow on 

the y face of the stress element shown in the previous fi gure. This arrow 

tends to rotate the element clockwise; therefore, the point is plotted above 

the � axis. Label this point y, since it represents the combination of normal 

and shear stress acting on the y face of the stress element.

Notice that points x and y are both the same distance away from the � 

axis—one point is above the � axis, and the other point is below. This will 

always be true because the shear stress acting on the x and y faces must 

 always have the same magnitude. [See Section 12.3 and Equation (12.2).]

6.  Draw a line connecting points x and y. The location where this line crosses 

the � axis marks the center C of Mohr’s circle.

The radius R of Mohr’s circle is the distance from center C to point x or 

to point y.

As shown by Equation (12.23), the center C of 
Mohr’s circle will always lie on the � axis.

7.  Draw a circle with center C and radius R. Every point on the circle repre-

sents a combination of � and � that exists at some orientation.

The equations used to derive Mohr’s circle [Equations (12.5) and (12.6)] 

were expressed in terms of double-angle trigonometric functions. Conse-

quently, all angular measures in Mohr’s circle are double angles 2�. Points x 

and y, which represent stresses on planes 90° apart in the x–y coordinate 

system, are 180° apart in the �–� coordinate system of Mohr’s circle. Points 

at the ends of any diameter represent stresses on orthogonal planes in the x–y 

coordinate system.

8.  Several points on Mohr’s circle are of particular interest. The principal 

stresses are the extreme values of the normal stress that exist in the stressed 

body, given the specifi c set of stresses �x, �y, and �xy that act in the x and y 

directions. From Mohr’s circle, the extreme values of � are observed to 

 occur at the two points where the circle crosses the � axis. The more positive 

point (in an algebraic sense) is �p1, and the more negative point is �p2.

Notice that the shear stress � at both points is zero. As discussed previ-

ously, the shear stress � is always zero on planes where the normal stress � 

has a maximum or a minimum value.

9.  The geometry of Mohr’s circle can be used to determine the orientation of the 

principal planes. From the geometry of the circle, the angle between point x 

and one of the principal stress points can be determined. The angle between 

point x and one of the principal stress points on the circle is 2�p. In addition to 

the magnitude of 2�p, the sense of the angle (either clockwise or counterclock-

wise) can be determined from the circle by inspection. The rotation of 2�p 

from point x to the principal stress point should be determined.

In the x–y coordinate system of the stress element, the angle between the 

x face of the stress element and a principal plane is �p, where �p rotates in the 

same sense (either clockwise or counterclockwise) in the x–y coordinate 

system as 2�p does in Mohr’s circle.
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10.  Two additional points of interest on Mohr’s circle are the extreme shear 

stress values. The largest shear stress magnitudes will occur for points lo-

cated at the top and at the bottom of the circle. Since the center C of the 

circle is always located on the � axis, the largest possible value of � is 

simply the circle radius R. Note that these two points occur directly above 

and directly below the circle center C. In contrast to the principal planes, 

which always have zero shear stress, the planes of maximum shear stress 

generally do have a normal stress. The magnitude of this normal stress is 

identical to the � coordinate of the circle center C.

11.  Notice that the angle between the principal stress points and the maximum 

shear stress points on Mohr’s circle is 90°. Since angles in Mohr’s circle 

are doubled, the actual angle between the principal planes and the maxi-

mum shear stress planes will always be 45°.

The stress transformation equations presented in Sections 12.7 and 12.8 

and the Mohr’s circle construction presented here are two methods for attaining 

the same result. The advantage offered by Mohr’s circle is that it provides a 

concise visual summary of all stress combinations possible at any point in a 

stressed body. Since all stress calculations can be performed with the geometry 

of the circle and basic trigonometry, Mohr’s circle provides an easy-to-remember 

tool for stress analysis. While developing mastery of stress analysis, the student 

may fi nd it less confusing to avoid mixing the stress transformation equations 

presented in Sections 12.7 and 12.8 with Mohr’s circle construction. Take 

advantage of Mohr’s circle by using the geometry of the circle to compute all 

desired quantities rather than trying to merge the stress transformation 

equations into the Mohr’s circle analysis.

2 s

x

y

R

C

(�avg, �max)

(�avg, �max)

�

�

�

�

(     , 0)�p1

(     , 0)�p2

90°

�

�

�

x

y

R

C

(�avg, �max)

(�avg, �max)

Coach Mohr’s Circle of Stress
Learn to construct and use Mohr’s circle to determine principal 

stresses, including the proper orientation of the principal stress 

planes.

MOHR’S CIRCLE FOR 
PLANE STRESS

 MecMovies Example M12.10
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EXAMPLE 12.7

Principal and Maximum In-Plane Shear Stresses
Consider a point in a structural member that is subjected to plane stress. Normal and shear 

stresses acting on horizontal and vertical planes at the point are shown.

(a)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(b) Show these stresses in an appropriate sketch.

SOLUTION
Begin with the normal and shear stresses acting on the x face of 

the stress element. Since �x � 9 ksi is a tension stress, the point 

on Mohr’s circle will be plotted to the right of the � axis. The 

shear stress acting on the x face tends to rotate the stress element 

clockwise; therefore, point x on Mohr’s circle is plotted above the 

� axis.

On the y face, the normal stress �y � 	5 ksi will be plotted 

to the left of the � axis. The shear stress acting on the y face tends 

to rotate the stress element counterclockwise; therefore, point y on 

Mohr’s circle is plotted below the � axis.

Note: Attaching either a positive or a negative sign to � 

values at points x and y does not add any useful information for 

the Mohr’s circle stress analysis. Once the circle has been properly 

constructed, all computations are based on the geometry of the 

circle, irrespective of any signs. In this introductory example, 

the subscript “cw” has been added to the shear stress of point x 

simply to emphasize that the shear stress on the x face rotates the 

element clockwise. Similarly, the subscript “ccw” is meant to 

emphasize that the shear stress on the y face rotates the element 

counterclockwise.

Since points x and y are always the same distance above or 

below the � axis, the center of Mohr’s circle can be found by 

averaging the normal stresses acting on the x and y faces:

C
2

9 5

2
2

ksi ( ksi)
ksi

� �x y
� � ��

� � �

The center of Mohr’s circle always lies on the � axis.

The geometry of the circle is used to calculate the radius. 

The (�, �) coordinates of point x and center C are known. Use 

these coordinates with the Pythagorean theorem to calculate the 

hypotenuse of the shaded triangle:

 
R ( ksi ksi) ( ksi )

ksi

29 2 6 0

7 6 9 22

2

2 2 .

� ��

� ��

�
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The angle between the x–y diameter and the � axis is 2�p, 

and it can be computed by means of the tangent function:

tan 2� �p
6

7
2 40 60p . °� ��

Note that this angle turns clockwise from point x to 

the � axis.

The maximum value of � (i.e., the most positive 

value algebraically) occurs at point P1, where Mohr’s 

circle crosses the � axis. From the circle geometry,

�p C R1 2 9 22 11 22ksi ksi ksi. .� � �� � �

The minimum value of � (i.e., the most negative 

value algebraically) occurs at point P2. From the circle 

 geometry,

�p C R2 2 9 22 7 22ksi ksi ksi. .� � �� � �

The angle between point x and point P1 was  calculated 

as 2�p � 40.60°; however, angles in Mohr’s circle are 

double angles. To determine the orientation of the 

principal planes in the x–y coordinate system, divide 

this value by 2. Therefore, the principal stress �p1 

acts on a plane rotated 20.30° from the x face of the 

stress element. The 20.30° angle in the x–y coordi-

nate system rotates in the same sense as 2�p in Mohr’s 

circle. In this example, the 20.30° angle is rotated 

clockwise from the x axis.

The principal stresses as well as the orientation of 

the principal planes are shown in the sketch.

The maximum values of � occur at points S1 and S2, 

located at the bottom and at the top of Mohr’s circle. The 

shear stress magnitude at these points is simply equal to 

the circle radius R. Notice that the normal stress at points 

S1 and S2 is not zero. Rather, the normal stress � at these 

points is equal to the center C of the circle.

The angle between points P1 and S2 is 90°. Since the 

angle between point x and point P1 was found to be 40.60°, 

the angle between point x and point S2 must be 49.40°. 

This angle rotates in a counterclockwise direction.

One plane subjected to the maximum in-plane shear 

stress is oriented 24.70° counterclockwise from the x face. 

The magnitude of this shear stress is equal to the circle 

radius:

�max ksiR 9 22.� �

To determine the direction of the shear stress arrow acting 

on this face, note that point S2 is on the upper half of the 
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x

P
11.22 ksi

7.22 ksi

20.3°
Mohr’s circle 

point P1

corresponds
to this face.

Mohr’s circle point P2

corresponds to this face.

9 ksi

5 ksi

6 ksi

S
2 ksi

2 ksi

9.22 ksi

24.7°

Mohr’s circle point
S2 corresponds
to this face.

Mohr’s circle point S1

corresponds to this face.

Principal and Maximum In-Plane Shear Stresses
Consider a point in a structural member that is subjected to plane stress. Normal and shear 

stresses acting on horizontal and vertical planes at the point are shown.

(a)  Determine the principal stresses and the maximum in-plane shear stress 

acting at the point.

(b) Show these stresses in an appropriate sketch.

SOLUTION
Begin with the normal and shear stresses acting on the x face of 

the stress element. The normal stress is �x � 60 MPa (C), and 

the shear stress � acting on the x face rotates the element coun-

terclockwise; therefore, point x is located to the left of the � axis 

and below the � axis. On the y face, the normal stress is �y � 

12 MPa (T), and the shear stress �  acting on the y face rotates the 

element clockwise; therefore, point y is located to the right of the 

�  axis and above the � axis.

Note: In this introductory example, the subscript “ccw” has 

been added to the shear stress of point x simply to give further 

emphasis to the fact that the shear stress on the x face rotates the 

element counterclockwise. Similarly, the subscript “cw” added 

to the shear stress of point y is meant to call attention to the fact 

that the shear stress on the y face rotates the element clockwise.

The center of Mohr’s circle can be found by averaging the 

normal stresses acting on the x and y faces:

 C
2

60 12

2
24

( MPa) MPa
MPa

� �x y
� � �

��
�

�

60 MPa

12 MPa

27 MPa
y

x

27

36

(�24, 0)

(�60, 27ccw) x

y (12, 27cw)

R �
 45

C

36.86°
�

�

�

circle, above the � axis. Consequently, the shear stress act-

ing on this face rotates the stress element clockwise. Once 

the shear stress direction on one face has been determined, 

the shear stress directions on the other three faces are known.

A complete sketch showing the principal stresses, the 

maximum in-plane shear stress, and the orientations of the 

respective planes can now be prepared.

x

9 ksi

5 ksi

6 ksi

S
2 ksi

2 ksi

9.22 ksi

24.7°

Mohr’s circle point
S2 corresponds
to this face.

Mohr's circle point S1

corresponds to this face.
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The circle radius R is found from the hypotenuse of the shaded 

triangle:

R [ ]( ( MPa  )60 24

36 27 45

2

2 2

MPa)

MPa

�

� ��

� � ( )27 2MPa 0� ��

The angle between the x–y diameter and the � axis is 2�p, and it 

can be computed with the use of the tangent function:

tan .2
27

36
2 36 86� �p p °� ��

Notice that this angle turns clockwise from point x to the � axis.

The principal stresses are determined from the location of 

the circle center C and the circle radius R:

�

�

p

p

C R

C R

1

2

24 45 21

24 45

MPa MPa MPa

MPa MPa 69 MPa

� � � � ��

� � � � ���

�

The maximum values of � occur at points S1 and S2, located at the bottom and 

at the top of Mohr’s circle. The shear stress magnitude at these points is simply 

equal to the circle radius R, and the normal stress � at these points is equal to the 

circle center C.

The angle between points P2 and S2 is 90�. Since the angle between point x and point 

P2 is 36.86�, the angle between point x and point S1 must be 53.14°. By inspection, this 

angle rotates in a counterclockwise direction.

The angle between point x and point P2 was calculated as 2�p � 36.86°. The 

 orientation of this principal plane in the x–y coordinate system is rotated 18.43° clock-

wise from the x face of the stress element.

The angle between point x and point S1 is 53.14°; 

therefore, the orientation of this plane of maximum 

in-plane shear stress in the x–y coordinate system is 

rotated 26.57° counterclockwise from the x face of the 

stress element.

To determine the direction of the shear stress 

 arrow acting on this face, note that point S1 is on the 

lower half of the circle, below the �  axis. Conse-

quently, the shear stress acting on this face rotates the 

stress element counterclockwise.

A complete sketch showing the principal stresses, 

the maximum in-plane shear stress, and the orienta-

tions of the respective planes is shown.

�

�

�1S

2S

(�60, 27ccw) x

y (12, 27cw)

R �
 45

C

(�24, 0)

(21, 0)

(�69, 0)

(�24, 45ccw)

(�24, 45cw)

53.14°

36.86° 1P

2P

60 MPa

12 MPa

27 MPa

x
18.43°

Mohr’s circle 
point P2

corresponds
to this face.

Mohr’s circle point P1

corresponds to this face.

P
69 MPa

21 MPa

S
24 MPa

24 MPa

45 MPa

26.57°

Mohr’s circle
point S1

corresponds
to this face.

Mohr’s circle point S2

corresponds to this face.
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Stresses on an Inclined Plane
The stresses shown act at a point on the free surface of a 

stressed body.

(a)  Determine the principal stresses and the maximum 

in-plane shear stress acting at the point.

(b) Show these stresses in an appropriate sketch.

(c)  Determine the normal stresses �n and �t and the shear 

stress �nt that act on the rotated stress element.

SOLUTION
Construct Mohr’s Circle
From the normal and shear stresses acting on the x and y faces 

of the stress element, Mohr’s circle is constructed as shown.

The center of Mohr’s circle is located at

C � � �
� ��47

2
31 5

( 16)
MPa.

The circle radius R is found from the hypotenuse of the 

shaded triangle:

R 15 5 53 55 222 2. . MPa� ��

The angle between the x–y diameter and the � axis is 2�p, and 

it can be computed as

tan
.

. (cw)2
53

15 5
2 73 7� �p p °� ��

Principal and Maximum Shear Stress
The principal stresses (points P1 and P2) are determined from 

the location of the circle center C and the circle radius R:

�

�

p

p

C R

C R

1

2

31 5 55 22 23 72

31 5 55 2

. . .

. .

MPa

22 86 72. MPa

� � �� � ��

� � �� � ��

The maximum in-plane shear stress corresponds to points 

S1 and S2 on Mohr’s circle. The maximum in-plane shear 

stress magnitude is

�max MPaR 55 22.� �

and the normal stress acting on the planes of maximum shear 

stress is

�avg MPaC 31 5.� � �

A complete sketch showing the principal stresses, the maxi-

mum in-plane shear stress, and the orientations of the respec-

tive planes is shown to the right on the next page.

x

47 MPa

16 MPa

53 MPa

�nt
�n

�t

35°

15.5

53

73.7°

�

�

�

C (�31.5, 0)

y (�16, 53)

(�47, 53) x

R � 55.22

�

�

C (�31.5, 0)
�

y (�16, 53)

(�47, 53) x

(�31.50, 55.22)

(�31.50, 55.22)1S

2S

(23.72, 0)

(−86.72, 0) 1P

2P

R � 55.22

73.7°

EXAMPLE 12.9
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Determine �n, �t, and �nt
Next, the normal stresses �n and �t and the shear stress �nt act-

ing on a stress element that is rotated at 35° counterclockwise 

from the x direction, as shown below, must be determined.

Begin at point x on Mohr’s circle. This statement may 

seem obvious, but it is probably the most common mistake 

made in solving problems of this type.

In the x–y coordinate system, the 35° angle is rotated coun-

terclockwise from the horizontal axis. As one transfers this an-

gular measure to Mohr’s circle, the natural tendency is to draw 

a diameter that is rotated 2(35°) � 70° counterclockwise from 

the horizontal axis. This is incorrect!
Remember that Mohr’s circle is a plot in terms of normal 

stress � and shear stress �. The horizontal axis in Mohr’s circle 

does not necessarily correspond to the x face of the stress ele-

ment. On Mohr’s circle, the point labeled x is the one that cor-

responds to the x face. (This explains why it is so important to 

label the points as you construct Mohr’s circle.)

To determine stresses on the plane that is rotated 35° from 

the x face, a diameter that is rotated 2(35°) � 70° counterclock-

wise from point x is drawn on Mohr’s circle. The point 70° away 

from point x should be labeled point n. The coordinates of this 

point are the normal and shear stresses acting on the n face of 

the rotated stress element. The other end of the diameter should 

be labeled point t, and its coordinates are � and � acting on the 

t face of the rotated stress element.

Begin at point x on Mohr’s circle. Face n of the rotated 

stress element is oriented 35° counterclockwise from the x face. 

Since angles in Mohr’s circle are doubled, point n is rotated 

2(35°) � 70° counterclockwise from point x on the circle. The 

coordinates of point n are (�n, �nt). These coordinates will be 

determined from the circle geometry.

By inspection, the angle between the � axis and point n is 

180° 	 73.7° 	 70° � 36.3°. Keeping in mind that the coordi-

nates of Mohr’s circle are � and �, the horizontal component of 

the line between the circle center C and point n is

�� R cos36.3° (55.22 MPa) cos36.3° MPa44 50.� � �

47 MPa

16 MPa

53 MPa

86.72 MPa
23.72 MPa

31.50 MPa

55.22 MPa

x
36.85°

(�31.5, 0)

C

�

�

2(35°) � 70°

�

n

t

R � 55.22

�

�

C (�31.5, 0)

y (�16, 53)

(�47, 53) x

�

n

t
R � 55.22

73.7°

70°

x

47 MPa

16 MPa

53 MPa

�nt
�n

�t

35°
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and the vertical component is

�� R sin 36.3° (55.22 MPa)sin 36.3° MPa32 69.� � �

The normal stress on the n face of the rotated stress element can be computed by  

using the coordinates of the circle center C and ��:

�n 31 5 44 50 13 0. . .MPa MPa MPa� �� � �

The shear stress is computed similarly:

�nt 0 32 69 32 69. .MPa MPa� ��

Since point n is located below the � axis, the shear stress acting on the n face tends 

to rotate the stress element counterclockwise.

A similar procedure is used to determine the stresses at point t. The stress 

components relative to the circle center C are the same: �� � 44.50 MPa and 

�� � 32.69 MPa. The normal stress on the t face of the rotated stress element is

�t 31 5 44 50 76 0. . .MPa MPa MPa� �� � �

Of course, the shear stress acting on the t face must be the same magnitude as the 

shear stress acting on the n face. Since point t is located above the � axis, the shear 

stress acting on the t face tends to rotate the stress element clockwise.

To determine the normal stress on the t face, we could also 

use the notion of stress invariance. Equation (12.8) shows that 

the sum of the normal stresses acting on any two orthogonal faces 

of a plane stress element is a constant value:

� � � �n t x y� ��

Therefore,

t x y n

47 16 13

76

MPa ( MPa) MPa

MPa

� � � ��

� �

� �

� ��

� �

The normal and shear stresses acting on the rotated element are 

shown in the sketch.

R � 55.22

(�31.5, 0) C

R cos 36.3°

R sin 36.3°
36.3°

n

R � 55.22

(�31.5, 0)C

R cos 36.3°

R sin 36.3°

36.3°

t

x

47 MPa

16 MPa

53 MPa

35°

13.00 MPa
76.00 MPa

32.69 MPa

Stresses on an Inclined Plane
The stresses shown act at a point on the free surface of a stressed body. Determine the 

normal stress �n and the shear stress �nt that act on the indicated plane surface.

SOLUTION
From the normal and shear stresses acting on the x and y faces of the stress element, 

Mohr’s circle is constructed as shown.

y

x
16.5 MPa

38.5 MPa

66.0 MPa

40°

t

n
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How Is the Orientation of the Inclined Plane Determined?
We must fi nd the angle between the normal to the x face (i.e., 

the x axis) and the normal to the inclined plane (i.e., the n axis). 

The angle between the x and n axes is 50°; consequently, the 

inclined plane is oriented 50° clockwise from the x face.

On Mohr’s circle, point n is located 100° clockwise from 

point x.

Using the coordinates of point x and the circle center C, 

the angle between point x and the � axis is found to be 67.38°.

Consequently, the angle between point n and the � axis 

must be 32.68°.

The horizontal component of the line between the circle 

center C and point n is

�� R cos32.62° (71.5 MPa) cos32.62° MPa60 22.� � �

and the vertical component is

�� R sin 32.62° (71.5 MPa)sin 32.62° MPa38 54.� � �

The normal stress on the n face of the rotated stress element can be computed by using the 

coordinates of the circle center C and ��:

�n 11 0 49 22. .MPa 60.22 MPa MPa� �� � �

The shear stress is computed similarly:

�nt 0 38.54 MPa 38.54 MPa� ��

Since point n on Mohr’s circle is located below the � axis, the shear stress acting on the 

n face tends to rotate the stress element counterclockwise.

(�38.5, 66.0) y

x (16.5, 66.0)

�

�

�

R � 71.5
n

t

(�11, 0) C

100° (cw)

67.38°

32.62°

y

16.5 MPa

38.5 MPa

49.22 MPa

66.0 MPa

38.54 MPa

40°

n

t
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Mohr’s Circle Learning Tool
Illustrates the proper usage of Mohr’s circle to determine stresses acting 

on a specifi ed plane, principal stresses, and the maximum in-plane 

shear stress state for stress values specifi ed by the user. Detailed 

“how-to” instructions.

 MecMovies Example M12.19
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Absolute Maximum Shear Stress
Two elements subjected to plane stress are shown. Determine the 

absolute maximum shear stress for each element.

SOLUTION
In Section 12.8, it was shown that shear stress does not exist on 

planes where the maximum and minimum normal stresses occur. 

Furthermore, the following statement must also be true:

 If the shear stress on a plane is zero, then 
that plane must be a principal plane.

Since there is no shear stress acting on the x and y faces for both 

element A and element B, one can conclude that the stresses acting 

on these elements are principal stresses.

The Mohr’s circle for element A is constructed as shown. 

Notice that point x is the principal stress �p1 and point y is the 

principal stress �p2. This circle shows all possible combinations 

of � and � that occur in the x–y plane.

What is meant by the term x–y plane? This term refers to 

plane surfaces whose normals are perpendicular to the z axis.

The maximum in-plane shear stress for element A is simply 

equal to the radius of Mohr’s circle; therefore, �max � 32 ksi.

In the problem statement, we are told that element A is a 

point subjected to plane stress. From Section 12.4, we know that 

the term plane stress means that there are no stresses on the out-

of-plane face of the stress element. In other words, there is no 

stress on the z face; hence, �z � 0, �zx � 0, and �zy � 0. We also 

know that a plane with no shear stress is by defi nition a principal 

plane. Therefore, the z face of the stress element is a principal 

plane, and the principal stress acting on this surface is the third 

principal stress: �z � �p3 � 0.

The state of stress on the z face can be plotted on Mohr’s 

circle, and two additional circles can be constructed.

•  The circle defi ned by �p1 and �p3 depicts all combinations of 

� –� that are possible on surfaces in the x–z plane (meaning 

plane surfaces whose normal is perpendicular to the y axis).

•  The circle connecting �p2 and �p3 depicts all combinations of 

� –� that are possible on surfaces in the y–z plane (meaning 

plane surfaces whose normal is perpendicular to the x axis).

The maximum shear stress in the x–z plane is given by the 

radius of the Mohr’s circle connecting points x and z, and the max-

imum shear stress in the y–z plane is given by the radius of the 

circle connecting points y and z. By inspection, both of these cir-

cles are smaller than the x–y circle. Consequently, the absolute 

maximum shear stress—that is, the largest shear stress that can 

occur on any possible plane—is equal to the maximum in-plane 

shear stress for element A.

50 ksi

14 ksi

A B
50 ksi

14 ksi

Element A

(50, 0)(�14, 0)

�

�

�

R � 32

�p1C

y x

�p2

Element A

(50, 0)(�14, 0)

�

�

�

�p1�p2 C

y x

R � 32

R � 25
z

�p3

EXAMPLE 12.11

556

c12StressTransformations.indd Page 556  22/03/12  4:44 PM user-F391c12StressTransformations.indd Page 556  22/03/12  4:44 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



For element A, the absolute maximum shear stress is 

�abs max � 32 ksi.

The Mohr’s circle for element B is constructed as shown. This 

circle shows all possible combinations of � and �  that occur in the 

x–y plane.

The maximum in-plane shear stress for element B is equal to 

the radius of Mohr’s circle; therefore, �max � 18 ksi.

As with element A, the z face of element B is also a principal 

plane, and therefore, �z � �p3 � 0.

Two additional circles can be constructed. The maximum 

shear stress in the x–z plane is given by the radius of the Mohr’s 

circle connecting points x and z, and the maximum shear stress in 

the y–z plane is given by the radius of the circle connecting points 

y and z.

By inspection, the larger of these two circles—the x–z circle—

has a greater radius than the x–y circle. Consequently, the absolute 

maximum shear stress for element B is �abs max � 25 ksi. For ele-

ment B, the absolute maximum shear stress is greater than the max-

imum in-plane shear stress.

�

�

(14, 0)

(50, 0)

R � 18

�p1�p2 C

�y x

Element B

�

�

(14, 0)

(50, 0)

R � 25

R � 18
z

�p1�p2�p3 C

�y x

Element B
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Using Mohr’s circle, interactively investigate a three-dimensional stress state 

at a point.

 MecMovies Example M12.13
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FIGURE M12.10

M12.11 Mohr’s Circle Game. Score a minimum of 400 points 

(out of 450 points possible) in this game, which quizzes your ability 

to recognize correctly constructed Mohr’s circles.

FIGURE M12.12

M12.13 Determine the principal stress magnitudes, the maxi-

mum in-plane shear stress magnitude, and the absolute maximum 

shear stress for a given state of stress.

M12.14 Sketching Stress Transformation Results. Score at 

least 100 points in this interactive activity.

FIGURE M12.14FIGURE M12.11

558

M12.10 Coach Mohr’s Circle of Stress. Learn to construct 

and use Mohr’s circle to determine principal stresses, including the 

proper orientation of the principal stress planes.

 MecMovies ExercisesMM

M12.12 Mohr’s Circle Game. Score a minimum of 1,800 

points (out of 2,000 points possible) in this game, which quizzes 

your ability to recognize the principal stress element or maximum 

in-plane stress element that corresponds to a given Mohr’s circle.
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P12.63–P12.66 Mohr’s circle is shown in Figures P12.63–

P12.66 for a point in a physical object that is subjected to plane 

stress.

(a)  Determine the stresses �x, �y, and �xy, and show them on a 

stress element.

(b)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point, and show these stresses in an 

appropriate sketch (e.g., see Figure 12.15 or Figure 12.16).

FIGURE P12.63

FIGURE P12.64

FIGURE P12.65

FIGURE P12.66
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FIGURE P12.67

P12.67–P12.68 Mohr’s circle is shown in Figures P12.67 and 

P12.68 for a point in a physical object that is subjected to plane stress.

(a)  Determine the stresses �x, �y, and �xy, and show them on a 

stress element.

(b)  Determine the stresses �n, �t, and �nt, and show them on a 

stress element that is properly rotated with respect to the x–y 

element. The sketch must include the magnitude of the angle 

between the x and n axes and an indication of the rotation 

direction (i.e., either clockwise or counterclockwise).

FIGURE P12.68

P12.69–P12.72 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on horizon-

tal and vertical planes at the point are shown in Figures P12.69–P12.72.

(a) Draw Mohr’s circle for this state of stress.

(b)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point, using Mohr’s circle.

(c)  Show these stresses in an appropriate sketch (e.g., see Figure 

12.15 or Figure 12.16).

24 ksi

9 ksi

17.5 ksi

36.4 MPa

60 MPa

70.4 MPa

26.8 ksi

8.1 ksi

20 ksi

9.6 ksi

18.2 ksi

10.8 ksi

FIGURE P12.69 FIGURE P12.70

FIGURE P12.71 FIGURE P12.72

P12.73–P12.76 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on horizontal 

and vertical planes at the point are shown in Figures P12.73–P12.76.

(a) Draw Mohr’s circle for this state of stress.

(b)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(c)  Show these stresses in an appropriate sketch (e.g., see Figure 

12.15 or Figure 12.16).

(d) Determine the absolute maximum shear stress at the point.

13.2 ksi

32.4 ksi

40.8 ksi

59.5 MPa

84.5 MPa

38.4 MPa

100 MPa

60 MPa

28.8 ksi

12.6 ksi

8.6 ksi

FIGURE P12.73 FIGURE P12.74

FIGURE P12.75 FIGURE P12.76
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P12.77–P12.80 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on horizontal 

and vertical planes at the point are shown in Figures P12.77–P12.80.

(a) Draw Mohr’s circle for this state of stress.

(b)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point.

(c)  Show these stresses in an appropriate sketch (e.g., see Figure 

12.15 or Figure 12.16).

(d) Determine the absolute maximum shear stress at the point.

96 MPa

126 MPa

66 MPa

60.5 MPa

8.4 MPa

44.8 MPa

FIGURE P12.77 FIGURE P12.78

950 psi

2,250 psi

680 psi

17.5 ksi

30.0 ksi

5.5 ksi

FIGURE P12.79 FIGURE P12.80

P12.81–P12.84 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on horizontal 

and vertical planes at the point are shown in Figures P12.81–P12.84.

(a) Draw Mohr’s circle for this state of stress.

(b)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point, and show these stresses in an 

appropriate sketch (e.g., see Figure 12.15 or Figure 12.16).

(c)  Determine the normal and shear stresses on the indicated 

plane, and show these stresses in an appropriate sketch.

(d) Determine the absolute maximum shear stress at the point.

2
3 21.3 ksi

8.6 ksi

7.2 ksi

50° 136.5 MPa

94.5 MPa

63.0 MPa
3

4
37.8 MPa

23.6 MPa

16.5 MPa

55° 72 MPa

62.4 MPa

54.6 MPa

FIGURE P12.81 FIGURE P12.82

FIGURE P12.83 FIGURE P12.84

P12.85–P12.88 Consider a point in a structural member that is 

subjected to plane stress. Normal and shear stresses acting on hori-

zontal and vertical planes at the point are shown in Figures P12.85–

P12.88.

(a) Draw Mohr’s circle for this state of stress.

(b)  Determine the principal stresses and the maximum in-plane 

shear stress acting at the point, and show these stresses 

in an appropriate sketch (e.g., see Figure 12.15 or 

Figure 12.16).

(c)  Determine the normal and shear stresses on the indicated 

plane, and show these stresses in an appropriate sketch.

(d) Determine the absolute maximum shear stress at the point.

60° 42 MPa

85 MPa

64 MPa

FIGURE P12.85

5

2

85 MPa

147 MPa

FIGURE P12.86

5

3

72 MPa

36 MPa

153 MPa

FIGURE P12.87

40° 30 MPa

90 MPa

105 MPa

FIGURE P12.88
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FIGURE P12.89 FIGURE P12.90

The general three-dimensional state of stress at a point was previously introduced in 

Section 12.2. This state of stress has three normal stress components and six shear stress 

components, as illustrated in Figure 12.17. The shear stress components shown in 

Figure 12.17 are not all independent, however, since moment equilibrium requires that

� � � � ��yx xy yz zy xz zx� � �

The stresses shown in Figure 12.17 are all positive according to the normal and shear stress 

sign conventions outlined in Section 12.2.

Normal and Shear Stresses

Expressions for the stresses on any oblique plane through the point, in terms of stresses on 

the reference x, y, and z planes, can be developed with the aid of the free-body diagram 

shown in Figure 12.18a. The n axis is normal to the oblique (shaded) face. The orientation 

�xz

�xy
�yz

�yx

�zy
�zx �x

�y

�z

x

y

z

FIGURE 12.17

dndn

dAx�xz

dAx�xy

dAx�x

dAy�yx
dAy�yz

dAy�y

dAz�zx

dAz�zy

n

dAz�z

y

x

z

dz

dy

dx

F � S dA
� �

�

l

m

n
x

y

z

n axis

 (a) Tetrahedron free-body diagram  (b) Orientation of n axis defi ned

FIGURE 12.18 Tetrahedron for deriving principal stresses on an oblique plane.

P12.89–P12.90 At a point in a stressed body, the principal 

stresses are oriented as shown in Figures P12.89 and P12.90. Use 

Mohr’s circle to determine

(a) the stresses on plane a–a.

(b) the stresses on the horizontal and vertical planes at the point.

(c) the absolute maximum shear stress at the point.

562

12.11 General State of Stress at a Point
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563
of the n axis can be defi ned by three angles � , �, and �  as shown in Figure 12.18b. The 

area of the oblique face of the tetrahedral element is defi ned to be dA. Areas of the x, y, and 

z faces are thus dA cos � , dA cos �, and dA cos � , respectively.1 The resultant force F on the 

oblique face is S dA, where S is the resultant stress on the area. The resultant stress S is 

related to the normal and shear stress components on the oblique face by the expression

 S n nt� �2 2� �  (12.24)

The forces on the x, y, and z faces are shown as three components, the magnitude of each 

being the product of the area by the appropriate stress. If we use l, m, and n to represent 

cos � , cos �, and cos �, respectively, the force equilibrium equations in the x, y, and z 

directions are

F S dA dA l dA m dA n

F S dA dA m

x x x yx zx

y y y z

� � �

yy xy

z z z xz yz

dA n dA l

F S dA dA n dA l dA m

� � �• • •�

� � �� � �• • •�

� � �� � �• • •�

from which the three orthogonal components of the resultant stress are

 

S l m n

S l m n

S l

x x yx zx

y xy y zy

z xz

� � �

yz zm n

� � �• • •

� � ��

�

� �• • •

� � �� �• • •

 (a)

The normal component �n of the resultant stress S equals Sx • l � Sy • m � Sz • n; therefore, 

from Equation (a), the following equation of the normal stress on any oblique plane through 

the point is obtained:

 � � � � � ��n x y z xy yz zxl m n lm mn nl2 2 2 2 2 2� � � � � �  (12.25)

The shear stress �nt on the oblique plane can be obtained from the relation S2 � 

�n
2 � �n

2
t. For a given problem, the values of S and �n will be obtained from Equations (a) 

and (12.25).

Magnitude and Orientation of Principal Stresses

A principal plane was previously defi ned as a plane on which the shear stress �nt is zero. The 

normal stress �n on such a plane was defi ned as a principal stress �p. If the oblique plane of 

Figure 12.18 is a principal plane, then S � �p and Sx � �p l, Sy � �p m, Sz � �p n. When these 

components are substituted into Equation (a), the equations can be rewritten to produce the 

following homogeneous linear equations in terms of the direction cosines l, m, and n:

 

( )

( )

( )

� � � �x p yx zx

y p zy xy

z p

l m n

m n l

0

0

nn l mxz yz 0

����

� � ��� � � �

� � ��� � � �

 (b)

1 These relationships can be established by considering the volume of the tetrahedron in Figure 12.18a. The 

volume V of the tetrahedron can be expressed as V � 1/3 dn dA � 1/3 dx dAx � 1/3 dy dAy � 1/3 dz dAz. 

However, the distance dn from the origin to the center of the oblique face can also be expressed as dn � 

dx cos �  � dy cos � � dz cos �. Thus, the areas of the tetrahedron faces can be expressed as dAx � dA cos �, 

dAy � dA cos �, and dAz � dA cos �.

The terms:

 l � cos �
 m � cos �
 n � cos �

are called direction cosines.

GENERAL STATE OF STRESS 
AT A POINT
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STRESS TRANSFORMATIONS This set of equations has a nontrivial solution only if the determinant of the coeffi cients of 

l, m, and n is equal to zero. Thus,

 

( )

( )

( )

x p yx zx

xy y p zy

xz yz z p

0

� � � �

�

� � � ��

��� ��

�

 (12.26)

Expansion of the determinant yields the cubic equation for determining the principal 

stresses

 
p p pI I I3

1
2

2 3 0� � �� � � �  (12.27)

where

 

I

I

I

x y z

x y y z z x xy yz zx

1

2
2 2 2

3 xx y z xy yz zx x yz y zx z xy2 2 2 2( )

� �

� �

� � � � �

� � � �

�� � �

�

� � � � � �

� � � � � �

� � � � � �

� �  (12.28)

The constants I1, I2, and I3 are stress invariants. Recall that stress invariants for plane 

stress were discussed in Section 12.7 and that the invariants I1 and I2 were given in 

Equation (12.9) for plane stress where �z � �yz � �zx � 0. Equation (12.27) always has 

three real roots, which are the principal stresses at a given point. The roots of Equation 

(12.27) can be found by a number of numerical methods.

For given values of �x, �y,  …,  �zx, Equation (12.27) gives three values of the principal 

stresses �p1, �p2, and �p3. Substituting these values for �p, in turn, into Equation (b) and 

using the relation

 l m n2 2 2 1� � �  (c)

give three sets of direction cosines for the normals to the three principal planes. The pre-

ceding discussion verifi es the existence of three mutually perpendicular principal planes 

for the most general state of stress.

Equation (b) can also be rewritten in matrix form as

( )

( )

( )

x p yx zx

xy y p zy

xz yz z p

l

m

n

0

0

0

�

�

� � �

�� �

� �

�

� �

�

��

Observe that the trivial solution (l � m � n � 0) is not possible for this equation, since 

the direction cosines must satisfy Equation (c). This equation can be solved as a standard 

eigenvalue problem. The three eigenvalues correspond to the three principal stresses �p1, 

�p2, and �p3. The eigenvector that corresponds to each eigenvalue consists of the direc-

tion cosines {l, m, n} of the normal to the principal plane. In developing equations for 

maximum and minimum normal stresses, the special case will be considered in which 

�xy � �yz � �zx � 0. No loss in generality is introduced by considering this special case, 

since it involves only a reorientation of the reference x, y, z axes to coincide with the 

principal directions. Given that the x, y, and z planes are now principal planes, the stresses 

�x, �y, and �z become �p1, �p2, and �p3. Solving Equation (a) for the direction cosines yields

l
S

m
S

n
Sx

p

y

p

z

p1 2 3

� �
� � �

�

The roots of Equation (12.27) 

can be readily estimated by 

plotting a graph of the left-

hand side of the equation 

as a function of �.
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By substituting these values into Equation (c), the following equation is obtained:

 
S S Sx

p

y

p

z

p

2

1
2

2

2
2

2

3
2

1� � �
� � �

 (d)

The plot of Equation (d) is the ellipsoid shown in Figure 12.19. It can be observed that the 

magnitude of �n is everywhere less than that of S (since S2 � �n
2 � �n

2
t) except at the inter-

cepts, where S is �p1, �p2, or �p3. Therefore, it can be concluded that two of the principal 

stresses (�p1 and �p3 of Figure 12.19) are the maximum and minimum normal stresses at 

the point. The third principal stress is intermediate in value and has no particular signifi -

cance. The preceding discussion demonstrates that the set of principal stresses includes the 

maximum and minimum normal stresses at the point.

Magnitude and Orientation of Maximum 
Shear Stress

Continuing with the special case where the given stresses �x, �y, and �z are 

principal stresses, we can develop equations for the maximum shear stress 

at the point. The resultant stress S on the oblique plane is given by the 

expression

 S S S Sx y z
2 2 2 2� � �

Substitution of values for Sx, Sy, and Sz from Equation (a), with zero shear 

stresses, yields the expression

 S l m nx y z
2 2 2 2 2 2 2� � ����  (e)

Also, from Equation (12.25),

 
n x y zl m n2 ( )2 2 2 2� � � �� � �  (f)

Since S2 � �n
2 � �n

2
t, an expression for the shear stress �nt on the oblique plane 

is obtained from Equations (e) and (f) as

 
nt x y z x y zl m n l m n2 2 2 2 2 2 ( )2 2 2 2� � � � � �� � � � � � �  (12.29)

The planes on which maximum and minimum shear stresses occur can be obtained from 

Equation (12.29) by differentiating with respect to the direction cosines l, m, and n. One of 

the direction cosines in Equation (12.29) (e.g., n) can be eliminated by solving Equation (c) 

for n2 and substituting into Equation (12.29). Thus,

 

nt x z y z z

x z y

l m

l

{( ) ( )

[( ) (2

2 2 2 2 2 2 2

z zm) ] }2 2 1 2/

�� �

� � � � �

� � ��

� � � � �

� � ��

 
(g)

By taking the partial derivatives of Equation (g), fi rst with respect to l and then with respect 

to m, and equating to zero, the following equations are obtained for determining the direc-

tion cosines associated with planes having maximum and minimum shear stress:

 l l mx z x z y z
1

( ) ( ) ( ) 02 2

2
� � � � � �� � � � � �  (h)

S is the resultant stress acting 

on the oblique plane of Figure 

12.19a. Sx, Sy, and Sz are 

the orthogonal components 

of the resultant stress S.

GENERAL STATE OF STRESS 
AT A POINT

xS

yS

zS

p1

p2

p3

p1 p2 p3

S
nt

n

(    ,     ,     )xS yS zS

�

� 	 	� �

�

�

�

�

FIGURE 12.19
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STRESS TRANSFORMATIONS

 
m l my z x z y z

1
( ) ( ) ( ) 02 2

2
� �� � � �� � � �� �

 
(i)

One solution of these equations is obviously l � m � 0. Then, from Equation (c), n � 

�1. Solutions different from zero are also possible for this set of equations. For in-

stance, consider surfaces in which the direction cosine has the value m � 0. From Equa-

tion (h), l � 1/2�  and from Equation (c), n � 1/2� . Thus, the normal to this surface 

makes an angle of 45° with both the x and z axes, and the normal is perpendicular to the 

y axis. This surface has the largest shear stress of all surfaces whose normal is perpen-

dicular to the y axis. Next, consider surfaces whose normal is perpendicular to the x 

axis; that is, the direction cosine has the value l � 0. From Equation (i), m � 1/2�  and 

from Equation (c), n � 1/2� . The normal to this surface makes an angle of 45° with 

both the y and z axes. This surface has the largest shear stress of all surfaces whose 

normal is perpendicular to the x axis. Repeating the preceding procedure by eliminating 

l and m in turn from Equation (g) yields other values for the direction cosines that make 

the shear stresses maximum or minimum. All of the possible combinations are listed in 

Table 12.1. In the last row of the table, the planes corresponding to the direction cosines 

in the column above are shown shaded. Note that in each case only one of the two 

 possible planes is shown.

The fi rst three columns of Table 12.1 give the direction cosines for planes of minimum 

shear stress. Since we are here considering the special case in which the given stresses �x, 

�y, and �z are principal stresses, then columns 1, 2, and 3 are simply the principal planes 

for which the shear stress must be zero. Hence, the minimum shear stress is �nt � 0.

To determine the magnitude of the maximum shear stress, direction cosines values 

from Table 12.1 are substituted into Equation (12.29), replacing �x, �y, and �z with �p1, �p2, 

and �p3. Direction cosines from column 4 of Table 12.1 give the following expression for 

the maximum shear stress:

max
1

2

1

2
0

1

2

1

21
2

2
2

1 2

2
1

p p p p
p p2

2
� � � �

� �
� � � � � �

�
�

Similarly, the direction cosines from columns 5 and 6 give

max maxandp p p p1 3 2 3

2 2
�

��
�

�
�

��
�

�

Table 12.1 Direction Cosines for Planes of Maximum and Minimum Shear Stress

Minimum Maximum

1 2 3 4 5 6

l �1 0 0 1/2� 1/2� 0

m 0 �1 0 1/2� 0 1/2�

n 0 0 �1 0 1/2� 1/2�

x

y

z
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The largest magnitude from these three possible results is �abs max; hence, the absolute 

maximum shear stress can be expressed as

 abs max
max min

2

�
�

��
�  (12.30)

which confi rms Equation (12.18) regarding the absolute maximum shear stress magnitude. 

The maximum shear stress acts on the plane bisecting the angle between the maximum and 

minimum principal stresses.

Application of Mohr’s Circle to Three-Dimensional Stress Analysis

In Figure 12.20a, the principal stresses �p1, �p2, and �p3 at a point are shown on a stress 

element. We will assume that the principal stresses have been ordered so that �p1 � �p2 � 

�p3 and that all three are greater than zero. Furthermore, observe that the principal planes 

represented by the stress element are rotated with respect to the x–y–z axes. From the three 

principal stresses, Mohr’s circle can be plotted to visually represent the various stress com-

binations possible at the point (Figure 12.20b). Stress combinations for all possible planes 

plot either on one of the circles or in the shaded area. From Mohr’s circle, the absolute 

maximum shear stress magnitude given by Equation (12.30) is evident.

 (b) Mohr’s circle

x

y

z

p1

p2

p3

Assume p1 p2 p3 0

Arbitrary plane abs max

p1p2p3O

Stress combination on arbitrary plane

( , )

�

�

�

�

�

�

� �
�

�

�

� 	 	 	� �

 (a) Principal stress element

FIGURE 12.20

P12.91 At a point in a stressed body, the known stresses are 

�x � 40 MPa (T), �y � 20 MPa (C), �z � 20 MPa (T), �xy � 

�40 MPa, �yz � 0, and �zx � �30 MPa. Determine

(a)  the normal and shear stresses on a plane whose outward 

normal is oriented at angles of 40°, 75°, and 54° with the x, y, 
and z axes, respectively.

(b)  the principal stresses and the absolute maximum shear stress 

at the point.

P12.92 At a point in a stressed body, the known stresses are 

�x � 14 ksi (T), �y � 12 ksi (T), �z � 10 ksi (T), �xy � �4 ksi, 

�yz � 	4 ksi, and �zx � 0. Determine

(a)  the normal and shear stresses on a plane whose outward 

normal is oriented at angles of 40°, 60°, and 66.2° with the x, 
y, and z axes, respectively.

(b)  the principal stresses and the absolute maximum shear stress 

at the point.

GENERAL STATE OF STRESS 
AT A POINT

PROBLEMSPROBLEMS
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P12.93 At a point in a stressed body, the known stresses are 

�x � 60 MPa (T), �y � 90 MPa (T), �z � 60 MPa (T), �xy � 

�120 MPa, �yz � �75 MPa, and �zx � �90 MPa. Determine

(a)  the normal and shear stresses on a plane whose outward 

normal is oriented at angles of 60°, 70°, and 37.3° with the x, 
y, and z axes, respectively.

(b)  the principal stresses and the absolute maximum shear stress 

at the point.

P12.94 At a point in a stressed body, the known stresses are 

�x � 0, �y � 0, �z � 0, �xy � �6 ksi, �yz � �10 ksi, and �zx � 

�8 ksi. Determine

(a)  the normal and shear stresses on a plane whose outward 

normal makes equal angles with the x, y, and z axes.

(b)  the principal stresses and the absolute maximum shear stress 

at the point.

P12.95 At a point in a stressed body, the known stresses are 

�x � 72 MPa (T), �y � 32 MPa (C), �z � 0, �xy � �21 MPa, 

�yz � 0, and �zx � �21 MPa. Determine

(a)  the normal and shear stresses on a plane whose outward 

normal makes equal angles with the x, y, and z axes.

(b)  the principal stresses and the absolute maximum shear stress 

at the point.

P12.96 At a point in a stressed body, the known stresses are 

�x � 60 MPa (T), �y � 50 MPa (C), �z � 40 MPa (T), �xy � 

�40 MPa, �yz � 	50 MPa, and �zx � �60 MPa. Determine

(a)  the normal and shear stresses on a plane whose outward normal 

is oriented at angles of 30°, 80°, and 62° with the x, y, and z 

axes, respectively.

(b)  the principal stresses and the absolute maximum shear stress 

at the point.

P12.97 At a point in a stressed body, the known stresses are 

�x � 60 MPa (T), �y � 40 MPa (C), �z � 20 MPa (T), �xy � 

�40 MPa, �yz � �20 MPa, and �zx � �30 MPa. Determine

(a)  the principal stresses and the absolute maximum shear stress 

at the point.

(b)  the orientation of the plane on which the maximum tensile 

stress acts.

P12.98 At a point in a stressed body, the known stresses are 

�x � 18 ksi (T), �y � 12 ksi (T), �z � 6 ksi (T), �xy � �12 ksi, 

�yz � 	6 ksi, and �zx � �9 ksi. Determine

(a)  the principal stresses and the absolute maximum shear stress 

at the point.

(b)  the orientation of the plane on which the maximum tensile 

stress acts.

P12.99 At a point in a stressed body, the known stresses are 

�x � 18 ksi (C), �y � 15 ksi (C), �z � 12 ksi (C), �xy � 	15 ksi, 

�yz � �12 ksi, and �zx � 	9 ksi. Determine

(a)  the principal stresses and the absolute maximum shear stress 

at the point.

(b)  the orientation of the plane on which the maximum tensile 

stress acts.

568
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The discussion of strain presented in Chapter 2 was useful in introducing the concept of 

strain as a measure of deformation. However, it was adequate only for one-directional 

 loading. In many practical situations involving the design of structural or machine compo-

nents, the confi gurations and loadings are such that strains occur in two or three directions 

simultaneously.

The complete state of strain at an arbitrary point in a body under load can be 

determined by considering the deformation associated with a small volume of material 

surrounding the point. For convenience, the volume, termed a strain element, is as-

sumed to have the shape of a block. In the undeformed state, the faces of the strain 

element are oriented perpendicular to the x, y, and z reference axes, as shown in Figure 

13.1a. Since the element is very small, deformations are assumed to be uniform. This 

means that

(a) planes initially parallel to each other will remain parallel after deformation, and 

(b)  straight lines before deformation will remain straight after deformation, as shown in 

Figure 13.1b.

The fi nal size of the deformed element is determined by the lengths of the three edges 

dx�, dy�, and dz�. The distorted shape of the element is determined by the angles ��xy, ��yz, 

and ��zx between faces.

13.1 Introduction

Strain Transformations
13CHAPTER
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570
STRAIN TRANSFORMATIONS

The Cartesian components of strain at the point can be expressed in terms of the 

 deformations by using the defi nitions of normal and shear strain presented in Section 2.2. 

Thus,

 

z zx zx
dz dz

dz 2
� � � �

�
�

�
�

�
�

y yz yz
dy dy

dy 2
� � � �

�
�

�
�

�
�

x xy xy
dx dx

dx 2
� � � �

�
�

�
�

�
�

 (13.1)

In a similar manner, the normal strain component associated with a line oriented in an ar-

bitrary n direction and the shearing strain component associated with two arbitrary initially 

orthogonal lines oriented in the n and t directions in the undeformed element are given by

 n nt nt
dn dn

dn 2
� � � �

�
�

�
�

�
�  (13.2)
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�
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FIGURE 13.1

Considerable insight into the nature of strain can be gained by considering a state of strain 

known as two-dimensional strain or plane strain. For this state, the x–y plane will be used 

as the reference plane. The length dz shown in Figure 13.1 does not change, and the angles 

��yz and ��zx remain 90�. Thus, for the conditions of plane strain, �z � �xz � �yz � 0.

If the only deformations are those in the x–y plane, then three strain components may 

exist. Figure 13.2 shows an infi nitesimal element of dimensions dx and dy, which will be 

used to illustrate the strains existing at point O. In Figure 13.2a, the element subjected to a 

positive normal strain �x will elongate by the amount �x dx in the horizontal direction. 

When subjected to a positive normal strain �y, the element will elongate by the amount 

�y dy in the vertical direction (Figure 13.2b). Recall that positive normal strains create elon-

gations and negative normal strains create contractions in the material.

13.2 Plane Strain
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571
TRANSFORMATION EQUATIONS 

FOR PLANE STRAIN

The shear strain �xy shown in Figure 13.2c is a measure of the change in angle between 
the x and y axes, which are initially perpendicular to each other. Shear strains are considered 
positive when the angle between axes decreases and negative when the angle increases.

Note that the sign conventions for strain are consistent with the stress sign conventions. 
A positive normal stress (i.e., tension normal stress) in the x direction causes a  positive 
normal strain �x (i.e., elongation) (Figure 13.2a), a positive normal stress in the y direction 
creates a positive normal strain �y (Figure 13.2b), and a positive shear stress produces a 
positive shear strain �xy (Figure 13.2c).
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FIGURE 13.2a
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FIGURE 13.4b

The state of plane strain at point O is defi ned by three strain components: �x, �y, and �xy. 
Transformation equations provide the means to determine normal and shear strains at point 
O for orthogonal axes rotated at any arbitrary angle �.

Equations that transform normal and shear strains from the x–y axes to any arbitrary or-
thogonal axes will be derived. To facilitate the derivation, the dimensions of the element are 
chosen such that the diagonal OA of the element coincides with the n axis (Figure 13.3). It is 
also convenient to assume that corner O is fi xed and that the edge of the element along the x 
axis does not rotate.

When all three strain components (�x, �y, and �xy) occur simultaneously (Figure 13.3), 
corner A of the element is displaced to a new location denoted by A�. For clarity, the 
 deformations are shown greatly exaggerated.

Transformation Equation for Normal Strain

The displacement vector from A to A� (shown in Figure 13.3) is isolated and enlarged in 
Figure 13.4. The horizontal component of vector AA� is composed of the deformations due 
to �x (see Figure 13.2a) and �xy (see Figure 13.2c). The vertical component of AA� is 
caused by �y (see Figure 13.2b).

13.3 Transformation Equations for Plane Strain
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572
STRAIN TRANSFORMATIONS Next, the displacement vector AA� will be resolved into components in the n and t direc-

tions. Unit vectors in the n and t directions are

n i j t i jcos sin sin cos� � � ��� � � �

The displacement component in the n direction can be determined from the dot product:

 AA n ( )i x xy ydx dy dycos sin� � �� �� �� �  (a)

The displacement component in the t direction is

 t ( )y x xydy dx dycos sinAA i � � �� �� �� �  (b)

The displacements in the n and t directions are shown in Figure 13.4b.

The displacement in the n direction represents the elongation of diagonal OA (see 

Figure 13.3) due to the normal and shear strains �x, �y, and �xy. The strain in the n direction 

can be found by dividing the elongation given in Equation (a) by the initial length dn of the 

diagonal:

 

n
x xy y

x xy

dx dy dy

dn
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dn

dy

dn
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⎛
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⎜⎜⎜⎜
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⎟⎟⎟cos siny
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� � �
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� �

��

�

�

� �

�

 (c)

From Figure 13.3, dx/dn � cos � and dy/dn � sin �. By substituting these relationships into 

Equation (c), the strain in the n direction can be expressed as

 n x y xycos sin sin cos2 2� �� � � � ��� ��  (13.3)

From the double-angle trigonometric identities

cos ( cos )

sin ( cos )

sin cos sin

2

2

1

2
1 2

1

2
1 2

2 22

���

� ��

�� � �

�

�

Equation (13.3) can also be expressed as

 n
x y x y xy

2 2
2

2
2cos sin� �

� �
�

�
���

� � � �
 (13.4)

Transformation Equation for Shear Strain

The component of displacement vector AA� in the t direction [Equation (b)] represents 

an arc length through which the diagonal OA rotates. With this rotation angle denoted as � 

(Figure 13.5a), the arc length associated with radius dn can be expressed as

dn dy dx dyy x xy( )cos sin� �� � � �� ��

A

A�

dn

t

�

�

�y

x

n

dx

dy
dn

FIGURE 13.5a
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573
TRANSFORMATION EQUATIONS 

FOR PLANE STRAIN
Thus, diagonal OA rotates counterclockwise through an angle of

 

⎛
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⎜⎜⎜
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⎠
⎟⎟⎟y x xy
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�� � �
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�

� � �

� �

�

�
 (d)

The rotation angle � of a line element at right angles to OA (i.e., in the t direction as 
shown in Figure 13.5b) may be determined if the argument � � 90� is substituted for � 
in Equation (d):

 y x xysin cos sin cos cos2�� � � ��� � � �� ��  (e)

The rotation of � is clockwise. Since the positive direction for both � and � is counter-
clockwise, the shear strain �nt, which is the decrease in the right angle formed by the n and 
t axes, is the difference between � [Equation (d)] and � [Equation (e)]:

nt y x xy xy2 2 2sin cos sin cos sin cos22� � � � � �� �� � �� � � � � � � �

Simplifying this equation gives

 nt x y xy( ) ( )2 2 2sin cos cos sin�� � � �� �� � � � ��  (13.5)

or in terms of the double-angle trigonometric functions, it is useful to express Equation (13.5) 
in the following form:

 nt x y xy

2 2
2

2
2sin cos� � �

�� �� �
� �  (13.6)

Comparison with Stress Transformation Equations

The strain transformation equations derived here are comparable to the stress transforma-
tion equations developed in Chapter 12. The corresponding variables in the two sets of 
transformation equations are listed in Table 13.1.

Strain Invariance

The normal strain in the t direction can be obtained from Equation (13.4) by substituting 
� � 90� in place of �, giving the following equation:

 t
x y x y xy

2 2
2

2
2cos sin� � ��

� � �� � � �
� �  (13.7)

If the expressions for �n and �t [Equations (13.4) and (13.7)] are added, the following rela-
tionship is obtained:

 n t x y� � �� � � �  (13.8)

This equation shows that the sum of the normal strains acting in any two orthogonal direc-
tions is a constant value, independent of the angle �.

Sign Conventions

Equations (13.3) and (13.4) provide a means for determining the normal strain �n associated 
with a line oriented in an arbitrary n direction in the x–y plane. Equations (13.5) and (13.6) 

t

y

n

xO dx

dy
dn

�

�

�

FIGURE 13.5b

xy
2

x

y

���

Positive shear strain 
�xy at origin.

Table 13.1 Corresponding 
Variables in Stress and Strain 
Transformation Equations

Stresses Strains

�x �x

�y �y

�xy �xy/2

�n �n

�nt �nt/2
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allow the determination of the shear strain �nt associated with any two orthogonal lines 

 oriented in the n and t directions in the x–y plane. With these equations, the sign conventions 

used in their development must be rigorously followed:

1.  Normal strains that cause elongation are positive, and strains that cause contraction are 

negative.

2.  A positive shear strain decreases the angle between the two lines at the origin 

of coordinates.

3.  Angles measured counterclockwise from the reference x axis are positive. Conversely, 

angles measured clockwise from the reference x axis are negative.

4.  The n–t–z axes have the same order as the x–y–z axes. Both sets of axes form a right-

handed coordinate system.

x

y

xy
2

���

Negative shear strain 
�xy at origin.
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xy
2
— �

�

�

��

y

x
O

n
t

40°

n dn
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n
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dn

�

�

nt2
— ���

An element of material at point O is subjected to a state of plane strain with 

strains specifi ed as �x � �600 ��, �y � �300 ��, and �xy � � 400 �rad. The 

defl ected shape of the element subjected to these strains is shown. Determine 

the strains acting at point O on an element that is rotated 40� counterclockwise 

from the original  position.

Plan the Solution
The strain transformation equations will be used to compute �n, �t, and �nt.

SOLUTION
The strain transformation equation

 n x y xycos sin sin cos2 2� � �� � � �� � � �  (13.3)

will be used to compute the normal strains �n and �t. Since counterclockwise 

angles are positive, the angle to be used in this instance is � � �40�. For �n,

n ( )cos ( ) ( )sin ( ) ( )sin ( )600 40 300 40 400 402 2° ° ° ccos( )40

425

°

�

� � � ��

��

To compute the normal strain �t, use an angle of � � 40� � 90� � �130� in 

Equation (13.3):

t ( )cos ( ) ( )sin ( ) ( )sin (600 130 300 130 400 132 2° ° 00 130

125

° °)cos( )

��

� � � ��

��

To compute the shear strain �nt from Equation (13.5), use an angle of � � � 40�:

nt [ ]2 600 300 40 40 400 402( ) sin( )cos( ) ( ) cos (° ° °° °

rad

) sin ( )[ ]2 40

817� �

� � � � � �

�

�

The computed strains tend to distort the element as shown on the left. 

The positive normal strain �x means that the element elongates in the 

n direction. In the t direction, the negative value for �t indicates that the 

element contracts in the t direction. Although it initially seems counter-

intuitive, note that the negative shear strain �nt � � 817 �rad means 

that the angle between the n and t axes actually becomes greater than 

90� at point O.

EXAMPLE 13.1
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575

The thin rectangular plate is uniformly deformed such that �x � � 700 ��, �y � � 500 ��, 
and �xy � � 900 �rad. Determine the normal strain

(a) along diagonal AC.
(b) along diagonal BD.

 MecMovies Example M13.1MM

The thin rectangular plate is subjected to strains of �x � �900 ��, �y � �600 ��, and 
�xy � �850 �rad. Determine the normal strains �n and �t, and shear strain �nt, for 
� � �50�.

 MecMovies Example M13.2MM

Before deformation After deformation

A thin triangular plate is uniformly deformed such that, after deformation, the edges of 
the triangle are measured as AB � 300.30 mm, BC � 299.70 mm, and AC � 360.45 mm. 
Determine the strains �x, �y, and �xy in the plate.

 MecMovies Example M13.3MM
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Equations (13.9), (13.10), and 
(13.11) are very similar in form to 
Equations (12.11), (12.12), and 
(12.15). However, instances of 
�xy in the stress equations are 
replaced by �xy /2 in the strain 
equations. Be careful not to 
overlook these factors of 2 when 
switching between stress analysis 
and strain analysis.

576

Given the similarity among Equations (13.3), (13.4), (13.5), and (13.6) for plane strain 
and Equations (12.5), (12.6), (12.7), and (12.8) for plane stress, it is not surprising that all 
of the relationships developed for plane stress can be applied to plane strain analysis, 
provided that the substitutions given in Table 13.1 are made. Expressions for the in-plane 
principal directions, the in-plane principal strains, and the maximum in-plane shear strain 
are as follows:

 tan 2 p
xy

x y( )
�

�� �

�
�  (13.9)

 
p p

x y x y xy
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 (13.10)
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 (13.11)

In the preceding equations, normal strains that cause elongation (i.e., a stretching produced 
by a tension stress) are positive. Positive shear strains decrease the angle between the ele-
ment faces at the coordinate origin. (See Figure 13.3.)

As was true in plane stress transformations, Equation (13.10) does not indicate 
which principal strain, either �p1 or �p2, is associated with the two principal angles. The 
solution of Equation (13.9) always gives a value of �p between � 45� and � 45� (inclu-
sive). The principal strain associated with this value of �p can be determined from the 
following two-part rule:

• If the term �x � �y is positive, �p indicates the orientation of �p1.

• If the term �x � �y is negative, �p indicates the orientation of �p2.

The other principal strain is oriented perpendicular to �p.
The two principal strains determined from Equation (13.10) may be both positive, 

both negative, or positive and negative. In naming the principal strains, �p1 is the more 
positive value algebraically. If one or both of the principal strains from Equation (13.10) 
are negative, �p1 can have a smaller absolute value than �p2.

Absolute Maximum Shear Strain

When a state of plane strain exists, �x, �y, and �xy may have nonzero values. However, 
strains in the z direction (i.e., the out-of-plane direction) are zero; thus, �z � 0 and 
�xz � �yz � 0. Equation (13.10) gives the two in-plane principal strains, and the third 
principal strain is �p3 � �z � 0. An examination of Equations (13.10) and (13.11) reveals 

13.4  Principal Strains and Maximum 
Shearing Strain
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577
PRINCIPAL STRAINS AND 

MAXIMUM SHEARING STRAIN

Table 13.2 Absolute Maximum Shear Strains

Principal Strain Element Absolute Maximum Shear Strain Element

(a)  If both �p1 and �p2 are positive, then
 

abs max p p p p1 3 1 10�� � �� � ����

(b)  If both �p1 and �p2 are negative, then 

abs max p p p p3 2 2 20� �� �� �� �� ��

(c)  If �p1 is positive and �p2 is negative, then 

abs max p p1 2� �� ��

abs max
2

abs max
2

�

�

��

��

abs max
2

� ��

abs max
2

� ��

abs max
2

� ��

abs max
2

� ��

p1

p2�

�

p2�

p3 z 0� �� �

p1

p3 z 0� ��

�

�

that the maximum in-plane shear strain is equal to the difference between the two in-
plane principal strains:

 max p p1 2� �� ��  (13.12)

However, the magnitude of the absolute maximum shear strain for a plane strain element 
may be larger than the maximum in-plane shear strain, depending upon the relative magni-
tudes and signs of the principal strains. The absolute maximum shear strain can be deter-
mined from one of the three conditions shown in Table 13.2.

These conditions apply only to a state of plane strain. As will be shown in Section 
13.7 and 13.8, the third principal strain will not be zero for a state of plane stress.
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578

Principal strain and maximum in-plane shear strain results should be presented with a 

sketch that depicts the orientation of all strains. Strain results can be conveniently shown 

on a single element.

Draw an element rotated at the angle �p calculated from Equation (13.9), which will 

be a value between � 45� and � 45� (inclusive).

 tan 2 p
xy

x y( )� �
�

�

�
�  (13.9)

•  When �p is positive, the element is rotated in a counterclockwise sense from the 

 reference x axis. When �p is negative, the rotation is clockwise.

•  Note that the angle calculated from Equation (13.9) does not necessarily give the 

orientation of the �p1 direction. Either �p1 or �p2 may act in the �p direction given 

by Equation (13.9). The principal strain oriented at �p can be determined from the 

following two-part rule:

 • If �x � �y is positive, �p indicates the orientation of �p1.

 • If �x � �y is negative, �p indicates the orientation of �p2.

•  Elongate or contract the element into a rectangle according to the principal strains 

acting in the two orthogonal directions. If a principal strain is positive, the element 

is elongated in that direction. The element is contracted if the principal strain is 

 negative.

•  Add arrows (either tension or compression arrows) labeled with the corresponding 

strain magnitudes to each edge of the element.

•  To show the distortion caused by the shear strain, draw a diamond shape inside of the 

rectangular principal strain element. The corners of the diamond should be located at 

the midpoint of each edge of the rectangle.

•  The maximum in-plane shear strain calculated from Equation (13.11) or Equation 

(13.12) will be a positive value. Since a positive shear strain causes the angle between 

two axes to decrease, label one of the acute angles with the value �/2 � �max.

13.5 Presentation of Strain Transformation Results

The strain components at a point in a body subjected to plane strain are �x � 

�680 ��, �y � �320 ��, and �xy � �980 m �rad. The defl ected shape of an 

element that is subjected to these strains is shown. Determine the principal 

strains, the maximum in-plane shear strain, and the absolute maximum shear 

strain at point O. Show the principal strain deformations and the maximum 

in-plane shear strain distortion in a sketch.

y

x
O

dx

dy

�x dx

y dy

xy
2
� �

�

�

EXAMPLE 13.2
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SOLUTION
From Equation (13.10), the in-plane principal strains are

 

p p
x y x y xy
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 Ans.

and from Equation (13.11), the maximum in-plane shear strain is
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2 2 2
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 Ans.

The in-plane principal directions can be determined from Equation (13.9):

tan 2
980

680 320

980

1000p
xy

x y
x( )

Note: y

p p

0

2 44 42 22 21. and thus .° °

�
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�
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� � 	�
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� �� �

� �
� �

�

�

Since �x � �y 	 0, the angle �p is the angle between the x direction and the �p2 
 direction.

The problem states that this is a plane strain condition. Therefore, the out-of-plane 
normal strain �z � 0 is the third principal strain �p3. Since �p1 is positive and �p2 is nega-
tive, the absolute maximum shear strain is the maximum in-plane shear strain. Therefore, 
the magnitude of the absolute maximum shear strain (see Table 13.2) is

abs max p p1 2 1,400 rad�� � � � ��

Sketch the Deformations and Distortions
The principal strains are oriented 22.21� counterclockwise from the x direc-
tion. The principal strain corresponding to this direction is �p2 � �880 ��; 
therefore, the element contracts parallel to the 22.21� direction. In the per-
pendicular direction, the principal strain is �p1 � 520 ��, which causes the 
element to elongate.

To show the distortion caused by the maximum in-plane shear strain, 
connect the midpoints of each of the rectangle’s edges to create a diamond. 
Two interior angles of this diamond will be acute angles (i.e., less than 90�), 
and two interior angles will be obtuse (i.e., greater than 90�). Use the posi-
tive value of �max obtained from Equation (13.11) to label one of the acute 
interior angles with �/2 � �max. The obtuse interior angles will have a 
magnitude of �/2 � �max. Note that the four interior angles of the diamond 
(or any quadrilateral) must total 2� radians (or 360�).

y

x

2
 1,400 rad

520 

22.21°

��

880 ��

��
�
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P13.1 The thin rectangular plate shown in Figure P13.1/2 is uni-
formly deformed such that �x � 230 ��, �y � −480 ��, and �xy � 
–760 �rad. Using dimensions of a � 20 mm and b � 25 mm, 
 determine the normal strain in the plate in the direction defi ned by 

(a) points O and A.
(b) points O and C. 

FIGURE P13.5/6

FIGURE P13.3/4

P13.2 The thin rectangular plate shown in Figure P13.1/2 is 
uniformly deformed such that �x � –360 ��, �y � 770 ��, and 
�xy � 940 �rad. Using dimensions of a � 25 mm and b � 40 mm, 
determine the normal strain in the plate in the direction defi ned by 

(a) points O and B. 
(b) points O and D.

P13.3 The thin rectangular plate shown in Figure P13.3/4 is uni-
formly deformed such that �x � 120 ��, �y � –860 ��, and �xy � 
1,100 �rad. If a � 25 mm, determine

(a) the normal strain �n in the plate. 
(b) the normal strain �t in the plate. 
(c) the shear strain �nt in the plate.

(b) the normal strain �t� in the plate. 
(c) the shear strain �n�t� in the plate.

P13.5 The thin square plate shown in Figure P13.5/6 is uni-
formly deformed such that �n � 660 ��, �t � 910 ��, and �nt � 
830 �rad. Determine 

(a) the normal strain �x in the plate. 
(b) the normal strain �y in the plate. 
(c) the shear strain �xy in the plate. 

P13.6 The thin square plate shown in Figure P13.5/6 is uni-
formly deformed such that �x � 0 ��, �y � 0 ��, and �xy � 
–1,850 �rad. Using a � 650 mm, determine the deformed length 
of (a) diagonal AC and (b) diagonal BD. 

P13.7–P13.12 The strain components �x, �y, and �xy are given 
for a point in a body subjected to plane strain. Determine the strain 
components �n, �t, and �nt at the point if the n–t axes are rotated 
with respect to the x–y axes by the amount and in the direction in-
dicated by the angle � shown in either Figure P13.7 or Figure 
P13.8. Sketch the deformed shape of the element.

PROBLEMSPROBLEMS

580

P13.4 The thin rectangular plate shown in Figure P13.3/4 is 
uniformly deformed such that �x � –890 ��, �y � 440 ��, and 
�xy � –310 �rad. If a � 50 mm, determine 

(a) the normal strain �n� in the plate. 

FIGURE P13.1/2
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FIGURE P13.7

FIGURE P13.8
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P13.13–13.22P13.13–13.22 The strain components  The strain components �xx, , �yy, and , and �xyxy are given for  are given for 

a point in a body subjected to a point in a body subjected to plane strainplane strain. Determine the principal . Determine the principal 

strains, the maximum in-plane shear strain, and the absolute maximum strains, the maximum in-plane shear strain, and the absolute maximum 

shear strain at the point. Show the angle shear strain at the point. Show the angle �pp, the principal strain defor-, the principal strain defor-

mations, and the maximum in-plane shear strain distortion in a sketch.mations, and the maximum in-plane shear strain distortion in a sketch.

Problem �x �y �xy

13.13 �550 �� �285 �� 940 �rad

13.14 940 �� �360 �� 830 �rad

13.15 �270 �� 510 �� 1,150 �rad

13.16 1,150 �� 1,950 �� �1,800 �rad

13.17 �215 �� �1,330 �� 890 �rad

13.18 670 �� �280 �� �800 �rad

13.19 �210 �� 615 �� �420 �rad

13.20 960 �� 650 �� 350 �rad

13.21 560 �� �340 �� �1,475 �rad

13.22 1,340 �� �380 �� 1,240 �rad

581

The general strain transformation equations, expressed in terms of double-angle trigonometric 

functions, were presented in Section 13.3:

 n
x y x y xy

2 2
2

2
2cos sin�

� � � �
� �

�� �
�� �  (13.4)

 

nt x y xy

2 2
2

2
2sin cos

��
� �

��
� � �

�

 (13.6)

Equation (13.4) can be rewritten so that only terms involving 2� appear on the right-hand 

side of the equation:

n
x y x y xy

nt x y

2 2
2

2
2

2 2
2

cos sin

sin xy

2
2cos

�
�

� �

� �
�

� �
�

�

� �

� �

�
�

�

�

�

�

��

Both equations can be squared, then added together, and simplifi ed to give

 n
x y nt x y⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜2 2 2

2 2

⎜⎜
⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

2 2

2
xy

�
�

�
�

�
�

� �
� � �� �

 (13.13)

This is the equation of a circle in terms of the variables �n and �nt/2. It is similar in form to 

Equation (12.21), which was the basis of Mohr’s circle for stress.

Mohr’s circle for plane strain is constructed and used in much the same way as Mohr’s 

circle for plane stress. The horizontal axis used in the construction is the � axis, and the 

vertical axis is �/2. The circle is centered on the � axis at

C x y

2

� ��
�

and it has a radius of

R x y xy⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟2 2

2 2
� �

� �
� �

13.6 Mohr’s Circle for Plane Strain

Problem Figure �x �y �xy �

P13.7 P13.7 �1,050 �� 400 �� 1,360 �rad 36�

P13.8 P13.8 �350 �� 1,650 �� 720 �rad 14�

P13.9 P13.7 940 �� 515 �� 185 �rad 18�

P13.10 P13.8 2,180 �� 1,080 �� 325 �rad 28�

P13.11 P13.7 �1,375 �� �1,825 �� 650 �rad 15�

P13.12 P13.8 590 �� �1,670 �� �1,185 �rad 23� 
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582
STRAIN TRANSFORMATIONS Compared with Mohr’s circle for stress, there are two notable differences in constructing 

and using Mohr’s circle for strain. First, note that the vertical axis for the strain circle is �/2; 
hence, shear strain values must be divided by 2 before they are plotted. Second, the sign 
convention for plotting normal strains is similar to that used for plotting normal stress; 
however, the convention for plotting shear strain requires additional explanation.

Sign Conventions Used in Plotting Mohr’s Circle

Tension normal strains are plotted on the right side of the �/2 axis, and compression normal 
strains are plotted on the left side of the �/2 axis. In other words, tension normal strain is 
plotted as a positive value (algebraically) and compression normal strain is plotted as a 
negative value.

Shear Strains. To plot shear strain values on Mohr’s circle, one must fi rst correctly 
sketch the deformed shape of an element subjected to a given shear strain �xy. Consider an 
element subjected to a positive value of �xy. The deformed shape of this element is shown 
in Figure 13.6a. A positive value of �xy means that the angle between the x and y axes de-
creases in the deformed object. In this instance, the horizontal edge of the element parallel 
to the x axis tends to rotate counterclockwise. Notice that this is the edge that will be elon-
gated or contracted by the normal strain �x. The point on Mohr’s circle that represents the 
x direction will be plotted below the horizontal axis. A positive �xy also means that the 
vertical edge of the element will rotate clockwise. This is the edge of the element that will 
be elongated or contracted by the normal strain �y. The y point on Mohr’s circle will be 
plotted above the horizontal axis. Therefore, the sign convention for plotting shear strain 
can be summarized as follows:

�xy�
2
�

x

y

FIGURE 13.6a

�xy
2

— �
�

x

y

FIGURE 13.6b

If a shear strain causes the edge of an element to rotate clockwise, it is plotted above 
the horizontal axis (i.e., the � axis). The point is plotted below the horizontal axis if the 
edge rotates counterclockwise.

Consider an element subjected to a negative value of �xy. The deformed shape of this ele-
ment is shown in Figure 13.6b. The angle between the x and y axes increases when the 
shear strain �xy has a negative value. In this instance, the edge of the element parallel to the 
x axis tends to rotate clockwise; therefore, the x point will be plotted above the horizontal 
axis. A negative �xy also means that the y edge of the element will rotate counterclockwise, 
and thus, the y point on Mohr’s circle will be plotted below the horizontal axis.

This sign convention is consistent with the shear stress sign convention used to draw 
Mohr’s circle for plane stress.

O
x

y

�xy�2
�

EXAMPLE 13.3

The strain components at a point in a body subjected to plane strain are �x � �435 ��, 
�y � �135 ��, and �xy � �642 �rad. The defl ected shape of an element that is sub-
jected to these strains is shown. Determine the principal strains, the maximum in-plane 
shear strain, and the absolute maximum shear strain at point O. Show the principal strain 
deformations and the maximum in-plane shear strain distortion in a sketch.

SOLUTION
The point on Mohr’s circle associated with strains in the x direction is plotted to the right 
of the �/2 axis. From the sketch of the deformed element, note that the �xy � �642 �rad 
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shear strain causes the element edge parallel to the x axis to rotate 
downward in a clockwise direction. Therefore, point x on Mohr’s circle 
is plotted above the � axis.

Since �y is negative, the point y is plotted to the left of the �/2 
axis. The sketch of the deformed element shows that the y edge of the 
element rotates to the left in a counterclockwise direction as a result of 
the negative shear strain. Therefore, point y on Mohr’s circle is plotted 
below the � axis.

Since points x and y are always the same distance above or below 
the � axis, the center of Mohr’s circle can be found by averaging the 
normal strains acting in the x and y  directions:

C x y

2

435 135

2
150

( )�
��

� � �
� � � �

�

The center of Mohr’s circle always lies on the � axis.
The geometry of the circle is used to calculate the radius. The 

(�, �/2) coordinates of both point x and center C are known. Use these 
coordinates with the Pythagorean theorem to calculate the hypotenuse 
of the shaded triangle:

R ( ) ( )435 150 321 0

285 321 429

2 2

2 2

�

� � � �

� � �

Remember that the vertical coordinate used in plotting Mohr’s circle is 
/2. The given 
shear strain is �xy � �642 �rad; therefore, a vertical coordinate of 321 �rad is used in 
plotting Mohr’s circle. The angle between the x–y diameter and the � axis is 2�p, and its 
magnitude can be computed with the tangent function:

tan .2
321

285
2 48 4p p °�� �� �

Note that this angle turns clockwise from point x to the � axis.
The principal strains are determined from the location of 

the circle center C and the circle radius R:

p

p

C R

C R

1

2

150 429

150 429

579

2779

� �

� � � � � � �

� � ��

� � �

� ��

���

�� �

The maximum values of � occur at points S1 and S2, located at 
the bottom and at the top of Mohr’s circle. The shear strain mag-
nitude at these points is equal to the circle radius R times 2; 
therefore, the maximum in-plane shear strain is

max ( ) rad2 2 429 858R  �� � � ��

The normal strain associated with the maximum in-plane shear 
strain is given by the center C of the circle:

avg C 150  � � � ��

The problem states that this is a plane strain condition. Therefore, the out-of-plane nor-
mal strain �z � 0 is the third principal strain �p3. Since �p1 is positive and �p2 is negative, 
the absolute maximum shear strain equals the maximum in-plane shear strain. Therefore, 
the magnitude of the absolute maximum shear strain (see Table 13.2) is

 abs max radp p1 2 858� �
 �� � �  Ans.

321

285

48.4°

�

(�135, 321) y

x (435, 321)

R �
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9
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�
–
2
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–
2

(150, 429)1S
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A complete sketch showing the principal strains, the maximum in-
plane shear strain, and the orientations of the respective directions 
is given. The principal strains are shown by the solid rectangle, 
which has been elongated in the �p1 direction (since �p1 � �579 ��) 
and contracted in the �p2 direction (since �p2 � �279 ��).

The distortion caused by the maximum in-plane shear strain is 
shown by a diamond that connects the four midpoints of the prin-
cipal strain element. Since the radius of Mohr’s circle is R � 429 �, 
the maximum in-plane shear strain is �max � 2R � �858 �rad. 
Referring to Figure 13.6, a positive � value causes the angle between 
adjacent edges of an element to decrease, forming an acute angle. 
Therefore, one of the acute angles in the distorted diamond shape is 
labeled with the positive value of �max as �/2 � 858 �rad.

x

y

279 

579 

24.2°

�
2

858 rad�

�

�

�

�

�

Coach Mohr’s Circle of Strain
Learn to construct and use Mohr’s circle to determine principal 
strains, including the proper orientation of the principal strain 
directions.

 MecMovies Example M13.4

FIGURE M13.4

M13.4 Coach Mohr’s Circle of Strain. Learn to construct and 
use Mohr’s circle to determine principal strains, including the 
proper orientation of the principal strain directions. (Game)

 MecMovies ExercisesMM
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P13.23–P13.26 The principal strains are given for a point in 
a body subjected to plane strain. Construct Mohr’s circle, and use 
it to

(a) determine the strains �x, �y, and �xy. (Assume that �x > �y.)
(b)  determine the maximum in-plane shear strain and the absolute 

maximum shear strain.
(c)  draw a sketch showing the angle �p, the principal strain deforma-

tions, and the maximum in-plane shear strain distortions. 

Problem �p1 �p2 �p

13.23 1,590 �� �540 �� �23.55�

13.24 530 �� �1,570 �� 14.29�

13.25 780 �� 590 �� 35.66�

13.26 �350 �� �890 �� �19.50�

P13.27–P13.38 The strain components �x, �y, and �xy are 
given for a point in a body subjected to plane strain. Using Mohr’s 
circle, determine the principal strains, the maximum in-plane shear 
strain, and the absolute maximum shear strain at the point. Show 

the angle �p, the principal strain deformations, and the maximum 
in-plane shear strain distortion in a sketch.

Problem �x �y �xy

13.27  �185 ��  655 ��  �500 �rad

13.28  �940 ��  �1,890 ��  2,000 �rad

13.29  �140 ��  160 ��  1,940 �rad

13.30  380 ��  �770 ��  �650 �rad

13.31  760 ��  590 ��  �360 �rad

13.32  �1,570 ��  �430 ��  �950 �rad

13.33  920 ��  1,125 ��  550 �rad

13.34  515 ��  �265 ��  �1,030 �rad

13.35  475 ��  685 ��  �150 �rad

13.36  670 ��  455 ��  �900 �rad

13.37  0 ��  320 ��  260 �rad

13.38  �180 ��  �1,480 ��  425 �rad

585

PROBLEMSPROBLEMS

Many engineered components are subjected to a combination of axial, torsion, and bending 
effects. Theories and procedures for calculating the stresses caused by each of these effects 
have been developed throughout this book. There are situations, however, in which the 
combination of effects is too complicated or uncertain to be confi dently assessed with 
theoretical analysis alone. In these instances, an experimental analysis of component 
stresses is desired, either as an absolute determination of actual stresses or as validation for 
a numerical model that will be used for subsequent analyses. Stress is a mathematical 
 abstraction, and it cannot be measured. Strains, on the other hand, can be measured directly 
through well-established experimental procedures. Once the strains in a component have 
been measured, the corresponding stresses can be calculated from stress–strain relation-
ships such as Hooke’s Law.

Strain Gages

Strains can be measured by using a simple component called a strain gage. The strain 
gage is a type of electrical resistor. Most commonly, strain gages are thin metal-foil grids 
that are bonded to the surface of a machine part or a structural element. When loads are 
applied, the object being tested elongates or contracts, creating normal strains. Since the 
strain gage is bonded to the object, it undergoes the same strain as the object. The electri-
cal resistance of the metal-foil grid changes in proportion to its strain. Consequently, 
precise measurement of resistance change in the gage serves as an indirect measure of 
strain. The resistance change in a strain gage is very small—too small to be accurately 

13.7 Strain Measurement and Strain Rosettes
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586
STRAIN TRANSFORMATIONS measured with an ordinary ohmmeter; however, it can be measured accurately with a 

 specifi c type of electrical circuit known as a Wheatstone bridge. For each type of gage, 

the relationship between strain and resistance change is determined through a calibration 

procedure performed by the manufacturer. Gage manufacturers report this property as a 

gage factor, which is defi ned as the ratio between the unit change in gage resistance R to 

the unit change in length L:

GF
R R

L L

R R

avg�

� �

�
� �

In this equation, �R is the resistance change and �L is the change in length of the strain 

gage. The gage factor is constant for the small range of resistance change normally 

 encountered, and most typical gages have a gage factor of about 2. Strain gages are very 

accurate, relatively inexpensive, and reasonably durable if they are properly protected 

from chemical attack, environmental conditions (such as temperature and humidity), and 

physical damage. Strain gages can measure normal strains as small as 1 � 10�6 for both 

static and dynamic strains.

The photoetching process used to create the metal-foil grids is very versatile, enabling 

a wide variety of gage sizes and grid shapes to be produced. A typical single strain gage is 

shown in Figure 13.7. Since the foil itself is fragile and easily torn, the grid is bonded to a 

thin plastic backing fi lm, which provides both strength and electrical insulation between 

the strain gage and the object being tested. For general-purpose strain gage applications, a 

polyimide plastic that is tough and fl exible is used for the backing. Alignment markings are 

added to the backing to facilitate proper installation. Lead wires are attached to the solder 

tabs of the gage so that the change in resistance can be monitored with a suitable instru-

mentation system.

The objective of experimental stress analysis is to determine the state of stress at a 

specifi c point in the object being tested. In other words, the investigator ultimately wants to 

determine �x, �y, and �xy at a point. To accomplish this, strain gages are used to determine 

�x, �y, and �xy, and then stress–strain relationships are used to compute the corresponding 

stresses. However, strain gages can measure normal strains in only one direction. There-

fore, the question becomes “How can one determine three quantities (�x, �y, and �xy) by 

using a component that measures normal strain � in only a single direction?”

The strain transformation equation for normal strain �n at an arbitrary direction � was 

derived in Section 13.3.

 n x y xycos sin sin cos2 2� � �� �� � � ���  (13.3)

Suppose that �n could be measured by a strain gage oriented at a known angle �. Three 

unknown variables—�x, �y, and �xy—remain in Equation (13.3). To solve for these three 

unknowns, three equations in terms of �x, �y, and �xy are required. These equations can be 

obtained by using three strain gages in combination, with each gage measuring the strain in 

a different direction. This combination of strain gages is called a strain rosette.

Strain Rosettes

A typical strain rosette is shown in Figure 13.8. The gage is confi gured so that the angles 

between each of the three gages are known. When the rosette is bonded to the object being 

tested, one of the three gages is aligned with a reference axis on the object—for example, 

along the longitudinal axis of a beam or a shaft. During the experimental test, strains are 

The rosette shown in Figure 13.8 

is called a rectangular rosette 

because the angle between gages 

is 45�. The rectangular rosette is 

the most common rosette pattern.

FIGURE 13.7

Metal-foil
sensing

grid

Alignment
marks

Solder
tabs

Plastic
backing

FIGURE 13.8 Typical strain 

rosette.
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587
STRAIN MEASUREMENT AND 

STRAIN ROSETTES
measured from each of the three gages. A strain transformation equation can be written for 
each of the three gages in the notation indicated in Figure 13.9:

 
a x a y a xy a acos sin sin cos2 2� � �� � � ��� � �

b x b y b xy b bcos sin sin cos2 2� � �� � � ��� � �

c x c y c xy a  ccos sin sin cos2 2� � �� � � ��� � �

 (13.14)

In this book, the angle used to identify the orientation of each rosette gage will always be 
measured counterclockwise from the reference x axis.

The three strain transformation equations in Equation (13.14) can be solved simulta-
neously to yield the values of �x, �y, and �xy. Once �x, �y, and �xy have been determined, 
Equations (13.9), (13.10), and (13.11) or the corresponding Mohr’s circle construction can 
be used to determine the in-plane principal strains, their orientations, and the maximum 
in-plane shear strain at the point.

Strains in the Out-of-Plane Direction

Rosettes are bonded to the surface of an object, and stresses in the out-of-plane direction 
on the free surface of an object are always zero. Consequently, a state of plane stress exists 
at the rosette. Whereas strains in the out-of-plane direction are zero for the plane strain 
condition, out-of-plane strains are not zero for plane stress.

The principal strain �z � �p3 can be determined from the measured in-plane data with 
the equation

 
�

�
z x y( )

1
� � ��� �

�  (13.15)

where 	 � Poisson’s ratio. The derivation of this equation will be presented in the next 
section in the discussion of the generalized Hooke’s Law. The out-of-plane principal 
strain is important, since the absolute maximum shear strain at the point may be 
(�p1 � �p2), (�p1 � �p3), or (�p3 � �p2), depending on the relative magnitudes and signs 
of the principal strains at the point. (See Section 13.4.)

FIGURE 13.9

x

y

a

b

c

135°

135°

90°

EXAMPLE 13.4

A strain rosette consisting of three strain gages oriented as shown was mounted on the 
free surface of a steel machine component (� � 0.30). Under load, the following strains 
were measured:

a b c600 900 700� ��� � �� � � �� � ���

Determine the principal strains and the maximum shear strain at the point. Show the prin-
cipal strain deformations and the maximum in-plane shear strain distortion in a sketch.

Plan the Solution
To compute the principal strains and the maximum in-plane shear strain, the strains �x, �y, 
and �xy must be determined. These normal and shear strains can be obtained from the 
rosette data by writing a strain transformation equation for each gage and then solving 
these three equations simultaneously. Since it is aligned with the x axis, gage a directly 
measures the normal strain �x, so the reduction of the strain gage data will actually in-
volve solving only two equations simultaneously, for �y and �xy.
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SOLUTION
The angles �a, �b, and �c must be determined for the three gages. Although it is not an 

absolute requirement, strain rosette problems such as this one are easier to solve if all 

angles � are measured counterclockwise from the reference x axis. For the rosette con-

fi guration used in this problem, the three angles are �a � 0�, �b � 135�, and �c � 225�. 
Using these angles, write a strain transformation equation for each gage, where �n is the 

experimentally measured strain value. Therefore,

 
Equation for gage :a

600 0 02 2
x y xycos ( ) sin ( )° ° ssin ( )cos( )0 0° °� � � �� � �

 (a)

 
Equation for gage :b

900 135 1352 2
x ycos ( ) sin ( )° ° xy sin ( )cos( )135 135° °� � � �� � �

 (b)

 
Equation for gage :c

700 225 2252 2
x ycos ( ) sin ( )° ° xy sin ( )cos( )225 225° °� � � �� � �

 (c)

Since sin(0�) � 0, Equation (a) reduces to �x � �600 ��. Substitute this result into 

Equations (b) and (c), and collect constant terms on the left-hand side of the equations:

600 0 5 0 5

0 5 0 5

. .

. .
y xy

y xy1,000

�

� � �

� �

�

�

�

�

Generally, the gage orientations used in common rosette patterns produce a pair of equa-

tions similar in form to these two equations, making them especially easy to solve 

simultaneously. To obtain �y, the two equations are added together to give �y � �400 ��. 

Subtracting the two equations gives �xy � �1,600 �rad. Therefore, the state of strain that 

exists at the point on the steel machine component can be summarized as �x � �600 ��, 

�y � �400 ��, and �xy � �1,600 �rad. These strains will be used to determine the prin-

cipal strains and the maximum in-plane shear strain.

From Equation (13.10), the principal strains can be calculated as

 

p p
x y x y xy

1 2

2 2

2 2 2,
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟600 400

2

600 400

2 2

2 1,600
⎟⎟⎟

2

100 943

843 , 1,043

�
� � � � �� �

�

�

�

� � ��

� �

� � � �
� �

��

���

 

Ans.

and from Equation (13.11), the maximum in-plane shear strain is

 

max

2 2 2

600

2 2
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

x y xy

4400

2 2
943 4

2 2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

1,600

. rad

maax rad1,887

� ��

� �

�
�

�

�
�

�

�

� �

�

�

�

�

�

 

Ans.
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The in-plane principal directions can be determined from Equation (13.9):

tan 2
600 400p

xy

x y( )
1,600 1,600

1,000
Note:: x y

p p

0

2 58 0 29 0. and thus .° °

�
� ��

�

�

��
�

�� � � ��

� �
� � �

� �

Since �x � �y � 0, the angle �p is the angle between the x direction and the �p2 direction.

The strain rosette is bonded to the surface of the steel machine component; there-

fore, this is a plane stress condition. Accordingly, the out-of-plane normal strain �z will 
not be zero. The third principal strain �p3 can be computed from Equation (13.15):

p z x y3 1

0 3

1 0 3
600 400 85 7( )

.

.
( ) .� � �

�

�
�� � �

�
� � � �

�
� �� ��

Since �p2 � �p3 � �p1 (see Table 13.2), the absolute maximum shear strain will equal the 

maximum in-plane shear strain:

abs max p p1 2 843 ( )1,043 1,887 rad�� ��� � � ��� ��� �

Sketch the Deformations and Distortions
The principal strains are oriented 29.0� clockwise from the 

x direction. Since �x � �y � 0, the principal strain corresponding 

to this direction is �p2 � �1,043 ��. The element contracts in 

this direction. In the perpendicular direction, the principal strain 

is �p1 � 843 ��, which means that the element elongates.

The distortion caused by the maximum in-plane shear strain 

is shown by the diamond that connects the midpoints of each of 

the rectangle’s edges.

y

x

� 1,887 �rad
2
�

843 �

��

�

1,043 

29.0°

589

The strain rosette shown was used to obtain normal strain data at a point on the free 

surface of a machine part. Determine

(a) the strain components �x, �y, and �xy at the point.

(b) the principal strains and the maximum shear strain at the point.

Example 1 Example 2

45°

45°

x

y

a

bc

60°
60°

x

y

a

bc

�a � �215 �� 

�b � �130 �� 

�c � �460 ��

�a � �800 ��
�b � �200 ��
�c � �625 ��

 MecMovies Example M13.5 M13.5
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P13.39–P13.48 The strain rosette shown in Figures P13.39–

P13.48 was used to obtain normal strain data at a point on the free 

surface of a machine part.

(a) Determine the strain components �x, �y, and �xy at the point.

(b)  Determine the principal strains and the maximum in-plane 

shear strain at the point.

(c)  Draw a sketch showing the angle �p, the principal strain 

deformations, and the maximum in-plane shear strain 

distortions.

(d)  Determine the magnitude of the absolute maximum shear strain.

Problem �a �b �c �

13.39 410 �� �540 �� �330 �� 0.30

13.40 215 �� �710 �� �760 �� 0.12

13.41 510 �� 415 �� 430 �� 0.33

13.42 �960 �� �815 �� �505 �� 0.33

13.43 �360 �� �230 �� 815 �� 0.15

13.44 775 �� �515 �� 415 �� 0.30

13.45 �830 �� �1,090 �� �200 �� 0.15

13.46 1,480 �� 2,460 �� 1,075 �� 0.33

13.47 625 �� 1,095 �� �345 �� 0.12

13.48 �185 �� �390 �� �60 �� 0.30

FIGURE P13.45

45°

45°

x

y

a

bc

45°

x

y

a

b

c

FIGURE P13.39 FIGURE P13.40

60°
60°

x

y

a

bc

120°

120°

120° x

y

a

b

c
60°60°

60°

x

y

a

bc

45°

90°

x

y

a

bc

45°45°
x

y

a

b

c

FIGURE P13.41 FIGURE P13.42

FIGURE P13.43 FIGURE P13.44

30°30°

x

y

a

bc

FIGURE P13.46

590

FIGURE M13.5

60°60°

60°

x

y

a

bc
M13.5 Strain Measurement with Rosettes. A strain rosette 

was used to obtain normal strain data at a point on the free surface 

of a machine part. Determine the normal strains, the shear strain, 

and the principal strains in the x–y plane.

 MecMovies ExercisesMM
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591
GENERALIZED HOOKE’S LAW 

FOR ISOTROPIC MATERIALS
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FIGURE P13.48
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FIGURE 13.11

FIGURE 13.10

x

y

z

x�

FIGURE 13.12a

x

y

z
�z

FIGURE 13.12c

x

y

z

�y

FIGURE 13.12b

Hooke’s Law [see Equation (3.4)] can be extended to include the two-dimensional 

(Figure 13.10) and three-dimensional (Figure 13.11) states of stress often encountered in 

engineering practice. We will consider isotropic materials, which are materials with 

properties (such as the elastic modulus E and Poisson’s ratio �) that are independent of 

orientation. In other words, E and � are the same in every direction for isotropic materials.

Figure 13.12 shows a differential element of material subjected to three different nor-

mal stresses: �x, �y, and �z. In Figure 13.12a, a positive normal stress �x produces a positive 

normal strain (i.e., elongation) in the x direction:

x
x

E
��

�

Although stress is applied only in the x direction, normal strains are produced in the y and 

z directions because of the Poisson effect:

y
x

zE E
� �� x� ��

�
�

�
�

Note that these strains in the transverse direction are negative (i.e., contraction). If the ele-

ment elongates in the x direction, then it contracts in the transverse directions, and vice 

versa.

Similarly, the normal stress �y produces strains not only in the y direction, but also in 

the transverse directions (Figure 13.12b):

y
y

x
y

z
y

E E E
� � �� � � ��

� �
�

�
�

13.8 Generalized Hooke’s Law for Isotropic Materials
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592
STRAIN TRANSFORMATIONS Likewise, the normal stress �z produces the strains (Figure 13.12c)

z
z

x
z

y
z

E E E
� � � � �� � �

� � �
� �

If all three normal stresses �x, �y, and �z act on the element at the same time, the 

element deformation can be determined by summing the deformations resulting from 

each normal stress. This procedure is based on the principle of superposition, which 

states that the effects of separate loadings can be added algebraically if two conditions 

are satisfi ed:

1. Each effect is linearly related to the load that produced it.

2. The effect of the fi rst load does not signifi cantly change the effect of the second load.

The fi rst condition is satisfi ed if the stresses do not exceed the proportional limit for the 

material. The second condition is satisfi ed if the deformations are small, so that the small 

changes in the areas of the faces of the element do not produce signifi cant changes in the 

stresses.

Using the superposition principle, the relationship between normal strains and normal 

stresses can be stated as

 

x x y z

y y x z

z z x

E

E

E

( )[ ]

( )[ ]

1

1

1
( )y[ ]

� � ��

� � ��

� � ��

� � ��

� � �� � � ��

 (13.16)

The deformations produced in an element by the shear stresses �xy, �yz, and �xz are 

shown in Figure 13.13. There is no Poisson effect associated with shear strain; therefore, 

the relationship between shear strain and shear stress can be stated as

 xy xy yz yz zx zxG G G

1 1 1
� � �� � � � � �  (13.17)

x

y

z

xy�

FIGURE 13.13a

x

y

z

zx�

FIGURE 13.13c

x

y

z

yz�

FIGURE 13.13b
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593
GENERALIZED HOOKE’S LAW 

FOR ISOTROPIC MATERIALS
where G is the shear modulus, which is related to the elastic modulus E and Poisson’s 
ratio 	 by

 G
E

2 1( )
�

� �  (13.18)

Equations (13.16) and (13.17) are known as the generalized Hooke’s Law for isotro-
pic materials. Notice that the shear stresses do not affect the expressions for normal strain 
and that the normal stresses do not affect the expressions for shear strain; therefore, the 
normal and shear relationships are independent of each other. Furthermore, the shear strain 
expressions in Equation (13.17) are independent of each other, unlike the normal strain 
expressions in Equation (13.16), where all three normal stresses appear. For example, the 
shear strain � xy is affected solely by the shear stress �xy.

Additionally, Equations (13.16) and (13.17) can be solved for the stresses in terms of 
the strains as

 

x x y z

y

E

E

( )[ ]
( ) ( )

( )

( ) (

1 1 2
1

1 1 2 ))
( )

( ) ( )
( )

1

1 1 2
1

( )[ ]y x z

z z x
E

y( )[ ]

� �
��

� �� � �	 ��
� ��

�

� �
��

� �

�
��

� �

�

�

� �

� �	

	 �
� �

�

��
� �  (13.19)

and

 xy xy yz yz zx zxG G G� � �� � � � � �  (13.20)

Special Case of Plane Stress

When stresses act only in the x–y plane (Figure 13.10), �z � 0 and �yz � �zx � 0. Conse-
quently, Equation (13.16) reduces to

 

x x y

y y x

z x y

E

E

E

( )

( )

( )

1

1

� ��

� ��

� � ��

	 	�

	 	�

�
	 	

 (13.21)

and Equation (13.17) is simply

 xy xyG

1
�� �  (13.22)

When Equations (13.21) are solved for the stresses in terms of the strain, they give

 
x x y

y y x

E

E

( )

( )

1

1

2

2

� �
�

�

� �
�

�

	 ��
�

	 ��
�

 (13.23)

MecMovies 13.7 presents an 
animated derivation of the 
generalized Hooke’s Law 
equations for biaxial stress.
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594
STRAIN TRANSFORMATIONS Equations (13.23) can be used to calculate normal stresses from measured or computed 

normal strains.

Note that the out-of-plane normal strain �z is generally not equal to zero for the plane 

stress condition. An expression for �z in terms of �x and �y was stated in Equation (13.15). 

This equation can be derived by substituting Equations (13.23) into the expression

z x yE
( )� � � �� �

�

to give

 

z x y x y y xE E

E
( ) ( ) ( )[ ]

1

1

2

( ) ( )
( ) ( )

( )

1
1 1

1

[ ]

( )

x y

x y

� �

�

� �

�

�� � ��� �

� �

� �
�

�

� �
� � �

� � �
�

� � �� �

�

�

�

�

�
� �

�

�

�

 (13.24)

45°

45°

x

y

a

bc

EXAMPLE 13.5

On the free surface of an aluminum [E � 10,000 ksi; � � 0.33] component, three strain 

gages arranged as shown record the following strains: �a � �420 ��, �b � �380 ��, and 

�c � �240 ��.

Determine the normal stress that acts along the axis of gage b (i.e., at an angle 

of � � �45� with respect to the positive x axis).

Plan the Solution
At fi rst glance, one might be tempted to use the measured strain in gage b and the elastic 

modulus E to compute the normal strain acting in the specifi ed direction. However, this is 

not correct, because a state of uniaxial stress does not exist. In other words, the normal 

stress acting in the 45� direction is not the only stress acting in the material. To solve this 

problem, fi rst reduce the strain rosette data to obtain �x, �y, and �xy. The stresses �x, �y, 

and �xy can then be calculated from Equations (13.23) and (13.22). Finally, the normal 

stress in the specifi ed direction can be calculated from the stress transformation equation.

SOLUTION
From the geometry of the rosette, gage a measures the strain in the x direction and gage 

c measures the strain in the y direction. Therefore, �x � �420 �� and �y � �240 ��. 

To compute the shear strain �xy, write a strain transformation for gage b:

380 45 45 45 452 2
x y xycos ( ) sin ( ) sin ( )cos(° ° ° °))� �� � � � �

Then solve for �xy:

380 420 45 240 45 452 2( ) cos ( ) ( ) sin ( ) sin ( )° ° °xy ccos ( )

( ) ( . ) ( ) ( . )

.

45

380 420 0 5 240 0 5

0 5
940

°

xy �rad

� �

�� � �
� �

� � � �

�

Since the strain rosette is bonded to the surface of the aluminum component, this is a 

plane stress condition. Use the generalized Hooke’s Law equations (13.23) and the ma-

terial properties E � 10,000 ksi and � � 0.33 to compute the normal stresses �x and �y 

from the normal strains �x and �y:
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595

EXAMPLE 13.6

A thin steel [E � 210 GPa; G � 80 GPa] plate is subjected to biaxial stress. The normal 

stress in the x direction is known to be �x � 70 MPa. The strain gage measures a normal 

strain of �230 �� in the indicated direction on the free surface of the plate.

(a) Determine the magnitude of �y that acts on the plate.

(b)  Determine the principal strains and the maximum in-plane shear strain in the plate. 

Show the principal strain deformations and the maximum in-plane shear strain 

distortion in a sketch.

(c) Determine the magnitude of the absolute maximum shear strain in the plate.

Plan the Solution
To begin this solution, we will write a strain transformation equation for the strain gage 

oriented as shown. The equation will express the strain �n measured by the gage in terms of 

the strains in the x and y directions. Since there is no shear stress �xy acting on the plate, the 

shear strain �xy will be zero and the strain transformation equation will be reduced to terms 

involving only �x and �y. Equations (13.21) from the generalized Hooke’s Law for �x and �y 

in terms of �x and �y can be substituted into the strain transformation equation, producing 

an equation in which the only unknown will be �y. After solving for �y, Equations (13.21) 

can be used to compute �x, �y, and �z. These values will be used to determine the principal 

strains, the maximum in-plane shear strain, and the absolute maximum shear strain 

in the plate.

x x y
E

( ) ( )
1 1 0 33

420 10
2 2

610,000 ksi

( . )
00 33 240 10 3 82

1

6

2

. . ksi( )[ ]

( )y y x
E 10,0000 ksi

( . )
. .

1 0 33
240 10 0 33 420 10 1 1

2
6 6( ) ( )[ ] 338 ksi� ��� � � � � � � �

��

� ��� � � �

� �

�� � � ��
�

�
�

�

�
�

�

Note: The strain measurements reported in microstrain (��) must be converted to 

dimensionless quantities (i.e., in./in.) when making this calculation.

Before the shear stress �xy can be computed, the shear modulus G for the aluminum 

material must be calculated from Equation (13.18):

G
E

2 1 2 1 0 33( )

ksi

( . )
ksi

10,000
3,760� � �

� ��

The shear stress �xy is calculated from Equation (13.22), which is rearranged to solve for 

the stress:

xy xyG ( )( ksi) . ksi3,760 940 10 3 536� � � ��� �

Finally, the normal stress acting in the direction of � � 45� can be calculated with a stress 

transformation equation, such as Equation (12.5):

  

n x y xycos sin sin cos

( . ksi) cos

2 2

2

2

3 82 455 1 138 45 2 3 53 45 45

2

2° ° ° °( . ksi) sin ( . ksi) sin cos

.119 ksi (T)

�

�

�

� � �

� �� � � � � ���

 

Ans.
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SOLUTION
(a) Normal Stress �y
The strain gage is oriented at an angle of � � 150�. Using this angle, write a strain trans-
formation equation for the gage, where the strain �n is the value measured by the gage.

230 150 150 1502 2
x y xycos ( ) sin ( ) sin ( )co° ° ° ss( )150°� � ���� � � �

Note that the shear strain �xy is related to the shear stress �xy by Equation (13.22):

xy xyG

1
�� �

Since �xy � 0, the shear strain �xy must also equal zero; thus, the strain transformation 
equation reduces to

230 230 10 cos (150 ) sin (1506 2 2 )mm/mm ° °x y� � �� � � � ���

Equations (13.21) from the generalized Hooke’s Law defi ne the following relationships 
between stresses and strains for a plane stress condition (which is observed to apply in 
this situation):

x x y y y xE E
( ) ( )

1 1
and� � � � � �	 �	 	 �	

Substitute these expressions into the strain transformation equation, expand terms, and 
simplify:

230 10 150 150

1

6 2 2mm/mm ° °x y

xE

cos ( ) sin ( )

yy y x

x

E

E

( ) ( )cos ( ) sin ( )

cos (

2 2

2

150
1

150

1
15

° °

00 150
1

150 1502 2 2° ° °) sin ( ) sin ( ) cos ([ ]x y yE
°°

° ° °

)

cos ( ) sin ( ) sin ( )

[ ]

[ ]
σx y

E E
2 2 2150 150 150[ ]cos ( )2 150°

� �� �

�

� �

� ��

��

�

� � �

��

	

	 �	

�	

� �

	

	

�	

	 �	

Solve for the unknown stress �y:

230 10 150 1506 2 2( ) [ ]mm/mm E x ycos ( ) sin ( s° °) iin ( ) cos (2 2150 150° °)[ ]

� �y

� � � ��

230 10 150 1506 2 2( ) [ ]mm/mm E x cos ( ) sin (° °)� � � �

�

sin ( ) cos (2 2150 150° °)�
	

	 	�

	 �

�

�

Before computing the normal stress �y, the value of Poisson’s ratio must be calculated 
from the elastic modulus E and the shear modulus G:

G
E E

G2 1 2
1

210

2 80
1 0 3125

( ) ( )
.

GPa

GPa
�

� 
� � � ���

�
�

The normal stress �y can now be computed:

y
( )230 10 70 1506 2mm/mm 210,000( ) ( (MPa MPa) cos °)) °)

°)

[ ]( . ) sin (

sin ( ( . ) cos (

0 3125 150

150 0 3125

2

2 2 1150
81 2

°)
MPa.�

� �

�

�
�

�

	

Ans.
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(b) Principal and Maximum In-Plane Shear Strains
The normal strains in the x, y, and z directions can be computed from Equations (13.21):

x x yE
( )

1 1
70 0 3125 81 2

210,000 MPa
MPa MP[ ( . ) ( . aa)] 212.5 10

MPa
( )

6

1 1
8

mm/mm

210,000y y xE
[ 11 2 0 3125 70 6. ( . ) (MPa MPa)] 282.5 10 mm/mm

z E xx y( )
0 3125

81 2 70
.

[ .
210,000 MPa

MPa MPa] 225 100 6 mm/mm

� � � � � �

����� � �

��

�

� � � � � � ���� �

	 	�

	 	�

	
�

	

Since �xy � 0, the strains �x and �y are also the principal strains. Why? We know that 
there is never a shear strain associated with the principal strain directions. Con-
versely, we can also conclude that directions in which the shear strain is zero must 
also be principal strain directions. Therefore,

 p p p1 2 3282 5 212 5 225. .� �� � �� � �� � ���  Ans.

From Equation (13.12), the maximum in-plane shear strain can be determined from 
�p1 and �p2:

 max . .p p1 2 282 5 212 5 70 rad� � �� � � � ��  Ans.

The in-plane principal strain deformations and the maximum in-plane shear strain 
distortion are shown in the sketch.

(c) Absolute Maximum Shear Strain
To determine the absolute maximum shear strain, three possi-
bilities must be considered (see Table 13.2):

 absmax p p1 2� �� ��  (i)

 absmax p p1 3� �� ��  (ii)

 absmax p p2 3� �� ��  (iii)

These possibilities can be readily visualized with Mohr’s circle 
for strains. The combinations of � and � possible in the x–y 
plane are shown by the small circle between point P1 (which 
corresponds to the y direction) and point P2 (which represents the 
x direction). The radius of this circle is relatively small; there-
fore, the maximum shear strain in the x–y plane is small (�max � 
70 �rad). The steel plate in this problem is subjected to plane 
stress, and consequently, the normal stress �p3 � �z � 0. How-
ever, the normal strain in the z direction will not be zero. For 
this problem, �p3 � �z � �225 ��. When this principal strain 
is plotted on Mohr’s circle (i.e., point P3), it becomes evident 
that the out-of-plane shear strains will be much larger than the 
shear strain in the x–y plane.

The largest shear strain will occur in an out-of-plane direction; in this instance, a 
distortion in the y–z plane. Accordingly, the absolute maximum shear strain will be

 . ( ) .282 5 225 507 5 radabsmax p p1 3� � �� � � � ���  Ans.

(212.5, 0) �

(282.5, 0)

(�225, 0)
1P

2P3P

R � 253.75

y–z plane

x–y plane
x–z plane

�
–
2

y

x

�
2
� 70 �rad

212.5 �

282.5 �

�

�
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EXAMPLE 13.7

On the free surface of a copper alloy [E � 115 GPa; 	 � 0.307] component, three strain 
gages arranged as shown record the following strains:

a b c350 900 900� � � � � � � � � � � ����

(a) Determine the strain components �x, �y, and �xy at the point.
(b) Determine the principal strains and the maximum in-plane shear strain at the point.
(c)  Using the results from part (b), determine the principal stresses and the maximum 

in-plane shear stress. Show these stresses in an appropriate sketch that indicates the 
orientation of the principal planes and the planes of maximum in-plane shear stress.

(d) Determine the magnitude of the absolute maximum shear stress at the point.

Plan the Solution
To solve this problem, fi rst reduce the strain rosette data to obtain �x, �y, and �xy. Then, 
use Equations (13.9), (13.10), and (13.11) to determine the principal strains, the maxi-
mum in-plane shear strain, and the orientation of these strains. The principal stresses can 
be calculated from the principal strains with Equation (13.23), and the maximum in-plane 
shear stress can be computed from Equation (13.22).

SOLUTION
(a) Strain Components �x, �y, and �xy
To reduce the strain rosette data, the angles �a, �b, and �c must be determined for the three 
gages. For the rosette confi guration used in this problem, the three angles are �a � 45�, 
�b � 90�, and �c � 135�. (Alternatively, the angles �a � 225�, �b � 270�, and �c � 315� 
could be used.) Using these angles, write a strain transformation equation for each gage, 
where the strain �n is the experimentally measured value. Therefore,

 
Equation for gage a:

350 45 452 2
x ycos ( sin (°) °) xxy sin ( (45 45°)cos °)� �� � � ��

 (a)

 
Equation for gage b:

990 90 902 2
x ycos ( sin (°) °) xxy sin ( (90 90°)cos °)� � �� � ��

 (b)

 
Equation for gage c:

900 135 1352 2
x ycos ( sin (°) °) xy sin ( (135 135°)cos °)�� � �� ��

 (c)

Since cos(90�) � 0, Equation (b) reduces to �y � �990 ��. Substitute this result into 
Equations (a) and (c) and collect the constant terms on the left-hand side of the equations:

145 0 5 0 5

405 0 5 0 5

. .

. .
x xy

x xy

� �

��

���

� � �

To obtain �x, the two equations are added together to give �x � �260 ��. Subtracting 
the two equations gives �xy � �550 �rad. Therefore, the state of strain that exists at the 
point on the copper alloy component can be summarized as �x � �260 ��, �y � �990 ��, 
and �xy � �550 �rad. These strains will be used to determine the principal strains and 
the maximum in-plane shear strain. Ans.
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(b) Principal and Maximum In-Plane Shear Strains
From Equation (13.10), the principal strains can be calculated as

 

p p
x y x y xy

1 2

2 2

2 2 2,
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

260 990

2

260 990

2

550

2

2 2

625 457

1681,082 ,

�
� � � � ��

� � �

�
�

�

�

� � �� ���

�

� �

� �

 Ans.

and from Equation (13.11), the maximum in-plane shear strain is

 

max

2 2 2

260 9

2 2
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

x y xy

990

2

550

2
457

9

2 2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

μrad

γmax 114 rad

� ��

� �

�
� �

�

�

�

� � �

�

�

�

 Ans.

The in-plane principal directions can be determined from Equation (13.9):

tan 2 p
xy

x y
x( )

550

260 990

550

730
Note: yy

p p

0

2 37 0 18 5. .° and thus °

� ��
�

� � � � ��

� � �
� �

�� � 	
��

�

�

Since �x � �y 	 0, �p is the angle between the x direction and the �p2 direction.
The strain rosette is bonded to the surface of the copper alloy component; therefore, 

this is a plane stress condition. Consequently, the out-of-plane normal strain �z will not 
be zero. The third principal strain �p3 can be computed from Equation (13.15):

 p z x y3 1

0 307

1 0 307
260 990 554( )

.

.
( )� �� � � � �� � �

�
� � � ��

�

�

�
 Ans.

The absolute maximum shear strain will be the largest value obtained from three 
possibilities (see Table 13.2):

abs abs absor ormax max maxp p p p p1 2 1 3 2 pp3� � � � � �� � � ���� � �

In this instance, the absolute maximum shear strain will be

abs radmax ( )p p1 3 5541,082 1,636� �� � � � � ���

To better understand how �abs max is determined in this instance, it is helpful to sketch Mohr’s 
circle for strain. Strains in the x–y plane are represented by the solid circle with its center at 
C � 625 �� and radius R � 457 �. The principal strains in the x–y plane are �p1 � 
1,082 �� and �p2 � 168 ��.
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Since the strain measurements were made on the free sur-
face of the copper alloy component, this is a plane stress situa-
tion. In a plane stress condition, the third principal stress �p3 
(which is the principal stress in the out-of-plane direction) will 
be zero; however, the third principal strain �p3 (meaning the 
principal strain in the out-of-plane direction) will not be zero 
because of the Poisson effect.

The third principal strain for this instance was 
�p3 � �554 ��. This point is plotted on the � axis, and two 
additional Mohr’s circles are constructed. As shown in the 
sketch, the circle defi ned by �p3 and �p1 is the largest circle. 
This result indicates that the absolute maximum shear strain 
�abs max will not occur in the x–y plane.

(c) Principal and Maximum In-Plane Shear Stress
The generalized Hooke’s Law equations are written in terms of 
the directions x and y in Equation (13.23); however, these equa-
tions are applicable for any two orthogonal directions. In this 
instance, the principal directions will be used. Given the material 
properties E � 115 GPa and 	 � 0.307, the principal stresses �p1 
and �p2 can be computed from the principal strains �p1 and �p2:

  Ans.

  Ans.

Note: The strain measurements reported in microstrain (��) must be converted to 
dimensionless quantities (i.e., mm/mm) when making this calculation.

Before the maximum in-plane shear stress �max can be computed, the shear modulus 
G for the copper alloy material must be calculated from Equation (13.18):

G
E

2 1 2 1 0 307( ) ( . )

115,000
44,000

MPa
MPa� � �

� ��

The maximum in-plane shear stress �max is calculated from Equation (13.22), which is 
rearranged to solve for the stress:

 max max ( .( )G 44,000 MPa) 914 10 MPa6 40 2� � � ����  Ans.

Alternatively, the maximum in-plane shear stress �max can be calculated from the princi-
pal stresses:

 max
. .

.p p1 2

2

143 9 63 5

2
40 2 MPa

	 	� �
�� � �  Ans.

On the planes of maximum in-plane shear stress, the normal stress is

avg
. .

.p p1 2

2

143 9 63 5

2
103 7 MPa

	 	� �
� � �	

p p p
E

1 2 1 2 21 1 0 307
1( )

115,000
1,082

MPa

( . )
00 0 307 168 10 143 96 6( ) ( )[ ]. . MPa� ��	

�
�

�
� � ��� ���

�

p p p
E

2 2 2 1 21 1 0 307
168 10( )

115,000 MPa

( . )
66 60 307 10 63 5( ) ( )[ ]. .1,082 MPa�	 �

�
� � � � � �� �

�
��

�

(�554, 0)
(168, 0) (1,082, 0)3P

2P 1P

y (990, 275)

(�260, 275) x
R � 457

R � 818

(625, 0)

–
2

�

�
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45°

45°

x

y

a

bc

The strain rosette shown was used to obtain normal strain data at a point on the free 

surface of an aluminum [E � 70 GPa; � � 0.33] plate: �a � �770 ��, �b � �1,180 ��, 

�c � �350 ��.

(a) Determine the stress components �x, �y, and �xy at the point.

(b) Determine the principal stresses at the point.

(c) Show the principal stresses in an appropriate sketch.

 MecMovies Example M13.6 M13.6

45°

90°

x

y

a

bc

M13.6 Principal Stresses from Rosette Data. A strain rosette 

was used to obtain normal strain data at a point on the free surface 

of a steel [E � 200 GPa; � � 0.32] plate. Determine the normal 

strains, the shear strain, and the principal stresses in the x–y plane.

FIGURE M13.6

 MecMovies Exercises

An appropriate sketch of the in-plane principal stresses, the maximum in-plane shear 

stress, and the orientation of these planes is shown.

(d) Absolute Maximum Shear Stress
The absolute maximum shear stress �abs max can be calculated from the absolute 

maximum shear strain:

 abs max max ( ) .( )G abs MPa MP44,000 1,636 10 72 06 aa� � � ��� � Ans.

Alternatively, �abs max can be calculated from the principal stresses, if we note that �p3 � 

�z � 0 on the free surface of the copper alloy component:

 abs max
.

.p p1 3

2

143 9 0

2
72 0 MPa� � �

� �� �
�  Ans.

x

y

63.5 MPa

143.9 MPa

103.7 MPa

40.2 MPa

18.5°

PROBLEMS
P13.49 An 8-mm-thick brass [E � 83 GPa; � � 0.33] plate is 

subjected to biaxial stress with �x � 180 MPa and �y � 65 MPa. 

The plate dimensions are b � 350 mm and h � 175 mm. (See 

Figure P13.49.) Determine

(a) the change in length of edges AB and AD.

(b) the change in length of diagonal AC.

(c) the change in thickness of the plate.

FIGURE P13.49
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P13.50 A 0.75-in.-thick polymer [E � 470,000 psi; � � 0.37] 

casting is subjected to biaxial stresses of �x � 2,500 psi and �y � 

8,300 psi, acting in the directions shown in Figure P13.50. The di-

mensions of the casting are b � 12.0 in. and h � 8.0 in. Determine

(a) the change in length of edges AB and AD.

(b) the change in length of diagonal AC.

(c) the change in thickness of the plate.

P13.51 A stainless steel [E � 190 GPa; � � 0.12] plate is sub-

jected to biaxial stress (Figure P13.51/52). The strains measured in the 

plate are �x � 3,500 �� and �y � 2,850 ��. Determine �x and �y.

P13.52 A metal plate is subjected to tensile stresses of �x � 

21 ksi and �y � 17 ksi (Figure P13.51/52). The corresponding 

strains measured in the plate are �x � 930 �� and �y � 620 ��. 

Determine Poisson’s ratio � and the elastic modulus E for the material.

P13.53 A thin aluminum [E � 10,000 ksi; G � 3,800 ksi] plate 

is subjected to biaxial stress (Figure P13.53/54). The strains mea-

sured in the plate are �x � 810 �� and �z � 1,350 ��. Determine �x 

and �y.

P13.54 A thin stainless steel plate [E � 190 GPa; G � 86 GPa] 

plate is subjected to biaxial stress (Figure P13.53/54). The strains 

measured in the plate are �x � 275 �� and �z � 1,150 ��. Deter-

mine �x and �z.

P13.55 The thin brass [E � 16,700 ksi; � � 0.307] bar shown 

in Figure P13.55/56 is subjected to a normal stress of �x � 19 ksi.  

A strain gage is mounted on the bar at an orientation of � � 25�, as 

shown in the fi gure. What normal strain reading would be expected 

from the strain gage at the specifi ed stress?

P13.56 A strain gage is mounted on a thin brass [E � 12,000 ksi; 

� � 0.33] bar at an angle of � � 35�, as shown in Figure P13.55/56.  

If the strain gage records a normal strain of �n � 470 ��, what is 

the magnitude of the normal stress �x?

P13.57 A thin brass [E � 100 GPa; G � 39 GPa] plate is sub-

jected to biaxial stress as shown in Figure P13.57/58. The normal 

stress in the y direction is known to be �y � 160 MPa. The strain 

gage measures a normal strain of 920 �� at an orientation of � � 

35� in the indicated direction. What is the magnitude of �x that acts 

on the plate?

P13.58 A thin brass [E � 14,500 ksi; G � 5,500 ksi] plate is 

subjected to biaxial stress (Figure P13.57/58). The normal stress 
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FIGURE P13.50

FIGURE P13.51/52

FIGURE P13.55/56

FIGURE P13.53/54

FIGURE P13.57/58
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in the x direction is known to be twice as large as the normal 

stress in the y direction. The strain gage measures a normal strain 

of 775 �� at an orientation of � � 50� in the indicated direction. 

Determine the magnitudes of the normal stresses �x and �y acting 

on the plate.

P13.59  On the free surface of an aluminum [E � 10,000 ksi; 

� � 0.33] component, the strain rosette shown in Figure P13.59 

was used to obtain the following normal strain data: �a � 440 ��, 

�b � 550 ��, and �c � 870 ��. Determine 

(a)  the normal stress �x.

(b) the normal stress �y.

(c) the shear stress �xy.  

P13.60  On the free surface of an aluminum [E � 70 GPa; � � 

0.35] component, the strain rosette shown in Figure P13.60 was 

used to obtain the following normal strain data: �a � –300 ��, 

�b � 735 ��, and �c � 410 ��. Determine 

(a) the normal stress �x.

(b) the normal stress �y.

(c) the shear stress �xy.

P13.62–P13.66 The strain components �x, �y, and �xy are 

given for a point on the free surface of a machine component. De-

termine the stresses �x, �y, and �xy at the point.

Problem �x �y �xy E �

P13.62  310 ��  90 ��  420 �rad  28,000 ksi 0.12

P13.63  �860 ��  510 ��  370 �rad  73 GPa 0.30

P13.64  180 ��  �790 ��  350 �rad  14,000 ksi 0.32

P13.65  �470 ��  �1,150 ��  �880 �rad  190 GPa 0.10

P13.66  1,330 ��  240 ��  �560 �rad  100 GPa 0.11

P13.67–P13.72 The strain rosette shown in the Figures 

P13.67–P13.72 was used to obtain normal strain data at a point on 

the free surface of a machine component. Consider the values given 

for �a, �b, �c, E, and � and determine

(a) the stress components �x, �y, and �xy at the point.

(b)  the principal stresses and the maximum in-plane shear stress 

at the point; show these stresses on an appropriate sketch that 

indicates the orientation of the principal planes and the planes 

of maximum in-plane shear stress.

(c)  the magnitude of the absolute maximum shear stress at the 

point.

Problem �a �b �c E �

P13.67  �165 ��  �180 ��  105 �� 10,600 ksi 0.33

P13.68  220 ��  �340 ��  145 ��  100  GPa 0.28

P13.69  710 ��  1,005 ��  75 �� 28,000 ksi 0.12

P13.70  �115 ��  750 ��  �15 ��  210 GPa 0.31

P13.71  220 ��  �150 ��  �280 �� 15,000 ksi 0.15

P13.72  �80 ��  170 ��  �90 ��  96  GPa 0.33
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FIGURE P13.59

FIGURE P13.60

P13.61 On the free surface of a steel [E � 207 GPa; � � 0.29] 

component, a strain rosette located at point A in Figure P13.61 was 

used to obtain the following normal strain data: �a � 133 ��, �b � 

–92 ��, and �c � –319 ��. If � � 50�, determine the stresses �n, �t, 

and �nt that act at point A.

FIGURE P13.61
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FIGURE P13.68

FIGURE P13.69

FIGURE P13.70

FIGURE P13.67

FIGURE P13.71

P13.73–P13.76 The strain rosette shown in the Figures 

P13.73–P13.76 was used to obtain normal strain data at a point on 

the free surface of a machine component. Values are given for �a, 

�b, �c, E, and �.

(a) Determine the strain components �x, �y, and �xy at the point.

(b)  Determine the principal strains and the maximum in-plane 

shear strain at the point.  

(c)  Using the results from part (b), determine the principal 

stresses and the maximum in-plane shear stress. Show these 

stresses on an appropriate sketch that indicates the orientation 

of the principal planes and the planes of maximum in-plane 

shear stress.

(d)  Determine the magnitude of the absolute maximum shear 

stress at the point.

Problem �a �b �c E �

P13.73  590 ��  140 ��  130 ��  9,000 ksi 0.24

P13.74  295 ��  �90 ��  680 ��  103 GPa 0.28

P13.75  �680 ��  220 ��  �80 ��  17,000 ksi 0.18

P13.76  55 ��  �110 ��  �35 ��  212 GPa 0.30

FIGURE P13.72

FIGURE P13.73

FIGURE P13.74
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P13.77 A solid 18-mm-diameter shaft is subjected to an axial 

load P. The shaft is made of aluminum [E � 70 GPa; � � 0.33]. A 

strain gage is mounted on the shaft at the orientation shown in 

Figure P13.77.

(a)  If P � 14.7 kN, determine the strain reading that would be 

expected from the gage.

(b)  If the gage indicates a strain value of � � 810 ��, determine 

the axial force P applied to the shaft.

FIGURE P13.78

605

FIGURE P13.76

FIGURE P13.77

P
35°

P13.78 A hollow shaft with an outside diameter of 57 mm 

and an inside diameter of 47 mm is subjected to torque T. The 

shaft is made of aluminum [E � 70 GPa; � � 0.33]. A strain 

gage is mounted on the shaft at the orientation shown in Figure 

P13.78.

(a)  If T � 900 N-m, determine the strain reading that would be 

expected from the gage.

(b)  If the gage indicates a strain value of � � −1,400 ��, 

determine the torque T applied to the shaft.

T

55°

FIGURE P13.75
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Thin-Walled Pressure Vessels

CHAPTER 14

607

Pressure vessels are used to hold fl uids such as liquids or gases that must be stored at 

relatively high pressures. Pressure vessels may be found in settings such as chemical 

plants, airplanes, power plants, submersible vehicles, and manufacturing processes. 

Boilers, gas storage tanks, pulp digesters, aircraft fuselages, water distribution towers, 

infl atable boats, distillation towers, expansion tanks, and pipelines are examples of pres-

sure vessels.

A pressure vessel can be described as thin walled when the ratio of the inside ra-

dius to the wall thickness is suffi ciently large so that the distribution of normal stress in 

the radial direction is essentially uniform across the vessel wall. Normal stress actually 

varies from a maximum value at the inside surface to a minimum value at the outside 

surface of the vessel wall. However, if the ratio of the inside radius to the wall thickness 

is greater than 10:1, it can be shown that the maximum normal stress is no more than 

5 percent greater than the average normal stress. Therefore, a vessel can be classifi ed as 

thin walled if the ratio of the inside radius to the wall thickness is greater than about 

10:1 (i.e., r�t � 10).

14.1 Introduction
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608
THIN-WALLED PRESSURE 
VESSELS

Thin-walled pressure vessels are classifi ed as shell structures. Shell structures derive 

a large measure of their strength from the shape of the structure itself. They can be defi ned 

as curved structures that support loads or pressures through stresses developed in two or 

more directions in the plane of the shell.

Problems involving thin-walled vessels subject to fl uid pressure p are readily solved 

with free-body diagrams of vessel sections and the fl uid contained therein. Spherical and 

cylindrical pressure vessels are considered in the sections that follow.

The wall comprising a pressure 

vessel is sometimes termed 

the shell.

A typical thin-walled spherical pressure vessel is shown in Figure 14.1a. If the weights of 

the gas and vessel are negligible (a common situation), symmetry of loading and geometry 

requires that stresses must be equal on sections that pass through the center of the sphere. 

Thus, on the small element shown in Figure 14.1a, �x � �y � �n. Furthermore, there are no 

shear stresses on any of these planes, since there are no loads to induce them. The normal 

stress component in a sphere is referred to as axial stress and commonly denoted �a.

The free-body diagram shown in Figure 14.1b can be used to evaluate the stress 

�x � �y � �n � �a in terms of the pressure p, the inside radius r, and the wall thickness t 
of the spherical vessel. The sphere is cut on a plane that passes through the center of the 

sphere to expose a hemisphere and the fl uid contained within. The fl uid pressure p acts 

horizontally against the plane circular area of the fl uid contained in the hemisphere. The 

resultant force P from the internal pressure is the product of the fl uid pressure p and the 

internal cross-sectional area of the sphere; that is,

P � p�r2

where r is the inside radius of the sphere.

Because the fl uid pressure and the sphere wall are symmetrical about the x axis, the 

normal stress �a produced in the wall is uniform around the circumference. Since the vessel 

is thin walled, �a is assumed to be uniformly distributed across the wall thickness. For a 

thin-walled vessel, the exposed area of the sphere wall can be approximated by the product 

of the inner circumference (2�r) and the wall thickness t of the sphere. The resultant force 

R from the internal stresses in the sphere wall can therefore be expressed as

R � �a (2�rt)

From a summation of forces in the x direction,

�Fx � R � P � �a(2�rt) � p�r2 � 0

14.2 Spherical Pressure Vessels

FIGURE 14.1 Spherical pressure vessel.

�n

�x

�y

 (a) Typical sphere

x

y

z
�a

P � p�r2

 (b) Free-body diagram exposing �a
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609
SPHERICAL PRESSURE VESSELSFrom this equilibrium equation, an expression for the axial stress in the sphere wall can be 

derived in terms of the inside radius r or the inside diameter d:

 �a �        �
pr

2t 4t

pd
 (14.1)

Here, t is the wall thickness of the vessel.

By symmetry, a pressurized sphere is subjected to uniform normal stresses �a in all 

directions.

Stresses on the Outer Surface

Commonly, pressures specifi ed for a vessel are gage pressures, meaning that the pressure 

is measured with respect to atmospheric pressure. If a vessel at atmospheric pressure is 

subjected to a specifi ed internal gage pressure, then the external pressure on the vessel is 

taken as zero while the internal pressure is equal to the gage pressure. Internal pressure in 

a spherical pressure vessel creates normal stress �a that acts in the circumferential direction 

of the shell. Since atmospheric pressure (i.e., zero gage pressure) exists on the outside of 

the sphere, no stresses will act in the radial direction.

Pressure in the sphere creates no shear stress; therefore, the principal stresses are 

�p1 � �p2 � �a . Furthermore, no shear stress exists on free surfaces of the sphere, which 

means that any normal stress in the radial direction (perpendicular to the sphere wall) is 

also a principal stress. Since pressure outside the sphere is zero (assuming that the sphere 

is surrounded by atmospheric pressure), the normal stress in the radial direction due to 

external pressure is zero. Therefore, the third principal stress is �p3 � �radial � 0. Conse-

quently, the outer surface of the sphere (Figure 14.2) is in a condition of plane stress, which 

is also termed biaxial stress here.

Mohr’s circle for the outer surface of a spherical pressure vessel (subjected to an in-

ternal gage pressure) is shown in Figure 14.3. Mohr’s circle describing stresses in the plane 

of the sphere wall is a single point. Therefore, the maximum shear stress in the plane of the 

sphere wall is zero. The maximum out-of-plane shear stresses are

 
1

2

1

2 4t
pr
2t

pr
�abs max �     (�a � �radial) �            � 0  �  (14.2)

Stresses on the Inner Surface

The stress �a on the inner surface of the spherical pressure vessel is the same as �a on the 

outer surface because the vessel is thin walled (Figure 14.2). Pressure exists inside the 

�a �
pr
2t

�a �
pr
2t

�a �
pr
2t

�a �
pr
2t

�radial � p
�radial � 0

Outer surface
stress state

Inner surface
stress state

FIGURE 14.2 Stress elements on the outer and inner surfaces of a spherical pressure vessel.
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610
THIN-WALLED PRESSURE 
VESSELS

vessel, and this pressure pushes on the sphere wall, creating a normal stress in the radial 

direction. The normal stress in the radial direction is equal to the pressure: �radial � �p. 

Thus, the inner surface is in a state of triaxial stress.

Mohr’s circle for the inner surface of a spherical pressure vessel (subjected to an in-

ternal gage pressure) is shown in Figure 14.4. The maximum in-plane shear stresses are 

zero. However, the maximum out-of-plane shear stresses on the inner surface are increased 

due to the radial stress caused by the pressure:

 �abs max � (�a � �radial) �
1
2

1
2 2t 4t

pr pr p

2
�� (�p) �  (14.3)

t

s

The in-plane Mohr’s circle is simply a point.

Out-of-plane
Mohr’s circle

sa �

sradial � 0

pr
2t

tabs max � 
pr
4t

R �
pr
4

FIGURE 14.3 Mohr’s circle for sphere outer surface.

�

�

The in-plane Mohr’s circle is simply a point.

Out-of-plane
Mohr’s circle

�a �
pr
2t

�abs max �      � 
p
2

pr
4t

�radial � �p

R �      � 
pr
4t

p
2

FIGURE 14.4 Mohr’s circle for sphere inner surface.

A typical thin-walled cylindrical pressure vessel is shown in Figure 14.5a. The normal 

stress component on a transverse section is known as the axial stress (�a) or, more com-

monly, the longitudinal stress, which is denoted as �long or simply �l . The normal stress 

component on a longitudinal section is known as hoop or circumferential stress and is 

denoted as �hoop or simply �h. There are no shear stresses on transverse or longitudinal sec-

tions due to pressure alone.

14.3 Cylindrical Pressure Vessels

c14ThinWalledPressureVessels.indd Page 610  20/04/12  4:36 PM user-F391c14ThinWalledPressureVessels.indd Page 610  20/04/12  4:36 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



The free-body diagram used to determine the longitudinal 

stress (Figure 14.5b) is similar to the FBD of Figure 14.1b, which 

was used for the sphere, and the results are the same. Specifi cally,

 �long �       �
pr pd

4t2t  (14.4)

To compute the stresses acting in the circumferential direc-

tion of the cylindrical pressure vessel, the free-body diagram 

shown in Figure 14.5c is considered. This free-body diagram ex-

poses a longitudinal section of the cylinder wall.

There are two resultant forces Px acting in the x direction, 

which are created by pressure acting on the semicircular ends of 

the free-body diagram. These forces are equal in magnitude, but 

opposite in direction; therefore, they cancel each other out.

In the lateral direction (i.e., the z direction), the resultant 

force Pz due to the pressure p acting on an internal area of 2r�x is

Pz � p2r�x

where �x is the length of the segment arbitrarily chosen for the free-body diagram.

The area of the cylinder wall exposed by the longitudinal section (i.e., the exposed z 

surfaces) is 2t�x. The internal pressure in the cylinder is resisted by normal stress that acts 

in the circumferential direction on these exposed surfaces. The total resultant force in the z 

direction from these circumferential stresses is

Rz � �hoop(2t�x) 

The summation of forces in the z direction gives

�Fz � Rz � Pz � �hoop(2t�x) � p2r�x � 0

From this equilibrium equation, an expression for the circumferential stress in the cylinder 

wall can be derived in terms of the inside radius r or the inside diameter d:

 
pr

t

pd

2t
�hoop �       �  (14.5)

In a cylindrical pressure vessel, the hoop stress � hoop is twice as large as the longitudinal 

stress �long.

�long

�hoop

FIGURE 14.5a Cylindrical pressure vessel.

x

y

z
�long

P � p�r2

FIGURE 14.5b Free-body diagram exposing � long.

x

y

z

�hoop

�hoop

Pz � p2r�x

t

t

Px

Px

2r

�x

FIGURE 14.5c Free-body diagram exposing �hoop.
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612
THIN-WALLED PRESSURE 
VESSELS

Stresses on the Outer Surface

Pressure in a cylindrical pressure vessel creates stresses in the longitudinal direction 

and in the circumferential direction. If atmospheric pressure (i.e., zero gage pressure) 

exists outside the cylinder, then no stress will act in the cylinder wall in the radial 

direction.

Since pressure in the vessel creates no shear stress on longitudinal or circumferential 

planes, the longitudinal and hoop stresses are principal stresses: �p1 � �hoop and �p2 � �long. 

Furthermore, since no shear stress exists on free surfaces of the cylinder, any normal stress 

in the radial direction (perpendicular to the cylinder wall) is also a principal stress. Since 

pressure outside the cylinder is zero (assuming atmospheric pressure), the normal stress in 

the radial direction due to external pressure is zero. Therefore, the third principal stress is 

�p3 � �radial � 0. The outer surface of the cylinder (Figure 14.6) is in a state of plane stress, 

which can be termed biaxial stress.

Mohr’s circle for the outer surface of a cylindrical pressure vessel (with internal 

pressure) is shown in Figure 14.7. The maximum in-plane shear stresses (i.e., 

stresses in the plane of the cylinder wall) occur on planes that are rotated at 45° with 

respect to the radial direction. From Mohr’s circle, the magnitude of these shear 

stresses is

 
1

2

pr

t

pr

2t 4t

pr
�max � (�hoop � �long) �           �        �

1

2
 (14.6)

pr
2t

Outer surface
stress state

Inner surface
stress state

pr
t�hoop � pr

t�hoop �

�radial � 0
�radial � p

�long � pr
2t

�long �

FIGURE 14.6 Stress elements on the outer and inner surfaces of a cylindrical pressure vessel.

�

�

In-plane
Mohr’s circle

Out-of-plane
Mohr’s circles pr

2tR �

pr
t�hoop �

pr
2t

�abs max �

pr
2t

�long �
�radial � 0

FIGURE 14.7 Mohr’s circle for outer surface of cylinder.
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613
STRAINS IN PRESSURE VESSELS

The maximum out-of-plane shear stresses are

 0
1

2

pr
t 2t

pr
�abs max � (�hoop � �radial) �            �     �

1

2
 (14.7)

Stresses on the Inner Surface

The stresses �long and �hoop act on the inner surface of the cylindrical pressure vessel, and 

these stresses are the same as those on the outer surface because the vessel is assumed to 

be thin walled (Figure 14.6). Pressure inside the vessel pushes on the cylinder wall, creat-

ing a normal stress in the radial direction equal in magnitude to the internal pressure. Con-

sequently, the inner surface is in a state of triaxial stress and the third principal stress is 

equal to �p3 � �radial � �p.

Mohr’s circle for the inner surface of a cylindrical pressure vessel (subjected to an 

internal gage pressure) is shown in Figure 14.8. The maximum in-plane shear stresses on 

the inner surface are the same as those on the outer surface. However, the maximum out-
of-plane shear stresses on the inner surface are increased due to the radial stress caused by 

the pressure:

 2

p1

2 2t

pr

t

pr
�abs max � (�hoop � �radial) �           � (�p)  �       �

1

2  (14.8)

�

�

In-plane
Mohr’s circle

Out-of-plane
Mohr’s circles

p
2

�radial � �p

pr
2t

pr
2t

�abs max �      �

p
2

R �       �

pr
2t

�long �
pr
t

�hoop �

FIGURE 14.8 Mohr’s circle for inner surface of cylinder.

Since pressure vessels are subjected to either biaxial stress (on outer surfaces) or triaxial 

stress (on inner surfaces), the generalized Hooke’s Law (Section 13.8) must be used to re-

late stress and strain. For the outer surface of a spherical pressure vessel, Equations 13.21 

can be rewritten in terms of the axial stress �a:

 
pr

2t

pr

2t

pr

2tE
(1 � �)(�a � ��a) ��a �

1

E

1

E
�� �  (14.9)

14.4 Strains in Pressure Vessels

c14ThinWalledPressureVessels.indd Page 613  20/04/12  4:36 PM user-F391c14ThinWalledPressureVessels.indd Page 613  20/04/12  4:36 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



614
THIN-WALLED PRESSURE 
VESSELS

For the outer surface of a cylindrical pressure vessel, Equations (13.21) can be rewritten in 

terms of the longitudinal and hoop stresses:

 
pr

2t

pr

t

pr

2tE
(1 � 2�)(�long � ��hoop)  ��long �

1

E

1

E
�� �  (14.10)

 
pr

t

pr

2t

pr

2tE
(2 � �)(�hoop � ��long) ��hoop �

1

E

1

E
�� �  (14.11)

These equations assume that the pressure vessel is fabricated from a homogeneous, isotro-

pic material that can be described by E and �.

Derivation of equations for axial stress due to pressure in a spherical pressure vessel.

 MecMovies Example M14.1

Derivation of equations for longitudinal and circumferential stress due to pressure in a 

cylindrical pressure vessel.

 MecMovies Example M14.2

A standpipe with an inside diameter of 108 in. contains water, which has a weight 

density of 62.4 lb/ft3. The column of water stands 30 ft above an outlet pipe, which 

has an outside diameter of 6.625 in. and an inside diameter of 6.065 in.

(a) Determine the longitudinal and hoop stresses in the outlet pipe at B.

(b)  If the maximum hoop stress in the standpipe at point A must be limited to 

2,500 psi, determine the minimum wall thickness that can be used for the 

standpipe.

Plan the Solution
The fl uid pressure at points A and B is found from the unit weight and the height of 

the fl uid. Once the pressure is known, the equations for the longitudinal stress and 

the hoop stress will be used to determine the stresses in the outlet pipe and the 

minimum wall thickness required for the standpipe.

EXAMPLE 14.1

30 ft

x

y

A B

Standpipe

Outlet
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SOLUTION
Fluid Pressure
The fl uid pressure is the product of the unit weight and the height of the fl uid:

p � �h � (62.4 lb/ft3)(30 ft) � 1,872 lb/ft2 � 13 lb/in.2 � 13 psi

Stresses in the Outlet Pipe
The longitudinal and circumferential stresses produced in a cylinder by fl uid pressure are 

given by

pd

4t
�long �

pd

2t
�hoop �

where d is the inside diameter of the cylinder and t is the wall thickness. For the outlet pipe, 

the wall thickness is t � (6.625 in. � 6.065 in.)�2 � 0.280 in. The longitudinal stress is

 � 70.4 psi
4(0.280 in.)

(13 psi)(6.065 in.)pd

4t
�long �        �  Ans.

The hoop stress is twice as large:

  � 140.8 psi
2(0.280 in.)

(13 psi)(6.065 in.)pd

2t
�hoop �      �  Ans.

Stress Element at B
The longitudinal axis of the outlet pipe extends in the x direction; therefore, the longitudi-

nal stress acts in the horizontal direction and the hoop stress acts in the vertical direction 

at point B.

Minimum Wall Thickness for Standpipe
The maximum hoop stress in the standpipe must be limited to 2,500 psi:

pd

2t
�hoop �       � 2,500 psi

This relationship is rearranged to solve for the minimum wall thickness:

 t 	
pd (13 psi)(108 in.)

2(2,500 psi)2�hoop
� � 0.281 in. Ans.

70.4 psi

140.8 psi

B

y

x

EXAMPLE 14.2

A cylindrical pressure vessel with an outside diameter of 

900 mm is constructed by spirally wrapping a 15-mm-

thick steel plate and butt-welding the mating edges of the 

plate. The butt-welded seams form an angle of 30° with 

a transverse plane through the cylinder. Determine the 

normal stress � perpendicular to the weld and the shear 

stress � parallel to the weld when the internal pressure in 

the vessel is 2.2 MPa.

Plan the Solution
After computing the longitudinal and circumferential stresses in the cylinder wall, the 

stress transformation equations are used to determine the normal stress perpendicular to 

the weld and the shear stress parallel to the weld.

y

x

30°
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SOLUTION
The longitudinal and circumferential stresses produced in a cylinder by fl uid pressure are 

given by

pd

4t
�long �

pd

2t
�hoop �

where d is the inside diameter of the cylinder and t is the wall thickness. The inside diam-

eter of the cylinder is d � 900 mm � 2(15 mm) � 870 mm. The longitudinal stress in the 

tank is

� 31.9 MPa
4(15 mm)

(2.2 MPa)(870 mm)pd

4t
�long �       �

The hoop stress is twice as large as the longitudinal stress:

� 63.8 MPa
2(15 mm)

(2.2 MPa)(870 mm)pd

2t
�hoop �        �

The weld seam is oriented at an angle of 30°, as shown. The normal stress perpendicular 

to the weld seam can be determined from Equation 12.3, with � � �30°:

 

�n � �x cos2
 � � �y sin2

 � � 2�xy sin � cos �

 � (31.9 MPa)cos2(�30°) � (63.8 MPa)sin2(�30°)

 � 39.9 MPa  Ans.

The shear stress parallel to the weld seam can be determined from Equation 12.4:

 

�nt � �(�x � �y)sin � cos � � �xy (cos2
 � � sin2

 �)

 � �(31.9 MPa � 63.8 MPa)sin(�30°)cos(�30°)

 � �13.81 MPa  Ans.

x

y

31.9 MPa

63.8 MPa

t

n

30°

39.9 MPa

13.81 MPa

The pressure tank shown has an outside diameter of 200 mm and a wall thickness of 5 mm. 

The tank has butt-welded seams forming an angle of � � 25° with a transverse plane. For 

an internal gage pressure of p � 1,500 kPa, determine the normal stress perpendicular to 

the weld and the shear stress parallel to the weld.

 MecMovies Example M14.3 
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The strain gage shown is used to determine the gage pressure in the cylindrical 

steel tank. The tank has an outside diameter of 1,250 mm and a wall thickness 

of 15 mm, and is made of steel [E � 200 GPa; � � 0.32]. The gage is inclined 

at a 30° angle with respect to the longitudinal axis of the tank. Determine the 

pressure in the tank corresponding to a strain gage reading of 290 ��.

 MecMovies Example M14.4 

A cylindrical steel [E � 200 GPa; � � 0.3] tank contains a fl uid un-

der pressure. The ultimate shear strength of the steel is 300 MPa, and 

a factor of safety of 4 is required. The fl uid pressure must be carefully 

controlled to ensure that the shear stress in the cylinder does not ex-

ceed the allowable shear stress limit. To monitor the tank, a strain 

gage records the longitudinal strain in the tank. Determine the critical 

strain gage reading that must not be exceeded for safe operation of 

the tank.

 MecMovies Example M14.5 

M14.3 For an indicated internal gage pressure, determine the 

normal stress perpendicular to a weld and the shear stress parallel 

to a weld.

M14.4 The strain gage shown is used to determine the gage 

pressure in the cylindrical steel [E � 200 GPa; � � 0.32] tank. The 

tank has a specifi ed outside diameter and wall thickness. Determine 

the strain gage reading for a specifi ed internal tank pressure.

 MecMovies Exercises

FIGURE M14.4
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M14.5 A strain gage is used to monitor the strain in a spherical 

steel [E � 210 GPa; � � 0.32] tank, which contains a fl uid under 

pressure. The ultimate shear strength of the steel is 560 MPa. 

Determine the factor of safety with respect to the ultimate shear 

strength if the strain gage reading is a specifi ed value.

FIGURE M14.5

P14.1 Determine the normal stress in a ball (Figure P14.1), 

which has an outside diameter of 185 mm and a wall thickness of 

3 mm, when the ball is infl ated to a gage pressure of 80 kPa.

P14.2 A spherical gas-storage tank with an inside diameter of 

21 ft is being constructed to store gas under an internal pressure of 

160 psi. The tank will be constructed from steel that has a yield 

strength of 50 ksi. If a factor of safety of 3.0 with respect to the 

yield strength is required, determine the minimum wall thickness 

required for the spherical tank. 

P14.3 A spherical gas-storage tank with an inside diameter of 

9 m is being constructed to store gas under an internal pressure of 

1.60 MPa. The tank will be constructed from steel that has a yield 

strength of 340 MPa. If a factor of safety of 3.0 with respect to the 

yield strength is required, determine the minimum wall thickness 

required for the spherical tank. 

P14.4 A spherical pressure vessel has an inside diameter of 

6 m and a wall thickness of 15 mm. The vessel will be constructed 

PROBLEMSPROBLEMS
from steel [E � 200 GPa; � � 0.29] that has a yield strength of 

340 MPa. If the internal pressure in the vessel is 1,750 kPa, 

determine 

(a)  the normal stress in the vessel wall, 

(b) the factor of safety with respect to the yield strength, 

(c) the normal strain in the sphere, and 

(d) the increase in the outside diameter of the vessel. 

P14.5 The normal strain measured on the outside surface of a 

spherical pressure vessel is 515 ��. The sphere has an outside diam-

eter of 72 in. and a wall thickness of 0.50 in., and it will be fabricated 

from an aluminum alloy [E � 10,000 ksi; � � 0.33]. Determine 

(a) the normal stress in the vessel wall and 

(b) the internal pressure in the vessel. 

P14.6 A typical aluminum-alloy scuba diving tank is shown in 

Figure P14.6. The outside diameter of the tank is 175 mm, and 

the wall thickness is 12 mm. If the air in the tank is pressurized to 

18 MPa, determine

(a) the longitudinal and hoop stresses in the wall of the tank.

(b) the maximum shear stress in the plane of the cylinder wall.

(c)  the absolute maximum shear stress on the outer surface of the 

cylinder wall.

FIGURE P14.1

FIGURE P14.6
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P14.7 A cylindrical boiler with an outside diameter of 2.75 m 

and a wall thickness of 32 mm is made of a steel alloy that has a 

yield stress of 340 MPa. Determine

(a)  the maximum normal stress produced by an internal pressure 

of 2.3 MPa. 

(b)  the maximum allowable pressure if a factor of safety of 2.5 with 

respect to yield is required.

P14.8 When fi lled to capacity, the unpressurized storage tank 

shown in Figure P14.8 contains water to a height of h � 30 ft. The 

outside diameter of the tank is 12 ft, and the wall thickness is 0.375 in. 

Determine the maximum normal stress and the absolute maximum 

shear stress on the outer surface of the tank at its base. (Weight 

density of water � 62.4 lb/ft3.)

P14.9 A tall open-topped standpipe (Figure P14.9) has an inside 

diameter of 2,750 mm and a wall thickness of 6 mm. The standpipe 

contains water, which has a mass density of 1,000 kg/m3.

(a)  What height h of water will produce a circumferential stress 

of 16 MPa in the wall of the standpipe? 

(b)  What is the axial stress in the wall of the standpipe due to the 

water pressure?

P14.10 The pressure tank in Figure P14.10/11 is fabricated from 

spirally wrapped metal plates that are welded at the seams in the 

orientation shown, where � � 40°. The tank has an inside diameter 

P14.13 The pressure tank in Figure P14.12/13 is fabricated from 

spirally wrapped metal plates that are welded at the seams in the ori-

entation shown, where � � 55°. The tank has an inside diameter of 

60 in. and a wall thickness of 0.25 in. Determine the largest allowable 

gage pressure if the allowable normal stress perpendicular to the weld 

is 12 ksi and the allowable shear stress parallel to the weld is 7 ksi.

h

FIGURE P14.8

h

FIGURE P14.9

y

x
�

FIGURE P14.10/11

x

y

�

FIGURE P14.12/13
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P14.11 The pressure tank in Figure P14.10/11 is fabricated from 

spirally wrapped metal plates that are welded at the seams in the 

orientation shown, where � � 40°. The tank has an inside diameter 

of 720 mm and a wall thickness of 8 mm. For a gage pressure of 

2.15 MPa, determine

(a) the normal stress perpendicular to the weld.

(b) the shear stress parallel to the weld.

P14.12 The pressure tank in Figure P14.12/13 is fabricated from 

spirally wrapped metal plates that are welded at the seams in the 

orientation shown, where � � 40°. The tank has an inside diameter 

of 1,800 mm and a wall thickness of 12 mm. For a gage pressure of 

1.75 MPa, determine

(a) the normal stress perpendicular to the weld.

(b) the shear stress parallel to the weld.

of 480 mm and a wall thickness of 8 mm. Determine the largest gage 

pressure that can be used inside the tank if the allowable normal 

stress perpendicular to the weld is 100 MPa and the allowable shear 

stress parallel to the weld is 25 MPa.
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P14.15 A closed cylindrical tank containing a pressurized fl uid 

has an inside diameter of 830 mm and a wall thickness of 10 mm. The 

stresses in the wall of the tank acting on a rotated element have the 

values shown in Figure P14.15. What is the fl uid pressure in the tank?

P14.16 A closed cylindrical vessel (Figure P14.16) contains a 

fl uid at a pressure of 5.0 MPa. The cylinder, which has an outside 

diameter of 2,500 mm and a wall thickness of 20 mm, is fabricated 

from stainless steel [E � 193 GPa; � � 0.27]. Determine the 

increase in both the diameter and the length of the cylinder.

P14.17 A strain gage is mounted at an angle of � � 20° with 

respect to the longitudinal axis of the cylindrical pressure vessel 

shown in Figure P14.17/18. The pressure vessel is fabricated from 

aluminum [E � 10,000 ksi; � � 0.33], and it has an inside diameter 

of 48 in. and a wall thickness of 0.25 in. If the strain gage measures 

a normal strain of 470 ��, determine

(a) the internal pressure in the cylinder.

(b)  the absolute maximum shear stress on the outer surface of the 

cylinder.

(c)  the absolute maximum shear stress on the inner surface of the 

cylinder.

P14.18 A strain gage is mounted at an angle of � � 20° with 

respect to the longitudinal axis of the cylindrical pressure, as shown 

in Figure P14.17/18. The pressure vessel is fabricated from alumi-

num [E � 10,000 ksi; � � 0.33], and it has an inside diameter of 48 

in. and a wall thickness of 0.50 in. If the internal pressure in the 

cylinder is 350 psi, determine

(a) the expected strain gage reading (in ��).

(b)  the principal strains, the maximum shear strain, and the 

absolute maximum shear strain on the outer surface of the 

cylinder.

P14.19 The pressure vessel in Figure P14.19 consists of spirally 

wrapped steel plates that are welded at the seams in the orientation 

shown, where � � 35°. The cylinder has an inside diameter of 

540 mm and a wall thickness of 10 mm. The ends of the cylinder 

are capped by two rigid end plates. The gage pressure inside the 

cylinder is 4.25 MPa, and compressive axial loads of P � 215 kN 

are applied to the rigid end caps. Determine

(a) the normal stress perpendicular to the weld seams.

(b) the shear stress parallel to the weld seams.

(c) the absolute maximum shear stress in the cylinder.

51 MPa
66 MPa

18 MPa

FIGURE P14.15

6 m

FIGURE P14.16

y

x
�

FIGURE P14.17/18

y

x
PP

�

FIGURE P14.19

y

x

FIGURE P14.14
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P14.14 A strain gage is mounted to the outer surface of a thin-

walled boiler, as shown in Figure P14.14. The boiler has an inside 

diameter of 1,800 mm and a wall thickness of 20 mm, and it is 

made of stainless steel [E � 193 GPa; � � 0.27]. Determine

(a)  the internal pressure in the boiler when the strain gage reads 

190 ��.

(b) the maximum shear strain in the plane of the boiler wall.

(c)  the absolute maximum shear strain on the outer surface of the 

boiler.
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P14.21 The cylindrical pressure vessel shown in Figure 

P14.20/21 has an inside diameter of 900 mm and a wall thickness 

of 12 mm. The cylinder is made of an aluminum alloy that has an 

elastic modulus of E � 70 GPa and a shear modulus of G � 26.3 GPa. 

Two strain gages are mounted on the exterior surface of the cylin-

der at right angles to each other. The angle � is 25°. If the pressure 

in the vessel is 1.75 MPa, determine

(a) the strains that act in the x and y directions.

(b) the strains expected in gages a and b.

(c) the normal stresses �n and �t. 

(d) the shear stress �nt.

P14.20 The cylindrical pressure vessel shown in Figure 

P14.20/21 has an inside diameter of 610 mm and a wall thickness 

of 3 mm. The cylinder is made of an aluminum alloy that has an 

elastic modulus of E � 70 GPa and a shear modulus of G � 26.3 GPa. 

Two strain gages are mounted on the exterior surface of the cylin-

der at right angles to each other; however, the angle � is not known. 

If the strains measured by the two gages are �a = 360 �� and 

�b � 975 ��, what is the pressure in the vessel? Notice that when 

two orthogonal strains are measured, the angle � is not needed to 

determine the normal stresses.

FIGURE P14.20/21
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Combined Loads
15CHAPTER

The stresses and strains produced by three fundamental types of loads (axial, torsional, 

and fl exural) have been analyzed in the preceding chapters. Many machine and structural 

components are subjected to a combination of these loads, and a procedure for calculating 

the ensuing stresses at a point on a specifi ed section is required. One method is to replace the 

given force system with a statically equivalent system of forces and moments acting at the 

section of interest. The equivalent force system can be systematically evaluated to deter-

mine the type and magnitude of stresses produced at the point, and these stresses can be 

calculated by the methods developed in previous chapters. The combined effect can be 

obtained by the principle of superposition if the combined stresses do not exceed the pro-

portional limit. Various combinations of loads that can be analyzed in this manner are 

discussed in the sections that follow.

15.1 Introduction

A shaft or other machine component is subjected to both an axial and a torsional load in 

numerous situations. Examples include the drill rod for a well and the propeller shaft in a 

ship. Since radial and circumferential normal stresses are zero, the combination of axial 

and torsional loads creates plane stress conditions at any point in the body. Although axial 

normal stresses are identical at all points on the cross section, torsional shear stresses are 

15.2 Combined Axial and Torsional Loads
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624
COMBINED LOADS greatest on the periphery of the shaft. For this reason, critical stresses are normally investi-

gated on the outer surface of the shaft.

The following example illustrates the analysis of combined torsional and axial loads 

in a shaft:

x

y

z

A B
C

K
H

36 kip-in.
96 kip-in.

25 kips(1)
(2)

B

H

36 kip-in.

96 kip-in.

25 kips

(2)

A hollow circular shaft having an outside 

diameter of 4 in. and a wall thickness of 0.25 in. 

is loaded as shown. Determine the principal 

stresses and the maximum shear stress at points 

H and K.

Plan the Solution
After computing the required section proper-

ties for the pipe shaft, the equivalent forces act-

ing at point H will be determined. The normal and shear stresses created by the internal 

axial force and torque will be computed and shown in their proper directions on a stress 

element. Stress transformation calculations will be used to determine the principal 

stresses and maximum shear stress for the stress element at H. The process will be 

 repeated for the stresses acting at K.

SOLUTION
Section Properties
The outside diameter D of the pipe is 4 in., and the wall thickness of the pipe is 0.25 in.; 

thus, the inside diameter is d � 3.5 in. The cross-sectional area of the pipe will be needed 

to calculate the normal stress caused by the axial force:

A D d� � � � �
� �
[ ] [ ]

4 4
4 3 5 2 94522 2 2 2 2( ) ( . ) .in. in. in.

The polar moment of inertia will be required to calculate the shear stress caused by the 

internal torques in the pipe:

J D d[ ] [ ]
32 32

4 3 5 10 40044 4 4 4 4( ) ( . ) .in. in. in.�
� �

� � � �

Equivalent Forces at H
The pipe will be sectioned just to the right of a stress element 

at H, and the equivalent forces and moments acting at the sec-

tion of interest will be determined. This is straightforward at 

H, where the equivalent force is simply the 25-kip axial force 

and the equivalent torque is equal to the 36 kip-in. torque 

 applied at C.

Normal and Shear Stresses at H
The normal and shear stresses at H can be calculated from the equivalent forces just 

shown. The 25-kip axial force creates a compression normal stress of

axial
kips

.
. ksi (C)

F

A

25

2 9452
8 49

2in.
� � � �

EXAMPLE 15.1
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The shear stress created by the 36 kip-in. torque is computed from the elastic torsion 

formula:

Tc

J

( kip- )( )

.
. ksi

36 2

10 4004
6 92

4

in. in.

in.
� � � �

The normal and shear stresses acting at a point should be summarized on a stress 

element before beginning the stress transformation calculations. Often, it is more effi -

cient to calculate the stress magnitudes from the appropriate formulae, but to determine 

the proper direction of the stresses by inspection.

The axial stress acts in the same direction as the 25-kip force; therefore, the 8.49-ksi 

axial stress acts in compression in the x direction.

The direction of the torsion shear stress at the point of interest can be confusing to 

determine. Examine the illustration of the pipe, and note the direction of the equivalent 

torque acting at H. The shear stress arrow on the �x face of the stress element acts in 

the same direction as the torque; therefore, the 6.92-ksi shear stress acts upward on the 

�x face of the stress element. After the proper shear stress 

direction has been established on one face, the shear stress 

directions on the other three faces are known.

Stress Transformation Results at H
The principal stresses and the maximum shear stress at H 

can be determined from the stress transformation equations 

and procedures detailed in Chapter 12. The results of these 

calculations are shown in the fi gure to the right.

Equivalent Forces at K
The pipe will be sectioned just to the right of a stress 

element at K, and the equivalent forces and moments acting 

at the section of interest will be determined. While the equiv-

alent force is simply the 25-kip axial force, the equivalent 

torque at K is the sum of the torques applied to the pipe shaft 

at B and C. The equivalent torque at the section of interest is 

60 kip-in.

Normal and Shear Stresses at K
The normal and shear stresses at K can be calculated from 

the equivalent forces shown to the right. The 25-kip 

axial force creates a compression normal stress of 8.49 ksi. 

The 60 kip-in. equivalent torque creates a shear stress 

given by

 
Tc

J

( )( )

.
. ksi

60 2

10 4004
11 54

4

kip-in. in.

in.
� � ��

As at H, the 8.49-ksi axial stress acts in compression in the x direction. The equiva-

lent torque at K creates a shear stress that acts downward on the �x face of the stress 

element. The proper stress element for K is shown.

x

8.49 ksi

6.92 ksi

H

x

8.49 ksi

6.92 ksi

12.36 ksi
3.88 ksi

4.24 ksi

8.12 ksi

29.2°

H

y

z

A

K

60 kip-in.

25 kips

(1)

x

8.49 ksi

11.54 ksi

K
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P15.1 A solid 1.50-in.-diameter shaft is subjected to a torque of 

T � 225 lb-ft and an axial load of P � 5,500 lb, as shown in 

Figure P15.1/2.

(a)  Determine the principal stresses and the maximum shear 

stress at point H on the surface of the shaft.

(b)  Show the stresses of part (a) and their directions on an 

appropriate sketch.

x

y

z A
B

H
P

T

(1)

FIGURE P15.1/2

P15.2 A solid 19-mm-diameter aluminum alloy [E � 70 GPa; 

� � 0.33] shaft is subjected to a torque of T � 60 N-m and an axial 

load of P � 15 kN, as shown in Figure P15.1/2. At point H on the 

outer surface of the shaft, determine

(a)  the strains �x, �y , and �xy.

(b)  the principal strains �p1 and �p2.

(c)  the absolute maximum shear strain.

P15.3 A hollow bronze [E � 15,200 ksi; � � 0.34] shaft with an 

outside diameter of 2.50 in. and a wall thickness of 0.125 in. is 

subjected to a torque of T � 720 lb-ft and an axial load of P � 

1,900 lb, as shown in Figure P15.3/4. At point H on the outer 

 surface of the shaft, determine

(a)  the strains �x, �y, and �xy.

(b)  the principal strains �p1 and �p2.

(c)  the absolute maximum shear strain.

A tubular shaft of outside diameter D � 114 mm and an inside diameter of d � 102 mm is 

subjected simultaneously to a torque of T � 5 kN-m and an axial load of P � 40 kN. 

 Determine the principal stresses and the maximum shear stress at a typical point on the 

surface of the shaft.

 MecMovies Example M15.1MM

PROBLEMSPROBLEMS

Stress Transformation Results at K
The principal stresses and the maximum shear stress at K are shown 

in the fi gure to the left.

x

8.49 ksi

11.54 ksi

16.54 ksi

8.05 ksi

4.24 ksi

12.29 ksi

34.9°K
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x
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B
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K

BT

CT

P

(1)

(2)

FIGURE P15.9/10

P15.4 A hollow bronze shaft with an outside diameter of 80 mm 

and a wall thickness of 5 mm is subjected to a torque of T � 620 N-m 

and an axial load of P � 9,500 N, as shown in Figure P15.3/4.

(a)  Determine the principal stresses and the maximum shear 

stress at point H on the surface of the shaft.

(b)  Show the stresses of part (a) and their directions on an 

appropriate sketch. 

P15.5 A solid 1.50-in.-diameter shaft is used in an aircraft  engine 

to transmit 160 hp at 2,800 rpm to a propeller that develops a thrust 

of 1,800 lb. Determine the magnitudes of the principal stresses and 

the maximum shear stress at any point on the outside surface of the 

shaft.

P15.6 A solid 40-mm-diameter shaft is used in an aircraft 

 engine to transmit 100 kW at 1,600 rpm to a propeller that develops 

a thrust of 12 kN. Determine the magnitudes of the principal 

stresses and the maximum shear stress at any point on the outside 

surface of the shaft.

P15.7 A 2.50-in.-diameter shaft must support an axial tensile 

load of unknown magnitude while it is transmitting a torque of 

18 kip-in. Determine the maximum allowable value for the axial 

load if the tensile principal stress on the outside surface of the 

shaft must not exceed 10,000 psi.

P15.8 A solid 60-mm-diameter shaft must transmit a torque of 

 unknown magnitude while it is supporting an axial tensile load of 

40 kN. Determine the maximum allowable value for the torque if 

the tensile principal stress on the outside surface of the shaft must 

not exceed 100 MPa.

P15.9 A hollow shaft with an outside diameter of 150 mm and 

an inside diameter of 130 mm is subjected to an axial tension load 

of P � 75 kN and torques TB � 16 kN-m and TC � 7 kN-m, which 

act in the directions shown in Figure P15.9/10.

(a)  Determine the principal stresses and the maximum shear 

stress at point H on the surface of the shaft.

(b)  Show these stresses on an appropriate sketch.

P15.10 A hollow shaft with an outside diameter of 150 mm and 

an inside diameter of 130 mm is subjected to an axial tension load 

of P � 75 kN and torques TB � 16 kN-m and TC � 7 kN-m, which 

act in the directions shown in Figure P15.9/10.

FIGURE P15.11/12/13/14

x

y

z
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B C

H
K

BT

CT

P

(1)

(2)

x

y

z A
B

H P

T

(1)

FIGURE P15.3/4

(a)  Determine the principal stresses and the maximum shear 

stress at point K on the surface of the shaft.

(b)  Show these stresses on an appropriate sketch.

P15.11 A compound shaft consists of two pipe segments. 

Segment (1) has an outside diameter of 220 mm and a wall thick-

ness of 10 mm. Segment (2) has an outside diameter of 140 mm 

and a wall thickness of 15 mm. The shaft is subjected to an axial 

compression load of P � 100 kN and torques TB � 8 kN-m and 

TC � 12 kN-m, which act in the directions shown in Figure 

P15.11/12/13/14.

(a)  Determine the principal stresses and the maximum shear 

stress at point K on the surface of the shaft.

(b)  Show these stresses on an appropriate sketch.

P15.12 A compound shaft consists of two pipe segments. 

Segment (1) has an outside diameter of 220 mm and a wall thick-

ness of 10 mm. Segment (2) has an outside diameter of 140 mm 

and a wall thickness of 15 mm. The shaft is subjected to an axial 

compression load of P � 100 kN and torques TB � 8 kN-m and 

TC � 12 kN-m, which act in the directions shown in Figure 

P15.11/12/13/14.

(a)  Determine the principal stresses and the maximum shear 

stress at point H on the surface of the shaft.

(b)  Show these stresses on an appropriate sketch.

P15.13 A compound shaft consists of two pipe segments. 

Segment (1) has an outside diameter of 6.50 in. and a wall thick-

ness of 0.375 in. Segment (2) has an outside diameter of 4.50 in. 
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and a wall thickness of 0.50 in. The shaft is subjected to an axial 

compression load of P � 50 kips and torques TB � 30 kip-ft and 

TC � 8 kip-ft, which act in the directions shown in Figure P15.11/ 

12/13/14.

(a)  Determine the principal stresses and the maximum shear 

stress at point H on the surface of the shaft.

(b)  Show these stresses on an appropriate sketch.

P15.14 A compound shaft consists of two pipe segments. Seg-

ment (1) has an outside diameter of 6.50 in. and a wall thickness 

of 0.375 in. Segment (2) has an outside diameter of 4.50 in. and 

a wall thickness of 0.50 in. The shaft is subjected to an axial 

compression load of P � 50 kips and torques TB � 30 kip-ft and 

TC � 8 kip-ft, which act in the directions shown in Figure P15.11/ 

12/13/14.

(a)  Determine the principal stresses and the maximum shear 

stress at point K on the surface of the shaft.

(b)  Show these stresses on an appropriate sketch.

P15.15 The cylinder in Figure P15.15 consists of spirally 

wrapped steel plates that are welded at the seams in the orienta-

tion shown. The cylinder has an outside diameter of 275 mm and 

a wall thickness of 8 mm. The ends of the cylinder are capped by 

two rigid end plates. The cylinder is subjected to tension axial 

loads of P � 45 kN and torques of T � 60 kN-m, which are ap-

plied to the rigid end caps in the directions shown in Figure P15.15. 

Determine

(a)  the normal stress perpendicular to the weld seams.

(b)  the shear stress parallel to the weld seams.

(c)  the absolute maximum shear stress on the outer surface of 

the cylinder.

FIGURE P15.16

30°

y

x

P

T

FIGURE P15.17

FIGURE P15.18

P15.17 A hollow shaft is subjected to an axial load P and a 

torque T, acting in the directions shown in Figure P15.17. The shaft 

is made of bronze [E � 105 GPa; � � 0.34], and it has an outside 

diameter of 55 mm and an inside diameter of 45 mm. A strain gage 

is mounted at an angle of � � 40� with respect to the longitudinal 

axis of the shaft, as shown in Figure P15.17.

(a)  If P � 13,000 N and T � 260 N-m, what is the strain reading 

that would be expected from the gage?

(b)  If the strain gage gives a reading of �195 �� when the axial 

load has a magnitude of P � 62,000 N, what is the magnitude 

of the torque T applied to the shaft?

P15.18 A hollow shaft is subjected to an axial load P and a 

torque T, acting in the directions shown in Figure P15.18. The shaft 

is made of bronze [E � 15,200 ksi; � � 0.34], and it has an outside 

diameter of 2.50 in. and an inside diameter of 2.00 in. Strain gages 

a and b are mounted on the shaft at the orientations shown in Figure 

P15.18, where � has a magnitude of 25�.

(a)  If P � 6 kips and T � 17 kip-in., determine the strain 

readings that would be expected from the gages.

(b)  If the strain gage readings are �a � –1,100 �� and �b � 720 ��, 

determine the axial force P and the torque T applied to the shaft.

FIGURE P15.15

55°

y

x PP

T

T

P15.16 The cylinder in Figure P15.16 consists of spirally 

wrapped steel plates that are welded at the seams in the orienta-

tion shown. The cylinder has an inside diameter of 30 in. and a 

wall thickness of 0.375 in. The end of the cylinder is capped by a 

rigid end plate. The cylinder is subjected to a compressive load 

of P � 160 kips and a torque of T � 190 kip-ft, which are applied 

to the rigid end cap in the directions shown in Figure P15.16. 

Determine

(a)  the normal stress perpendicular to the weld seams.

(b)  the shear stress parallel to the weld seams.

(c)  the principal stresses and the maximum shear stress on the 

outside surface of the cylinder.
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Procedures for locating the critical sections of a beam (i.e., maximum internal shear force 

V and bending moment M) were presented in Chapter 7. Methods for calculating the bend-

ing stress at any point in a beam were presented in Sections 8.3 and 8.4. Methods for deter-

mining the horizontal and transverse shear stresses at any point in a beam were presented 

in Sections 9.5 through 9.7. However, the discussion of stresses in beams is incomplete 

without consideration of the principal and maximum shear stresses that occur at the loca-

tions of maximum shear force and maximum bending moment.

The normal stress caused by fl exure is largest on either the top or bottom surfaces 

of a beam, but the horizontal and transverse shear stress is zero at these locations. Con-

sequently, the tension and compression normal stresses on the top and bottom beam 

surfaces are also principal stresses, and the corresponding maximum shear stress is 

equal to one-half of the bending stress [i.e., �max � (�p – 0)/2]. On the neutral surface, 

the normal stress due to bending is zero; however, the largest horizontal and transverse 

shear stresses usually occur at the neutral surface. In this instance, the principal and 

maximum shear stresses are both equal to the horizontal shear stress. At points between 

these extremes, one might well wonder whether there are combinations of normal and 

shear stresses that create principal stresses larger than those at the extremes. Unfortu-

nately, the magnitude of the principal stresses throughout a cross section cannot be 

expressed for all sections as a simple function of position; however, contemporary 

analytical software often provides insight into the distribution of principal stresses by 

means of color-coded stress contour plots.

Rectangular Cross Sections

For beams with a rectangular cross section, the largest principal stress is usually the 

maximum bending stress, which occurs on the top and bottom beam surfaces. The max-

imum shear stress usually occurs at the same location, having a magnitude equal to 

one-half of the bending stress. Although it may be of lesser intensity, the horizontal 

shear stress (calculated from � � VQ/It) at the neutral surface may also be a signifi cant 

consideration, particularly for materials having a horizontal plane of weakness, such as 

a typical timber beam.

Flanged Cross Sections

If the beam cross section is a fl anged shape, then principal stresses at the junction between 

fl ange and web must also be investigated. When subjected to a combination of large V and 

large M, the bending and transverse shear stresses that occur at the junction of the fl ange 

and the web sometimes produce principal stresses that are greater than the maximum bend-

ing stress at the outermost surface of the fl ange. In general, at any point in a beam, a com-

bination of large V, M, Q, and y, together with a small t, should suggest a check of the 

principal stresses at such a point. Otherwise, the maximum bending stress will very likely 

be the principal stress and the maximum in-plane shear stress will probably occur at the 

same point.

Stress Trajectories

Knowledge of the directions of the principal stresses may aid in the prediction of the 

direction of cracks in a brittle material (e.g., concrete) and thus may aid in the design of 

15.3 Principal Stresses in a Flexural Member
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reinforcement to carry the tensile stresses. Curves drawn with their tangents at each point 

in the directions of the principal stresses are called stress trajectories. Since there are 

generally two nonzero principal stresses at each point (plane stress), there are two stress 

trajectories passing through each point. These curves will be perpendicular, since the 

 principal stresses are orthogonal; one set of curves will represent the maximum stresses, 

whereas the other set of curves will represent the minimum stresses. The trajectories for a 

simply supported beam with a rectangular cross section subjected to a concentrated load 

at midspan are shown in Figure 15.1. The dashed lines represent the directions of the 

compressive stresses, while the solid lines represent the tensile stress directions. Stress 

concentrations exist in the vicinities of the load and reactions, and consequently the stress 

trajectories become much more complicated in those regions. Figure 15.1 omits the effect 

of stress concentrations.

General Calculation Procedures

To determine the principal stresses and the maximum shear stress at a particular point in a 

beam, the following procedures are useful:

1. Calculate the external beam reaction forces and moments (if any).

2.  Determine the internal axial force (if applicable), shear force, and bending moment act-

ing at the section of interest. To determine the internal forces, it may be expedient to 

construct the complete shear-force and bending-moment diagrams for the beam, or it 

may suffi ce to consider simply a free-body diagram that cuts through the beam at the 

section of interest.

3.  Once the internal forces and moments are known, determine the magnitude of each 

normal stress and shear stress produced at the specifi c point of interest.

 a.  Normal stresses are produced by an internal axial force F and by an internal bending 

moment M. The magnitude of the axial stress is given by � � F/A, and the magni-

tude of the bending stress is given by the fl exure formula � � �My/I.

 b.  Shear stress produced by nonuniform bending is calculated from � � VQ/It.

4.  Summarize the stress calculation results on a stress element, taking care to identify the 

proper direction for each stress.

P

2
P

2
P

FIGURE 15.1 Stress trajectories for a simply supported beam subjected to a concentrated load at 

midspan.
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 a.  The normal stresses caused by F and M act in the longitudinal direction of the beam, 

either in tension or in compression.

 b.  The proper direction for the shear stress � produced by nonuniform bending is 

sometimes challenging to establish. Determine the direction of the shear force V 

acting on a transverse plane at the point of interest (Figure 15.2). The transverse 

shear stress � acts in the same direction on this plane. After the direction of the shear 

stress has been established on one face of the stress element, then the shear stress 

directions on all four faces are known.

 c.  It is generally more reliable to use inspection to establish the direction of normal 

and shear stresses acting on the stress element. Consider the positive internal 

shear force V shown in Figure 15.2. (Recall that a positive V acts downward on 

the right-hand face of a beam segment and upward on the left-hand face.) 

 Although the shear force V is positive, the corresponding shear stress �xy is con-

sidered negative according to the sign conventions used in the stress transforma-

tion equations.

5.  Once all stresses on orthogonal planes through the point are known and summarized on 

a stress element, the methods of Chapter 12 can be used to calculate the principal 

stresses and the maximum shear stresses at the point.

The following examples illustrate the procedure:

x

y

�V

�V

H

H
�xy

Transverse
plane

FIGURE 15.2 Correspondence 

between V and � directions.

16 mm

350 mm

9 mm

200 mm

y

z
35 mm

75 mm

H

K

x

y

A B
K

H

80 kN/m
60 kN

1.5 m3 m 1.5 m

1 m 1 m

Plan the Solution
The moment of inertia of the wide-fl ange section will be computed from the cross-

sectional dimensions. The shear-force and bending-moment diagrams will be constructed 

for the simply supported beam. From these diagrams, the internal shear force and the 

EXAMPLE 15.2

The simply supported wide-fl ange beam supports the loadings shown. Determine the 

principal stresses and maximum shear stress at points H and K. Show these stresses on a 

properly oriented stress element.
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x

y

A B
K

H

80 kN/m
60 kN

1.5 m3 m 1.5 m

1 m 1 m

105 kN195 kN

237.66 kN-m 225 kN-m

157.50 kN-m
155 kN-m

180 kN-m

M

2.4375 m

195 kN

�45 kN

�105 kN
�105 kN

115 kN

�45 kN

V

 internal bending moment acting at the points of interest will be  determined. The fl exure 

formula and the shear stress formula will be used to compute the normal and shear stresses 

acting at each point. These stresses will be summarized on stress elements for each point, 

and then stress transformation calculations will be used to determine the principal stresses 

and maximum shear stress for the stress element at H. The process will be repeated for the 

stresses acting at K.

SOLUTION
Moment of Inertia
The moment of inertia for the wide-fl ange section can be computed from the following:

Iz
( mm)( mm) ( mm)( mm)

.
200 350

12

191 318

12
202 74 1

3 3
006 4mm� � � �

Shear-Force and Bending-Moment Diagrams
The shear-force and bending-moment diagrams for the simply supported beam are 

shown.
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16 mm

350 mm

9 mm

200 mm

y

z
35 mm

H

Shear Force and Bending Moment at H
At the location of point H, the internal shear force is V � 115 kN and the 

internal bending moment is M � 155 kN-m. These internal forces act in 

the directions shown to the right.

x

26.76 MPa

40.50 MPa

H

x

26.76 MPa

40.50 MPa

H

56.0 MPa
29.3 MPa

13.38 MPa

42.7 MPa

35.9°

x

y

A
H

80 kN/m

1 m

V � 115 kN

M � 155 kN-m

195 kN

Normal and Shear Stresses at H
Point H is located 35 mm below the z centroidal axis; therefore, y � �35 mm. 

The bending stress at H can be calculated from the fl exure formula:

x
z

My

I

( ) ( mm)( ) (155 35kN-m 1,000 N/kN 1,000 mm/m))

. mm

. MPa . MPa (T)

202 74 10

26 76 26 76

6 4
�

� �

� �
�

�
��

Note that this tension normal stress acts parallel to the longitudinal axis of the 

beam; that is, in the x direction.

Before the shear stress can be computed for point H, Q for the high-

lighted area must be calculated. The fi rst moment of the highlighted area about 

the z centroidal axis is Q � 642,652 mm3. The shear stress at H due to beam 

fl exure can be calculated as

 ( )VQ

I tz

( kN) mm ( )

.

115

202 74 10

3642,652 1,000 N/kN
66 4 9

40 50
mm ( mm)

. MPa
( )

� � �
�

�

This shear stress acts in the same direction as the internal shear force V. There-

fore, on the right face of the stress element, the shear stress � acts downward.

Stress Element for Point H
The tension normal stress due to the bending moment acts on the x faces of the 

stress element. The shear stress acts downward on the �x face of the stress ele-

ment. After the proper shear stress direction has been established on one face, 

the shear stress directions on the other three faces are known.

Stress Transformation Results at H
The principal stresses and the maximum shear stress at H can be 

determined from the stress transformation equations and procedures 

detailed in Chapter 12. The results of these calculations are shown in 

the fi gure to the right.
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Shear Force and Bending Moment at K
At the location of point K, the internal shear force is 

V � �45 kN and the internal bending moment is M � 

180 kN-m. These internal forces act in the directions 

shown to the left.

16 mm

350 mm

9 mm

200 mm

y

z

75 mm

K

xB
K

60 kN

1.5 m0.5 m

V � 45 kN

M � 180 kN-m

105 kN

x

66.59 MPa

15.36 MPa

K

x

66.59 MPa

15.36 MPa

K

70.0 MPa

3.37 MPa

33.3 MPa

36.7 MPa

12.4°

Normal and Shear Stresses at K
Point K is located 75 mm above the z centroidal axis; therefore, y � 75 mm. The 

bending stress at K can be calculated from the fl exure formula:

 
x

z

My

I

( ) ( mm)( ) ( )180 75kN-m 1,000 N/kN 1,000 mm/m

2202 74 10

66 6 66 6

6 4. mm

. MPa . MPa (C)

�

� � �

� �
�

��

Note that this compression normal stress acts parallel to the longitudinal axis of 

the beam; that is, in the x direction.

To compute the shear stress at K, Q must be calculated for the high-

lighted area. The fi rst moment of the highlighted area about the z centroidal 

axis is Q � 622,852 mm3. The shear stress at K due to beam fl exure can be 

calculated as

 ( )VQ

I tz

( kN) mm ( )

.

45

202 74 10

3

6

622,852 1,000 N/kN

mmm ( mm)
. MPa

4 9
15 36

( )
� �

�
��

Generally, the magnitude of V is used in this calculation and the direction of the 

shear stress is determined by inspection. The shear stress acts in the same direction 

as the internal shear force V. Therefore, on the left face of the stress element, the 

shear stress � acts downward.

Stress Element for Point K
Compression bending stress acts on the x faces of the stress element, and the 

shear stress acts downward on the �x face of the stress element. After the proper 

shear stress direction has been established on one face, then the shear stress 

 directions on the other three faces are known.

Stress Transformation Results at K
The principal stresses and the maximum shear stress at K are 

shown in the fi gure to the left.
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635

A cantilever beam has a uniformly distributed load of 2 kips/ft. 

The beam cross section is a tee shape. At a distance of 1 ft from 

the fi xed support, determine the principal stresses and the maxi-

mum shearing stress at point D located 4 in. above the bottom of 

the tee stem.

 MecMovies Example M15.2MM

A steel rectangular tube shape is used as a beam to support the loads shown. Determine the 

principal stresses and the maximum shear stress at point H, which is located 1 m to the right 

of pin support A.

 MecMovies Example M15.3MM

A steel wide-fl ange beam carries loads that create an internal shear 

force of V � 60 kips and an internal bending moment of M � 150 kip-ft 

at a particular point along the span. Determine the normal and shear 

stresses that act at point B located on the surface of the steel shape, 

3 in. above the centroid.

 MecMovies Example M15.4MM
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Plan the Solution
Inclined rod (1), a two-force member, will provide a vertical reaction force to the beam 

at B. Since the rod is inclined, it creates an axial force that compresses the beam in the 

region between A and B. The rod is also connected 8 in. above the centerline of the HSS, 

and this eccentricity produces an additional bending moment in the beam. The analysis 

begins by calculating the beam reaction forces at A and B. Once these forces have been 

determined, a free-body diagram (FBD) that cuts through the beam at H will be drawn to 

establish the equivalent forces acting at the section of interest. The normal and shear 

stresses created by the equivalent forces will be calculated and shown on a stress element 

for point H. Stress transformations will be used to calculate the principal stresses and the 

maximum shear stresses at H.

SOLUTION
Beam Reactions
A FBD of the beam is drawn showing the hori-

zontal and vertical reaction forces from the pin 

connection at A and the axial force in inclined 

rod (1), which is a two-force member. Note that 

the angle of rod (1) must take into account the 

8-in. offset of the rod connection from the cen-

terline of the HSS:

tan .

.

56 8

72
0 66667

33 69

in. in.

in.

°

��

� ��

�
�

x

y

A B C

D

H

20 kips

27 in.

72 in. 36 in.

8 in.

48 in.
56 in.

F1

33.69°

Ay

Ax

x

y

A B C

D

H

20 kips

27 in.

72 in. 36 in.

8 in.

56 in.

(1)

10 in.

0.25 in.

6 in.

y

z

2.5 in.

H

Cross-sectional dimensions.

A steel hollow structural section (HSS) is supported by a pin connection at A and by an 

inclined steel rod (1) at B as shown below. A concentrated load of 20 kips is applied to the 

beam at C. Determine the principal stresses and maximum shear stress acting at point H.
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The following equilibrium equations can be developed from the FBD:

 
F A Fx x 1 33 69 0cos ( . )°� � �Σ

 
(a)

 
F A Fy y 1 33 69 20 0sin ( . ) kips°� � � �Σ

 
(b)

 

M F FA 1 133 69 72 33 69 8

2

sin ( . ) ( ) cos ( . ) ( )

(

° in. ° in.

00 72 36 0kips) ( )in. in.

� �

� � �

Σ
 

(c)

From Equation (c), the internal axial force in rod (1) can be computed as F1 � 46.4 kips. 

This result can be substituted into Equations (a) and (b) to obtain the reactions at 

pin A: Ax � 38.6 kips and Ay � �5.71 kips. Since the value computed for Ay is negative, 

this reaction force actually acts opposite to the direction assumed initially.

FBD Exposing Internal Forces at H
A FBD is cut through the section containing point H. This FBD, including 

the external reaction forces at pin A, is shown. The internal forces acting 

at the section of interest can be calculated from this FBD.

The internal axial force is F � 38.6 kips, acting in compression. The 

internal shear force is V � 5.71 kips, acting upward on the exposed right 

face (i.e., the �x face) of the FBD. The internal bending moment can be 

calculated by summing moments about the centerline of the HSS at the 

section containing point H:

M M MH ( . kips) ( ) . kip-5 71 27 0 154 2in. in.� � � ��Σ
 

(d)

Section properties: The cross-sectional area of the HSS is

A ( ) ( ) ( . ) ( . ) .6 10 5 5 9 5 7 75 2in. in. in. in. in.� � �

The moment of inertia of the cross-sectional area about the z centroidal 

axis is

Iz
( )( ) ( . )( . )

.
6 10

12

5 5 9 5

12
107 04

3 3in. in. in. in.
inn.4� � �

The fi rst moment of area Q corresponding to point H can be calculated for 

the highlighted area as

QH 2 0 25 2 5 3 75 5 5 0 25( . )( . )( . ) ( . )( .in. in. in. in. in.))( . )

.

4 875

11 391 3

in.

in.

� �

�

Stress Calculations

Axial stress due to F: The internal axial force F � 38.6 kips creates 

a uniformly distributed compression normal stress that acts in the x 

direction. The stress magnitude is computed as

axial
. kips

.
. ksi (C)

F

A

38 6

7 75
4 98

2in.
�� � �

A H

27 in.

38.6 kips

5.71 kips

5.71 kips

154.2 kip-in.

38.6 kips

Free-body diagram at H.

10 in.

0.25 in.

6 in.

y

z

2.5 in.

H
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M15.2 The inverted tee shape is subjected to a transverse shear 

force V and a bending moment M, each acting in the direction 

shown. Determine the bending stress, the transverse shear stress 

magnitude, the principal stresses, and the maximum shear stress 

acting at location H.

 MecMovies Exercises MM

FIGURE M15.2

The 154.2 kip-in. internal bending moment acting as shown creates tension normal 

stresses above the z centroidal axis in the HSS. To compute the bending stress by the 

fl exure formula, the bending moment has a value of M � �154.2 kip-in. and the y coordinate 

for point H is y � 2.5 in.

bend
( . ) ( . )

.

My

Iz

154 2 2 5

107 04 4

kip-in. in.

in.
33 60. ksi (T)�� � � ��

�

The shear stress at H associated with the 5.71-kip shear force can be calculated from the 

shear stress formula:

H
z

VQ

I t ( )
( . kips) ( )

. (

5 71

107 04 2 04

11.391 in.

in.

3

.. )
. ksi

25
1 215

in.
�� � �

�

Stress element: The normal and shear stresses at H are shown on the stress 

element. The normal stresses due to both the axial force and the bending 

moment act in the x direction.

The direction of the shear stress on the stress element can be determined 

from the FBD at H. The internal shear force at H acts upward on the right face 

of the FBD. The shear stress due to V � 5.71 kips acts in the same direction—

that is, upward on the right face of the stress element.

Stress transformation results at H: The principal stresses and the 

maximum shear stress at H can be determined from the stress 

transformation equations and procedures detailed in Chapter 12. The 

results of these calculations are shown in the fi gure to the left.

x

4.98 ksi

3.60 ksi

1.216 ksi

H

x

1.373 ksi

1.216 ksi

2.080 ksi
0.710 ksi

0.687 ksi

1.396 ksi
30.3°

H
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M15.3 The rectangular tube is subjected to a transverse shear 

force V and a bending moment M, each acting in the direction 

shown. Determine the bending stress, the transverse shear stress 

magnitude, the principal stresses, and the maximum shear stress 

acting at location H.

M15.4 The wide-fl ange shape is subjected to a transverse shear 

force V and a bending moment M, each acting in the direction 

shown. Determine the bending stress, the transverse shear stress 

magnitude, the principal stresses, and the maximum shear stress 

acting at location H.

FIGURE M15.4

P15.19 A fl anged-shaped fl exural member is subjected to an 

internal axial force of P � 11.8 kN, an internal shear force of V � 

21.3 kN, and an internal bending moment of M � 4.7 kN-m, as 

shown Figure P15.19a. The cross-sectional dimensions of the shape 

as shown in Figure P15.19b are b1 � 42 mm, b2 � 80 mm, tf � 6 mm, 

d � 90 mm, tw � 6 mm, and a � 20 mm. Determine the principal 

stresses and the maximum shear stress acting at points H and K. 

Show these stresses on an appropriate sketch for each point.

FIGURE P15.19a

H

K

V

M

P
x

y

z

FIGURE M15.3

P15.20 A steel hollow structural section (HSS) fl exural member 

(Figure P15.20b) is subjected to a load of P � 27 kips as shown in 

Figure P15.20a. The cross-sectional dimensions of the shape as 

shown in Figure P15.20b are d � 12.00 in., b � 8.00 in., t � 0.25 

in., xH � 4.0 in., and xK � 3.0 in. Using a � 19 in., determine the 

principal stresses and the maximum shear stress acting at points H 

and K, as shown Figure P15.20b. Show these stresses on an appro-

priate sketch for each point.

x

y

z

KH

P

a

FIGURE P15.20a

x
z

d

t
b

xH xK

KH

FIGURE P15.20b

y

z

tf

tf

tw d

b1

b2

a

a

H

K

FIGURE P15.19b
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P15.21 The simply supported beam shown in Figure P15.21a/ 

22a supports a uniformly distributed load of w � 75 kN/m. The 

cross-sectional dimensions of the beam shown in Figure P15.21b/ 

22b are bf � 280 mm, tf � 20 mm, d � 460 mm, tw � 12 mm, and 

yH � 110 mm. Determine the principal stresses and the maximum 

shear stress acting at point H. Show these stresses on an appropriate 

sketch.

P15.22 The simply supported beam shown in Figure P15.21a/

22a supports a uniformly distributed load of w � 75 kN/m. The 

cross-sectional dimensions of the beam shown in Figure P15.21b/ 

22b are bf � 280 mm, tf � 20 mm, d � 460 mm, tw � 12 mm, and 

yK � 80 mm. Determine the principal stresses and the maximum 

shear stress acting at point K. Show these stresses on an appropriate 

sketch.

P15.23 The simply supported beam shown in Figure P15.23a/24a 

supports two concentrated loads of magnitude P1 � 12 kips and 

P2 � 42 kips. The cross-sectional dimensions of the beam shown in 

Figure P15.23b/24b are bf � 10.00 in., tf � 0.65 in., d � 16.00 in., 

tw � 0.40 in., and yH � 6.00 in. Using a � 9 ft and xH � 3 ft, deter-

mine the principal stresses and the maximum shear stress acting at 

point H. Show these stresses on an appropriate sketch.

P15.24 The simply supported beam shown in Figure P15.23a/ 

24a supports two concentrated loads of magnitude P1 � 12 kips and 

P2 � 42 kips. The cross-sectional dimensions of the beam shown in 

Figure P15.23b/24b are bf � 10.00 in., tf � 0.65 in., d � 16.00 in., 

tw � 0.40 in., and yK � 2.00 in. Using a � 9 ft and xK � 7 ft, deter-

mine the principal stresses and the maximum shear stress acting at 

point K. Show these stresses on an appropriate sketch.

P15.25 The simply supported beam shown in Figure 

P15.25a/26a supports a uniformly distributed load of w � 300 lb/ft 

between supports A and B and a concentrated load of P � 750 lb at 

end C. The cross-sectional dimensions of the beam shown in Figure 

P15.25b/26b are bf � 10 in., tf � 2 in., d � 12 in., and tw � 2 in. 

Using L � 12 ft and xK � 2 ft, determine the principal stresses and 

the maximum shear stress acting at point K, which is located at a 

distance of a � 5 in. above the bottom edge of the tee stem. Show 

these stresses on an appropriate sketch. 

P15.26 The simply supported beam shown in Figure P15.25a/26a 

supports a uniformly distributed load of w � 300 lb/ft between sup-

ports A and B and a concentrated load of P � 750 lb at end C. The 

cross-sectional dimensions of the beam shown in Figure 

P15.25b/26b are bf � 10 in., tf � 2 in., d � 12 in., and tw � 2 in. 

Using L � 12 ft and xH � 3 ft, determine the principal stresses and 

the maximum shear stress acting at point H, which is located at a 

distance of a � 5 in. above the bottom edge of the tee stem. Show 

these stresses on an appropriate sketch.

x

y

A BK
H

w

5.5 m3.5 m

1.5 m 2.5 m

FIGURE P15.21a/22a

tf

d

tw

bf

y

zyK

yH

K

H

FIGURE P15.21b/22b

x

y

A BK
H

P1 P2

xH xK

a a a

FIGURE P15.23a/24a

x

y

A B CKH

w
P

xH xK

L L
2

FIGURE P15.25a/26a

FIGURE P15.23b/24b

tf

d
tw

bf

y

z
yH

yK

H
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x

z

6 in.

12 in.

H K
3.25 in.

FIGURE P15.27b

y

x

56 in.

18 in.

34 in.

H

K

6 kips

8 kips

16 kips

FIGURE P15.27a

P15.28 For horizontal fl exural member AB, determine the prin-

cipal stresses and the maximum shear stress acting at points H and 
K, as shown on Figures P15.28a and P15.28b. Show these stresses 

on an appropriate sketch for each point.

16 mm

100 mm

16 mm

60 mm

50 mm

H, K

y

z

FIGURE P15.28b

800 mm900 mm

600 mm 300
mm1,130 mm

40 mm

y

x

A
B

C

H K

30 N/mm6,000 N

FIGURE P15.28a
FIGURE P15.25b/26b

bf

tf

tw

d

a

y

z

H, K

P15.29 For vertical fl exural member BD, determine the princi-

pal stresses and the maximum shear stress acting at point H, as 

shown on Figures P15.29a and P15.29b. Show these stresses on an 

appropriate sketch.

70 in.

12 in.

76 in.

100 in. 54 in.

20 in.

35 kipsy

x

A

B

C

D

E

H

50°

FIGURE P15.29a

P15.27 For the vertical fl exural member shown, determine the 

principal stresses and the maximum shear stress acting at points H 

and K, as shown on Figures P15.27a and P15.27b. Show these 

stresses on an appropriate sketch for each point.
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P15.30 For horizontal fl exural member AB, determine the prin-

cipal stresses and the maximum shear stress acting at points H and 
K, as shown on Figures P15.30a and P15.30b. Show these stresses 

on an appropriate sketch for each point.

10 in.

8.5 ft

y

xA

B

C

H
K

2 ft 2 ft

4 ft 4 ft 4 ft

25 kips 15 kips

FIGURE P15.30a

14.00 in.

0.455 in.

0.285 in.

6.75 in.

y

z

3 in.

H

2 in.

K

FIGURE P15.30b

P15.31 The beam shown in Figure P15.31a is supported by a tie 

bar at B and by a pin connection at C. The beam span is L � 7 m, and 

the uniformly distributed load is w � 22 kN/m. The tie bar at B has 

an orientation of � � 25�. The cross-sectional dimensions of the 

beam shown in Figure P15.31b are bf � 130 mm, tf � 12 mm, d � 

360 mm, tw � 6 mm, and yH � 50 mm. Determine the principal 

stresses and the maximum shear stress acting at point H. Show these 

stresses on an appropriate sketch.

P15.32 A load of P � 1,800 N acts on the machine part shown 

in Figure P15.32a. The machine part has a uniform thickness of 

6 mm (i.e., 6-mm thickness in the z direction). Determine the prin-

cipal stresses and the maximum shear stress acting at points H and 
K, which are shown in detail in Figure P15.32b. Show these stresses 

on an appropriate sketch for each point.

x

y

50 mm

75 mm

135 mm

50 mm

H

K

60°

1,800 N

A B

C

FIGURE P15.32a

3 in.

10 in.0.75 in. 0.75 in.

10 in.x

z

0.5 in.

H

FIGURE P15.29b
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x

y

A B
H

P

48 in. 48 in. 36 in.

FIGURE P15.33a

8 in.

2 in.

2 in.

6 in. 2 in.2 in.

y

z

3.25 in.

H

FIGURE P15.33b

P15.33 The wood beam shown in Figure P15.33a has the cross 

section shown in Figure P15.33b. At point H, the allowable com-

pression principal stress is 400 psi and the maximum allowable in-

plane shear stress is 110 psi. Determine the maximum allowable 

load P that may be applied to the beam.

x

y

12 mm

40 mm

40 mm

15 mm

B

H

K

FIGURE P15.32b Detail at pin B.
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In numerous industrial situations, axial, torsional, and fl exural loads act simultaneously on 

machine components, and the combined effects of these loads must be analyzed to determine 

the critical stresses developed in the component. Although an experienced designer can usually 

predict one or more points where high stress is likely, the most severely stressed point on any 

particular cross section may not be obvious. As a result, it is usually necessary to analyze the 

stresses at more than one point before the critical stresses in the component can be known.

Calculation Procedures

To determine the principal stresses and the maximum shear stress at a particular point in a com-

ponent subjected to axial, torsion, bending, and pressure, the following procedures are useful:

1.  Determine the statically equivalent forces and moments acting at the section of interest. 

In this step, a complicated three-dimensional component or structure subjected to mul-

tiple loads is reduced to a simple, prismatic member with no more than three forces and 

three moments acting at the section of interest.

 a.  In fi nding the statically equivalent forces and moments, it is often convenient to consider 

the portion of the structure or component that extends from the section of interest to the 

free end of the structure. The statically equivalent forces at the section of interest are 

found by summing the loads that act on this portion of the structure (i.e., 	Fx, 	Fy, and 

	Fz). Note that these summations do not include the reaction forces.

 b.  The statically equivalent moments can be more diffi cult to determine correctly than the 

statically equivalent forces, since both a load magnitude and a distance term make up 

each moment component. One approach is to consider each load on the structure in turn. 

The moment magnitude, the axis about which the moment acts, and the sign of the 

 moment must be assessed for each load. In addition, a single load on the structure may 

create unique moments about two axes. After all moment components have been deter-

mined, the statically equivalent moments at the section of interest are found by summing 

the moment components in each direction (i.e., 	Mx, 	My, and 	Mz).

15.4 General Combined Loadings
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COMBINED LOADS

 c.  As the geometry of the structure and the loads becomes more complicated, it is often 

easier to use position vectors and force vectors to calculate equivalent moments. 

A position vector r from the section of interest to the specifi c point of load applica-

tion is determined, along with a vector F describing the forces acting at that point. 

The moment vector M is computed from the cross product of the position and force 

vectors; that is, M � r � F. If loads are applied at more than one location on the 

structure, then multiple cross products must be computed.

2.  After the statically equivalent forces and moments at the section of interest have been 

determined, prepare two sketches showing the magnitude and direction of all forces and 

moments acting at the section of interest. Typical sketches are shown in Figures 15.3 and 

15.4. These sketches help organize and clarify the results before the stress computations 

are addressed.

3.  Determine the stresses produced by each of the equivalent forces.

 a.  An axial force (force Fz in Figure 15.3a and force Fy in Figure 15.4a) produces either 

tension or compression normal stress given by � � F/A.

 b.  Shear stresses computed with the equation � � VQ/It are associated with shear 

forces (forces Fx and Fy in Figure 15.3a and forces Fx and Fz in Figure 15.4a). Use 

the direction of the shear force arrow on the section of interest to establish the direc-

tion of � on the corresponding face of the stress element. Recall that � associated 

with shear forces is parabolically distributed on a cross section (e.g., see Figure 

9.10). For circular cross sections, Q is calculated from Equations (9.7) or (9.8) for 

solid cross sections, or Equation (9.10) for hollow cross sections.

4.  Determine the stresses produced by the equivalent moments.

 a.  Moments about the longitudinal axis of the component at the section of interest are 

termed torques. In Figure 15.3b, Mz is a torque, while My is a torque in Figure 15.4b. 

Torques produce shear stresses that are calculated from � � Tc/J, where J is the polar 
moment of inertia. Recall that the polar moment of inertia for a circular cross section 

is computed as

 

J d

J D d

�

� �

�

�
[ ]

32

32

4

4 4

(for solid circular sections)

(foor hollow circular sections)

   Use the direction of the torque to determine the direction of � on the transverse face 

of the stress element at the point of interest.

FIGURE 15.3 Statically equivalent forces and moments at section of interest.
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Fy

zF

y

z

x

H

K

(a) Equivalent forces

y

z

x

H

K

xM

yM

zM

(b) Equivalent moments

Fx

Fy

zF

xz

y

H K

(a) Equivalent forces

xM

yM

zM

xz

y

H K

(b) Equivalent moments

FIGURE 15.4 Statically 

equivalent forces and moments 

at section of interest.

Note that the area moment of 
inertia I is used to calculate 

shear stresses associated with 

shear forces. Recall that these 

shear stresses arise from 

nonuniform bending in the 

fl exural component.

Note that the cross product is

not commutative; therefore, the 

moment vector must be 

computed as M � r � F, 

not F � r.
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645
GENERAL COMBINED 

LOADINGS
 b.  Bending moments produce normal stresses that are linearly distributed with respect 

to the axis of bending. In Figure 15.3b, Mx and My are bending moments, while Mx 

and Mz are bending moments in Figure 15.4b. Calculate the bending stress magni-

tude from � � My/I, where I is the area moment of inertia. Recall that the area mo-

ment of inertia for a circular cross section is computed as

 

I d

I D d[ ]

64

64

4

4 4

(for solid circular sections)

(foor hollow circular sections)

�
�

� �
�

  The sense of the stress (either tension or compression) can be determined by inspec-

tion. Recall that bending stresses act parallel to the longitudinal axis of the fl exural 

member. Therefore, bending stresses in Figure 15.3b act in the z direction, while 

bending stresses act in the y direction in Figure 15.4b.

5.  If the component is a hollow circular section that is subjected to internal pressure, lon-

gitudinal and circumferential normal stresses are created. The longitudinal stress is cal-

culated from �long � pd/4t, and the circumferential stress is given by �hoop � pd/2t, 
where d is the inside diameter. Note that the term t in these two equations refers to the 

wall thickness of the pipe or tube. The term t appearing in the context of the shear stress 

equation � � VQ/It has a different meaning. For a pipe, the term t in the equation � � 

VQ/It is actually equal to the wall thickness times 2!

6.  Using the principle of superposition, summarize the results on a stress element, taking 

care to identify the proper direction for each stress component. As stated previously, it 

is generally more reliable to use inspection to establish the direction of normal and 

shear stresses acting on the stress element.

7.  Once the stresses on orthogonal planes through the point are known and summarized on 

a stress element, the methods of Chapter 12 can be used to calculate the principal 

stresses and the maximum shear stresses at the point.

The following examples illustrate the procedure for the solution of elastic combined load 

problems:

 For stresses below the 

 proportional limit, the 

 superposition principle allows 

similar types of stresses at a 

specifi c point to be added 

together. For instance, all normal 

stresses acting on the x face of 

a stress element can be added 

algebraically.

x

y

z

a

d

c

P � 70 kN

120 mm

30 mm
55 mm

EXAMPLE 15.4

A short post supports a load of P � 70 kN as shown. Determine the normal 

stresses at corners a, b, c, and d of the post.

Plan the Solution
The load P � 70 kN will create normal stresses at the corners of the post in 

three ways. The axial load P will create compression normal stress that is dis-

tributed uniformly over the cross section. Since P is applied 30 mm away from 

the x centroidal axis and 55 mm away from the z centroidal axis, P will also 

create bending moments about these two axes. The moment about the x axis 

will create tension and compression normal stresses that will be linearly dis-

tributed across the 80-mm width of the post. The moment about the z axis will 

create tension and compression normal stresses that will be linearly distributed 

across the 120-mm depth of the cross section. The normal stresses created by 

the axial force and the bending moments will be determined at each of the four 

corners, and the results will be superimposed to give the normal stresses at a, 

b, c, and d.
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a

d

c

b

x

y

z

F � 70 kN

xM � 2.10 kN-m

zM � 3.85 kN-m

x

y

z

F � 70 kN

a

d

c

7.29 MPa

120 mm

80 mm
30 mm

55 mm

x

z

ab

c d

P

Cross-sectional dimensions and 
location of load application.
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SOLUTION
Section Properties
The cross-sectional area of the post is

A ( mm)( mm) mm80 120 29,600� �

The moment of inertia of the cross-sectional area about the x centroidal 

axis is

Ix
( mm)( mm)

. mm
120 80

12
5 120 10

3
6 4� � �

and the moment of inertia about the z centroidal axis is

                             Iz
( mm)( mm)

. mm
80 120

12
11 52 10

3
6 4� � �

  Since Iz 
 Ix for the coordinate axes shown, the x axis is termed the 

weak axis and the z axis is termed the strong axis.

Equivalent Forces in the Post
The vertical load P � 70 kN applied 30 mm from the x axis and 

55 mm from the z axis is statically equivalent to an internal axial force 

of F � 70 kN, an internal bending moment of Mx � 2.10 kN-m, and 

an internal bending moment of Mz � 3.85 kN-m. The stresses created 

by each of these will be considered in turn.

Axial Stress Due to F
The internal axial force F � 70 kN creates compression normal stress 

that is uniformly distributed over the entire cross section. The stress 

magnitude is computed as

axial
( kN)( )

mm
. MPa (C)

F

A

70
7 29

2

1,000 N/kN

9,600
�� � �

Bending Stress Due to Mx
The bending moment acting as shown about the x axis creates com-

pression normal stress on side cd and tension normal stress on side 

ab of the post. The maximum bending stress occurs at a distance of 

z � �40 mm from the neutral axis (which is the x centroidal axis for 

Mx). The maximum bending stress magnitude can be computed as

bend
( . ) ( mm)( ) (M zx

xI

2 10 40kN-m 1,000 N/kN 1,000 mmm/m)

. mm

. MPa

45 120 10

16 41

6
�� �

� �

�

�

Bending Stress Due to Mz
The bending moment acting as shown about the z centroidal axis 

creates compression normal stress on side ad and tension normal 

stress on side bc of the post. The maximum bending stress occurs at 

a distance of x � �60 mm from the neutral axis (which is the z 

x

y

z

xM � 2.10 kN-m
a

d

c

16.41 MPa16.41 MPa
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Two loads are applied as shown to the 80-mm by 45-mm cantilever beam. 

Determine the normal and shear stresses at point H.

 MecMovies Example M15.5MM

 centroidal axis for Mz). The maximum bending stress magnitude can be 

computed as

bend
( . ) ( mm)( ) (M x

I
z

z

3 85 60kN-m 1,000 N/kN 1,000 mmm/m)

. mm

. MPa

411 52 10

20 05

6
�

� �

� �
�

�

Normal Stresses at Corners a, b, c, and d
The normal stresses acting at each of the four corners of the post can be deter-

mined by superimposing the preceding results. In all instances, the normal 

stresses act in the vertical direction—that is, the y direction. The sense of the 

stress, either tension or compression, can be determined by inspection.

Corner a:

 
a 7 29 16 41 20 05

7 29

. MPa (C) . MPa (T) . MPa (C)

. MPa 116 41 20 05

10 93 10 93

. . MPa

. MPa . MPa (C)

MPa

� � �

� � � �

� � �

�
 

Ans.

Corner b:

 
b 7 29 16 41 20 05

7 29

. MPa (C) . MPa (T) . MPa (T)

. MPa 116 41 20 05

29 17 29 17

. . MPa

. MPa . MPa (T)

MPa

� � �

�

� �

� � �

�
 

Ans.

Corner c:

 
c 7 29 16 41 20 05

7 29

. MPa (C) . MPa (C) . MPa (T)

. MPa 116 41 20 05

3 65 3 65

. . MPa

. MPa . MPa (C)

MPa

� � �

�

� � �

� � �

�
 

Ans.

Corner d:

 
d 7 29 16 41 20 05

7 29

. MPa (C) . MPa (C) . MPa (C)

. MPa 116 41 20 05

43 75 43 75

. . MPa

. MPa . MPa (C)

MPa

� � �

� � � �

� ��

�
 

Ans.

x

y

z

zM � 3.85 kN-m

a

d

c

20.05 MPa
20.05 MPa
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A rectangular post has cross-sectional dimensions of 200 mm (height) by 

80 mm (width). The post is subjected to a concentrated force of 10 kN acting in 

the x–y plane at an angle of 60� with the vertical direction. Determine the stresses 

that act in the x and y directions at point B, which is located on the front face of 

the post, 10 mm to the left of the longitudinal centerline.

 MecMovies Example M15.7MM

500 mm

160 mm

640 N

x

y

z K

H

y

z d  = 36 mm
K

H

Shaft cross section.

EXAMPLE 15.5

A 36-mm solid shaft supports a 640-N load as shown. 

Determine the principal stresses and the maximum shear 

stress at points H and K.

Plan the Solution
The 640-N load applied to the gear will create a vertical 

shear force, a torque, and a bending moment in the shaft at 

the section of interest. These internal forces will create nor-

mal and shear stresses at points H and K, but because point 

H is located on the top of the shaft and point K is located on 

the side of the shaft, the states of stress will differ at the two 

points. We will begin the solution by determining a system 

of forces and moments acting at the section of interest that is statically equivalent to 

the 640-N load applied to the teeth of the gear. The normal and shear stresses cre-

ated by this equivalent force system will be computed and shown in their proper 

directions on a stress element for both point H and point K. Stress transformation 

calculations will be used to determine the principal stresses and maximum shear 

stress for each stress element.

SOLUTION
Equivalent Force System
A system of forces and moments that is statically equivalent to the 640-N load can 

be readily determined for the section of interest.

The equivalent force at the section is equal to the 640-N load on the gear. Since 

the line of action of the 640-N load does not pass through the section that includes 

points H and K, the moments produced by this load must be determined.

648
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x

y

z K

H

640 N

320 N-m

102.4 N-m

K

H

The moment about the x axis (i.e., a torque) is the product of the 

force magnitude and the distance in the z direction from the section 

of interest to the gear teeth: Mx � (640 N)(160 mm) � 102,400 

N-mm � 102.4 N-m. Similarly, the moment about the z axis is the 

product of the force magnitude and the distance in the x direction 

from points H and K to the gear teeth: Mz � (640 N) (500 mm) � 

320,000 N-mm � 320 N-m. By inspection, these moments act in the 

directions shown.

Alternate method: The geometry of this problem is relatively simple; therefore, the 

equivalent moments can be determined readily by inspection. For situations that are 

more complicated, it is sometimes easier to determine the equivalent moments from 

position vectors and force vectors.

The position vector r from the section of interest to the point of load application is 

r � 500 mm i � 160 mm k. The load acting on the gear teeth can be expressed as the 

force vector F � �640 N j. The equivalent moment vector M can be determined from 

the cross product M � r � F:

M r F
kji

500 0 160

0 640 0

102,400 N-mm i 320,000 N-mm k� � � � �

�

For the coordinate axes used here, the axis of the shaft extends in the x direction; 

therefore, the i-component of the moment vector is recognized as a torque, while the 

k-component is simply a bending moment.

Section Properties
The shaft diameter is 36 mm. The polar moment of inertia will be required to calculate 

the shear stress caused by the internal torque in the shaft:

J d
32 32

364 4 4( mm) mm164,896�
� �

� �

The moment of inertia of the shaft about the z centroidal axis is

I dz 64 64
364 4 4( mm) mm82,448�

� �
� �

Normal Stresses at H
The 320 N-m bending moment acting about the z axis creates normal stress that varies 

over the depth of the shaft. At point H, the bending stress can be computed from the 

fl exure formula as

x
z

M c
I

( ) ( mm)

mm
. MPa (T)

4

320,000 N-mm

82,448

18
69 9�� � �
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K

H

Shear Stresses at H
The 102.4 N-m torque acting about the x axis creates shear stress at H. The magnitude of 

this shear stress can be calculated from the elastic torsion formula:

Tc

J

( ) ( )

mm
. MPa

4

102,400 N-mm mm

164,896

36 2
11 18� � ��

The transverse shear stress associated with the 640-N shear force is zero at H.

K

H

x

z

69.9 MPa

11.18 MPa

H

71.6 MPa

1.745 MPa

34.9 MPa

36.7 MPa

8.87°

K

H

K

H

Shear Stresses at K
The 102.4 N-m torque acting about the x axis creates shear stress at K. The magnitude 

of this shear stress at K is the same as the stress magnitude at H: � � 11.18 MPa.

The 640-N shear force acting vertically at the section of interest is also associ-

ated with shear stress at point K. From Equation (9.8), the fi rst moment of area Q for 

a solid circular cross section is

Q
d3 3

12

36

12

( mm)
mm33,888� � �

The shear stress formula [Equation (9.2)] is used to calculate the shear stress:

( )
( )

VQ

I tz

( N) mm

mm ( mm)
.

3

4

640

36
0 838

3,888

82,448
MMPa�� � �

x

z

69.9 MPa

11.18 MPa

H

Stress Transformation Results at H
The principal stresses and the maximum shear stress at H are shown in the following fi gure:

Combined Stresses at H
The normal and shear stresses acting at point H can be summarized on a stress element.

Normal Stresses at K
The 320 N-m bending moment acting about the z axis creates normal stress that 

varies over the depth of the shaft. Point K, however, is located on the z axis, which 

is the neutral axis for this bending moment. Consequently, the bending stress at K 

is zero.
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Combined Stresses at K
The normal and shear stresses acting at point K can be summarized on a stress ele-

ment. Note that at point K, both shear stresses act downward on the �x face of the 

stress element. After the proper shear stress direction has been established on one 

face, the shear stress directions on the other three faces are known.

y

x

12.02 MPa

K
45°

12.02 MPa12.02 MPa

12.02 MPa

y

x

12.02 MPa

K

Stress Transformation Results at K
The principal stresses and the maximum shear stress at K can be determined from 

the stress transformation equations and procedures detailed in Chapter 12. The 

 results of these calculations are shown in the fi gure to the right.

651

A vertical pipe column with an outside diameter of D � 9.0 in. and an inside diameter of 

d � 8.0 in. supports the loads shown. Determine the principal stresses and the maximum 

shear stress at points H and K.

x

y

z

H K

3,000 lb

3,600 lb

2,500 lb

14,000 lb

5 ft 8 ft

11 ft

6 ft

A

B

C

Column cross-sectional 
dimensions.

x

z

d � 8.0 in.

D � 9.0 in.

H

K

Plan the Solution
Several loads act on the structure, making it seem complicated. However, the analysis can 

be simplifi ed considerably by fi rst reducing the system of four loads to a statically deter-

minate system of forces and moments acting at the section of interest. The normal and 

shear stresses created by this equivalent force system will be computed and shown in their 

proper directions on stress elements for points H and K. Stress transformation calcula-

tions will be used to determine the principal stresses and maximum shear stress for each 

stress element.

EXAMPLE 15.6
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SOLUTION
Equivalent Force System
A system of forces and moments that is statically equivalent to the four loads applied at 

points A, B, and C can be readily determined for the section of interest.

The equivalent forces are simply equal to the applied loads. There is no force acting 

in the x direction. The sum of the forces in the y direction is

Fy 2,500 lb 14,000 lb 3,600 lb 12,900 lb�Σ � � � � �

In the z direction, the only force is the 3,000-lb load applied to point C. The equivalent 

forces acting at the section are shown in the fi gure to the left.

The equivalent moments acting at the section of interest can be determined by con-

sidering each load in turn.

•  The 2,500-lb load acting at A creates a moment of (2,500 lb)(5 ft) � 12,500 lb-ft, 

which acts about the �x axis.

•  The line of action of the 14,000-lb load passes through the section of interest; 

therefore, it creates no moments at H and K.

•  The 3,600-lb load acting vertically at C creates a moment about the �z axis of 

(3,600 lb)(8 ft) � 28,800 lb-ft.

•  The 3,000-lb load acting horizontally at C creates two moment components.

•  One moment component acts about the �y axis with a magnitude of 

(3,000 lb)(8 ft) � 24,000 lb-ft.

•  A second moment component acts about the �x axis with a magnitude of 

(3,000 lb)(6 ft) � 18,000 lb-ft.

•  The moments acting about the x axis can be summed to determine the equivalent 

moment:

Mx 12,500 lb-ft 18,000 lb-ft 30,500 lb-ft� � �

For the coordinate system used here, the axis of the pipe column extends in the y direc-

tion; therefore, the moment component acting about the y axis is recognized as a torque; 

the components about the x and z axes are simply bending moments.

Alternate method: The moments that are equivalent to the four-load system can be 

calculated systematically with the use of position and force vectors. The position vector 

r from the section of interest to point A is rA � 11 ft j � 5 ft k. The load at A can be 

expressed as the force vector FA � �2,500 lb j. The moment produced by the 2,500-lb 

load can be determined from the cross product MA � rA � FA:

M r F
i j k

iA A A 0 11 5
0 2 500 0,

12,500 lb-ft� � �

�

�

The position vector from the section of interest to C is rC � 8 ft i � 6 ft j. The load at C 

can be expressed as FC � 3,600 lb j � 3,000 lb k. The moments can be determined from 

the cross product MC � rC � FC:

M r F
i j k

C C C 8 6 0
0 3,600 3,000

18,000 lb-ft 24,000 lii bb-ft 28,800 lb-ftjj kk� � � � ��

xz

y

H K

12,900 lb

3,000 lb

xz

y

H K
30,500

lb-ft
28,800 lb-ft

24,000 lb-ft

Equivalent forces at the 
section that contains 
points H and K.

Equivalent moments at 
the section that contains 
points H and K.
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The equivalent moments at the section of interest are found from the sum of MA and MC:

M M MA C� 30,500 lb-ft 24,000 lb-ft 28,800 lb-fti j k� �� �

Section Properties
The outside diameter of the pipe column is D � 9.0 in., and the inside diameter is d � 8.0 in. 

The area, the moment of inertia, and the polar moment of inertia for the cross section are, 

respectively,

A D d

I

[ ] [ ]
4 4

9 0 8 0 13 3522 2 2 2 2( . ) ( . ) .in. in. in.

[ ] [ ]
64 64

9 0 8 0 121 004 4 4 4D d ( . ) ( . ) .in. in. in.44

4 4 4 4

32 32
9 0 8 0 242 00J D d[ ] [ ]( . ) ( . ) .in. in. inn.4

�
� �

�

� �

�
�

� � � � �

� � � �

� � � �

Stresses at H
The equivalent forces and moments acting at the section of interest will be evaluated 

sequentially to determine the type, magnitude, and direction of any stresses created at H.

The 12,900-lb axial force creates compression normal stress, which acts in the 

y direction:

y
yF

A

12,900

in.

lb

.
psi ( )

13 352
966

2
C�� � � xz

y

H K

12,900 lb

966 psi

448 psi

xz

y

H K

3,000 lb

xz

13,612 psi

H K
30,500

lb-ft

xz

y

H K

24,000 lb-ft

5,355 psi

Although shear stresses are associated with the 3,000-lb shear force, the shear 

stress at point H is zero.

The 30,500 lb-ft bending moment about the x axis creates compression normal 

stress at H:

y
x

x

M c

I

( ) ( . ) ( )

.

30,500 lb-ft in. in./ft

in

4 5 12

121 0 ..
13,612

4
Cpsi ( )�� � �

The 24,000 lb-ft torque acting about the y axis creates shear stress at H. The mag-

nitude of this shear stress can be calculated from the elastic torsion formula:

Tc

J

( ) ( . ) ( )

.

24,000 lb-ft in. in./ft

in.

4 5 12

242 0 4
55,355 psi�� � �
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xz

H K

12,853 psi

28,800 lb-ft

Bending stress
13,611.5 psi

Axial stress
966.2 psi

Torsion shear
5,355.4 psi

H

y

x

14,578 psi

5,355 psi

H

y

x

xz

y

H K

12,900 lb

966 psi

14,578 psi

5,355 psi

H

y

x

16,330 psi

1,756 psi

7,290 psi

9,050 psi
18.2°

The 28,800 lb-ft bending moment about the z axis creates bending stresses at the section 

of interest. Point H, however, is located on the neutral axis for this bending moment, and 

thus, the bending stress at H is zero.

Combined Stresses at H
The normal and shear stresses acting at point H can be summarized on a stress element. 

Notice that the torsion shear stress acts in the �x direction on the �y face of the stress 

element. After the proper shear stress direction has been established on one face, the shear 

stress directions on the other three faces are known.

Stress Transformation Results at H
The principal stresses and the maximum shear stress at H can be determined from the 

stress transformation equations and procedures detailed in Chapter 12. The results of 

these calculations are shown in the following fi gure:

Stresses at K
The equivalent forces and moments acting at the section of interest will again be eval-

uated, this time to determine the type, magnitude, and direction of any stresses created 

at K.

The 12,900-lb axial force creates compression normal stress, which acts in the 

y direction:

y
yF

A

12,900

in.

lb

.
psi ( )

13 352
966

2
C�� � �
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The 3,000-lb shear force acting horizontally at the section of interest is also associ-

ated with shear stress at point K. From Equation (9.10), the fi rst moment of area Q for 

a hollow circular cross section is

Q D d[ ] [ ]
1

12 1
9 0 8 0 18 0833 3 3 31

2
( . ) ( . ) .in. in. in.33� � � � �

The shear stress formula [Equation (9.2)] is used to calculate the shear stress:

( )
( )

VQ

I tx

( lb) .

. (

3,000 in.

in. in.

18 083

121 0 9 8

3

4 iin.)
psi448�� � �

�

The 30,500 lb-ft bending moment about the x axis creates bending stresses at the 

section of interest. Point K, however, is located on the neutral axis for this bending 

moment, and consequently, the bending stress at K is zero.

448 psi

xz

y

H K

3,000 lb

xz

13,612 psi

H K
30,500 lb-ft

xz

y

H K

24,000 lb-ft

5,355 psi

The 24,000 lb-ft torque acting about the y axis creates shear stress at K. The magni-

tude of this shear stress can be calculated from the elastic torsion formula:

Tc

J

( ) ( . ) ( )

.

24,000 lb-ft in. in./ft

in.

4 5 12

242 0 4
55,355 psi�� � �

The 28,800 lb-ft bending moment about the z axis creates tension normal stress 

at K:

y
x

x

M c

I

( ) ( . ) (

.

28,800 lb-ft in. in./ft)

in

4 5 12

121 0 ..
12,853

4
psi (T)� � ��

xz

H K

12,853 psi

28,800 lb-ft

Combined Stresses at K
The normal and shear stresses acting at point K can be summarized on a stress element.

Bending stress
12,852.8 psiTorsion shear

5,355.4 psi

Beam shear
448.3 psi

Axial stress
966.2 psi

K

y

z

11,887 psi

5,804 psi

K

y

z
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A piping system transports a fl uid that has an internal 

pressure of 1,500 kPa. In addition to the fl uid pressure, the 

piping supports a vertical load of 9 kN and a horizontal load 

of 13 kN (acting in the �x direction) at fl ange A. The pipe 
has an outside diameter of D � 200 mm and an inside 

diameter of d � 176 mm. Determine the principal stresses, 

the maximum shear stress, and the absolute maximum shear 

stress at points H and K.

Plan the Solution
The analysis begins by determining the statically equivalent 

system of forces and moments acting internally at the section 

that contains points H and K. The normal and shear stresses 

created by this equivalent force system will be computed and 

shown in their proper directions on a stress element for both 

point H and point K. The internal pressure of the fl uid also 

creates normal stresses that act longitudinally and circumfer-

entially in the pipe wall. These stresses will be computed and 

included on the stress elements for H and K. Stress transfor-

mation calculations will be used to determine the principal 

stresses, the maximum shear stress, and the absolute maxi-

mum shear stress for each stress element.

SOLUTION
Equivalent Force System
A system of forces and moments that is statically equivalent to the loads 

applied at fl ange A can be determined for the section of interest.

The equivalent forces are simply equal to the applied loads. A 13-kN 

force acts in the �x direction, a 9-kN force acts in the �y direction, and 

there is no force acting in the z direction.

The equivalent moments acting at the section of interest can be 

determined by considering each load in turn. The 9-kN load acting at A 

creates a moment of (9 kN)(1.2 m) � 10.8 kN-m, which acts about the 

�x axis. The 13-kN load acting horizontally at H creates two moment 

components.

x

y

z

1.2 m

0.65 m

H

K

9 kN

13 kN

A

B

C

x

y

d � 176 mm

D � 200 mm

H

K

Cross section.

Equivalent forces at the section that contains 
points H and K.

x

y

z

H

K
13 kN

9 kN

Stress Transformation Results at K
The principal stresses and the maximum shear stress at K are shown in the fi gure.

11,887 psi

5,804 psi

K

y

z
22.2°

2,360 psi

14,250 psi

5,940 psi

8,310 psi

EXAMPLE 15.7
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•  One moment component acts about the �y axis with a magnitude 

of (13 kN)(1.2 m) � 15.6 kN-m.

•  A second moment component acts about the �z axis with a 

magnitude of (13 kN)(0.65 m) � 8.45 kN-m.

For the coordinate system used here, the longitudinal axis of the 

pipe extends in the z direction; therefore, the moment component acting 

about the z axis is recognized as a torque, while the components about the 

x and y axes are simply bending moments.

Alternate method: The moments equivalent to the two loads at A can be 

calculated systematically by the use of position and force vectors. The position 

vector r from the section of interest to point A is rA � �0.65 m j � 1.2 m k.

The load at A can be expressed as the force vector FA � 13 kN i � 9 kN j.
The moment produced by FA can be determined from the cross product 

MA � rA � FA:

 M r F

i j k

i j

A A A 0 0 65 1 2

13 9 0

10 8 15 6

. .

. .kN-m kN-m 88 45. kN-m k

�

� � �

� � �

�

Section Properties
The outside diameter of the pipe column is D � 200 mm, and the inside diameter is 

d � 176 mm. The moment of inertia and the polar moment of inertia for the cross sec-

tion are, respectively, 

I D d[ ] [ ]
64 64

200 1764 4 4 4( mm) ( mm) m31,439,853 mm

( mm) ( mm)

4

4 4 4 4

32 32
200 176J D d[ ] [ ] 62,879,7006 mm4

�

� � � � �

�
� �

� �

� ��

Stresses at H
The equivalent forces and moments acting at the section of interest will be sequentially 

evaluated to determine the type, magnitude, and direction of any stresses created at H.

Transverse shear stress is associated with the 13-kN shear force acting in the �x direction 

at the section of interest. From Equation (9.10), the fi rst moment of area Q at the centroid 

for a hollow circular cross section is

Q D d[ ] [ ]
1

12

1

12
200 1763 3 3 3 3( mm) ( mm) mm212,352� � � � �

The shear stress formula [Equation (9.2)] is used to calculate the shear 

stress:

( )VQ

I ty

( kN) mm ( )313 212,352 1,000 N/kN

31,439,853 mmm mm4( )( mm)
. MPa

200 176
3 659� � �

�
�

Although shear stresses are associated with the 9-kN shear force that acts 

in the �y direction, the shear stress at point H is zero.

Equivalent moments at the section that contains 
points H and K.

8.45 kN-m

15.6 kN-m

10.8 kN-m

x

y

z

H

K

3.659 MPa

x

y

z

H

K
13 kN
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The 10.8 kN-m (i.e., 10.8 � 106 N-mm) bending moment about the 

x axis creates tension normal stress at H:

z
x

x

M c

I

( )10 8 10 100
34

6

4

. ( mm)

mm
.

N-mm

31,439,853
3351 MPa (T)�� � �

�
34.351 MPa

10.8 kN-m

x

y

z

H

K

H

K

x

y

z

11.00 MPa5.50 MPa

5.50 MPa

13.438 MPa

13.438 MPa

8.45 kN-m

x

y

H

K

The 8.45 kN-m (i.e., 8.45 � 106 N-mm) torque acting about the 

z axis creates shear stress at H. The magnitude of this shear stress can be 

calculated from the elastic torsion formula:

( )Tc

J

8 45 10 100
13 438

6

4

. ( mm)

mm
.

N-mm

62,879,706
MMPa� � �

�
�

15.6 kN-m

x

y

z

H

K

49.619 MPa

The 15.6 kN-m bending moment about the y axis creates bending 

stresses at the section of interest. Point H, however, is located on the neutral 

axis for this bending moment, and consequently, the bending stress at 

H is zero.

The 1,500-kPa internal fl uid pressure creates tension normal stresses 

in the 12-mm-thick wall of the pipe. The longitudinal stress in the pipe 

wall is

long
( kPa)( mm)

( mm)
kPa .

pd

t4

176

4 12
5

1,500
5,500 5500 MPa (T)� � � ��

and the circumferential stress is

hoop
( kPa)( mm)

( mm)
kPa

pd

t2

176

2 12
1

1,500
11,000 11 000. MPa (T)� � � ��

Observe that the longitudinal stress acts in the z direction. At point H, the 

circumferential direction is the x direction.
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Combined Stresses at H
The normal and shear stresses acting at point H are summarized 

on a stress element. Note that at point H, the torsion shear stress 

acts in the �x direction on the �z face of the stress element. 

The shear stress associated with the 13-kN shear force acts in 

the opposite direction.

Stress Transformation Results at H
The principal stresses and the maximum shear stress at H can 

be determined from the stress transformation equations and 

procedures detailed in Chapter 12. The results of these calcu-

lations are shown in the fi gure to the right.

The absolute maximum shear stress at H is 21.43 MPa.

Bending stress
34.351 MPa

Longitudinal stress
5.500 MPa

Hoop stress
11.000 MPa

Torsion shear
13.438 MPa

Beam shear
3.659 MPa

Hz

x

34.351 MPa

10.8 kN-m

x

y

z

H

K

39.85 MPa

11.00 MPa

9.78 MPa

Hz

x

42.9 MPa

8.00 MPa

25.4 MPa

17.43 MPa
17.1°

x

y

z

H

K

9 kN

2.533 MPa

15.6 kN-m

x

y

z

H

K

49.619 MPa

Stresses at K
Although shear stresses are associated with the 13-kN shear force that 

acts in the �y direction, the shear stress at point K is zero.

Transverse shear stress is associated with the 9-kN shear force act-

ing in the �y direction at the section of interest. The shear stress formula 

[Equation (9.2)] is used to calculate the shear stress:

( )VQ

I ty

( kN) mm ( )

m

39 212,352 1,000 N/kN

31,439,853 mm ( mm)
. MPa

4 200 176
2 533

( ) mm
� � �

�
�

The 10.8 kN-m bending moment about the x axis creates bending 

stresses at the section of interest. Point K, however, is located on the 

neutral axis for this bending moment, and consequently, the bending 

stress at K is zero.

The 15.6 kN-m (i.e., 15.6 � 106 N-mm) bending moment about the 

y axis creates compression normal stress at K:

z
x

x

M c

I

( )15 6 10 100
49

6

4

. ( mm)

mm
.

N-mm

31,439,853
6619 MPa ( )C� � �

�
�
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The 8.45 kN-m (i.e., 8.45 � 106 N-mm) torque acting about the z 

axis creates shear stress at K. The magnitude of this shear stress can be 

calculated from the elastic torsion formula:

( )Tc

J

8 45 10 100
13 438

6

4

. ( mm)

mm
.

N-mm

62,879,706
MMPa� � �

�
�

The 1,500-kPa internal fl uid pressure creates tension normal stresses in 

the 12-mm-thick wall of the pipe. The longitudinal stress in the pipe wall is

long
( kPa)( mm)

( mm)
kPa .

pd

t4

176

4 12
5

1,500
5,500 5500 MPa (T)� � � ��

and the circumferential stress is

hoop
( kPa)( mm)

( mm)
kPa

pd

t2

176

2 12
1

1,500
11,000 11 000. MPa (T)� � � ��

Take note that the longitudinal stress acts in the z direction. Furthermore, 

the circumferential direction at point K is the y direction.

Combined Stresses at K
The normal and shear stresses acting at point K are summarized on 

a stress element. Note that at point K, the torsion shear stress acts in 

the �y direction on the �z face of the stress element. The trans-

verse shear stress associated with the 9-kN shear force acts in the 

opposite direction.

13.438 MPa

13.438 MPa

8.45 kN-m

x

y

H

K

Longitudinal stress
5.500 MPa

Bending stress
49.619 MPa

Hoop stress
11.000 MPa

Torsion shear
13.438 MPa

Beam shear
2.533 MPa

K

y

z

44.12 MPa

11.00 MPa

10.91 MPa

K

y

z

46.2 MPa

13.08 MPa

16.56 MPa

29.6 MPa

10.8°

Stress Transformation Results at K
The principal stresses and the maximum shear stress at K can 

be determined from the stress transformation equations and 

procedures detailed in Chapter 12. The results of these calcu-

lations are shown in the fi gure to the left.

The absolute maximum shear stress at K is 29.64 MPa.

A 12-kN force is applied to the component shown. Determine the internal forces acting at 

section a–a.

 MecMovies Example M15.6MM
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M15.5 Determine the stresses acting at point K in the beam.

FIGURE M15.5

M15.6 Determine the internal forces (axial force, shear force, 

torque, and bending moments) at a specifi c location in a member 

subjected to in-plane and out-of-plane forces.

FIGURE M15.6

 MecMovies Exercises MM
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FIGURE P15.34a

d

b
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y

D
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FIGURE P15.34b Top view of post.

z

x

y

b

A

D
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FIGURE P15.35a
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zP

z
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D A

BC

P

FIGURE P15.35b Top view of post.
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P15.34 A short rectangular post supports a compressive load of 
P � 2,500 lb as shown in Figure P15.34a. A top view of the post 

showing the location where load P is applied to the top of the post 

is shown in Figure P15.34b. The cross-sectional dimensions of the 

post are b � 5 in. and d � 10 in. The load P is applied at offset 

distances of yP � 3 in. and zP � 2 in. from the centroid of the post. 
Determine the normal stresses at corners A, B, C, and D of the post. 

P15.35 A short rectangular post supports a compressive load of 
P � 35 kN as shown in Figure P15.35a. A top view of the post 

showing the location where load P is applied to the top of the post 

is shown in Figure P15.35b. The cross-sectional dimensions of the 

post are b � 240 mm and d � 160 mm. The load P is applied at 

offset distances of yP � 60 mm and zP � 50 mm from the centroid 

of the post. Determine the normal stresses at corners A, B, C, and D 
of the post.

PROBLEMSPROBLEMS
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P15.36 A short rectangular post supports compressive loads of 
P � 34 kN and Q � 18 kN as shown in Figure P15.36a. A top view 

of the post showing the locations where loads P and Q are applied 

to the top of the post is shown in Figure P15.36b. Determine the 

normal stresses at corners A, B, C, and D of the post.

z

x

y

A

D

C

P

Q

140 mm

FIGURE P15.36a

180 mm

140 mm

70 mm

45 mm

D

AB

C

P

55 mm

Q

z

y

FIGURE P15.36b Top view of post.

P15.37 Three loads are applied to the short rectangular post 

shown in Figure P15.37a/38a. The cross-sectional dimensions of 

the post are shown in Figure P15.37b/38b. Determine

(a) the normal and shear stresses at point H.

(b)  the principal stresses and maximum in-plane shear stress at 

point H, and show the orientation of these stresses on an 

appropriate sketch.

x

y

z

210 kN

65 kN95 kN

75 mm

150 mm

50 mm

H

K

30 mm

FIGURE P15.37a/38a

120 mm

160 mm
30 mm

x

z
H

K

FIGURE P15.37b/38b Cross-sectional dimensions.

P15.39 Concentrated loads of Px � 37 kips, Py � 23 kips, and 
Pz � 19 kips are applied to the cantilever beam in the locations and 

directions shown in Figure P15.39a/40a. The beam cross section 

shown in Figure P15.39b/40b has dimensions of b � 9 in. and h � 

4 in. Using a value of a � 6.4 in., determine the normal and shear 

stresses at point H. Show these stresses on a stress element.

662

P15.38 Three loads are applied to the short rectangular post 

shown in Figure P15.37a/38a. The cross-sectional dimensions of 

the post are shown in Figure P15.37b/38b. Determine

(a) the normal and shear stresses at point K.

(b)  the principal stresses and maximum in-plane shear stress at 

point K, and show the orientation of these stresses on an 

appropriate sketch.
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x
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b

h
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Py

zP

FIGURE P15.39a/40a

b

h x

y

H K

b
3

b
5

FIGURE P15.39b/40b Cross-sectional dimensions.

P15.41 For the cantilever beam shown in Figure P15.41a/42a, 

determine the normal and shear stresses acting at point K. The 

cross-sectional dimensions of the beam cross section and the loca-

tion of point K are shown in Figure P15.41b/42b. Use the following 

values: a � 2.15 m, b � 0.85 m, Py � 13 kN, and Pz � 6 kN.

P15.42 For the cantilever beam shown in Figure P15.41a/42a, 

determine the normal and shear stresses acting at point H. The 

cross-sectional dimensions of the beam cross section and the loca-

tion of point H are shown in Figure P15.41b/42b. Use the following 

values: a � 2.15 m, b � 0.85 m, Py � 13 kN, and Pz � 6 kN.

P15.43 A 1.25-in.-diameter solid shaft is subjected to an axial 

force of P � 360 lb, a vertical force of V � 215 lb, and a concen-

trated torque of T � 430 lb-in., acting in the directions shown in 

Figure P15.43/44. Assume that L � 4.5 in. Determine the normal 

and shear stresses at (a) point H and (b) point K.

x

y

z

L P

T

V

H

K

FIGURE P15.43/44
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FIGURE P15.41a/42a

Py
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b

x

y

z

H

K

12 mm

12 mm

226 mm

7 mm

36 mm

54 mm

H

K

y

z

160 mm

FIGURE P15.41b/42b

P15.40 Concentrated loads of Px � 37 kips, Py � 23 kips, and 
Pz � 19 kips are applied to the cantilever beam in the locations 

and directions shown in Figure P15.39a/40a. The beam cross 

section shown in Figure P15.39b/40b has dimensions of b � 9 in. 

and h � 4 in. Using a value of a � 6.4 in., determine the normal 

and shear stresses at point K. Show these stresses on a stress 

element.
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P15.47 A steel pipe with an outside diameter of 95 mm and 

an inside diameter of 85 mm supports the loadings shown in 

 Figure P15.47/48. Determine

(a)  the normal and shear stresses on the top surface of the pipe at 

point H.

(b)  the principal stresses and the magnitude of the maximum 

in-plane shear stress at point H, and show the orientation of 

these stresses on an appropriate sketch.

P15.48 A steel pipe with an outside diameter of 95 mm and 

an inside diameter of 85 mm supports the loadings shown in Fig-

ure P15.47/48. Determine

(a)  the normal and shear stresses on the side of the pipe at point K.

(b)  the principal stresses and the magnitude of the maximum 

in-plane shear stress at point K, and show the orientation of 

these stresses on an appropriate sketch.

x

y

z

15 in.

9 in.

4,200 lb

1,700 lb

2,300 lb

3,700 lb-ft

H

K

FIGURE P15.45/46

P15.49 The hollow crank shown in Figure P15.49/50 has an 

outside diameter of 35 mm and an inside diameter of 25 mm. The 

length dimensions are a � 60 mm, b � 120 mm, and c � 80 mm. 
Using load magnitudes of Py � 2,700 N and Pz � 1,100 N, deter-

mine the normal and shear stresses on the side of the crank at 

point K.

P15.50 The hollow crank shown in Figure P15.49/50 has an 

outside diameter of 35 mm and an inside diameter of 25 mm. The 

length dimensions are a � 60 mm, b � 120 mm, and c � 80 mm. 
Using load magnitudes of Py � 2,700 N and Pz � 1,100 N, deter-

mine the normal and shear stresses on the top of the crank at 

point H.

x

y

z

450 mm

240 mm

7 kN 14 kN

10 kN

H

K

FIGURE P15.47/48

P15.51 A 1.50-in.-diameter solid steel shaft supports the loads 

shown in Figure P15.51. The load magnitudes are Px � 190 lb, Py � 

370 lb, and Pz � 220 lb. The length dimensions are a � 5.60 in., b � 

3.70 in., c � 4.80 in., and d � 2.50 in. Determine

(a)  the normal and shear stresses on the top of the shaft at point H.

(b)  the normal and shear stresses on the side of the shaft at point K.

x

y

z

a

b c

K

H Py

Pz

FIGURE P15.49/50
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P15.44 A 40-mm-diameter solid shaft is subjected to an axial 

force of P � 2,600 N, a vertical force of V � 1,700 N, and a con-

centrated torque of T � 60 N-m, acting in the directions shown in 

Figure P15.43/44. Assume that L � 130 mm. Determine the normal 

and shear stresses at (a) point H and (b) point K.

P15.45 A steel pipe with an outside diameter of 4.500 in. and an 

inside diameter of 4.026 in. supports the loadings shown in Figure 

P15.45/46. Determine

(a)  the normal and shear stresses on the top of the pipe at point H.

(b)  the principal stresses and the magnitude of the maximum 

in-plane shear stress at point H, and show the orientation of 

these stresses on an appropriate sketch.

P15.46 A steel pipe with an outside diameter of 4.500 in. and 

an inside diameter of 4.026 in. supports the loadings shown in 

Figure P15.45/46. Determine

(a)  the normal and shear stresses on the side of the pipe at point K.

(b)  the principal stresses and the magnitude of the maximum 

in-plane shear stress at point K, and show the orientation of 

these stresses on an appropriate sketch.
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P15.52 A roadway sign that weighs Py � 9 kN is supported by 

a structural pipe with an outside diameter of 325 mm and a wall 

thickness of 12.5 mm. Wind pressure on the sign creates a resultant 

force of Pz � 21 kN, acting as shown in Figure P15.52. Using 

length dimensions of a � 5.2 m and b � 6.4 m, determine

(a) the normal and shear stresses at point H.

(b) the normal and shear stresses at point K.

P15.54 A vertical pipe column with an outside diameter of 

325 mm and a wall thickness of 10 mm supports the loads shown 

in Figure P15.53/54. Determine the magnitudes of the principal 

stresses and maximum shear stresses at point K.

P15.55 A steel shaft with an outside diameter of 1.25 in. is 

supported in fl exible bearings at its ends. Two pulleys are keyed 

to the shaft, and the pulleys carry belt tensions as shown in 

 Figure P15.55. Determine

(a)  the normal and shear stresses on the top surface of the shaft at 

point H.

(b)  the normal and shear stresses on the side of the shaft at 

point K.

x

y

z

Py

Pz

H K

a

b

FIGURE P15.52

P15.56 A steel shaft with an outside diameter of 30 mm is sup-

ported in fl exible bearings at its ends. Two pulleys are keyed to the 

shaft, and the pulleys carry belt tensions as shown in Figure P15.56. 

Determine

(a)  the normal and shear stresses on the top surface of the shaft at 

point H.

(b)  the normal and shear stresses on the side of the shaft at point K.
P15.53 A vertical pipe column with an outside diameter of 

325 mm and a wall thickness of 10 mm supports the loads shown 

in Figure P15.53/54. Determine the magnitudes of the principal 

stresses and maximum shear stresses at point H.

1.5 m2.5 m

xz

H K

9 kN

17 kN

13 kN

50 kN

4 m

6 m

FIGURE P15.53/54
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FIGURE P15.55
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FIGURE P15.56
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FIGURE P15.51
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P15.57 A steel shaft with an outside diameter of 36 mm supports 

a 240-mm-diameter pulley (Figure P15.57a/58a). Belt tensions of 

2,400 N and 400 N act at the angles shown in Figure P15.57b/58b. 

Determine

(a)  the normal and shear stresses on the top surface of the shaft at 

point H.

(b)  the principal stresses and maximum in-plane shear stress at 

point H, and show the orientation of these stresses on an 

appropriate sketch.

P15.58 A steel shaft with an outside diameter of 36 mm supports 

a 240-mm-diameter pulley (Figure P15.57a/58a). Belt tensions of 

2,400 N and 400 N act at the angles shown in Figure P15.57b/58b. 

Determine

(a)  the normal and shear stresses on the side of the shaft at point K.

(b)  the principal stresses and maximum in-plane shear stress at 

point K, and show the orientation of these stresses on an 

appropriate sketch.

P15.59 A pressurized pipe with an outside diameter of 355 mm 

and a wall thickness of 10 mm is subjected to an axial force of P � 

22 kN and a torque of T � 7.3 kN-m as shown in Figure P15.59. 

If the internal pressure in the pipe is 1,500 kPa, determine the prin-

cipal stresses, the maximum in-plane shear stress, and the absolute 

maximum shear stress on the outside surface of the pipe.

P15.60 A pipe with an outside diameter of 220 mm and a wall 

thickness of 8 mm is subjected to the loads shown in Figure P15.60/ 

61. The load magnitudes are Px � 0 kN, Py � 0 kN, and Pz � 15 kN, 

and the length dimensions are a � 1.9 m and b � 1.3 m. The pipe 

contains an internal pressure of 2,000 kPa. Determine the normal 

and shear stresses on the outer surface of the pipe (a) at point H and 

(b) at point K.

P15.61 A pipe with an outside diameter of 220 mm and a wall 

thickness of 8 mm is subjected to the loads shown in Figure 

P15.60/61. The load magnitudes are Px � 17.2 kN, Py � 0 kN, and 
Pz � 8.4 kN, and the length dimensions are a � 2.3 m and b � 1.6 m. 
The pipe contains an internal pressure of 1,500 kPa. Determine the 

normal and shear stresses on the outer surface of the pipe (a) at 

point H and (b) at point K.

x

y

z
160 mm

H

K
400 N

2,400 N

FIGURE P15.57a/58a

P15.62 A pipe with an outside diameter of 220 mm and a wall 

thickness of 5 mm is subjected to the load shown in Figure 

P15.62/63. The internal pressure in the pipe is 2,000 kPa. Determine 

15°

15°

15°

15°

240 mmx

y

2,400 N

400 N

FIGURE P15.57b/58b

PP

T

T
FIGURE P15.59
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FIGURE P15.60/61
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P15.64 A pipe with an outside diameter of 8.50 in. and a wall 

thickness of 0.25 in. is subjected to the 3-kip load shown in Fig-

ure P15.64/65. The internal pressure in the pipe is 320 psi. 

(a)  Determine the normal and shear stresses on the top surface of 

the pipe at point H.

(b)  Determine the principal stresses and maximum in-plane shear 

stress at point H, and show the orientation of these stresses on 

an appropriate sketch.

(c) Compute the absolute maximum shear stress at H.

P15.65 A pipe with an outside diameter of 8.50 in. and a wall 

thickness of 0.25 in. is subjected to the 3-kip load shown in Figure 

P15.64/65. The internal pressure in the pipe is 320 psi. 

(a)  Determine the normal and shear stresses on the side of the 

pipe at point K.

(b)  Determine the principal stresses and maximum in-plane shear 

stress at point K, and show the orientation of these stresses on 

an appropriate sketch.

(c)  Compute the absolute maximum shear stress at K.

P15.66 A pipe with an outside diameter of 8.50 in. and a wall 

thickness of 0.25 in. is subjected to the loads shown in Figure 

P15.66/67. The internal pressure in the pipe is 320 psi. 

(a)  Determine the normal and shear stresses on the outer surface 

of the pipe at point H.

(b)  Determine the principal stresses and maximum in-plane shear 

stress at point H, and show the orientation of these stresses on 

an appropriate sketch.

(c) Compute the absolute maximum shear stress at H.

P15.67 A pipe with an outside diameter of 8.50 in. and a wall 

thickness of 0.25 in. is subjected to the loads shown in Figure 

P15.66/67. The internal pressure in the pipe is 320 psi. 

(a)  Determine the normal and shear stresses on the outer surface 

of the pipe at point K.

(b)  Determine the principal stresses and maximum in-plane shear 

stress at point K, and show the orientation of these stresses on 

an appropriate sketch.

(c) Compute the absolute maximum shear stress at K.

x

y

z 1,500 mm

40°

700 mm

H

K

25 kN

FIGURE P15.62/63
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z

24 in.
48 in.

55°

H

K

3 kips

FIGURE P15.64/65
x

y

z

3 ft

6 ft

5 ft

HK

1.9 kips

2.75 kips

FIGURE P15.66/67
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the normal and shear stresses on the top surface of the pipe at 

point H.

P15.63 A pipe with an outside diameter of 220 mm and a 

wall thickness of 5 mm is subjected to the load shown in Figure 

P15.62/63. The internal pressure in the pipe is 2,000 kPa. Deter-

mine the normal and shear stresses on the side of the pipe at 

point K.
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A tension test of an axially loaded member is easy to conduct, and the results, for many 

types of materials, are well known. When such a member fails, the failure occurs at a spe-

cifi c principal stress (i.e., the axial stress), a defi nite axial strain, a maximum shear stress 

equal to one-half of the axial stress, and a specifi c amount of strain energy per unit volume 

of stressed material. Since all of these limits are reached simultaneously for an axial load, 

it makes no difference which criterion (stress, strain, or energy) is used for predicting failure 

in another axially loaded member of the same material.

For an element subjected to biaxial or triaxial loading, however, the situation is 

more complicated because the limits of normal stress, normal strain, shear stress, and 

strain energy existing at failure are not reached simultaneously. In other words, the precise 

cause of failure, in general, is unknown. In such cases, it becomes important to determine 

the best criterion for predicting failure, because test results are diffi cult to obtain and the 

possible combinations of loads are endless. Several theories have been proposed for pre-

dicting failure of various types of material subjected to many combinations of loads. 

Unfortunately, no single theory agrees with test data for all types of materials and all 

combinations of loads. Several of the more common theories of failure are presented and 

briefl y explained in the paragraphs that follow.

Ductile Materials

Maximum-Shear-Stress Theory.1 When a fl at bar of a ductile material such as mild steel 

is tested in uniaxial tension, yielding of the material is accompanied by lines that appear on 

the surface of the bar. These lines, known as Lüder’s lines, are caused by slipping (on a 

microscopic scale) that occurs along the planes of randomly ordered grains that make up 

the material. Lüder’s lines are oriented at 45� with respect to the longitudinal axis of the 

specimen (Figure 15.5). Therefore, if one assumes that slip is the failure mechanism associ-

ated with yielding of the material, then the stress that best characterizes this failure is the 

shear stress on the slip planes. In a uniaxial tension test, the state of stress at yield can be 

represented by the stress element shown in Figure 15.6a. The Mohr’s circle corresponding 

45°

Lüder’s lines on
mild steel bar

FIGURE 15.5 Lüder’s lines on 

a ductile tension test specimen.

1 Sometimes called Coulomb’s theory because it was originally stated by him in 1773. More frequently called 

the Tresca criterion or the Tresca–Guest yield surface because of the work of French elastician H. E. Tresca 

(1814–1885), which was advanced by the work of J. J. Guest in England in 1900.
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(a)  Stress element at yield 

for test specimen

(b)  Mohr’s circle for test 

specimen at yield

(c)  Maximum-shear-stress 

element

FIGURE 15.6 States of stress for a uniaxial tension test.
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15.5 Theories of Failure
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669
THEORIES OF FAILUREto this state of stress is shown in Figure 15.6b. Mohr’s circle reveals that the maximum 

shear stress in a uniaxial test specimen occurs at an orientation of 45� with respect to the 

load direction (Figure 15.6c), just like the Lüder’s lines.

Based on these observations, the maximum-shear-stress theory predicts that failure 

will occur in a component (i.e, a component subjected to any combination of loads) 

when the maximum shear stress at any point in the object reaches the failure shear stress 

�f � �Y/2, where �Y is determined by an axial tensile or compressive test of the same 

material. For ductile materials, the shearing elastic limit, as determined from a torsion 

test (pure shear), is greater than one-half the tensile elastic limit. (An average value for 

�f is about 0.57�Y.) Since the maximum-shear-stress theory is based on �Y obtained 

from an axial test, this theory errs on the conservative side.

The maximum-shear-stress theory is represented graphically in Figure 15.7 for an ele-

ment subjected to biaxial principal stresses (i.e., plane stress). In the fi rst and third quad-

rants, �p1 and �p2 have the same sign; therefore, the absolute maximum shear stress acts in 

an out-of-plane direction and it has a magnitude that is equal to one-half of the numerically 

larger principal stress �p1 or �p2, as explained in Section 12.7 [see Equation (12.18)]. In the 

second and fourth quadrants, where �p1 and �p2 are of opposite sign, the maximum shear 

stress is equal to one-half of the arithmetical sum of the two principal stresses (i.e., simply 

the radius of the in-plane Mohr’s circle).

Therefore, the maximum-shear-stress theory applied to a plane stress state with 

in-plane principal stresses �p1 and �p2 predicts that yielding failure will occur under the 

following conditions:

• If �p1 and �p2 have the same sign, then failure will occur if |�p1| � �Y or |�p2| � �Y .

•  If �p1 is positive and �p2 is negative, then failure will occur if �p1 � �p2 � �Y .

Maximum-Distortion-Energy Theory.2 The maximum-distortion-energy theory is 

founded on the concept of strain energy. The total strain energy per unit volume can be 

 determined for a specimen subjected to any combination of loads. Further, the total strain 

energy can be broken down into two categories: strain energy that is associated with a change 

in volume of the specimen and strain energy that is associated with a change in shape, or 

distortion, of the specimen. This theory predicts that failure will occur when the strain energy 

causing distortion reaches the same intensity as the strain energy at failure found in axial ten-

sion or compressive tests of the same material. Supporting evidence comes from experiments 

which reveal that homogeneous materials can withstand very high hydrostatic stresses 

(i.e., equal intensity normal stresses in three orthogonal directions) without yielding. Based 

on this observation, the maximum-distortion-energy theory assumes that only the strain energy 

which produces a change of shape is responsible for the failure of the material. The strain  energy 

of distortion is most readily computed by determining the total strain energy of the stressed 

material and subtracting the strain energy associated with the volume change.

The concept of strain energy is illustrated in Figure 15.8. A bar of uniform cross section 

subjected to a slowly applied axial load P is shown in Figure 15.8a. A load-deformation 

diagram for the bar is shown in Figure 15.8b. The work done in elongating the bar by an 

amount δ2 is

 W P d∫0

2
�

�
�  (a)

FIGURE 15.7 Failure diagram 

for maximum-shear-stress theory 

(plane stress).

Experimental data from tension test.

A

B

p1

p2

Y

Y

Y

Y

�

�

���

��

�

2 Frequently called the Huber–von Mises–Hencky theory or the von Mises yield criterion because it was proposed 

by M. T. Huber of Poland in 1904 and, independently, by R. von Mises of Germany in 1913. The theory was 

further developed by H. Hencky and von Mises in Germany and the United States.

If the naming convention for 

principal stresses is followed 

(i.e., �p1 � �p2), then all 

combinations of �p1 and �p2 will 

plot to the right of or below line 

AB shown in Figure 15.7.

The load P must be applied 

slowly so that there is no kinetic 

energy associated with the 

application of the load. All work 

done by P is stored as potential 

energy in the strained bar.
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670
COMBINED LOADS

where P is some function of �. The work done on the bar must equal the change in energy 

of the material,3 and this energy change, because it involves the strained confi guration of 

the material, is termed strain energy U. If � is expressed in terms of axial strain (� � L�) 

and P is expressed in terms of axial stress (P � A�), Equation (a) becomes

 W U L d AL d∫ ∫( ) ( ) ( )A
0 0

2 2
� � �� � ��

��
 (b)

where � is a function of �. (See Figure 15.8c.) If Hooke’s Law applies,

E d d E� �� ���

and Equation (b) becomes

U
AL

E
d

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟∫0

2
� � �

�

or

 U AL
E

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

2
2

2
�

�  (c)

Equation (c) gives the elastic strain energy (which is, in general, recoverable4) for axial 

loading of a material obeying Hooke’s Law. The quantity in parentheses, �2
2�(2E), is the 

elastic strain energy u in tension or compression per unit volume, or strain energy density, 

for a particular value of stress � below the proportional limit of the material. Thus,

 
u

E

2

2 2
� �

� ��  
(15.1)

For shear loading, the expression would be identical except that � would be replaced by �, 

� by �, and E by G.

3 Known as Clapeyron’s theorem, after the French engineer B. P. E. Clapeyron (1799–1864).
4 Elastic hysteresis is neglected here as an unnecessary complication.

P

L

1 2
d

1P

2P

P

P

1 2
d

1

2

�

�
�

�
�

�

�

�

�

� �
�

�

(a) (b) (c)

FIGURE 15.8 Concept of strain energy.
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671
THEORIES OF FAILUREThe concept of elastic strain energy can be extended to include biaxial and triaxial 

loadings by writing the expression for strain energy density u as ��/2 and adding the ener-

gies due to each of the stresses. Since energy is a positive scalar quantity, the addition is the 

arithmetic sum of the energies. For a system of triaxial principal stresses �p1, �p2, and �p3, 

the total elastic strain energy density is

 u p p p p p p( ) ( ) ( )1 2 1 2 1 21 1 2 2 3 3� � �� � �� � �  (d)

When the generalized Hooke’s Law expressions for strains in terms of stresses from Equa-

tion (13.16) of Section 13.8 are substituted into Equation (d), the result is

u
E p p p p p p p p p( )[ ] ( )[ ]
1

2 1 1 2 3 2 2 3 1 33 3 1 2p p p( )[ ]{ }� � � � � � � � �� � � � � � ��� � � � � ��

from which

 u
E p p p p p p p p p( )[ ]
1

2
21

2
2

2
3

2
1 2 2 3 3 1� � � � � �� � � � � � � � ��

 
(15.2)

The total strain energy can be resolved into components associated with a volume 

change (uv) and a distortion (ud) by considering the principal stresses to be made up of two 

sets of stresses as indicated in Figures 15.9a–c. The state of stress depicted in Figure 15.9c 

will produce only distortion (no volume change) if the sum of the other three normal strains 

is zero. That is,

E p p

p

p p p d p p p

p

1 2 3 1 2 3

2

2( ) ( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]
p p

p p p

p

p p

3 1

3 1 2

2

2 0

�� � � �

�

� � ��

��

� ��

�

�

�

�

��

� � � � �

� �

� � � ��

where p is the hydrostatic stress. This equation reduces to

( )1 2 3 01 2 3( )p p p p� � � � ��� � �

Therefore, the hydrostatic stress p is

p p p p( )
1

3 1 2 3� � �� � �

The three normal strains due to hydrostatic stress p are, from Equation (13.16),

v E
p

1
1 2( )� �� �

FIGURE 15.9 Expressing state of stress in terms of volume change and distortion components.

p1

p2

p3

p

p

p p3 � p

p2 � p

p1� p

�

�

�

�
�

�

� �

(a) (b) (c)
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672
COMBINED LOADS and the energy resulting from the hydrostatic stress (i.e., the volume change) is

u
p

E
p

Ev
v

p p p
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟3

2

3

2

1 2 1 2

6
2

1 2
( )

33
2( )�

� � �
� � ��

�
�

�
� �

The energy resulting from the distortion (i.e., the change of shape) is

u u u

E

d v

p p p p p p p p( )
1

6
3 61

2
2

2
3

2
1 2 2 3 33 1 1 2 3

21 2p p p p( ) ( )⎡
⎣⎢

⎤
⎦⎥( )

�

� � � � � � � � � � � � ���� � � � � � � � �

�

When the third term in the brackets is expanded, the expression can be rearranged to 

give

(e)

The maximum-distortion-energy theory of failure assumes that inelastic action will occur 

whenever the energy given by Equation (e) exceeds the limiting value obtained from a ten-

sion test. In the tension test, only one of the principal stresses will be nonzero. If this stress 

is called �Y, the value of ud becomes

( )u
Ed Y Y

1

3
2�

� �
�

and when this value is substituted in Equation (e), the maximum-distortion-energy failure 

criterion is expressed as

 
Y p p p p p p
2

1 2
2

2 3
2

3 1
21

2
( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥�� � � � � � �� � �� �

 
(15.3)

or

Y p p p p p p p p p
2

1
2

2
2

3
2

1 2 2 3 3 1( )� � � � � �� � � � � � � � � �

for failure by yielding. The maximum-distortion-energy failure criterion can be 

alter natively stated in terms of the normal stresses and shear stress on three arbitrary 

orthogonal planes:

Y x y y z x z xy yz xz
2 2 2 2 2 21

2
6( ) ( ) ( ) 22( )⎡

⎣⎢
⎤
⎦⎥� � � � � � � � �� � � � � � � � � �  

(15.4)

When a state of plane stress exists (i.e., �p3 � 0), Equation (15.3) becomes

 
Y p p p p
2

1
2

1 2 2
2�� � � � �� �  

(15.5)

This last expression is the equation of an ellipse in the �p1 � �p2 plane with 

its major axis along the line �p1 � �p2, as shown in Figure 15.10. For comparison 

purposes, the failure hexagon for the maximum-shear-stress yield theory is also 

Experimental data from tension test.
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B

�p1

�p2

�Y
�Y

�Y

Pure
shear

( )

�Y �Y

�Y� �

�

�Y
�Y
2

�Y
2–,

,

�Y

√ 3

�Y

√ 3
–,

( ),

FIGURE 15.10 Failure diagram for 

maximum-distortion-energy theory 

(plane stress).
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p p p pE

3
2

3 1 1
2

1 2
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2 3

2

1
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⎤
⎦⎥

2
3 1

2
p p

�

� � � �� �
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� �

� �
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673
THEORIES OF FAILURE

If the naming convention for 

principal stresses is followed 

(i.e., �p1 > �p2), then all 

combinations of �p1 and �p2 will 

plot to the right of or below line 

AB shown in Figure 15.10.

shown in dashed lines in Figure 15.10. While both theories predict failure at the six vertices 

of the hexagon, the maximum-shear-stress theory gives the more conservative estimate of 

the stresses required to produce yielding, since the hexagon falls inside the ellipse for all 

other combinations of stress.

Mises Equivalent Stress. A convenient way to employ the maximum-distortion-

energy theory is to establish an equivalent stress quantity �M that is defi ned as the square 

root of the right-hand side of Equation (15.3). The stress �M is called the Mises equivalent 
stress (or the von Mises equivalent stress):

 
M p p p p p p( ) ( ) ( )⎡

⎣⎢
⎤
⎦⎥

2

2 1 2
2

2 3
2

3 1
2 1 2/

� � � � � �� � � � � � �
 

(15.6)

Similarly, Equation (15.4) can also be used to compute the Mises equivalent stress:

  
M x y y z x z xy yz xz( ) ( ) ( )

2

2
62 2 2 2 2 2(( )⎡

⎣⎢
⎤
⎦⎥
1 2/

� � � � � �� � �� � � � � � � � � �
 

(15.7)

For the case of plane stress, the Mises equivalent stress can be expressed from Equation 

(15.5) as

 M p p p p[ ]1
2

1 2 2
2 1 2/

� � �� � � � �  (15.8)

or it can be found from Equation (15.4) by setting �z � �yz � �xz � 0 to give

 
M x x y y xy[ ]2 2 2 1 2

3
/

� � � �� � � � � �
 

(15.9)

To use the Mises equivalent stress, �M is calculated for the state of stress acting at any 

specifi c point in the component. This value of �M is compared with the tensile yield stress 

�Y, and if �M > �Y, then the material is predicted to fail according to the maximum-distortion-

stress theory. The utility of the Mises equivalent stress has led to its widespread use in tabu-

lated stress analysis results and in the form of color-coded stress contour plots common in 

fi nite element analysis results.

Brittle Materials

Unlike ductile materials, brittle materials tend to fail suddenly by fracture with little evi-

dence of yielding; therefore, the limiting stress appropriate for brittle materials is the frac-

ture stress (or the ultimate strength) rather than the yield strength. Furthermore, the tensile 

strength of a brittle material is often different from its compressive strength.

Maximum-Normal-Stress Theory.5 The maximum-normal-stress theory predicts 

that failure will occur in a specimen subjected to any combination of loads when the maxi-

mum normal stress at any point in the specimen reaches the axial failure stress determined 

from an axial tension or compressive test of the same material.

5 Often called Rankine’s theory after W. J. M. Rankine (1820–1872), an eminent engineering educator at Glasgow 

University in Scotland.
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674
COMBINED LOADS The maximum-normal-stress theory is presented graphically in Figure 15.11 for an 

element subjected to biaxial principal stresses in the p1 and p2 directions. The limiting 

stress �U is the failure stress for this material when loaded axially. Any combination of 

 biaxial principal stresses �p1 and �p2 represented by a point inside the square of Figure 15.11 

is safe according to this theory, whereas any combination of stresses represented by a point 

outside of the square will cause failure of the element on the basis of this theory.

Mohr’s Failure Criterion. For many brittle materials, the ultimate tension and com-

pression strengths are different, and in such cases, the maximum-normal-stress theory 

should not be used. An alternative failure theory, proposed by the German engineer Otto 

Mohr, is called Mohr’s failure criterion. To use this failure criterion, a uniaxial tension test 

and a uniaxial compression test are performed to establish the ultimate tensile strength �UT 

and ultimate compressive strength �UC of the material, respectively. Mohr’s circles for the 

tension and compression tests are shown in Figure 15.12a. Mohr’s theory suggests that 

failure occurs in a material whenever Mohr’s circle for the combination of stresses at a 

point in a body exceeds the “envelope” defi ned by the Mohr’s circles for the tensile and 

compressive tests.

Mohr’s failure criterion for a plane stress state may be represented on a graph of prin-

cipal stresses in the �p1 � �p2 plane (Figure 15.12b). The principal stresses for all Mohr’s 

circles that have centers on the � axis and are tangent to the dashed lines in Figure 15.12a 

will plot as points along the dashed lines in the �p1 � �p2 plane of Figure 15.12b.

The Mohr’s failure criterion applied to a plane stress state with in-plane principal 

stresses �p1 and �p2 predicts that failure will occur under the following conditions:

• If �p1 and �p2 are both positive (i.e., tension), then failure will occur if �p1 ≥ �UT .

• If �p1 and �p2 are both negative (i.e., compression), then failure will occur if �p2 ≤ � �UC .

If the naming convention for principal stresses is followed (i.e., �p1 > �p2), then all 

combinations of �p1 and �p2 will plot to the right of or below line AB shown on Figure 15.12b. 

Stress states with �p1 > 0 and �p2 < 0 fall in the fourth quadrant of Figure 15.12b. For these 

cases, Mohr’s failure criterion predicts that failure will occur for those combinations which 

plot on the dashed line, or in other words, under the following condition:

• If �p1 is positive and �p2 is negative, then failure will occur if 
p

UT

p

UC

1 2 1.
�

� �
� �

�

If the naming convention for 

principal stresses is followed 

(i.e., �p1 > �p2), then all 

combinations of �p1 and �p2 will 

plot to the right of or below line 

AB shown in Figure 15.11.

FIGURE 15.12 Mohr’s failure criterion (plane stress).

Experimental data from
tension and compression tests.
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(b)

FIGURE 15.11 Failure 

diagram for maximum-normal-

stress theory (plane stress).

Experimental data from tension test.
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675
THEORIES OF FAILUREIf torsion-test data are available, the dashed line in the fourth quadrant may be modifi ed to 

incorporate these experimental data.

The following examples illustrate the application of the theories of failure in predict-

ing the load-carrying capacity of a member:

75 MPa

90 MPa
y

x

EXAMPLE 15.8

The stresses on the free surface of a machine component are shown on the stress element. 

The component is made of 6061-T6 aluminum with a yield strength of �Y � 270 MPa.

(a)  What is the factor of safety predicted by the maximum-shear-stress theory of failure 

for the stress state shown? According to this theory, does the component fail?

(b)  What is the value of the Mises equivalent stress for the given state of plane stress?

(c)  What is the factor of safety predicted by the failure criterion of the maximum-

distortion-energy theory of failure? According to this theory, does the component 

fail?

Plan the Solution
The principal stresses will be determined for the given state of stress. With these  stresses, 

the maximum-shear-stress theory and the maximum-distortion-energy theory will be used 

to investigate the potential for failure.

SOLUTION
The principal stresses can be calculated from the stress transformation equations 

[Equation (12.12)] or from Mohr’s circle, as discussed in Section 12.9. Equation 12.12 

will be used here. From the stress element, the values to be used in the stress transforma-

tion equations are �x � �75 MPa, �y � 0 MPa, and �xy � �90 MPa. The in-plane 

 principal stresses are calculated as

p p
x y x y

xy1 2

2

2

2 2

75 0

,

MPa MPa

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

22

75 0

2
90

135 0 60

2
2⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

MPa MPa
( MPa)

. MPa, .. MPa0

�
� � � �

��

�

� �

�

� �
� �

�
� �

(a) Maximum-Shear-Stress Theory
Since �p1 is positive and �p2 is negative, failure will occur if �p1 

�
 
�p2

 ≥ 
�Y . For the prin-

cipal stresses existing in the component,

p p1 2 135 0 60 0 195 0 270. ( . MPa) . MPa MPaMPa� �� � � � � 	

Therefore, according to the maximum-shear-stress theory, the component does not fail. 

The factor of safety associated with this state of stress can be calculated as

 FS
MPa

. MPa
.

270

195 0
1 385� �  Ans.
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(b) Mises Equivalent Stress
The Mises equivalent stress �M associated with the maximum-distortion-energy theory 

can be calculated from Equation (15.8) for the plane stress state considered here:

   
M p p p p[ ]1

2
1 2 2

2 1 2

2135 0 135 0

/

( . MPa) ( . MPa) (( . MPa) ( . MPa)

. MPa

/
[ ]60 0 60 0

173 0

2 1 2

� � � � ��

�

�

� � � �

� �
 

Ans.

(c) Maximum-Distortion-Energy Theory Factor of Safety
The factor of safety for the maximum-distortion-energy theory can be calculated from the 

Mises equivalent stress:

 FS
MPa

. MPa
.

270

173 0
1 561� �

 Ans.

According to the maximum-distortion-energy theory, the component does not fail.

676

The stresses on the free surface of a machine component are shown on the stress element. 

The component is made of a brittle material with an ultimate tensile strength of 

200 MPa and an ultimate compressive strength of 500 MPa. Use the Mohr failure crite-

rion to determine whether this component is safe for the state of stress shown.

Plan the Solution
The principal stresses will be determined for the given state of stress. With these stresses, 

the Mohr failure criterion will be used to investigate the potential for failure.

SOLUTION
The principal stresses can be calculated from Equation 12.12:

p p
x y x y

xy1 2

2

2

2 2

60 26

,

(

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

MPa 00

2

60 260

2
120

2
2MPa) MPa ( MPa)

( MPa)
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

1100 300MPa, MPa

�
� �

�

� � �

� ��
� � � �

�

� �

� � � �

Mohr Failure Criterion
Since �p1 is positive and �p2 is negative, failure will occur if the following interaction 

equation is greater than or equal to 1:

p

UT

p

UC

1 2 1�
�

� �

�
�

For the principal stresses existing in the component,

 p

UT

p

UC

1 2 100

200

300

500
0 5

MPa

MPa

( MPa)

MPa
. (( . ) .0 6 1 1 1�

�

� �

�
� �

�
� � � � 


 
Ans.

Therefore, according to the Mohr failure criterion, the component fails.

120 MPa

260 MPa

60 MPa

y

x

EXAMPLE 15.9
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P15.68 The stresses on the surface of a beam are shown in 

Figure P15.68. The beam is made of structural steel that has a yield 

strength of �Y � 50 ksi. 

(a)  What is the factor of safety predicted by the maximum-

shear-stress theory of failure for the stress state shown? 

According to this theory, does the beam fail?

(b)  What is the value of the Mises equivalent stress for the given 

state of plane stress?

(c)  What is the factor of safety predicted by the failure criterion of 

the maximum-distortion-energy theory of failure? According to 

this theory, does the beam fail?

30 ksi

21 ksi
y

x

FIGURE P15.68

P15.69 The stresses on the surface of a structural steel compo-

nent are shown in Figure P15.69. The yield strength of the steel is 

�Y � 50 ksi. 

(a)  What is the factor of safety predicted by the maximum-shear-

stress theory of failure for the stress state shown? According 

to this theory, does the component fail?

(b)  What is the value of the Mises equivalent stress for the given 

state of plane stress?

(c)  What is the factor of safety predicted by the failure criterion of 

the maximum-distortion-energy theory of failure? According 

to this theory, does the component fail?

20 ksi

25 ksi

15 ksi

y

x

FIGURE P15.69

P15.70 The stresses on the surface of a hard bronze compo-

nent are shown in Figure P15.70. The yield strength of the bronze 

is �Y � 345 MPa.

(a)  What is the factor of safety predicted by the maximum-shear-

stress theory of failure for the stress state shown? According 

to this theory, does the component fail?

(b)  What is the value of the Mises equivalent stress for the given 

state of plane stress?

(c)  What is the factor of safety predicted by the failure criterion of 

the maximum-distortion-energy theory of failure? According to 

this theory, does the component fail?

125 MPa

80 MPa

190 MPa

y

x

FIGURE P15.70

100 MPa

170 MPa
y

x

FIGURE P15.71

P15.71 The stresses on the surface of a hard bronze compo-

nent are shown in Figure P15.71. The yield strength of the bronze 

is �Y � 345 MPa.

(a)  What is the factor of safety predicted by the maximum-shear-

stress theory of failure for the stress state shown? According 

to this theory, does the component fail?

(b)  What is the value of the Mises equivalent stress for the given 

state of plane stress?

(c)  What is the factor of safety predicted by the failure criterion of 

the maximum-distortion-energy theory of failure? According to 

this theory, does the component fail?

P15.72  If a shaft is made of an aluminum alloy for which 

�Y � 410 MPa, determine the minimum torsional shear stress 

required to cause yielding, using

(a)  the maximum-shear-stress theory.

(b)  the maximum-distortion-energy theory.

P15.73 The solid circular shaft shown in Figure P15.73 has an 

outside diameter of 75 mm and is made of a bronze alloy for which 

�Y � 340 MPa. Determine the largest permissible torque T that 

may be applied to the shaft, according to

(a)  the maximum-shear-stress theory.

(b)  the maximum-distortion-energy theory.

T

T

FIGURE P15.73

677

PROBLEMSPROBLEMS

c15CombinedLoads.indd Page 677  28/03/12  10:17 PM user-F391c15CombinedLoads.indd Page 677  28/03/12  10:17 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



x

y

z
150 mm

150 mm

150 mm

150 mm

300 N

200 N

2,100 N 1,100 N

120 mm

240 mm

A

B

C

D

H

K

FIGURE P15.77

x

y

z

L

P

T V

H K

FIGURE P15.76

x

y

z
A

B C

H
K

BT

CT

P

(1)

(2)

FIGURE P15.74

P15.75 A hollow structural steel fl exural member (Figure 

P15.75b) is subjected to the load shown in Figure P15.75a. The 

yield strength of the steel is �Y � 320 MPa. Determine:

(a)  the factors of safety predicted at points H and K by the 

maximum-shear-stress theory of failure.

(b)  the Mises equivalent stresses at points H and K.

(c)  the factors of safety at points H and K predicted by the 

maximum-distortion-energy theory. P15.77 A steel shaft with an outside diameter of 20 mm is sup-

ported in fl exible bearings at its ends. Two pulleys are keyed to the 

shaft, and the pulleys carry belt tensions as shown in Figure P15.77. 

The yield strength of the steel is �Y � 350 MPa. Determine

(a)  the factors of safety at points H and K predicted by the 

maximum-shear-stress theory of failure.

(b)  the Mises equivalent stresses at points H and K.

(c)  the factors of safety at points H and K predicted by the 

maximum-distortion-energy theory.

x
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z

KH

225 kN

1 m

FIGURE P15.75a

x
z

250 mm

8 mm

150 mm

75 mm 50 mm

KH

FIGURE P15.75b

P15.74 A compound shaft consists of two steel pipe segments. 

Segment (1) has an outside diameter of 6.50 in. and a wall thick-

ness of 0.375 in. Segment (2) has an outside diameter of 4.50 in. 

and a wall thickness of 0.375 in. The shaft is subjected to an axial 

compression load of P � 35 kips and torques TB � 28 kip-ft and 

TC � 9 kip-ft, which act in the directions shown in Figure P15.74. 

The yield strength of the steel is �Y � 36 ksi, and a minimum factor 

of safety of FSmin � 1.67 is required by specifi cation. Consider 

points H and K, and determine whether the compound shaft satis-

fi es the specifi cations according to: 

(a) the maximum-shear-stress theory.

(b)  the maximum-distortion-energy theory.

P15.76 A 2.5-in.-diameter solid aluminum post is subjected to 

a horizontal force of V � 9 kips, a vertical force of P � 20 kips, 

and a concentrated torque of T � 4 kip-ft, acting in the directions 

shown in Figure P15.76. Assume that L � 3.5 in. The yield strength 

of the aluminum is �Y � 50 ksi, and a minimum factor of safety of 

FSmin � 1.67 is required by specifi cation. Consider points H and K, 

and determine whether the aluminum post satisfi es the specifi ca-

tions, according to

(a)  the maximum-shear-stress theory.

(b)  the maximum-distortion-energy theory.
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P15.78 A steel shaft with an outside diameter of 20 mm is sup-

ported in fl exible bearings at its ends. Two pulleys are keyed to the 

shaft, and the pulleys carry belt tensions as shown in Figure P15.78. 

The yield strength of the steel is �Y � 350 MPa. Determine

(a)  the factors of safety at points H and K predicted by the 

maximum-shear-stress theory of failure.

(b)  the Mises equivalent stresses at points H and K.

(c)  the factors of safety at points H and K predicted by the 

maximum-distortion-energy theory.

x
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z

700 mm
1,300 mm

55°

H

K

16 kN

FIGURE P15.79

P15.79 A pipe with an outside diameter of 140 mm and a wall 

thickness of 7 mm is subjected to the 16-kN load shown in 

Figure P15.79. The internal pressure in the pipe is 2.50 MPa, and 

the yield strength of the steel is �Y � 240 MPa. Determine

(a)  the factors of safety at points H and K predicted by the 

maximum-shear-stress theory of failure.

(b)  the Mises equivalent stresses at points H and K.

(c)  the factors of safety at points H and K predicted by the 

maximum-distortion-energy theory.

150 MPa

100 MPa
y

x

FIGURE P15.82

P15.80 An aluminum alloy is to be used for a driveshaft that 

transmits 40 hp at 800 rpm. The yield strength of the aluminum 

 alloy is �Y � 37 ksi. If a factor of safety of FS � 3.0 with respect 

to yielding is required, determine the smallest-diameter shaft that 

can be selected, according to

(a) the maximum-shear-stress theory.

(b) the maximum-distortion-energy theory.

P15.81 An aluminum alloy is to be used for a driveshaft that 

transmits 22 kW at 4 Hz. The yield strength of the aluminum alloy 

is �Y � 255 MPa. If a factor of safety of FS � 3.0 with respect to 

yielding is required, determine the smallest-diameter shaft that can 

be selected, according to

(a) the maximum-shear-stress theory.

(b) the maximum-distortion-energy theory.

P15.82 The stresses on the surface of a machine component are 

shown in Figure P15.82. The ultimate failure strengths for this ma-

terial are 200 MPa in tension and 600 MPa in compression. Use the 

Mohr failure criterion to determine whether this component is safe 

for the state of stress shown. Support your answer with appropriate 

documentation.

P15.83 The stresses on the surface of a machine component are 

shown in Figure P15.83. The ultimate failure strengths for this ma-

terial are 200 MPa in tension and 600 MPa in compression. Use the 

Mohr failure criterion to determine whether this component is safe 

for the state of stress shown. Support your answer with appropriate 

documentation.

80 MPa

240 MPa

60 MPa

y

x

FIGURE P15.83
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P15.85 A 1.25-in.-diameter solid shaft is subjected to an axial 

force of P � 7,000 lb, a horizontal force of V � 1,400 lb, and a 

concentrated torque of T � 220 lb-ft, acting in the directions shown 

in Figure P15.85. Assume that L � 6.0 in. The ultimate failure 

strengths for this material are 36 ksi in tension and 50 ksi in com-

pression. Use the Mohr failure criterion to evaluate the safety of 

this component at points H and K. Support your answers with 

 appropriate documentation.

T

T

FIGURE P15.84

P15.84 The solid circular shaft shown in Figure P15.84 has an 

outside diameter of 50 mm and is made of an alloy that has ultimate 

failure strengths of 260 MPa in tension and 440 MPa in compres-

sion. Determine the largest permissible torque T that may be 

 applied to the shaft, according to on the Mohr failure criterion.
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In their simplest form, columns are long, straight, prismatic bars subjected to compressive, 

axial loads. As long as a column remains straight, it can be analyzed by the methods of 

Chapter 1; however, if a column begins to deform laterally, the defl ection may become 

large and lead to catastrophic failure. This situation, called buckling, can be defi ned as the 

sudden large deformation of a structure due to a slight increase of an existing load under 

which the structure had exhibited little, if any, deformation before the load was increased.

A simple buckling “experiment” can be performed to illustrate this phenomenon with 

a thin ruler or yardstick (meterstick) used to represent a column. A small compressive axial 

force applied to the ends of the column will cause no discernible effect. Gradually increase 

the magnitude of the compressive force applied to the ends of the column, however, and at 

some critical load, the column will suddenly bend laterally, or “bow out.” The column has 

buckled. Once buckling occurs, a relatively small increase in compressive force will produce 

a relatively large lateral defl ection, creating additional bending in the column. However, if 

the compressive force is removed, the column returns to its original straight shape. The 

buckling failure illustrated by this experiment is not a failure of the material. The fact that 

the column becomes straight again after the compressive force is removed demonstrates that 

the material remains elastic; that is, the stresses in the column have not exceeded the propor-

tional limit of the material. Rather, the buckling failure is a stability failure. The column 

has transitioned from a stable equilibrium to an unstable one.

16.1 Introduction

Columns
16CHAPTER
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682
COLUMNS Stability of Equilibrium

The concept of stability of equilibrium with respect to columns can be investigated with the 

elementary column-buckling model shown in Figure 16.1a. In this fi gure, a column is mod-

eled by two perfectly straight pin-connected rigid bars AB and BC. The column model is 

supported by a pin connection at A and by a slotted support at C that prevents lateral move-

ment, but allows pin C to move freely in the vertical direction. In addition to the pin at B, 

the bars are connected by a rotational spring that has a spring constant K. The bars are as-

sumed to be perfectly aligned vertically before the axial load P is applied, making the 

column model initially straight.

Since the load P acts vertically and the column model is initially straight, there should 

be no tendency for pin B to move laterally as load P is applied. Furthermore, one might 

suppose that the magnitude of load P could be increased to any intensity without creating 

an effect in the rotational spring. However, common sense tells us that this cannot be true—

at some load P the pin at B will move laterally. To investigate this further, we must examine 

the column model after pin B has been displaced laterally by a small amount.

In Figure 16.1b, the pin at B has been displaced slightly to the right so that each bar 

forms a small angle �� with the vertical. The rotational spring at B reacts to the angular 

rotation of 2�� at B, tending to restore bars AB and BC to their initial vertical orientation. 

From this displaced confi guration, the question is whether the column model subjected to 

an axial load P will return to its initial confi guration or whether pin B will move farther to 

the right. If the column model returns to its initial confi guration, the system is said to be 

stable. If pin B moves farther to the right, then the system is said to be unstable.

To answer this question, consider the free-body diagram of bar BC shown in 

Figure 16.1c. In the displaced position, the forces P acting at pins B and C create a couple 

that tends to cause pin B to move farther away from its initial position. This moment cre-

ated by this couple is called the upsetting moment. The rotational spring creates a restoring 
moment M, which tends to return the system to its initial vertical orientation. The moment 

produced by the rotational spring is equal to the product of the spring constant K and the 

angular rotation at B, which is 2��. Therefore, the rotational spring produces a restoring 

moment of M � K(2��) at B. If the restoring moment is greater than the upsetting moment, 

FIGURE 16.1 Elementary column-buckling model.
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683
INTRODUCTIONthen the system will tend to return to its initial confi guration. However, if the upsetting mo-

ment is larger than the restoring moment, then the system will be unstable in the displaced 

confi guration and pin B will move farther to the right until either equilibrium is attained or the 

model collapses. The magnitude of axial load P at which the restoring moment equals the 

upsetting moment is called the critical load Pcr . To determine the critical load for the column 

model, consider the moment equilibrium of bar BC in Figure 16.1c for the load P � Pcr :

 M P L KB cr ( )2 2 0sin ( )� � ��� ��Σ  (a)

Since the lateral displacement at B is assumed to be small, sin �� � ��, and thus, Equation 

(a) can be simplifi ed and solved for Pcr:

 

P L K

P
K

L

cr

cr

2 2

4

( ) ( )�

�

�� ��

�
 (b)

If the load P applied to the column model is less than Pcr , then the restoring moment is greater 

than the upsetting moment and the system is stable. However, if P � Pcr , then the system is 

unstable. At the point of transition where P � Pcr , the system is neither stable nor unstable, 

but rather, it is said to be in neutral equilibrium. The fact that �� does not appear in Equa-

tion (b) indicates that the critical load can be resisted at any value of ��. Pin B could be 

moved laterally to any position, and there would be no tendency for the column model either 

to return to the initial straight confi guration or to move farther away from it.

Equation (b) also suggests that the stability of the elementary column-buckling  model 

can be enhanced either by increasing the stiffness K or by decreasing the length L. In the 

sections that follow, we will observe that these same relationships are applicable for the 

critical loads of actual columns.

The notions of stability and instability can be defi ned concisely in the following 

 manner:

Stable—A small action produces a small effect.

Unstable—A small action produces a large effect.

These notions and the concept of three equilibrium states can be illustrated by the 

equilibrium of a ball resting on three different surfaces, as shown in Figure 16.2. In all 

three cases, the ball is in equilibrium at position 1. To investigate the stability associated 

with each surface, the ball must be displaced an infi nitesimally small distance dx to either 

side of position 1. In Figure 16.2a, a ball displaced laterally by dx and released would 

roll back to its initial position. In other words, a small action (i.e., displacing the ball 

dx) produces a small effect (i.e., the ball rolls back dx). Therefore, a ball at position 1 on 

the concave upward surface of Figure 16.2a illustrates the notion of stable equilibrium. 

The ball in Figure 16.2b, if displaced laterally by dx and released, would not return to 

position 1. Rather, the ball would roll farther away from position 1. In other words, a small 

action (i.e., displacing the ball dx) produces a large effect (i.e., the ball rolls a large 

distance until it eventually reaches another equilibrium position). The ball at rest on the 

concave downward surface of Figure 16.2b illustrates the notion of unstable equilibrium. 

The ball in Figure 16.2c is in a neutral equilibrium position on the horizontal plane because 

it will remain at any new position to which it is displaced, tending neither to return to nor 

move farther from its original position.

dx

1

dx

1

dx

1

FIGURE 16.2 Concepts of 

(a) stable, (b) unstable, and 

(c) neutral equilibrium.

(a) 

(b) 

(c) 
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684
COLUMNS Summary

Before the compressive load on a column is gradually increased from zero, the column is 

initially in a state of stable equilibrium. During this state, if the column is perturbed by 

inducing small lateral defl ections, it will return to its straight confi guration when the loads 

are removed. As the load is increased further, a critical load value is reached at which the 

column is on the verge of experiencing large lateral defl ections; that is, the column is at the 

transition between stable and unstable equilibrium. The maximum compressive load for 

which the column is in stable equilibrium is called the critical buckling load. The com-

pressive load cannot be increased beyond this critical value unless the column is laterally 

restrained. For long, slender columns, the critical buckling load occurs at stress levels that 

are much lower than the proportional limit for the material, which indicates that this type 

of buckling is an elastic phenomenon.

FIGURE 16.3 Buckling of pin-ended column.
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The stability of real columns will be investigated by analyzing a long, slender column 

with pinned ends (Figure 16.3a). The column is loaded by a compressive load P that 

passes through the centroid of the cross section at the ends. The pins at each end are fric-

tionless, and the load is applied to the column by the pins. The column itself is perfectly 

straight and made of a linearly elastic material that follows Hooke’s Law. Since the col-

umn is assumed to have no imperfections, it is termed an ideal column. The ideal column 

in Figure 16.3a is assumed to be symmetric about the x–y plane, and any defl ections occur 

in the x–y plane.

16.2 Buckling of Pin-Ended Columns
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685
BUCKLING OF PIN-ENDED 

COLUMNS
Buckled Confi guration

If the compressive load P is less than the critical load Pcr , then the column will remain 

straight and it will shorten in response to a uniform compressive axial stress � � P/A. As 

long as P � Pcr , the column is in stable equilibrium. When the compressive load P is in-

creased to the critical load Pcr , the column is at the transition point between stable and un-

stable equilibrium, which is called neutral equilibrium. At P � Pcr , the defl ected shape 

shown in Figure 16.3b also satisfi es equilibrium. The value of the critical load Pcr and the 

shape of the buckled column will be determined from analysis of this defl ected shape.

Equilibrium of the Buckled Column

A free-body diagram of the entire buckled column is shown in Figure 16.3c. Summation of 

forces in the vertical direction gives Ax � P, summation of moments about A gives By � 0, 

and summation of forces in the horizontal direction gives Ay � 0.

Next, consider a free-body diagram cut through the column at a distance x from the 

origin (Figure 16.3d). Since Ay � 0, any shear force V acting in the horizontal direction on 

the exposed column surface of this free-body diagram must also equal zero to satisfy equi-

librium. Consequently, both the horizontal reaction Ay and a shear force V can be omitted 

from the free-body diagram in Figure 16.3d.

Differential Equation for Column Buckling

In the buckled column of Figure 16.3d, both the column defl ection v and the internal bend-

ing moment M are shown in their positive directions. As defi ned in Section 10.2, the bend-

ing moment M creates positive curvature. From the free-body diagram in Figure 16.3d, the 

sum of moments about A is

 ΣM M PvA 0� � �  (a)

From Equation (10.1), the moment–curvature relationship (assuming small defl ections) 

can be expressed as

 M EI
d v

dx

2

2
�  (b)

Equation (b) can be substituted into Equation (a) to give

 EI
d v

dx
Pv

2

2
0� �  (16.1)

Equation (16.1) is the differential equation that dictates the defl ected shape of an ideal 

pin-ended column. This equation is a homogeneous second-order ordinary differential 

equation with constant coeffi cients that has boundary conditions of v(0) � 0 and v(L) � 0.

Solution of the Differential Equation

Established methods are available for the solution of equations such as Equation (16.1). 

To use these methods, Equation (16.1) is fi rst simplifi ed by dividing by EI to obtain

d v

dx

P

EI
v

2

2
0� �
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686
COLUMNS The term P/EI will be denoted by k2

 k
P

EI
2 �  (16.2)

so that Equation (16.1) can be rewritten as

d v

dx
k v

2

2
2 0� �

The general solution to this homogeneous equation is

 v C kx C kx1 2sin cos� �  (16.3)

where C1 and C2 are constants that must be evaluated with the use of the boundary condi-

tions. From the boundary conditions v(0) � 0, we obtain

 
0 0 0 0 1

0
1 2 1 2

2

C C C C

C

sin ( ) cos( ) ( ) ( )� � � �

��
 (c)

From the boundary conditions v(L) � 0, we obtain

 0 1C kLsin ( )�  (d)

Equation (d) can be solved by C1 � 0; however, this is a trivial solution, since it would imply 

that v � 0 and hence the column would remain perfectly straight. The other solution for Equa-

tion (d) is that sin(kL) � 0. The sine function equals zero for integer multiples of �; therefore,

 kL n n 1 2 3, , ,...� ��  (e)

From Equation (16.2), k can be expressed as

k
P

EI
�

This expression for k can be substituted into Equation (e) to give

P

EI
L n� �

and solved for the load P:

 P
n EI

L
n

2 2

2
1 2 3, , ,...� �

�
 (16.4)

Euler Buckling Load and Buckling Modes

The purpose of this analysis is to determine the minimum load P at which lateral defl ec-

tions occur in the column; therefore, the smallest load P that causes buckling occurs for 

n � 1 in Equation (f), since it gives the minimum value of P for a nontrivial solution. This 

load is called the critical buckling load, Pcr, for an ideal pin-ended column:

 P
EI

Lcr

2

2�
�

 (16.5)
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The critical load for an ideal column is known as the Euler buckling load, after the Swiss 

mathematician Leonhard Euler (1707–1783), who published the fi rst solution for the buck-

ling of long, slender columns in 1757. Equation (16.5) is also known as Euler’s formula.

Equation (e) can be substituted in Equation (16.3) to describe the defl ected shape of 

the buckled column:

 v C kx C
n

L
x n

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1 1 1 2 3sin sin , , ,...� � �

�
 (16.6)

An ideal column subjected to an axial compression load P is shown in Figure 16.4a. The 

defl ected shape of the buckled column corresponding to the Euler buckling load given in 

Equation (16.5) is shown in Figure 16.4b. Note that the specifi c values for the constant C1 

cannot be obtained, since the exact defl ected position of the buckled column is unknown. 

However, the defl ections have been assumed to be small. The defl ected shape is called the 

mode shape, and the buckled shape corresponding to n � 1 in Equation (16.6) is called the 

fi rst buckling mode (Figure 16.4b). By considering higher values of n in Equations (16.4) 

and (16.6), it is theoretically possible to obtain an infi nite number of critical loads and cor-

responding mode shapes. The critical load and mode shape for the second buckling mode 

are illustrated in Figure 16.4c. The critical load for the second mode is four times greater 

than the fi rst-mode critical load. However, buckled shapes for the higher modes are of no 

practical interest, since the column buckles upon reaching its lowest critical load value. 

Higher mode shapes can be attained only by providing lateral restraint to the column at 

intermediate locations to prevent the column from buckling in the fi rst mode.

Euler Buckling Stress

The normal stress in the column at the critical load is

 cr
crP
A

EI
AL

2

2��
�

�  (f )

The radius of gyration r is a section property defi ned as

 r
I

A
2 �  (16.7)

If the moment of inertia I is replaced by Ar2, Equation (f) becomes

 cr
E Ar
AL

Er
L

E

L r

( )

( )

2 2

2

2 2

2

2

2� � ��
� � �

 (16.8)

The quantity L/r is termed the slenderness ratio and is determined for the axis about which 

bending tends to occur. For an ideal pin-ended column with no intermediate bracing to re-

strain lateral defl ection, buckling occurs about the axis of minimum moment of inertia 

(which also corresponds to the minimum radius of gyration).

Note that Euler buckling is an elastic phenomenon. If the axial compressive load is 

removed from an ideal column that has buckled as described here, the column will return 

to its initial straight confi guration. In Euler buckling, the critical stress �cr remains below 

the proportional limit for the material.

Graphs of Euler buckling stress [Equation (16.8)] are shown in Figure 16.5 for struc-

tural steel and for an aluminum alloy. Since Euler buckling is an elastic phenomenon, 

Equation (16.8) is valid only when the critical stress is less than the proportional limit for 

the material, because the derivation is based on Hooke’s Law. Therefore, a horizontal line is 

L

A

B

P

(a) Undefi ned column

FIGURE 16.4 Two examples 

of buckling modes.

v

x

1C

A

B

2crP �
2L

EI24�

(c) Second buckling mode (n � 2)

v

x

1C

A

B

1crP �
L2

EI2�

(b) First buckling mode (n � 1)
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688
COLUMNS

drawn on the graph at the 36-ksi proportional limit stress for the structural steel and at the 

60-ksi proportional limit for the aluminum alloy, and the respective Euler stress curves are 

truncated at these values.

Euler Buckling Implications

An examination of Equations (16.5) and (16.8) reveals several implications for buckling of 

an ideal pin-ended column:

•  The Euler buckling load is inversely related to the square of the column length. 

Therefore, the load that causes buckling rapidly decreases as the column length 

increases.

•  The only material property that appears in Equations (16.5) and (16.8) is the elastic 

modulus E, which represents the stiffness of the material. One means of increasing 

the load-carrying capacity of a given column is to use a material with a higher E 

value.

•  Buckling occurs about the cross-sectional axis that corresponds to the minimum 
moment of inertia (which also corresponds to the minimum radius of gyration). 

Therefore, it is generally ineffi cient to select, for use as a column, a member that has 

great disparity between the maximum and minimum moments of inertia. This 

ineffi ciency can be mitigated if additional lateral bracing is provided to restrain 

lateral defl ection about the weaker axis.

•  Since the Euler buckling load is directly related to the moment of inertia I of the cross 

section, a column’s load-carrying capacity can often be improved, without increasing 

its cross-sectional area, by employing thin-walled tubular shapes. Circular pipes and 

square hollow structural sections are particularly effi cient in this regard. The radius of 

gyration r defi ned in Equation (16.7) provides a good measure of the relationship 

between moment of inertia and cross-sectional area. In choosing between two 

equal-area shapes for use as a column, it is helpful to keep in mind that the shape 

with the larger radius of gyration will be able to carry more load.

FIGURE 16.5 Graphs of Euler buckling stress for steel and an aluminum alloy.
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689
BUCKLING OF PIN-ENDED 

COLUMNS
•  The Euler buckling load equation [Equation (16.5)] and the Euler buckling stress 

equation [Equation (16.8)] depend only on the column length L, the stiffness of the 

material (E), and the cross-sectional properties (I). The critical buckling load is 

independent of the strength of the material. For example, consider two round steel 

rods having the same diameter and length, but differing strengths. Since E, I, and L 

are the same for both rods, the Euler buckling loads for the two rods will be identical. 

Consequently, there is no advantage in using the higher-strength steel (which, 

presumably, is more expensive) instead of the lower-strength steel in this instance.

The Euler buckling load as given by Equation (16.5) agrees well with experiment, but only 

for “long” columns for which the slenderness ratio L /r is large, typically in excess of 140 

for steel columns. Whereas a “short” compression member can be treated as explained in 

Chapter 1, most practical columns are “intermediate” in length, and consequently, neither 

solution is applicable. These intermediate-length columns are analyzed by empirical 

 formulas described in later sections. The slenderness ratio is the key parameter used to clas-

sify columns as long, intermediate, or short.

A 15-mm by 25-mm rectangular aluminum bar is used as a 650-mm-

long compression member. The ends of the compression member 

are pinned. Determine the slenderness ratio and the Euler buckling 

load for the compression member. Assume that E � 70 GPa.

Plan the Solution
The aluminum bar will buckle about the weaker of the two princi-

pal axes for the cross-sectional shape of the compression member 

considered here. The smaller moment of inertia for the cross section 

occurs about the y axis; therefore, buckling will produce bending of 

the compression member in the x–z plane at the critical load Pcr.

SOLUTION
The cross-sectional area of the compression member is A � (15 mm) 

(25 mm) � 375 mm2, and its moment of inertia about the y axis is

Iy
( mm)( mm)

mm425 15

12

3
7,031.25� �

The slenderness ratio is equal to the length of the column divided by its radius of gyration. 

The radius of gyration for this cross section with respect to the y axis is

r
I

Ay
y 7,031.25 mm

mm
. mm

4

2375
4 330� � �

and therefore, the slenderness ratio for buckling about the y axis is

 
L

ry

650

4 330
150 1

mm

. mm
.� �  

Ans.

Note: The slenderness ratio is not necessary for determination of the Euler buckling load 

in this instance; however, the slenderness ratio is an important parameter that is used in 

many empirical column formulas.

EXAMPLE 16.1

P

P

y

z

x

650 mm

P

P

y

z

x

25 mm

15 mm

y

z

Cross section.
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690

The Euler buckling load for this compression member can be calculated from Equation 

(16.5):

 
P

EI

Lcr
( )( )2

2

2

2650

70,000 N/mm 7,031.252 4mm

( mm)
11,498 N

. kN11 50

�

�

� �
� �

 Ans.

When the compression member buckles, it bends in the x–z plane as shown.

A 40-ft-long column is fabricated by connecting two 

standard steel C10 � 15.3 channels (see Appendix B 

for cross-sectional properties) with lacing bars as shown. 

The ends of the column are pinned. Determine the 

Euler buckling load for the column. Assume that E � 

29,000 ksi for the steel.

Plan the Solution
The column is built up from two standard steel channel 

shapes. The lacing bars serve only to connect the two 

channel shapes so that they act as a single structural 

unit. They do not add to the compressive strength of the 

column. Which principal axis of the cross section is the 

strong axis, and which is the weak axis? This is not 

evident by inspection; therefore, the  moments of inertia 

about both axes must be calculated at the outset. Since 

 both ends of the column are pinned, buckling will occur 

about the axis that corresponds to the smaller moment of 

inertia.

SOLUTION
The following section properties for a standard steel C10 � 15.3 channel are given in 

Appendix B:

A � 4.48 in.2

Ix � 67.3 in.4

Iy � 2.27 in.4

x � 0.634 in.

In Appendix B, the X–X axis is the strong axis for the channel and the Y–Y axis is the weak 

axis. For the coordinate system defi ned in this problem, the X–X axis will be denoted the 

z� axis and the Y–Y axis will be denoted the y� axis.

The cross-sectional area of the built-up column is equal to twice the area of a single 

channel shape:

A ( )2 4 48 8 962 2. .in. in.� �

8.5 in.

C10 � 15.3 shapes
aligned toe-to-toe

Lacing
bars

y

z

x

y

z

Cross section.

From Appendix B.

bf

tw

tftf

x–

dXX

Y

Y

EXAMPLE 16.2
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691

The moment of inertia of the built-up column about the z axis is also equal to 

twice that of a single channel shape about its strong axis (i.e., the z� axis):

Iz ( )2 67 3 134 64 4. .in. in.� �

The horizontal distance from the y centroidal axis for the entire cross section to 

the back of one channel is 4.25 in. The distance from the back of the channel to 

its y� centroidal axis is given in Appendix B as 0.634 in. Therefore, the distance 

between the centroidal axis for the entire cross section and the centroidal axis 

for a single channel shape is equal to the difference: 4.25 in. � 0.634 in. � 3.616 in. 

This distance is shown on the fi gure to the right.

From the parallel axis theorem, the moment of inertia of the built-up shape 

about its y centroidal axis can be calculated as

Iy [ ]2 2 27 3 616 4 48 121 69614 2 2. ( . ) ( . .in. in. in.) in..4� � �

Since Iy � Iz, the built-up column will buckle about its y axis.

The Euler buckling load is calculated from Equation (16.5):

 P
EI

Lcr

2

2

2 121 6961

40 1

( ksi) ( . )

[( ft) (

429,000 in.

22
151 2

2in./ft)]
. kips�

� �
� �  Ans.

y

z

8.5 in.

4.25 in.

10 in.

C10 � 15.3

3.616 in.0.634 in.
y�

z�

P16.1 Determine the slenderness ratio and the Euler buckling load 

for round wooden dowels that are 1 m long and have a diameter of

(a) 16 mm.

(b) 25 mm.

Assume that E � 10 GPa.

P16.2 An aluminum alloy tube with an outside diameter of 3.50 in. 

and a wall thickness of 0.30 in. is used as a 14-ft-long column. As-

sume that E � 10,000 ksi and that pinned connections are used at 

each end of the column. Determine the slenderness ratio and the 

Euler buckling load  for the column.

P16.3 A WT8 � 25 structural steel section (see Appendix B for 

its cross-sectional properties) is used for a 20-ft column. Assume 

that pinned connections are at each end of the column. Determine

(a) the slenderness ratio.

(b) the Euler buckling load; use E � 29,000 ksi for the steel.

(c) the axial stress in the column when the Euler load is applied.

P16.4 A WT205 � 30 structural steel section (see Appendix 

B for its cross-sectional properties) is used for a 6.5-m column. 

Assume that pinned connections are at each end of the column. 

Determine

PROBLEMSPROBLEMS
(a) the slenderness ratio.

(b) the Euler buckling load; use E � 200 GPa for the steel.

(c) the axial stress in the column when the Euler load is applied.

P16.5 Determine the maximum compressive load that a 

HSS6 � 4 � 1/4 structural steel column (see Appendix B for its 

cross-sectional properties) can support if it is 24 ft long and a 

factor of safety of 1.92 is specified. Use E � 29,000 ksi for the 

steel.

P16.6 Determine the maximum compressive load that a 

HSS254 � 152.4 � 12.7 structural steel column (see Appendix B 

for its cross-sectional properties) can support if it is 9 m long 

and a factor of safety of 1.92 is specifi ed. Use E � 200 GPa for 

the steel.

P16.7 Two C12 � 25 structural steel channels (see Appendix B 

for its cross-sectional properties) are used for a column that is 35 ft 

long. Assume that pinned connections are at each end of the col-

umn, and use E � 29,000 ksi for the steel. Determine the total com-

pressive load required to buckle the two members if

(a) they act independently of each other.

(b) they are latticed back-to-back as shown in Figure P16.7.
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P16.10 A solid 0.5-in.-diameter cold-rolled steel rod is pinned 

to fi xed supports at A and B as shown in Figure P16.10. The 

length of the rod is L � 24 in., its elastic modulus is E � 30,000 ksi, 

and its coeffi cient of thermal expansion is � � 6.6 � 10−6/°F. 

Determine the temperature increase �T that will cause the rod to 

buckle.

P16.8 Two L5 � 3 � 1/2 structural steel angles (see Appendix B 

for its cross-sectional properties) are used as a compression member 

that is 20 ft long. The angles are separated at intervals by spacer blocks 

and connected by bolts, as shown in Figure P16.8, a confi guration 

which ensures that the double-angle shape acts as a unifi ed structural 

member. Assume that pinned connections are at each end of the col-

umn, and use E � 29,000 ksi for the steel. Determine the Euler buck-

ling load for the double-angle column if the spacer block thickness is

(a) 0.25 in.

(b) 0.75 in.

P16.9 Two L102 � 76 � 9.5 structural steel angles (see Appen-

dix B for its cross-sectional properties) are used as a compression 

member that is 4.5 m long. The angles are separated at intervals by 

spacer blocks and connected by bolts, as shown in Figure P16.9,  a 

confi guration which ensures that the double-angle shape acts as a 

unifi ed structural member. Assume that pinned connections are at 

each end of the column, and use E � 200 GPa for the steel. Deter-

mine the Euler buckling load for the double-angle column if the 

spacer block thickness is

(a) 5 mm.

(b) 20 mm.

P16.11 Rigid beam ABC is supported by a pinned connection at 

A and by a timber post that is pin-connected at B and D as shown in 

Figure P16.11/12. A distributed load of w � 2 kips/ft acts on the 

14-ft-long beam, which has length dimensions of x1 � 8 ft and 

x2 � 6 ft. The timber post has a length of L � 10 ft, an elastic 

modulus of E � 1,800 ksi, and a square cross section. If a factor of 

safety of 2.0 with respect to buckling is specifi ed, determine the 

minimum width required for the square post.

A B C

D

w

x1 x2

L
(1)

FIGURE P16.11/12

692

6 in.

C12 � 25C12 � 25

Lacing
bars

FIGURE P16.7

76 mm 76 mm

Spacer block

Double angles
L102 � 76 � 9.5

Long legs back-to-back

Spacer thickness

FIGURE P16.9

3 in.3 in.

Spacer block

Double angles

L5 � 3 �
Long legs back-to-back

Spacer thickness

2
1

FIGURE P16.8

A BL

FIGURE P16.10
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P16.12 Rigid beam ABC is supported by a pinned connection at 

A and by a 180-mm by 180-mm square timber post that is pin-

connected at B and D as shown in Figure P16.11/12. The length 

dimensions of the beam are x1 � 3.6 m and x2 � 2.8 m. The timber 

post has a length of L � 4 m and an elastic modulus of E � 12 GPa. 

If a factor of safety of 2.0 with respect to buckling is specifi ed, de-

termine the magnitude of the maximum distributed load w that may 

be supported by the beam.

P16.13 Rigid beam ABC is supported by a pinned connection 

at C and by an inclined strut that is pin-connected at B and D as 

shown in Figure P16.13a. The strut is fabricated from two steel 

[E � 200 GPa] bars, which are each 70 mm wide and 15 mm thick. 

Between B and D, the bars are separated and connected by two 

spacer blocks, which are 25 mm thick. The strut cross section is 

shown in Figure P16.13b. Determine

(a)  the compression force in strut BD that is created by the loads 

acting on the rigid beam.

(b)  the slenderness ratios for the strut about its strong and weak axes.

(c)  the minimum factor of safety in the strut with respect to buckling.

(a)  the compression force in the strut created by the loads acting 

on the beam.

(b)  the slenderness ratios for the strut about the strong and weak 

axes of the double-angle shape.

(c)  the minimum factor of safety in the strut with respect 

to buckling.

1.0 m 2.0 m

90 kN

(1)

B C

D

A

1.5 m
Spacer
blocks

FIGURE P16.13a

P16.14 A rigid beam is supported by a pinned connection at 

B and by an inclined strut that is pin-connected at A and C as 

shown in Figure P16.14a. The strut is fabricated from two steel 

[E � 200 GPa] L102 � 76 � 9.4 angles, which are oriented with 

the long legs back-to-back as shown in Figure P16.14b. The 

angles are separated and connected by spacer blocks, which are 

30 mm thick. Determine

Spacer block

Double angles
L102 � 76 � 9.5

Long legs back-to-back

30 mm

2.2 m 1.9 m

140 mm

2.7 m

y

x

A B

C

110 kN/m8 kN

Double angles
L102 � 76 � 9.5

Long legs back-to-back

FIGURE P16.14a

FIGURE P16.14b

P16.15 In Figure P16.15, rigid bar ABC is supported by pin-

connected bar (1). Bar (1) is 1.50 in. wide and 1.00 in. thick, and 

made of aluminum that has an elastic modulus of E � 10,000 ksi. 

Determine the maximum magnitude of load P that can be  applied 

to the rigid bar without causing member (1) to buckle.

24 in. 40 in. 16 in.

30 in.

P

A
B

CD

(1)

FIGURE P16.15
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70 mm

25
mm

15 mm15 mm

Spacer block

FIGURE P16.13b
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P16.16 The members of the truss shown in Figure P16.16 are 

aluminum pipes that have an outside diameter of 4.50 in., a wall 

thickness of 0.237 in., and an elastic modulus of E � 10,000 ksi. 

Determine the maximum magnitude of load P that can be applied 

to the truss without causing any of the members to buckle.

P16.20 A tie rod (1) and a structural steel WT shape (2) are used 

to support a load P as shown in Figure P16.20. Tie rod (1) is a solid 

1.125-in.-diameter steel rod, and member (2) is a WT8 � 20 struc-

tural shape oriented so that the tee stem points upward. Both the tie 

rod and the WT shape have an elastic modulus of 29,000 ksi and a 

yield strength of 36 ksi. Determine the maximum load P that can be 

applied to the structure if a factor of safety of 2.0 with respect to 

failure by yielding and a factor of safety of 3.0 with respect to failure 

by buckling are specifi ed.

P16.17 The assembly shown in Figure P16.17/18 consists of 

two solid 50-mm-diameter steel [E � 200 GPa] rods (1) and (2). 

 Assume that the rods are pin-connected and that joint B is restrained 

against translation in the z direction. A minimum factor of safety of 

3.0 is required for the buckling capacity of each rod. Determine the 

maximum allowable load P that can be supported by the assembly.

P16.18 The assembly shown in Figure P16.17/18 consists of 

two solid circular steel [E � 200 GPa] rods (1) and (2). Assume that 

the rods are pin-connected and that joint B is restrained against 

translation in the z direction. If a load of P � 60 kN is applied to the 

assembly, determine the minimum rod diameters required if a factor 

of safety of 3.0 is specifi ed for each rod.

P16.19 An assembly consisting of tie rod (1) and pipe strut (2) 

is used to support an 80-kip load, which is applied to joint B. Strut 

(2) is a pin-connected steel [E � 29,000 ksi] pipe with an outside 

diameter of 8.625 in. and a wall thickness of 0.322 in. For the load-

ing shown in Figure P16.19, determine the factor of safety with 

respect to buckling for member (2).

P16.21 A simple pin-connected wood truss is loaded and sup-

ported as shown in Figure P16.21. The members of the truss are 

3.5-in. by 3.5-in. square Douglas fi r posts that have an elastic mod-

ulus of E � 1,600 ksi. Consider all compression members, and de-

termine the minimum factor of safety for the truss with respect to 

failure by buckling.
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1.4 m 1.7 m

(1)
(2)

2.0 m

1.2 m
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B

C

P
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x

FIGURE P16.17/18
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FIGURE P16.16
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30 ft

24 ft
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FIGURE P16.19
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16 ft
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FIGURE P16.20
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P16.24 A simple pin-connected truss is loaded and supported 

as shown in Figure P16.24. All members of the truss are aluminum 

[E � 70 GPa] tubes with an outside diameter of 50 mm and a wall 

thickness of 5 mm. The yield strength of the aluminum is 250 MPa. 

Determine the maximum load P that may be applied to the struc-

ture if a factor of safety of 2.0 with respect to failure by yielding 

and a factor of safety of 3.0 with respect to failure by buckling are 

specifi ed.

P16.23 A simple pin-connected wood truss is loaded and sup-

ported as shown in Figure P16.23. The members of the truss are 

150-mm by 150-mm square Douglas fi r timbers that have an elastic 

modulus of E � 11 GPa. Consider all compression members, and 

determine the minimum factor of safety for the truss with respect to 

failure by buckling.

F G H

9 kN22 kN13 kN

4 m

4 spaces @ 3 m � 12 m

A B C D E

FIGURE P16.23

P16.25 A simple pin-connected truss is loaded and supported as 

shown in Figure P16.25. All members of the truss are steel 

[E � 200 GPa] pipes with an outside diameter of 140 mm and a 

wall thickness of 10 mm. The yield strength of the aluminum is 

250 MPa. Determine the maximum value of P that may be applied 

to the structure if a factor of safety of 2.0 with respect to failure by 

yielding and a factor of safety of 3.0 with respect to failure by buck-

ling are specifi ed.

P 2P 2P

8 m

6 m6 m6 m

A B C D

E F G

FIGURE P16.25
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2.4 kips 1.8 kips 1.2 kips

9 ft

9 ft9 ft9 ft

A B C D

E F

FIGURE P16.21

P16.22 A simple pin-connected truss is loaded and supported as 

shown in Figure P16.22. All members of the truss are aluminum 

[E � 10,000 ksi] pipes with an outside diameter of 4.00 in. and a 

wall thickness of 0.226 in. Consider all compression members, and 

determine the minimum factor of safety for the truss with respect to 

failure by buckling.

7 kips

5 kips

12 kips 12 kips

6 ft

6 ft

8 ft

A B

C D

E F

FIGURE P16.22
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1.67 m

3 m 1 m

3 m2 m

A B C

D E

FIGURE P16.24
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The Euler buckling formula expressed by either Equation (16.5) or Equation (16.8) was 

derived for an ideal column with pinned ends (i.e., ends with zero moment that are free to 

rotate, but are restrained against translation). Columns are commonly supported in other 

ways, and these differing conditions at the ends of a column have a signifi cant effect on the 

load at which buckling occurs. In this section, the effect of different idealized end condi-
tions on the critical buckling load for a column will be investigated.

The critical buckling load for columns with various combinations of end conditions 

can be determined by the approach taken in Section 16.2 to analyze a column with pinned 

ends. In general, the column is assumed to be in a buckled condition and an expression for 

the internal bending moment in the buckled column is derived. From this equilibrium equa-

tion, a differential equation of the elastic curve can be expressed by means of the moment–

curvature relationship [Equation (10.1)]. The differential equation can be solved with the 

boundary conditions pertinent to the specifi c set of end conditions, and from this solution, 

the critical buckling load and the buckled shape of the column can be determined.

To illustrate this approach, the fi xed-pinned column shown in Figure 16.6a will be 

analyzed to determine the critical buckling load and buckled shape of the column. Then, 

the effective length concept will be introduced. This concept provides a convenient way to 

determine the critical buckling load for columns with various end conditions.

Buckled Confi guration

The fi xed support at A prohibits both translation and rotation of the column at its lower end. 

The pinned support at B prohibits translation in the y direction, but allows the column to 

rotate at its upper end. When the column buckles, a moment reaction MA must be developed, 

because rotation at A is prevented. On the basis of these constraints, the buckled shape of 

the column can be sketched as shown in Figure 16.6b. The value of the critical load Pcr and 

the shape of the buckled column will be determined from analysis of this defl ected shape.

Equilibrium of the Buckled Column

A free-body diagram of the entire buckled column is shown in Figure 16.6c. Summation of 

forces in the vertical direction gives Ax � P. Summation of moments about A reveals that 

a horizontal reaction force By must exist at the upper end of the column as a consequence 

of the moment reaction MA at the fi xed support. The presence of By necessitates, in turn, a 

horizontal reaction force Ay at the base of the column to satisfy equilibrium of forces in the 

horizontal direction.

Next, consider a free-body diagram cut through the column at a distance x from the 

origin (Figure 16.6d). We could consider either the lower or the upper portion of the col-

umn, but here we will consider the upper portion of the column for further analysis.

Differential Equation for Column Buckling

In the buckled column of Figure 16.6d, both the column defl ection v and the internal bend-

ing moment M are shown in their positive directions. From the free-body diagram in 

Figure 16.6d, the sum of moments about exposed surface O is

 M M Pv B L xO y�Σ � � � � �( ) 0  (a)
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THE EFFECT OF END 

CONDITIONS ON 
COLUMN BUCKLING

From Equation (10.1), the moment–curvature relationship (assuming small defl ections) 

can be expressed as

 M EI
d v

dx
�

2

2
 (b)

which can be substituted into Equation (a) to give

 EI
d v

dx
Pv B L(   )xy

2

2
� � �  (16.9)

By dividing both sides of Equation (16.9) by EI and again substituting the term k2 � P/EI, 
the differential equation for the fi xed-pinned column can be expressed as

 
d v

dx
k v

B

EI
L xy

2

2
2 ( )� � �  (16.10)

Equation (16.10) is a nonhomogeneous second-order ordinary differential equation with 

constant coeffi cients that has boundary conditions of v(0) � 0, v�(0) � 0, and v(L) � 0.

Solution of the Differential Equation

The general solution of Equation (16.10) is

 v C kx C kx
B

P
L xy

1 2sin cos ( )� � � �  (16.11)

FIGURE 16.6 Buckling of a fi xed-pinned column.
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698
COLUMNS in which the fi rst two terms are the homogeneous solution (which is identical to the 

 homogeneous solution for the pinned-pinned column) and the third term is the particular 

solution. The constants C1 and C2 are constants that must be evaluated with the use of the 

boundary conditions. From the boundary conditions v(0) � 0, we obtain

 0 0 01 2 2C C
B

P
L C

B L

P
y ysin ( ) cos( ) ( )� � � � �  (c)

From the boundary conditions v(L) � 0, we obtain

0 1 2C kL C kL
B

P
L Lysin ( ) cos( ) ( )� � � �

which can be simplifi ed to

 0 1 2C kL Ctan( )� �  (d)

The derivative of Equation (16.11) with respect to x is

dv

dx
C k kx C k kx

B

P
y

1 2cos sin� � �

From the boundary condition v�(0) � 0, the following expression is obtained:

 0 0 01 2 1C k C k
B

P
C k

B

P
y ycos( ) sin ( )� � � � �  (e)

To obtain a nontrivial solution, By is eliminated from Equations (c) and (e) to obtain an 

expression for C2. From Equation (e), By � C1kP, and this expression can be substituted 

into Equation (c) to obtain

 C
B L

P

C kPL

P
C kLy

2
1

1� � � � � �  (f )

Upon substitution of this result into Equation (d), the following equation is obtained:

0 1 2 1 1C kL C C kL C kLtan( ) tan( )� � � �

This can be simplifi ed to

 tan( )kL kL�  (16.12)

The solution of Equation (16.12) gives the critical buckling load for a fi xed-pinned column. 

Since this is a transcendental equation, an explicit solution cannot be obtained. However, 

the solution of this equation can be determined numerically:

 kL 4 4934.�  (g)

Note that only the smallest value of kL that satisfi es Equation (16.12) is of interest here. 

Since k2 � P/EI, Equation (g) can then be expressed as

P

EI
L 4 4934.�

and solved for the critical buckling load Pcr:

 P
EI

L
EI

Lcr
20 1907 2 0457

2

2

2

. .
� �

�
 (16.13)
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THE EFFECT OF END 

CONDITIONS ON 
COLUMN BUCKLING

The equation of the buckled column can be obtained by substituting C2 � �C1kL 

[Equation (f)] and By/P � C1k [from Equation (e)] into Equation (16.11) to obtain

 

v C kx C kL kx C k L x

C kx kL kx k
1 1 1

1

sin cos ( )

[sin cos (( )]

sin
.

. cos

L x

C
x

L

x

L

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1

4 4934
4 4934 1

4..4934x

L

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥{ }

�

�

� � � �

� � �

� � �

 (16.14)

The expression inside the braces is the mode shape of the fi rst buckling mode for a fi xed-

pinned column. The constant C1 cannot be evaluated; therefore, the amplitude of the curve 

is undefi ned, although defl ections are assumed to be small.

Effective Length Concept

The Euler buckling load for a pinned-pinned column was

 P
EI

Lcr

2

2�
�

 (16.5)

and the critical buckling load for a fi xed-pinned column was found to be

 P
EI

Lcr
2 0457 2

2

.
�

�
 (16.13)

A comparison of these two equations shows that the form of the critical load equation for 

a fi xed-pinned column is nearly identical to the form of the Euler buckling load equation. 

The two equations differ by only a constant. This similarity suggests that it is possible to 

relate the buckling loads of columns with various end conditions to the Euler buckling load.

The critical buckling load for a fi xed-pinned column of length L is given by Equation 

(16.13), and this critical load is greater than the Euler buckling load for a pin-ended column 

of the same length L (assuming that EI is the same for both cases). What would the length 
of an equivalent pin-ended column have to be in order for the equivalent pinned-pinned 
column to buckle at the same critical load as the actual fi xed-pinned column? Let L denote 

the length of the fi xed-pinned column, and let Le denote the length of the equivalent pin-

ended column that buckles at the same critical load. Equating the two critical loads gives

2 0457 2

2

2

2

. EI

L

EI

Le
�

� �

or

L Le � 0 7.

Therefore, if the column length used in the Euler buckling load equation was modifi ed to 

an effective length of Le � 0.7L, the critical load calculated from Equation (16.5) would be 

identical to the critical load calculated from the actual column length in Equation (16.13). 

This idea of relating the critical buckling load of columns with various end conditions to 

the Euler buckling load is known as the effective length concept.
The effective length Le for any column is defi ned as the length of the equivalent 

pin-ended column. What is meant by “equivalent” in this context? An equivalent pin-ended 

column has the same critical buckling load and the same defl ected shape as all or part of the 

actual column.
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700
COLUMNS Another way of expressing the idea of an effective column length is to consider points 

of zero internal bending moment. The pin-ended column, by defi nition, has zero internal 

bending moments at each end. The length L in the Euler buckling equation, therefore, is the 

distance between successive points of zero internal bending moment. All that is needed to 

adapt the Euler buckling equation for use with other end conditions is to replace L with Le, 

where Le is defi ned as the effective length of the column, which is the distance between 

two successive points of zero internal bending moment. A point of zero internal bending 

moment is termed an infl ection point.
The effective lengths of four common columns are shown in Figure 16.7. The pin-

ended column is shown in Figure 16.7a, and by defi nition, the effective length Le of this 

column is equal to its actual length L. The fi xed-pinned column is shown in Figure 16.7b, 

and as shown in the preceding discussion, its effective length is Le � 0.7L.

The ends of the column in Figure 16.7c are fi xed. Since the defl ection curve is sym-

metrical for this column, infl ection points occur at distances of L/4 from each fi xed end. 

The effective length is therefore represented by the middle half of the column length. Thus, 

the effective length Le of a fi xed-fi xed column for use in the Euler buckling equation is 

equal to one-half of its actual length, or in other words, Le � 0.5L.

The column in Figure 16.7d is fi xed at one end and free at the other end; consequently, 

the column has a zero internal bending moment only at the free end. If a mirror image of 

this column is visualized below the fi xed end, however, the effective length between points 

of zero moment is seen to be twice the actual length of the column (Le � 2L).

Effective-Length Factor

To simplify critical load calculations, many design codes employ a dimensionless coeffi cient 

K called the effective-length factor, which is defi ned as

 L KLe �  (16.15)

FIGURE 16.7 Effective lengths Le and effective-length factors K for ideal columns with various 

end conditions.

(a)  Pinned-pinned 

column K � 1

(b)  Fixed-pinned 
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column K � 2
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THE EFFECT OF END 

CONDITIONS ON 
COLUMN BUCKLING

where L is the actual length of the column. Effective-length factors are given in Figure 16.7 

for four common column types. With the effective-length factor, the effect of end condi-

tions on column capacity can readily be included in the critical buckling load equation:

 P
EI

KLcr �
�2

2( )
 (16.16)

It can likewise be included in the critical buckling stress equation:

 cr
E

KL r
�

�
�

( )

2

2  (16.17)

In this equation, KL/r is the effective-slenderness ratio.

Practical Considerations

It is important to keep in mind that the column end conditions shown in Figure 16.7 are 

idealizations. A pin-ended column is usually loaded through a pin that, because of fric-

tion, is not completely free to rotate. Consequently, there will always be an indetermi-

nate (though usually small) moment at the ends of a pin-ended column that will reduce 

the distance between the infl ection points to a value less than L. Fixed-end connections 

theoretically provide perfect restraint against rotation. However, columns are typically 

connected to other structural members that have some measure of fl exibility in them-

selves, so it is quite diffi cult to construct a real connection that prevents all rotation. 

Thus, a fi xed-fi xed column (Figure 16.7c) will have an effective length somewhat 

greater than L/2. Because of these practical considerations, the theoretical K factors 

given in Figure 16.7 are typically modifi ed to account for the difference between the 

idealized and the realistic behavior of connections. Design codes that utilize effective-

length factors usually specify a recommended practical value for K factors in preference 

to the theoretical values.

EXAMPLE 16.3

A long, slender W8 � 24 structural steel shape (see Appendix B for cross-sectional prop-

erties) is used as a 35-ft-long column. The column is supported in the vertical direction 

at base A and pinned at ends A and C against translation in the y and z directions. Lateral 

support is provided to the column so that defl ection in the x–z plane is restrained at 

mid-height B; however, the column is free to defl ect in the x–y plane at B. Determine the 

maximum compressive load P that the column can support if a factor of safety of 2.5 is 

required. In your analysis, consider the possibility that buckling could occur about either 

the strong axis (i.e., the z axis) or the weak axis (i.e., the y axis) of the column. Assume that 

E � 29,000 ksi and �Y � 36 ksi.
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Plan the Solution
If the W8 � 24 column were supported only at its ends, then buck-

ling about the weak axis of the cross section would be anticipated. 

However, additional lateral support is provided to this column so 

that the effective length with respect to weak-axis buckling is 

 reduced. For this reason, both the effective length and the radius of 

gyration with respect to both the strong and weak axes of the col-

umn must be considered. The critical buckling load will be dictated 

by the larger of the two effective-slenderness ratios.

SOLUTION
The following section properties can be obtained from Appendix 

B for the W8 � 24 structural steel shape: 

I I

r r

z y

z y

82 7 18 3

3 42 1 61

4 4. . in .

. .

in.

in. in.

� �

� �

The subscripts for these properties have been modifi ed to corre-

spond to the axes shown on the cross section.

Buckling About the Strong Axis
The column could buckle about its strong axis, resulting in the 

buckled shape shown in which the column defl ects in the x–y 

plane. For this manner of failure, the effective length of the column 

is KL � 35 ft. The critical buckling load is therefore

 P
EI

KLcr
z

z

( )2

2

2 82 7

35( )

( ksi) .

[( ft) (

429,000 in.

112
134 2

2in./ft)]
. kips�

� �
� �

Although not required to determine Pcr, it is instructive to calculate 

the effective- slenderness ratio for buckling about the strong axis:

KL r z( )
( ft) ( )

. in .
.

35 12

3 42
122 8

in./ft
� �

Buckling About the Weak Axis
Alternatively, the column could buckle about its weak axis. In this case, the column 

 defl ection would occur in the x–z plane as shown on the next page. For this manner of 

failure, the effective length of the column is KL � 17.5 ft. The critical buckling load about 

the weak axis is therefore

P
EI

KLcr
y

y

2

2

2 18 3

17 5( )

( ksi) ( . )

[( . ft

429,000 in.

)) ( )]
. kips

12
118 8

2in./ft
�

� �
� �

The effective-slenderness ratio for buckling about the weak axis is

KL r y( )
( . ft) ( )

.
.

17 5 12

1 61
130 4

in./ft

in.
� �

The critical load for the column is the smaller of the two load values:

Pcr 118 8. kips�

A

B

C

y

z

x

17.5 ft

17.5 ft

P

Lateral
bracing

W8 � 24

y

z

Strong
axis

Weak
axis

A

B

C

y

z

x

P

Lateral
bracing

35 ft

Buckling about the strong axis.
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703

Critical Stress
The critical load equation [Equation (16.16)] is valid only if the stresses in the column 

remain elastic; therefore, the critical buckling stress must be compared with the propor-

tional limit of the material. For structural steel, the proportional limit is essentially equal 

to the yield stress.

The critical buckling stress will be computed with the use of the larger of the two 

effective-slenderness ratios:

cr
E

KL r( )

2

2

2

2130 4
16 83 36

( ksi)

( . )
. ksi

29,000
kksi O.K.� � � ��

� �

Since the critical buckling stress of 16.83 ksi is less than the 36-ksi yield stress of the 

steel, the critical load calculations are valid.

Allowable Column Load
A factor of safety of 2.5 is required for this column. Therefore, the allowable axial 

load is

 Pallow
. kips

.
. kips

118 8

2 5
47 5� �  Ans.

A

B

C

y

z

x

17.5 ft

17.5 ft

P

Lateral
bracing

Buckling about the weak axis.

EXAMPLE 16.4

A W310 � 60 structural steel shape (see Appendix B 

for cross-sectional properties) is used as a column with 

an actual length of L � 9 m. The column is fi xed at 

base A. Lateral support is provided to the column so 

that defl ection in the x–z plane is restrained at the upper 

end of the column; however, the column is free to de-

fl ect in the x–y plane at B. Determine the critical buck-

ling load Pcr of the column. Assume that E � 200 GPa 

and �Y � 250 MPa.

Plan the Solution
Although the actual length of the column is 9 m, the 

differing end conditions with respect to the strong and 

weak axes of the cross section cause markedly differ-

ent effective lengths for the two directions. Appropriate 

effective-length factors based on the column end con-

ditions will be selected from Figure 16.7.

SOLUTION
Section Properties
The following section properties can be obtained from Appendix B for the W310 � 60 

structural steel shape: 

I r I rz z y y� � � � ��128 10 130 18 4 10 49 36 4 6 4mm mm . mm . mm

The subscripts for these properties have been revised to correspond to the axes shown on 

the cross section.

x

y

z

9 m

P

A

B
y

z

W310 � 60Strong
axis

Weak
axis
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Buckling About the Strong Axis
The column could buckle about its strong axis, resulting in the buckled shape 

shown in which the column bends about its z axis and defl ects in the x–y plane. 

For this manner of buckling, the column base is fi xed and its upper end is free. 

From Figure 16.7, the appropriate effective-length factor is Kz � 2.0 and the 

 effective length of the column is (KL)z � (2.0)(9 m) � 18 m. The critical buck-

ling load is therefore

P
EI

KLcr
z

z
�

� �

�
�� ( )2

2

2 2 (128 � 106 mm4)

2( ) [(

200,000 N/mm

.. )( m)( )]

N kN

0 9

780

21,000 mm/m

779,821

The effective-slenderness ratio for buckling about the strong axis is

KL r z( )
( . )( m)( )

mm
.

2 0 9

130
138 5

1,000 mm/m
� �

Buckling About the Weak Axis
Alternatively, the column could buckle about its weak axis. In this case, the col-

umn would bend about its y axis and defl ection would occur in the x–z plane as 

shown. For buckling about the weak axis, the column is fi xed at A and pinned at 

B. From Figure 16.7, the appropriate effective-length factor is Ky � 0.7 and the 

effective length of the column is (KL)y � (0.7)(9 m) � 6.3 m. The critical buck-

ling load about the weak axis is therefore

P
EI

KLcr
y

y
�

� �

�
��� ( )( )2

2

2 2 6 418 4 10

( )

. mm

[(

200,000 N/mm

00 7 9 1 000

915

2. )( m)( , )]

N kN

mm/m

915,096

The effective-slenderness ratio for buckling about the weak axis is

 KL r y( )
( . )( m)( )

. mm
.

0 7 9

49 3
127 8

1,000 mm/m
� �

The critical load for the column is the smaller of the two load values:

 Pcr 780 kN�   Ans.

Critical Stress
The critical load equation [Equation (16.16)] is valid only if the stresses in the column 

remain elastic; therefore, the critical buckling stress must be compared with the propor-

tional limit of the material. For structural steel, the proportional limit is essentially equal 

to the yield stress.

The critical buckling stress will be computed with the use of the larger of the two 

effective-slenderness ratios:

cr
E

KL r
� � � 	�
( )

2

2

2

2138 5
102 9 2

( MPa)

( . )
. MPa

200,000
550 MPa O.K.

� �

Since the critical buckling stress of 102.9 MPa is less than the 250-MPa yield stress of the 

steel, the critical load calculations are valid.
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z

9 m

P
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B
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z

9 m

P

A

B
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P16.26 A 9-m-long steel [E � 200 GPa] pipe column has an 

outside diameter of 220 mm and a wall thickness of 8 mm. The 

column is supported only at its ends, and it may buckle in any 

direction. Calculate the critical load Pcr for the following end 

conditions:

(a) pinned-pinned

(b) fi xed-free

(c) fi xed-pinned

(d) fi xed-fi xed

P16.27 A HSS10 � 6 � 3/8 structural steel [E � 29,000 ksi] 

section (see Appendix B for its cross-sectional properties) is used 

as a column with an actual length of 32 ft. The column is supported 

only at its ends, and it may buckle in any direction. If a factor of 

safety of 2 with respect to failure by buckling is specifi ed, deter-

mine the maximum safe load for the column for the following end 

conditions:

(a) pinned-pinned

(b) fi xed-free

(c) fi xed-pinned

(d) fi xed-fi xed

P16.28 A HSS152.4 � 101.6 � 6.4 structural steel [E � 

200 GPa] section (see Appendix B for its cross-sectional proper-

ties) is used as a column with an actual length of 6 m. The column 

is supported only at its ends, and it may buckle in any direction. If 

a factor of safety of 2 with respect to failure by buckling is specifi ed, 

determine the maximum safe load for the column for the following 

end conditions:

(a) pinned-pinned

(b) fi xed-free

(c) fi xed-pinned

(d) fi xed-fi xed

P16.29 A W8 � 48 structural steel [E � 29,000 ksi] section 

(see Appendix B for its cross-sectional properties) is used as a 

column with an actual length of L � 27 ft. The column is sup-

ported only at its ends, and it may buckle in any direction. The 

column is fi xed at its base and pinned at its upper end as shown in 

Figure P16.29/30. Determine the maximum load P that may be 

supported by the column if a factor of safety of 2.5 with respect to 

buckling is specifi ed.

P16.30 A W250 � 80 structural steel [E � 200 GPa] section 

(see Appendix B for its cross-sectional properties) is used as a 

 column with an actual length of L � 12 m. The column is sup-

ported only at its ends, and it may buckle in any direction. The 

column is fi xed at its base and pinned at its upper end as shown in 

Figure P16.29/30. Determine the maximum load P that may be 

supported by the column if a factor of safety of 2.5 with respect to 

buckling is  specifi ed.

P16.31 A W14 � 53 structural steel [E � 29,000 ksi] section 

(see Appendix B for its cross-sectional properties) is used as a 

 column with an actual length of L � 16 ft. The column is fi xed at its 

base and unrestrained at its upper end as shown in Figure P16.31/32. 

Determine the maximum load P that may be supported by the 

 column if a factor of safety of 2.5 with respect to buckling is 

 specifi ed.

P

L

FIGURE P16.29/30

P

L

FIGURE P16.31/32

P16.32 A W310 � 74 structural steel [E � 200 GPa] section 

(see Appendix B for its cross-sectional properties) is used as a 

column with an actual length of L � 5 m. The column is fi xed at 

its base and unrestrained at its upper end as shown in Figure 

P16.31/32. Determine the maximum load P that may be supported 

by the column if a factor of safety of 2.5 with respect to buckling 

is specifi ed.
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P16.33 A long, slender structural aluminum [E � 70 GPa] 

fl anged shape (Figure P16.33b) is used as a 7-m-long column. The 

column is supported in the x direction at base A and pinned at ends 

A and C against translation in the y and z directions. Lateral support 

is provided to the column so that defl ection in the x–z plane is 

 restrained at mid-height B; however, the column is free to defl ect in 

the x–y plane at B (Figure P16.33a). Determine the maximum com-

pressive load P that the column can support if a factor of safety of 

2.5 is required. In your analysis, consider the possibility that buck-

ling could occur about either the strong axis (i.e., the z axis) or the 

weak axis (i.e., the y axis) of the aluminum column.

A

B

C

y

z

x

3.5 m

3.5 m

P

Lateral
bracing

FIGURE P16.33a

9 mm

134 mm

9 mm

5 mm

100 mm

y

z

FIGURE P16.33b

P16.34 A long, slender structural steel [E � 29,000 ksi] 

HSS8 � 4 � 1/4 shape (see Appendix B for its cross-sectional 

properties) is used as a 32-ft-long column. The column is supported 

in the x direction at base A and pinned at ends A and C against 

translation in the y and z directions. Lateral support is provided to 

the column so that defl ection in the x–z plane is restrained at mid-

height B; however, the column is free to defl ect in the x–y plane at 

B (Figure P16.34). Determine the maximum compressive load that 

the column can support if a factor of safety of 1.92 is required. In 

your analysis, consider the possibility that buckling could occur 

about either the strong axis (i.e., the z axis) or the weak axis (i.e., 

the y axis) of the steel column.

A

B

C

y

z

x

16 ft

16 ft

P

Lateral
bracing

y

z

�� 4HSS8 4
1

FIGURE P16.34

P16.35 The uniform brass bar AB shown in Figure P16.35 has a 

rectangular cross section. The bar is supported by pins and brackets 

at its ends. The pins permit rotation about a horizontal axis (i.e., the 

strong axis of the rectangular cross section), but the brackets prevent 

rotation about a vertical axis (i.e., the weak axis). Determine

(a)  the critical buckling load of the assembly for the following 

parameters: L � 400 mm, b � 6 mm, h � 14 mm, and 

E � 100 GPa.

(b)  the ratio b/h for which the critical buckling load about both 

the strong and weak axes is the same.

FIGURE P16.35

P

P

L

b h

A

B
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P16.36 The aluminum column shown in Figure P16.36 has a 

rectangular cross section and supports an axial load of P. The base 

of the column is fi xed. The support at the top allows rotation of the 

column in the x–y plane (i.e., bending about the strong axis), but 

prevents rotation in the x–z plane (i.e., bending about the weak 

axis). Determine

(a)  the critical buckling load of the column for the following 

parameters: L � 50 in., b � 0.50 in., h � 0.875 in., and 

E � 10,000 ksi. 

(b)  the ratio b/h for which the critical buckling load about both 

the strong and weak axes is the same.

P P

L

b

h

b

h

z

y

y

z

x x

y z

FIGURE P16.36

P16.37 The steel compression link shown in Figure P16.37/38 

has a rectangular cross section and supports an axial load of P. 

The supports allow rotation about the strong axis of the link cross 

P P

L

h b

FIGURE P16.37/38

P16.38 Solve Problem 16.37 with the following parameters: 

L � 1,200 mm, b � 15 mm, h � 40 mm, and E � 200 GPa.

P16.39 A stainless steel pipe with an outside diameter of 

100 mm and a wall thickness of 8 mm is rigidly attached to fi xed 

supports at A and B as shown in Figure P16.39. The length of the 

pipe is L � 8 m, its elastic modulus is E � 190 GPa, and its coef-

fi cient of thermal expansion is � � 17.3 � 10−6/°C. Determine the 

temperature increase �T that will cause the pipe to buckle.

L

A B

FIGURE P16.39

section, but prevent rotation about the weak axis. Determine the 

allowable compression load P if a factor of safety of 2.0 is speci-

fi ed. Use the following parameters: L � 36 in., b � 0.375 in., h � 

1.250 in., and E � 30,000 ksi.

707

Many real columns do not behave as predicted by the Euler formula because of imperfec-

tions in the alignment of the loading. In this section, the effect of imperfect alignment is 

examined by considering an eccentric loading. We will consider a pinned-pinned column 

subjected to compressive forces acting at an eccentricity e from the centerline of the unde-

formed column, as shown in Figure 16.8a. (Note: The support symbols have been omitted 

from the fi gure for clarity.) When the eccentricity is nonzero, the free-body diagram for the 

16.4 The Secant Formula
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708
COLUMNS column is as shown in Figure 16.8b. From this free-body diagram, the bending moment at 

any section can be expressed as

Σ M M Pv Pe

M Pv Pe
A

�

0�

� � �

� � �

and, if the stress does not exceed the proportional limit and defl ections are small, the 

differential equation of the elastic curve becomes

EI
d v

dx
Pv Pe

2

2
� � �

or

d v

dx

P

EI
v

P

EI
e

2

2
� � �

As in the Euler derivation, the term P/EI will be denoted by k2 [Equation (16.2)] so that the 

differential equation can be rewritten in the form

d v

dx
k v k e

2

2
2 2� � �

The solution of this equation has the form

 v C kx C kx e1 2sin cos� � �  (a)

Two boundary conditions exist for the column. At pin support A, the boundary condition 

v(0) � 0 gives

v C k C k e

C e

( ) sin ( ) cos ( )0 0 0 01 2

2

� � �

��

�

At pin support B, the boundary condition v(L) � 0 gives

v L C kL C kL e C kL e kL

C

( ) sin cos sin ( cos )0 11 2 1

1 ee
kL

kL

1⎡
⎣
⎢

⎤
⎦
⎥

cos

sin

� � �

�
�

�

� � � �

Using the trigonometric identities

1 2
2

2
2 2

2cos sin and sin sin cos� �� �
� ��

�

allows Equation (a) to be rewritten as

C e
kL

kL kL
e

kL
1

22 2

2 2 2 2

( )

( ) ( )

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

sin

sin cos
tan� �

With this expression for C1, the solution of the differential equation [Equation (a)] 

 becomes

 

v e
kL

kx e kx e

e
kL

kx kx
⎡
⎣
⎢

tan sin cos

tan sin cos

2

2
1⎤⎤
⎦
⎥

� � �

� � �

  (16.18)

e

y, v

x

maxv

L

A

B
P

P

e

y, v

v

x

x

A P

P
M

(a) Pinned-pinned column

(b) Free-body diagram

FIGURE 16.8 Pinned-pinned 

column with eccentric load.
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709
THE SECANT FORMULAIn this case, a relationship can be found between the maximum defl ection vmax of the 

pinned-pinned column, which occurs at x � L/2, and the load P. Thus,

 

v e
kL kL kL

e
kL

max tan sin cos

sin

cos

⎡
⎣
⎢

⎤
⎦
⎥

( )
2 2 2

1

22

kkL
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e
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2

2

2
1

1

2
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⎡
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⎢
⎢

⎤
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⎥
⎥
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cos

cos

cos

⎡⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢

⎤
⎦
⎥e

kL
sec

2
1

� � �

� � �

� � � �

  (b)

Since k2 � P/EI, Equation (b) can be restated in terms of the load P and the fl exural rigidity 

EI as

 v e
L P

EImax sec� �
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

1   (c)

Equation (c) indicates that, for a given column in which E, I, and L are fi xed and e � 0, the 

column exhibits lateral defl ection for even small values of the load P. For any value of e, 

the quantity

sec
L P

EI2
1

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟�

approaches positive or negative infi nity as the argument approaches �/2, 3�/2, 5�/2,…, 

and the defl ection v increases without bound, indicating that the critical load corresponds 

to one of these angles. If �/2 is chosen (since this angle yields the smallest load), then

L P

EI2 2
�

�

or

P

EI L
�

�

from which

 P
EI

Lcr

2

2
�

�
  (16.19)

which is the Euler formula discussed in Section 16.2.

Unlike an Euler column, which defl ects laterally only if P equals or exceeds the Euler 

buckling load, an eccentrically loaded column defl ects laterally for any value of P. To  illustrate 

this, the quantities E, I, and L can be eliminated from Equation (b) by using Equation (16.19) 

to produce an expression for the maximum lateral column defl ection in terms of P and Pcr. 

From Equation (16.19), let EI � Pcr L2/�2. Substituting this expression into Equation (b) gives

  
v e

L P

EI
e

L P

Pcr
max sec sec

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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⎢

⎤

⎦
⎥
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1
2
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2L
e
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⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟sec ⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1� � � � � �
� �  

 
(d)

From this equation, it would appear that the maximum defl ection becomes infi nite as P 

approaches the Euler buckling load Pcr; however, under these conditions, the slope of the 

defl ected column is no longer suffi ciently small to be neglected in the curvature expression. 
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COLUMNS

As a result, accurate defl ections can be obtained only by using the nonlinear form of the 

differential equation of the elastic curve.

Plots of Equation (d) for various values of eccentricity e are shown in Figure 16.9. 

These curves reveal that the maximum column defl ection vmax is extremely small as e 

 approaches zero until the load P approaches the Euler critical load Pcr. As P nears Pcr, vmax 

increases rapidly. In the limit as eS0, the curve degenerates into two lines that represent 

the straight unbuckled column (P � Pcr) and the buckled confi guration (P � Pcr)—in other 

words, simply Euler column buckling.

0.00

1.15

e decreasing

P

crP

vmax

e � 0

FIGURE 16.9 Load-defl ection diagram for an eccentrically loaded column.

Secant Formula

In writing the elastic curve equation, it was assumed that stresses do not exceed the propor-

tional limit. On the basis of this assumption, the maximum compression stress can be 

 obtained by superposition of the axial stress and the maximum bending stress. The maximum 

bending stress occurs on a section at the midspan of the column where the bending moment 

attains its largest value, Mmax � P(e 	 vmax). Thus, the maximum compression stress 

 magnitude in the column can be expressed as

 max
max max�� � � �

�( )P

A

M c

I

P

A

P e v c

Ar2  (e)

in which r is the radius of gyration of the column cross section about the axis of bending. 

From Equation (c),

v e
L P

EImax sec
⎛

⎝
⎜⎜⎜
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⎠
⎟⎟⎟⎟

⎡
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⎤

⎦
⎥
⎥2

1� �

Rearranging this equation gives an expression for e 	 vmax:

e v e
L P

EI

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟max sec

2
� �

Using this expression allows Equation (e) to be written as

max sec
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711
THE SECANT FORMULAwhich can be further simplifi ed with the use of I � Ar2 to give an expression for the 

maximum compression stress in the defl ected column:

 max sec
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P

A

ec

r

L

r

P

EA
1

22
�� �  (16.20)

Equation (16.20) is known as the secant formula, and it relates the average force per unit 

area P/A that causes a specifi ed maximum stress �max in a column to the dimensions of the 

column, the properties of the column material, and the eccentricity e. The term L/r is the same 

slenderness ratio found in the Euler buckling stress formula [Equation (16.8)]; thus, for col-

umns with differing end conditions (see Section 16.3), the secant formula can be restated as

 max sec
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P

A

ec

r

KL

r

P

EA
1

22
�� �  (16.21)

The quantity ec/r2 is called the eccentricity ratio and is seen to depend on the eccentricity 

of the load and the dimensions of the column. If the column is loaded precisely at its cen-

troid, e � 0 and �max � P/A. It is virtually impossible, however, to eliminate all eccentric-

ity that might result from various factors, such as initial crookedness of the column, minute 

fl aws in the material, and a lack of uniformity of the cross section, as well as accidental 

eccentricity of the load.

To determine the maximum compressive load that can be applied at a given eccen-

tricity to a particular column, the maximum compression stress can be set equal to the 

yield stress in compression, and Equation (16.20) can then be solved numerically for P/A. 

Figure 16.10 is a plot of the force per unit area P/A versus the slenderness ratio L/r for 

The maximum compression 

stress �max occurs at midheight 

of the column on the inner 

(concave) side.
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FIGURE 16.10 Average compression stress versus slenderness ratio based on the secant formula.
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COLUMNS several values of the eccentricity ratio ec/r2. Figure 16.10a is plotted for structural steel 

having an elastic modulus of E � 29,000 ksi and a compression yield strength of �Y � 

36 ksi, and Figure 16.10b shows the corresponding curves in SI units.

The outer envelope of Figure 16.10, consisting of the horizontal line P/A � 36 ksi and 

the Euler curve, corresponds to e � 0. The Euler curve is truncated at 36 ksi, since this is 

the maximum allowable stress for the material. The curves presented in Figure 16.10 high-

light the signifi cance of load eccentricity in reducing the maximum safe load in short-and 

intermediate-length columns (i.e., slenderness ratios less than about 126 for the steel 

 assumed for Figure 16.10). For large slenderness ratios, the curves for the various eccen-

tricity ratios tend to merge with the Euler curve. Consequently, the Euler formula can be 

used to analyze columns with large slenderness ratios. For a given problem, the slenderness 
ratio must be computed to determine whether or not the Euler equation is valid.

P16.40 An axial load P is applied to a solid 30-mm-diameter 

steel rod AB as shown in Figure P16.40/41. For L � 1.5 m, P � 18 kN, 

and e � 3.0 mm, determine

(a) the lateral defl ection midway between A and B.

(b) the maximum stress in the rod. 

Use E � 200 GPa.

width of the square tube is 3 in., and its wall thickness is 0.12 in. The 

column is fi xed at its base and free at its upper end, and its length is 

L � 8 ft.  For an applied load of P � 900 lb, determine

(a) the lateral defl ection at the upper end of the column.

(b) the maximum stress in the square tube. 

Use E � 10 � 106 psi.

A

B

L

P
Eccentricity e

FIGURE P16.40/41

P16.41 An axial load P is applied to a solid 2.0-in.-diameter 

steel rod AB as shown in Figure P16.40/41. For L � 6 ft, P � 8 kips, 

and e � 0.50 in., determine

(a) the lateral defl ection midway between A and B. 

(b) the maximum stress in the rod. 

Use E � 29,000 ksi.

P16.42 A square tube shape made of an aluminum alloy supports 

an eccentric compression load P that is applied at an eccentricity of 

e � 4.0 in. from the centerline of the shape (Figure P16.42). The 

x

y
z

P

Eccentricity e

FIGURE P16.42

P16.43 A steel pipe (outside diameter � 130 mm; wall thick-

ness � 12.5 mm) supports an axial load of P � 25 kN, which is 

applied at an eccentricity of e � 175 mm from the pipe centerline 

(Figure P16.43/44). The column is fi xed at its base and free at its 

upper end, and its length is L � 4.0 m.  Determine

(a) the lateral defl ection at the upper end of the column.

(b) the maximum stress in the pipe.  

Use E � 200 GPa.

PROBLEMSPROBLEMS
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z
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x

e

40 kN

2.25 m

FIGURE P16.43/44

P16.44 A steel [E � 200 GPa] pipe with an outside diameter of 

170 mm and a wall thickness of 7 mm supports an axial load of P, 

which is applied at an eccentricity of e � 150 mm from the pipe 

centerline (Figure P16.43/44). The column is fi xed at its base and 

free at its upper end, and its length is L � 4.0 m. The maximum 

compression stress in the column must be limited to �max � 

80 MPa. 

(a)  Use a trial-and-error approach or an iterative numerical 

solution to determine the allowable eccentric load P that can 

be applied. 

(b)  Determine the lateral defl ection at the upper end of the 

column for the allowable load P.

P16.45 The structural steel [E � 29,000 ksi] column shown in 

Figure P16.45/46 is fi xed at its base and free at its upper end. At the 

top of the column, a load P � 35 kips is applied to the stiffened seat 

support at an eccentricity of e � 7 in. from the centroidal axis of the 

wide-fl ange shape. Determine

(a) the maximum stress produced in the column. 

(b) the lateral defl ection of the column at its upper end.

P16.46 The structural steel [E � 29,000 ksi] column shown in 

Figure P16.45/46 is fi xed at its base and free at its upper end. At 

the top of the column, a load P is applied to the stiffened seat sup-

port at an eccentricity of e � 6 in. from the centroidal axis of the 

wide-fl ange shape. If the yield stress of the steel is �Y � 36 ksi, 

determine

(a)  the maximum load P that may be applied to the column.

(b)  the lateral defl ection of the column at its upper end for the 

maximum load P.

y

z

x

12 ft

Eccentricity e

P

8 in.

0.50 in. 0.50 in.7 in.

0.35 in.

8 in.y

z

Cross section.

FIGURE P16.45/46

P16.47 A 3-m-long steel [E � 200 GPa] tube supports an 

 eccentrically applied axial load P as shown in Figure P16.47/48. 

The tube has an outside diameter of 75 mm and a wall thickness of 

6 mm. For an eccentricity of e � 8 mm, determine

(a)  the load P for which the horizontal defl ection midway 

between A and B is 12 mm.

(b) the corresponding maximum stress in the tube.

A

B

L

P
Eccentricity e

FIGURE P16.47/48

P16.48 A 4-ft-long steel [E � 29,000 ksi; �Y � 36 ksi] tube 

 supports an eccentrically applied axial load P as shown in Figure 

P16.47/48.  The tube has an outside diameter of 2.00 in. and a wall 

thickness of 0.15 in.  For an eccentricity of e � 0.25 in., determine

(a)  the maximum load P that can be applied without causing 

either buckling or yielding of the tube.

(b)  the corresponding maximum defl ection midway between A 

and B.

713
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The Euler buckling formulas for critical buckling load [Equation (16.16)] and critical buck-

ling stress [Equation (16.17)] were derived for ideal columns. In considering ideal col-

umns, it was assumed that the column was perfectly straight, that the compression load was 

applied exactly at the centroid of the cross section, and that the column material remained 

below its proportional limit during buckling. Practical columns, however, rarely satisfy all 

of the conditions assumed for ideal columns. Although the Euler equations give reasonable 

predictions for the strength of long, slender columns, early researchers soon found that the 

strength of short- and intermediate-length columns were not well predicted by these formulas. 

A representative graph of the results from numerous column load tests plotted as a function 

of slenderness ratio is shown in Figure 16.11. This graph shows a scattered range of values 

that transition from the yield stress for the very shortest columns, to the Euler buckling 

stress for the very longest columns. In the broad range of slenderness ratios between these 

two extremes, neither the yield stress nor the Euler buckling stress is a good predictor of 

the strength of the column. Furthermore, most practical columns fall within this intermedi-

ate range of slenderness ratios. Consequently, practical column design is based primarily 

on empirical formulas that have been developed to represent the best fi t of test results for a 

range of realistic full-size columns. These empirical formulas incorporate appropriate 

 factors of safety, effective-length factors, and other modifying factors.

The strength of a column and the manner in which it fails are greatly dependent on its 

effective length. For example, consider the behavior of columns made of steel.

Short steel columns: A very short steel column may be loaded until the steel reaches the 

yield stress; consequently, very short columns do not buckle. The strength of these 

members is the same in both compression and tension; however, these columns are so 

short that they have no practical value.

Intermediate steel columns: Most practical steel columns fall into this category. As the 

effective length (or slenderness ratio) increases, the cause of failure becomes more 

complicated. In steel columns—in particular, hot-rolled steel columns—the applied 

load may cause compression stresses in portions of the cross section to exceed the 

proportional limit; thus, the column will fail both by yielding and by buckling. These 

columns are said to buckle inelastically. The buckling strength of hot-rolled steel 

columns is particularly infl uenced by the presence of residual stresses. Residual 

�

�

�
�

� �

Y

FIGURE 16.11 Representative column test data for a range of slenderness ratios.
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16.5 Empirical Column Formulas—Centric Loading
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EMPIRICAL COLUMN 

FORMULAS—
CENTRIC LOADING

stresses are stresses that are “locked into” the steel shape during the manufacturing 

process because the steel fl anges and webs cool faster than the fi llet regions that 

connect them. Because of residual stress and other factors, analysis and design of 

intermediate-length steel columns are based on empirical formulas developed from 

test results.

Long steel columns: Long, slender steel columns buckle elastically, since the Euler buckling 

stress is well below the proportional limit (even taking into account the presence of 

residual stress). Consequently, the Euler buckling equations are reliable predictors for 

long columns. Long, slender columns, however, are not very effi cient, since the Euler 

buckling stress for these columns is much less than the proportional limit for the steel.

Several representative empirical design formulas for centrically loaded steel, alumi-

num, and wood columns will be presented to introduce basic aspects of column design.

Structural Steel Columns

Structural steel columns are designed in accordance with specifi cations published by the 

American Institute for Steel Construction (AISC). The AISC Allowable Stress Design1 

procedure differentiates between short- and intermediate-length columns and long  columns. 

The transition point between these two categories is defi ned by an effective-slenderness 

ratio of

 �
KL
r

4.71
E

Y�
 

This effective-slenderness ratio corresponds to an Euler buckling stress of 0.44�Y. 

For short and intermediate-length columns with effective-slendernes ratios less 

than or equal to 4.71   E/�Y
, the AISC formula for the critical compression stress is

 

KL
r

4.710.658 when
E

Y�cr �� Y�

�Y
�e

 (16.22)

where �e is the elastic buckling stress (i.e., Euler stress) given by

 e ��
�2E

KL

r

2  (16.23)

For long columns with effective-slenderness ratios greater than 4.71   E/�Y, the AISC 

formula simply multiplies the Euler buckling stress by a factor of 0.877 to account for 

initial column crookedness. This reduction accounts for the fact that no real column is per-

fectly straight. The AISC formula for the critical compression stress of long  columns is

 �
KL
r

4.71when
E

Y�cr � 0.877�e�  (16.24)

The AISC recommends that the effective-slenderness ratios of columns should not exceed 200.

1 Specifi cation for Structural Steel Buildings, ANSI/AISC 360-10, American Institute of Steel Construction, 

Chicago, 2010.
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716
COLUMNS The allowable compression stress for either short-to-intermediate or long columns is 

equal to the critical compression stress [given by either Equation (16.22) or (16.24)]  divided 

by a factor of safety of 1.67:

 allow ��
cr�

1.67
 (16.25)

Aluminum-Alloy Columns

The Aluminum Association publishes specifi cations for the design of aluminum-alloy struc-

tures. Euler’s formula is the basis of the design equation for long columns, and straight lines 

are prescribed for short and intermediate columns. Design formulas are specifi ed by the Alu-

minum Association2 for each particular aluminum alloy and temper. One of the most com-

mon alloys used in structural applications is 6061-T6, and the column design formulas for this 

alloy are given here. Each of these design formulas includes an appropriate safety factor.

For short columns with effective-slenderness ratios less than or equal to 9.5,

 

allow ksi

MPa where .

19

131 9 5
KL

r

��

� 

 (16.26)

For intermediate-length columns with effective-slenderness ratios between 9.5 and 66,

 

allow . . ksi

. MPa

( )[ ]

( )[ ]

20 2 0 125

139 0 868

KL r

KL r wwhere .9 5 66
KL

r

�

� � 	 


��

 (16.27)

For long columns with effective-slenderness ratios greater than 66,

 

allow ksi

MPa where

( )

( )

51,000

351,000

KL r

KL r

KL

r

2

2
66

� �

� �

 (16.28)

Wood Columns

The design of wood structural members is governed by the National Design Specifi cation 
for Wood Construction published by the American Forest & Paper Association. The 

 National Design Specifi cation3 (NDS) provides a single formula for the design of rectan-

gular wood columns. The format of this formula differs somewhat from the formulas for 

steel and aluminum in that the effective-slenderness ratio is expressed as KL/d, where d is 

the fi nished dimension of the rectangular cross section. The effective-slenderness ratio for 

wood columns must satisfy KL /d 
 50.

 allow
( ) ( )⎡

⎣
⎢
⎢

⎤
⎦
⎥
⎥

F
F F

c

F F

c

F F
c

cE c cE c cE c1 1 2

2 2 cc

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

�
� �

� ��  (16.29)

2 Specifi cations for Aluminum Structures, Aluminum Association, Inc., Washington, D.C., 1986.
3 National Design Specifi cation for Wood Construction, American Forest & Paper Association, Washington, 

D.C., 1997.

c16Columns.indd Page 716  06/04/12  10:59 AM user-F391c16Columns.indd Page 716  06/04/12  10:59 AM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



717
EMPIRICAL COLUMN 

FORMULAS—
CENTRIC LOADING

For this equation,

   Fc � allowable stress for compression parallel to grain

 FcE � 
K E

(KL/d )

cE
2  � reduced Euler buckling stress

    E � modulus of elasticity

 KcE � 0.30 for visually graded lumber

     c � 0.8 for sawn lumber

The effective-slenderness ratio KL/d is taken as the larger of KL/d1 or KL /d2, where d1 and d2 

are the two fi nished dimensions of the rectangular cross section.

Local Instability

All of the discussion so far has been concerned with the overall stability of the column, in 

which the entire column length defl ects as a whole into a smooth curve. No discussion of 

compression loading is complete without mention of local instability. Local instability occurs 

when elements of the cross section, such as a fl ange or a web, buckle due to the compression 

load acting on them. Open sections such as angles, channels, and W-sections are particularly 

sensitive to local instability; however, local instability can be a concern with any thin plate or 

shell element. To address local instability, design specifi cations typically defi ne limits on the 

acceptable width-to-thickness ratios for various types of cross-sectional elements.

A compression chord of a small truss consists of two L3 � 2 � 1/4 

steel angles arranged with long legs back-to-back as shown. The 

 angles are separated at intervals by spacer blocks that are 0.375 in. 

thick. Determine the allowable axial load Pallow that may be sup-

ported by the compression chord if the effective length is 

(a) KL � 8 ft. 

(b) KL � 12 ft. 

Use the AISC equations, and assume that E � 29,000 ksi and �Y � 36 ksi.

Plan the Solution
After computing the section properties for the built-up shape, the 

AISC Allowable Stress Design formulas [i.e, Equations (16.22) 

through (16.25)] will be used to determine the allowable axial loads.

SOLUTION
Section Properties
The following section properties can be obtained from Appendix B for the L3 � 2 � 1/4 

structural steel shape:

A I r Iz z y1 19 1 09 0 953 0 3902 4 4. . . .in. in. in. in.� � � �

The subscripts for these properties have been adapted to correspond to the axes shown on 

the cross section. Additionally, the distance from the back of the 3-in. leg to the centroid of 

the angle shape is given in Appendix B as x � 0.487 in. For the coordinate system defi ned 

here, this distance is measured in the z direction; therefore, we will denote the distance from 

the back of the 3-in. leg to the centroid of the angle shape as z � 0.487 in.

2 in.2 in.

Spacer block

Double angles

L3 � 2 �

Long legs back-to-back

0.375 in.

y

z

4
1

EXAMPLE 16.5
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The double-angle shape is fabricated from two angles oriented back-to-back with a 

distance of 0.375 in. between the two angles. The area of the double-angle shape is the 

sum of both angle areas; that is, A � 2(1.19 in.2) � 2.38 in.2. Additional section properties 

for this built-up shape must be determined.

Properties about the z axis for the double-angle shape: The z centroidal axis for the 

double-angle shape coincides with the centroidal axis of a single-angle shape. Therefore, 

the moment of inertia about the z centroidal axis for the double-angle shape is simply 

two times the single angle moment of inertia: Iz � 2(1.09 in.4) � 2.18 in.4. The radius of 

gyration about the z centroidal axis is the same as the single angle; therefore, rz � 0.953 in. 

for the double-angle shape.

Properties about the y axis for the double-angle shape: The y centroidal axis for the 

double-angle shape can be located by symmetry. Since the y centroids of the two 

individual angles do not coincide with the y centroidal axis for the double-angle shape, 

the moment of inertia about the vertical centroidal axis must be calculated with the 

parallel-axis theorem:

Iy
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟2 0 390

0 375

2
0 487 1 194

2

.
.

. in . .in.
in.

iin. in.2 41 8628( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .� � � �

The radius of gyration about the y centroidal axis is computed from the double-angle 

 moment of inertia Iy and area A:

r
I

Ay
y 1 8628

2 38
0 885

4

2

.

.
.

in.

in.
in.� � �

Controlling slenderness ratio: Since ry � rz for this double-angle shape, the effective-

slenderness ratio for y-axis buckling will be larger than the effective-slenderness ratio 

for z-axis buckling. Therefore, buckling about the y centroidal axis will control for the 

compression chord member considered here.

AISC Allowable Stress Design Formulas
The AISC ASD formulas use an effective-slenderness ratio of

E
� 4.71

�Y

KL

r

to differentiate between short/intermediate columns and long columns. For �Y � 36 ksi, 

this parameter is calculated as

E
4.71

�Y

29,000 ksi
� 4.71 � 133.7

36 ksi

(a) Allowable axial load Pallow for KL � 8 ft: For an effective length of KL � 8 ft, the 

controlling effective-slenderness ratio for the double-angle compression chord member is

� (8 ft)(12 in./ft)/0.885 in. � 108.5
KL

r

KL

ry
�

Since KL/ry 
 133.7, the column is considered an intermediate-length column, and the 

critical compression stress will be calculated with the use of Equation (16.22). The elastic 

buckling stress for this slenderness ratio is

�e � � � 24.31 ksi 
�2E

(108.5)2
�2(29,000 ksi)

KL

r

⎛
⎝
⎜⎜⎜
⎞2

⎠
⎟⎟⎟
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A square tube made of 6061-T6 aluminum alloy has the cross-sectional dimen-

sions shown. Use the Aluminum Association column design formulas to deter-

mine the allowable axial load Pallow that may be supported by the tube if the 

effective length of the compression member is 

(a) KL � 1,500 mm.

(b) KL � 2,750 mm.

Plan the Solution
After computing the section properties of the square tube, the Aluminum As-

sociation design formulas [Equations (16.26) through (16.28)] will be used to 

calculate the allowable loads for the specifi ed effective lengths. 70 mm

3 mm

70 mm

y

z

EXAMPLE 16.6

719

From Equation (16.22), the critical compression stress is

�cr � 
�e

�Y

0.658 �Y � 

36 ksi

24.31 ksi

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

0.658 (36 ksi) � 19.37 ksi

The allowable compression stress is determined from Equation (16.25):

�cr

1.67
19.37 ksi

1.67
�allow � � � 11.60 ksi

From this allowable stress, the allowable axial load for an effective length of KL � 8 ft is

 Pallow � �allowA � (11.60 ksi)(2.38 in.2) � 27.6 kips Ans.

(b) Allowable axial load Pallow for KL � 12 ft: For an effective length of KL � 12 ft, 

the controlling effective-slenderness ratio for the double-angle compression chord 

member is

� (12 ft)(12 in./ft)/0.885 in. � 162.7
KL

r

KL

ry
�

The elastic buckling stress for this slenderness ratio is

�e � � � 10.81 ksi 
�2E

(162.7)2
�2(29,000 ksi)

KL

r

⎛
⎝
⎜⎜⎜
⎞2

⎠
⎟⎟⎟

Since KL /ry � 133.7, the column is classifi ed as a long column and Equation (16.24) is 

used to calculate the critical compression stress:

�cr � 0.877 �e � 0.877(10.81 ksi) � 9.48 ksi

The allowable compression stress is determined from Equation (16.25):

�cr

1.67
9.48 ksi

1.67
�allow � � � 5.68 ksi

The allowable axial load for KL � 12 ft can be calculated from the allowable stress as

 Pallow  � �allowA � (5.68 ksi)(2.38 in.2) � 13.52 kips Ans.
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SOLUTION
Section Properties
The centroid of the square tube is found from symmetry. The cross-sectional area of the 

tube is

A ( mm) ( mm) mm70 64 8042 2 2� � �

The moments of inertia about both the y and z centroidal axes are identical:

I Iy z
( mm) ( mm)

mm
70

12

64

12

4 4
4602,732� � � �

Similarly, the radii of gyration about both centroidal axes are the same:

r ry z
602,732 mm

mm
. mm

4

2804
27 38� � �

(a) Allowable axial load Pallow  for KL � 1,500 mm: For an effective length of KL � 

1,500 mm, the effective-slenderness ratio for the square tube member is

KL

r

1,500 mm

. mm
.

27 38
54 8� �

Since this slenderness ratio is greater than 9.5 and less than 66, Equation (16.27) must be 

used to determine the allowable compression stress. The SI version of this equation can 

be used to give �allow:

allow � [139 � 0.868 (KL /r) MPa � [139 � 0.868 (54.8)] � 91.43 MPa�

From this allowable stress, the allowable axial load can be computed as

 P Aallow allow . mm N .( )( )91 43 804 732 2N/mm 73,510 55 kN� � � � �  Ans.

(b) Allowable axial load Pallow  for KL � 2,750 mm: For an effective length of KL � 

2,750 mm, the effective-slenderness ratio is

KL

r

2,750 mm

. mm
.

27 38
100 4� �

Since this slenderness ratio is greater than 66, the allowable compression stress is deter-

mined from Equation (16.28):

allow MPa
( . )

. MP
( )

351,000 351,000

KL /r 2 2100 4
34 82 aa�� � �

The allowable axial load is therefore

 P Aallow allow . mm N .( )( )34 82 804 282 2N/mm 27,995 00 kN� � � � �  Ans.

720

A sawn rectangular timber of visually graded No. 2 grade Spruce-Pine-Fir (SPF) wood 

has fi nished dimensions of 7.25 in. by 9.25 in. For this wood species and grade, the allow-

able compression stress parallel to the wood grain is Fc � 975 psi and the modulus of 

elasticity is E � 1,100,000 psi. The timber column has a length of L � 16 ft, and pinned 

connections are used at each end of the column. Use the NFPA NDS column design for-

mula to determine the allowable axial load Pallow that may be supported by the column.

Plan the Solution
The NFPA NDS column design formula given in Equation (16.29) will be used to com-

pute the allowable axial load.

y

z

7.25 in.

9.25 in.

EXAMPLE 16.7
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SOLUTION
The NFPA NDS column design formula is

allow
( ) ( )⎡

⎣
⎢
⎢

⎤
⎦
⎥
⎥

F
F F

c
F F

c
F F

c
cE c cE c cE c1

2

1

2

2 (( )⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪c

� � �
� �

�

where

    Fc � allowable stress for compression parallel to grain

  FcE � 
K E

(KL/d )

cE
2  � reduced Euler buckling stress

     E � modulus of elasticity

 KcE � 0.30 for visually graded lumber

     c � 0.8 for sawn lumber

The fi nished dimensions of the timber column are 7.25 in. by 9.25 in. The smaller of 

these two dimensions is taken as d in the term KL /d. Since the column has pinned ends, 

the effective-length factor is K � 1.0; therefore,

KL

d

( . ) ( ft) ( )

.
.

1 0 16 12

7 25
26 48

in./ft

in.
� �

The reduced Euler buckling stress term FcE used in the NFPA NDS formula has the value

F
K E

KL /d
cE

cE

( )2 2

0 30

26 48
470

( . ) ( psi)

( . )

1,100,000
.. psi63� � �

The ratio FcE /Fc has the value

F

F
cE

c

470 63

975
0 4827

. psi

psi
.� �

This ratio, along with the values Fc � 975 psi and c � 0.8 (for sawn lumber), are used in the 

NFPA NDS formula to calculate the allowable compression stress for the timber column:

allow
( ) ( )⎡

⎣
⎢
⎢

⎤
⎦
⎥
⎥

F
F F

c

F F

c

F F
c

cE c cE c cE c1

2

1

2

2 (( )⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪c

( psi)
( . )

( . )
975

1 0 4827

2 0 8

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫1 0 4827

2 0 8

0 4827

0 8

2( . )

( . )

.

.
⎬⎬
⎪⎪⎪

⎭
⎪⎪⎪

{ }( psi) . . .

.

975 0 9267 0 9267 0 6034

410 8

2

ppsi

� � �
�

� �

�
�

� � �

� � �

�

The allowable axial load Pallow that may be supported by the column is therefore

    P Aallow allow ( . psi) ( . ) ( . )410 8 7 25 9 25in. in. 27,5549 27,500lb lb� � � � �  Ans.

721

Steel Columns
P16.49 Use the AISC equations to determine the allowable 

axial load Pallow that may be supported by a W8 � 48 wide-fl ange 

column for the following effective lengths: 

(a) KL � 13 ft

(b) KL � 26 ft

Assume that E � 29,000 ksi and �Y � 50 ksi.

P16.50 Use the AISC equations to determine the allowable  axial 

load Pallow that may be supported by a HSS152.4 � 101.6 � 6.4 

column for the following effective lengths:

(a) KL � 3.75 m

(b) KL � 7.5 m

Assume that E � 200 GPa and �Y � 320 MPa.

PROBLEMSPROBLEMS
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P16.51 Use the AISC equations to determine the allowable 

 axial load Pallow that may be supported by a W310 � 86 wide-

fl ange column for the following effective lengths:

(a) KL � 7.0 m

(b) KL � 10.0 m

Assume that E � 200 GPa and �Y � 250 MPa.

P16.52 Use the AISC equations to determine the allowable 

axial load Pallow that may be supported by a W12 � 40 wide-fl ange 

column for the following effective lengths: 

(a) KL � 12 ft

(b) KL � 24 ft

Assume that E � 29,000 ksi and �Y � 36 ksi.

P16.53 Use the AISC equations to determine the allowable axial 

load Pallow for a steel pipe column that is fi xed at its base and free at 

the top (Figure P16.53/54) for the following column lengths:

(a) L � 10 ft

(b)  L � 22 ft

The outside diameter of the pipe is 8.625 in., and the wall thickness 

is 0.322 in. Assume that E � 29,000 ksi and �Y � 36 ksi.

P16.54 Use the AISC equations to determine the allowable 

 axial load Pallow for a steel pipe column that is fi xed at its base and 

free at the top (Figure P16.53/54) for the following column lengths:

(a) L � 3 m

(b)  L � 4 m

The outside diameter of the pipe is 168 mm, and the wall thickness 

is 11 mm. Assume that E � 200 GPa and �Y � 250 MPa.

P16.55 The 10-m-long HSS304.8 � 203.2 � 9.5 (see Appen-

dix B for its cross-sectional properties) column shown in Figure 

P16.56 The 25-ft-long HSS6 � 4 � 1/8 (see Appendix B for 

its cross-sectional properties) column shown in Figure P16.55/56 

is fi xed at base A with respect to bending about both the strong 

and weak axes of the HSS cross section. At upper end B, the 

column is restrained against rotation and translation in the x–z 

plane (i.e., bending about the weak axis), and it is restrained 

against translation in the x–y plane (i.e., free to rotate about 

the strong axis). Use the AISC equations to determine the allow-

able axial load Pallow that may be supported by the column, on 

the basis of

(a) buckling in the x–y plane. 

(b) buckling in the x–z plane. 

Assume that E � 29,000 ksi and �Y � 46 ksi.

P16.57 A column with an effective length of 28 ft is fabricated 

by connecting two C15 � 40 steel channels (see Appendix B for its 

cross-sectional properties) with lacing bars as shown in Figure 

P16.57/58. Use the AISC equations to determine the allowable 

 axial load Pallow that may be supported by the column if d � 10 in. 

Assume that E � 29,000 ksi and �Y � 36 ksi.

722

P

L

FIGURE P16.53/54

x

yz

L

P

A

B

y

z

Strong
axis

Weak
axis

FIGURE P16.55/56

P16.55/56 is fi xed at base A with respect to bending about both 

the strong and weak axes of the HSS cross section. At upper end 

B, the column is restrained against rotation and translation in the 

x–z plane (i.e., bending about the weak axis), and it is restrained 

against translation in the x–y plane (i.e., free to rotate about the 

strong axis). Use the AISC equations to determine the allowable 

axial load Pallow that may be supported by the column, on the 

basis of

(a) buckling in the x–y plane. 

(b) buckling in the x–z plane. 

Assume that E � 200 GPa and �Y � 320 MPa.
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P16.58 A column is fabricated by connecting two C310 � 45 

steel channels (see Appendix B for its cross-sectional properties) 

with lacing bars as shown in Figure P16.57/58. 

(a)  Determine the distance d required so that the moments of 

inertia for the section about the two principal axes are equal. 

(b)  For a column with an effective length of KL � 9.5 m, determine 

the allowable axial load Pallow that may be supported by the 

column, using the value of d determined in part (a). 

Use the AISC equations, and assume that E � 200 GPa and �Y � 

340 MPa.

P16.59 A column with an effective length of 12 m is fabricated 

by connecting two C230 � 30 steel channels with lacing bars as 

shown in Figure P16.59/60. Use the AISC equations to determine 

the allowable axial load Pallow that may be supported by the column 

if d � 100 mm. Assume that E � 200 GPa and �Y � 250 MPa.

P16.60 A column is fabricated by connecting two C8 �18.7 

steel channels with lacing bars as shown in Figure P16.59/60. 

(a)  Determine the distance d required so that the moments of 

inertia for the section about the two principal axes are equal. 

(b)  For a column with an effective length of KL � 32 ft, 

determine the allowable axial load Pallow that may be 

supported by the column, using the value of d determined in 

part (a). 

Use the AISC equations, and assume that E � 29,000 ksi and �Y � 

36 ksi.

P16.61 A compression chord of a small truss consists of two 

L5 � 3 � 1/2 steel angles arranged with long legs back-to-back as 

shown in Figure 16.61. The angles are separated at intervals by 

spacer blocks that are 0.375 in. thick. If the effective length is KL � 
12 ft, determine the allowable axial load Pallow that may be sup-

ported by the compression chord. Use the AISC equations, and 

assume that E � 29,000 ksi and �Y � 36 ksi.

d

C shapes
aligned toe-to-toe

Lacing
bars

y

z

x

y

z

Cross section.

FIGURE P16.57/58

P16.62 A compression chord of a small truss consists of two 

L127 � 76 � 12.7 steel angles arranged with long legs back-to-

back as shown in Figure 16.62. The angles are separated at intervals 

by spacer blocks. 

(a)  Determine the spacer thickness required so that the moments 

of inertia for the section about the two principal axes are 

equal. 

(b)  For a compression chord with an effective length of 

KL � 7 m, determine the allowable axial load Pallow that may 

be supported by the column, using the spacer thickness 

determined in part (a). 

Use the AISC equations, and assume that E � 200 GPa and �Y � 

340 MPa.

d

C shapes
aligned

back-to-back

Lacing
bars

y

z

x

y

z

FIGURE P16.59/60
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FIGURE P16.61
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P16.63 Develop a list of three acceptable structural steel WT 

shapes (from those listed in Appendix B), each of which can be 

used as an 18-ft-long pin-ended column to carry an axial compres-

sion load of 30 kips. Include on the list the most economical WT8, 

WT9, and WT10.5 shapes, and select the most economical shape 

from the available alternatives. Use the AISC equation for long 

columns [Equation (16.25)], and assume that E � 29,000 ksi and 

�Y � 50 ksi.

P16.64 Develop a list of three acceptable structural steel WT 

shapes (from those listed in Appendix B), each of which can be 

used as a 6-m-long pin-ended column to carry an axial compres-

sion load of 230 kN. Include on the list the most economical 

WT205, WT230, and WT265 shapes, and select the most econom-

ical shape from the available alternatives. Use the AISC equation 

for long columns [Equation (16.25)], and assume that E � 200 

GPa and �Y � 340 MPa.

Aluminum Columns
P16.65 A 6061-T6 aluminum-alloy pipe column with pinned 

ends has an outside diameter of 4.50 in. and a wall thickness of 

0.237 in. Determine the allowable axial load Pallow that may be sup-

ported by the aluminum pipe column for the following effective 

lengths: 

(a) KL � 7.5 ft

(b) KL � 15 ft

Use the Aluminum Association column design formulas.

P16.66 A 6061-T6 aluminum-alloy tube with pinned ends has 

an outside diameter of 42 mm and a wall thickness of 3.5 mm. 

 Determine the allowable compression load Pallow that may be sup-

ported by the aluminum tube for the following effective lengths: 

(a) KL � 625 mm

(b) KL � 1,250 mm

Use the Aluminum Association column design formulas.

P16.67 A 6061-T6 aluminum-alloy wide-fl ange shape has the 

dimensions shown in Figure P16.67. Determine the allowable axial 

P16.69 A 6061-T6 aluminum-alloy rectangular tube shape has 

the dimensions shown in Figure P16.68/69. The rectangular tube is 

used as a compression member that is 3.6 m long. For buckling 

about the z axis, assume that both ends of the column are pinned. 

For buckling about the y axis, however, assume that both ends of 

the column are fi xed. Determine the allowable axial load Pallow that 

may be supported by the rectangular tube. Use the Aluminum 

 Association column design formulas.

P16.70 The aluminum column shown in Figure P16.70/71 has a 

rectangular cross section and supports a compressive axial load P. 

The base of the column is fi xed. The support at the top allows rotation 

P16.68 A 6061-T6 aluminum-alloy rectangular tube shape has 

the dimensions shown in Figure P16.68/69. The rectangular tube is 

used as a compression member that is 2.5 m long. Both ends of the 

compression member are fi xed. Determine the allowable axial load 

Pallow that may be supported by the rectangular tube. Use the 

 Aluminum Association column design formulas.
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8 in.

0.41 in.

0.41 in.5 in.

0.25 in.

y

z

FIGURE P16.67

76 mm

50 mm

5 mm

y

z

FIGURE P16.68/69

76 mm76 mm

Spacer block

Double angles
L127    76    12.7

Long legs back-to-back

Spacer thickness

� �

FIGURE P16.62

load Pallow that may be supported by the aluminum column for the 

following effective lengths: 

(a) KL � 5 ft

(b) KL � 15 ft

Use the Aluminum Association column design formulas.
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P16.71 The aluminum column shown in Figure P16.70/71 has a 

rectangular cross section and supports a compressive axial 

load P. The base of the column is fi xed. The support at the top al-

lows rotation of the column in the x–y plane (i.e., bending about the 

strong axis), but prevents rotation in the x–z plane (i.e., bending 

about the weak axis). Determine the allowable axial load Pallow that 

may be applied to the column for the following parameters: L � 60 

in., b � 1.25 in., and h � 2.00 in. Use the Aluminum Association 

column design formulas.

P16.72 A 6061-T6 aluminum-alloy wide-fl ange shape, having 

the cross-sectional dimensions shown in Figure P16.72b, is used as 

a column of length L � 4.2 m. The column is fi xed at base A. Pin-

connected lateral bracing is present at B so that defl ection in the x–z 

plane is restrained at the upper end of the column; however, the 

column is free to defl ect in the x–y plane at B (Figure P16.72a). Use 

the Aluminum Association column design formulas to determine 

the allowable compressive load Pallow that the column can support. 

In your analysis, consider the possibility that buckling could occur 

about either the strong axis (i.e., the z axis) or the weak axis (i.e., 

the y axis) of the aluminum column.

P16.74 A wood post of rectangular cross section (Figure 

P16.73/74) consists of No. 1 grade Spruce-Pine-Fir lumber (Fc � 

7.25 MPa; E � 8.25 GPa). The fi nished dimensions of the post are 

b  �  140 mm and h � 185 mm. Assume pin connections at each end 

of the post. Determine the allowable axial load Pallow that may be 

supported by the post for the following column lengths: 

(a) L � 3 m

(b) L � 4.5 m

(c) L � 6 m

Use the NFPA NDS column design formula.
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FIGURE P16.73/74

of the column in the x–y plane (i.e., bending about the strong axis), 

but prevents rotation in the x–z plane (i.e., bending about the weak 

axis). Determine the allowable axial load Pallow that may be applied 

to the column for the following parameters: L � 1,800 mm, b � 

30 mm, and h � 40 mm. Use the Aluminum Association  column 

design formulas.

Wood Columns
P16.73 A wood post of rectangular cross section (Figure 

P16.73/74) consists of Select Structural grade Douglas fi r lumber 

(Fc � 1,700 psi; E � 1,900,000 psi). The fi nished dimensions of the 

post are b � 3.5 in. and h � 5.5 in. Assume pinned connections at 

each end of the post. Determine the allowable axial load Pallow that 

may be supported by the post for the following column lengths: 

(a) L � 6 ft

(b) L � 10 ft

(c) L � 14 ft

Use the NFPA NDS column design formula.
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Although a given column will support its maximum load when the load is applied centri-

cally, it is sometimes necessary to apply an eccentric load to a column. For example, a fl oor 

beam in a building may in turn be supported by an angle bolted or welded to the side of a 

column as shown in Figure 16.12. Since the reaction force from the beam acts at some 

16.6 Eccentrically Loaded Columns

P16.75 A Select Structural grade Hem-Fir (Fc � 1,500 psi; 

E � 1,600,000 psi) wood column of rectangular cross section 

has fi nished dimensions of b � 4.50 in. and h � 9.25 in. The 

length of the column is L � 18 ft. The column is fi xed at base A. 

Pin-connected lateral bracing is present at B so that defl ection in 

the x–z plane is restrained at the upper end of the column; how-

ever, the column is free to defl ect in the x–y plane at B (Figure 

P16.75/76). Use the NFPA NDS column design formula to de-

termine the allowable compressive load Pallow that the column 

can support. In your analysis, consider the possibility that buck-

ling could occur about either the strong axis (i.e., the z axis) or 

the weak axis (i.e., the y axis) of the wood column.

square Douglas fi r timbers (fi nished dimensions � 3.5 in. by 3.5 in.) 

with Fc � 1,500 psi and E � 1,800,000 psi.

(a)  For the loads shown, determine the axial forces produced in 

chord members AF, FG, GH, and EH and in web members 

BG and DG.  

(b)  Use the NFPA NDS column design formula to determine the 

allowable compressive load Pallow for each of these members. 

(c) Report the ratio Pallow �Pactual for each of these members.

9 kN6 kN

1.8 m

2.4 m2.4 m 2.4 m

A B C D

E F

FIGURE P16.78

x

y

z

L

P

A

B

y

z
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h

FIGURE P16.75/76

P16.76 A Select Structural grade Hem-Fir (Fc � 10.3 MPa; 

E � 11 GPa) wood column of rectangular cross section has fi n-

ished dimensions of b � 75 mm and h � 185 mm. The length of 

the column is L � 4.5 m. The column is fi xed at base A. Pin-

connected lateral bracing is present at B so that defl ection in the 

x–z plane is restrained at the upper end of the column; however, 

the column is free to defl ect in the x–y plane at B (Figure 

P16.75/76). Use the NFPA NDS column design formula to de-

termine the allowable compressive load Pallow that the column 

can support. In your analysis, consider the possibility that buck-

ling could occur about either the strong axis (i.e., the z axis) or 

the weak axis (i.e., the y axis) of the wood column.

P16.77 A simple pin-connected wood truss is loaded and sup-

ported as shown in Figure P16.77. The members of the truss are 

F G H

3,200 lb2,400 lb1,200 lb

8 ft

4 spaces @ 6 ft    24 ft

A B C D E

�

FIGURE P16.77

P16.78 A simple pin-connected wood truss is loaded and sup-

ported as shown in Figure P16.78. The members of the truss are square 

No. 2 grade Spruce-Pine-Fir timbers (fi nished dimensions � 90 mm 

by 90 mm), which have the properties Fc � 6.7 MPa and E � 7.5 GPa.

(a)  For the loads shown, determine the axial forces produced in 

chord members AE, EF, and DF and in web member BF.

(b)  Use the NFPA NDS column design formula to determine the 

allowable compressive load Pallow for each of these members. 

(c) Report the ratio Pallow �Pactual for each of these members.
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ECCENTRICALLY LOADED 

COLUMNS
 eccentricity e from the column centroid, a bending moment is created in the column in addition 

to an axial compression load. The bending moment applied to the column will increase the 

stress in the column and, in turn, decrease its load-carrying capacity. Three methods will be 

presented here to analyze columns that are subjected to an eccentric axial load.

The Secant Formula

The secant formula [Equation (16.20)] was derived on the assumption that the applied load 

had an initial eccentricity e. If e is known, then its value can be substituted in the secant 

formula to determine the failure load (i.e., the load that causes incipient inelastic action). 

As mentioned previously, there is usually a small amount of unavoidable eccentricity that 

must be approximated when using this formula for centric loads. The form of the secant 

formula makes it somewhat diffi cult to solve for the value of P/A that produces a specifi c 

maximum compression stress value; however, a number of equation-solving computer pro-

grams are available that can readily produce this sort of numerical solution.

Allowable Stress Method

The topic of bending due to an eccentric axial load was discussed in Section 8.7. 

Figure 8.14 depicted the stress distributions caused by axial loads and by bending mo-

ments, and it illustrated the resulting stress distribution from the combined effects. 

Equation (8.19) was used to calculate the normal stress produced by the combination of an 

axial force and a bending moment. Buckling was not considered in Section 8.7; however, 

the approach taken in Equation (8.19) can be adapted for use in this context.

The allowable stress method simply requires that the sum of the compression axial 

stress and the compression bending stress must be less than the allowable compression 

stress prescribed by the pertinent column formula for centric loading. Equation (8.19) can 

be restated as

 x
P

A

Mc

I allow�� �� �  (16.30)

where the compressive stresses are treated as positive quantities. In Equation (16.30), �allow 

is the allowable stress calculated from one of the empirical design formulas presented in 

Section 16.5. The formula uses the largest value of the effective-slenderness ratio for the 

cross section, irrespective of the axis about which bending occurs. Values of c and I used in 

calculating the bending stress, however, do depend on the axis of bending. The allowable 

stress method and Equation (16.30) generally produce a conservative design.

Interaction Method

In an eccentrically loaded column, much of the total stress may be caused by the bending 

moment. However, the allowable bending stress is generally larger than the allowable com-

pression stress. How, then, can some balance be attained between the two allowable 

stresses? Consider the axial stress �a � P/A. If the allowable axial stress for a member act-

ing as a column is denoted by (�allow)a, then the area Aa required for a given axial force P 

can be expressed as

A
P

a
a( )allow

�
�

Next, consider the bending stress given by �b � Mc/I. The moment of inertia I can be 

 expressed in terms of the area and the radius of gyration as I � Ar2, where r is the radius of 

FIGURE 16.12 Column 

subjected to eccentric load P.

x

y

z

P

Eccentricity e

c
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COLUMNS gyration in the plane of bending. Let the allowable bending stress be designated (�allow)b. 

The area Ab required for a given bending moment M can be expressed as

A
Mc

rb
b( )2

allow
�

�

Therefore, the total area A required for a column subjected to an axial force and a bending 

moment can be expressed as the sum of these two expressions:

A A A
P Mc

ra b
a b( ) ( )allow allow

2� � �
� �

�

Dividing this expression by the total area A and letting Ar2 � I give

 
P/A Mc/I

a ballow allow( ) ( )
1��

��
 (16.31)

If the column has an axial load, but no bending moment (i.e., a centrically loaded column), 

Equation (16.31) indicates that the column is analyzed in accordance with the allowable 

axial stress. If the column has a bending moment, but no axial load (in other words, it is 

truly a beam), then the normal stresses must satisfy the allowable bending stress. Between 

these two extremes, Equation (16.31) accounts for the relative importance of each normal 

stress component in relation to the combined effect. Equation (16.31) is known as an inter-
action formula, and this approach is a common method for considering the combined 

 effects of axial load and bending moments in columns.

In Equation (16.31), (�allow)a is the allowable axial stress given by one of the empirical 

column design formulas in Section 16.5 and (�allow)b is the allowable bending stress. The AISC 

specifi cations use the general form of Equation (16.31) for analysis of combined axial com-

pression and bending; however, additional modifi cation factors are added to this equation de-

pending on whether (P/A)/(�allow)a is less than or greater than a value of 0.2. Since the purpose 

of this discussion is to introduce the concept of interaction equations rather than to teach the 

specifi c details of AISC steel column design, Equation (16.31) without additional factors will 

be used here to analyze columns subjected to both axial compression and bending moments.

z

y

x

14 in.

11 ft

P

EXAMPLE 16.8

The W12 � 58 structural steel column (see Appendix B for its cross-sectional proper-

ties) shown is fi xed at its base and free at its upper end. At the top of the column, a load 

P is applied to a bracket at an eccentricity of e � 14 in. from the centroidal axis of the 

wide-fl ange shape. Use the AISC Allowable Stress Design formulas given in Section 

16.5, and assume that E � 29,000 ksi and �Y � 36 ksi.

(a)  Using the allowable stress method, determine whether the column is safe for a load 

of P � 25 kips. Report the results in the form of the stress ratio �x /�allow.

(b)  Determine the magnitude of the largest eccentric load P that may be applied to the 

column according to the allowable stress method.

(c)  Repeat the analysis, using the interaction method, and determine whether the 

column is safe for a load of P � 25 kips. Assume that the allowable bending stress 

is (�allow)b � 24 ksi. Report the value of the interaction equation.

(d)  Determine the magnitude of the largest eccentric load P that may be applied to the 

column according to the interaction method.

Plan the Solution
The section properties can be obtained from Appendix B for the W12 � 58 structural 

steel shape. From these properties, the compression stresses due to the axial force 

and the bending moment can be determined for the specifi ed 25-kip load and the 
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 allowable compression stress can be determined from the AISC ASD formulas. These 

values, along with the specifi ed allowable bending stress, can then be used in Equation 

(16.30) for the allowable stress method and in Equation (16.31) for the interaction 

method to determine whether the column can safely carry P � 25 kips at the specifi ed 

14-in. eccentricity. To determine the largest acceptable eccentric load, the axial and 

bending stresses are specifi ed in terms of P and then solved for the maximum load 

magnitude.

SOLUTION
Section Properties
The following section properties can be obtained from Appendix B for the W12 � 58 

structural steel shape: 

A I r I rz z y y17 0 475 5 28 107 2 512 4 4. . .in. in. in. in. iin.� � � � �

The subscripts for these properties have been revised to correspond to the axes shown. 

Additionally, the fl ange width of the W12 � 58 shape is bf � 10.0 in.

Axial Stress Calculation
The 25-kip load will produce compression normal stress in the column:

 axial
kips

.
. ksi

P

A

25

17 0
1 47

2in.
�� � �  (a)

Bending Stress Calculation
The eccentric axial load P applied at an eccentricity of e � 14 in. will produce a bending 

moment of My � Pe about the y axis (i.e., the weak axis) of the wide-fl ange shape. The 

bending stress can be calculated from the fl exure formula �bend � My c/Iy, where c is equal 

to half the fl ange width: c � bf /2 � 10.0 in./2 � 5.0 in. For the specifi ed axial load of 

P � 25 kips, the maximum bending stress magnitude is

 bend
( kips) ( ) ( . )M c

I

Pec

I
y

y y

25 14 5 0

107

in. in.

in.44
16 36. ksi� � � ��  (b)

Both tension and compression normal stresses will be produced by bending; however, the 

compression normal stress is the focus of our interest here.

AISC Allowable Stress Design Formulas
The AISC ASD formulas differentiate between short-to-intermediate columns and 

long columns according to an effective-slenderness ratio given by

29,000 ksi

36 ksi
133.6814.71

E
4.71 � �

Y�

From Figure 16.7, the appropriate effective-length factor for a column fi xed at its base 

and free at its upper end is Ky � Kz � 2.0. The effective-slenderness ratios for buckling 

about the strong and weak axes, respectively, of the W12 � 58 are therefore

(2.0)(11 ft)(12 in./ft)

5.28 in.
� � 50.0

rz

KzL (2.0)(11 ft)(12 in./ft)

2.51 in.
� � 105.2

ry

KyL

The controlling effective-slenderness ratio for the column is 105.2. Since KL /ry 
 4.71   E/�Y, 

the column is considered to be an intermediate-length column and the critical compression 
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stress will be calculated from Equation (16.22). In this equation, the elastic buckling stress �e 

for the controlling effective-slenderness ratio is computed from Equation (16.23):

�e � � �
KL
r
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

2

2�  (29,000 ksi)
2(105.2)

25.86 ksi
2�  E

The critical compression stress is determined from Equation (16.22):

 
0.658cr � �� Y�

�Y

�e 0.658

36 ksi

25.86 ksi (36 ksi) � 20.10 ksi
 

Finally, the allowable compression stress is determined from Equation (16.25):

 
�allow

�cr

1.67
20.10 ksi

1.67
� � � 12.04 ksi

 
(c)

(a) Is the column safe for P � 25 kips according to the allowable stress method? The 

 allowable stress method simply requires that the sum of the compression axial stresses 

and the compression bending stress must be less than the allowable compression stress 

prescribed by the pertinent AISC ASD column formula for centric loading. The sum of 

the compression axial stress and the compression bending stress is

 x 1 47 16 36 17 83. . ksi . ksi (C)ksi�� � �  (d)

Since �x is greater than the 12.04 ksi allowable compression stress, the column is not safe 

for P � 25 kips, according to the allowable stress method. The ratio between the allow-

able and actual stresses has the value

 
x

allow

. ksi

. ksi
. N .G.

17 83

12 04
1 48 1�

�

�
� �  Ans.

(b) Magnitude of the largest eccentric load P: The axial and bending stresses in the 

 allowable stress method equation can be expressed in terms of an unknown P:

 
x

y y

P

A

Pec

I
P

A

ec

I

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
�� � ��

 
(e)

The largest load magnitude can be calculated by setting Equation (e) equal to the allow-

able compression stress from Equation (c) and solving for P:

x
y

P
A

ec

I
P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥allow . ksi

.
12 04

1 1

17 0 2in.

(( ) ( . )
.

14 5 0

107
0 71303

4
2in. in.

in.
in.

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

[ ]P

P 16 89. kips

� � ��

��

� � � �� �  

Ans.

(c) Is the column safe for P � 25 kips, according to the interaction method? In the inter-

action method, the axial stress is divided by the allowable compression stress, the bending 

stress is divided by the allowable bending stress, and the sum of these two terms must not 

exceed 1:

P/A M c Iy y

ballow allow( ) ( )a

1�
� �

�

The axial and bending stresses were computed in Equations (a) and (b). The allowable 

compression stress (�allow)a was computed in Equation (c), and the allowable bending 
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EXAMPLE 16.9

A 6061-T6 aluminum-alloy tube (outside diameter � 130 mm; wall thickness � 12.5 mm) 

supports an axial load of P � 40 kN, which is applied at an eccentricity of e from the 

tube centerline. The 2.25-m-long tube is fi xed at its base and free at its upper end. Apply 

the Aluminum Association equations given in Section 16.5, and assume that the allow-

able bending stress of the 6061-T6 alloy is 150 MPa. Determine the maximum value of 

eccentricity e that may be used

(a) according to the allowable stress method.

(b) according to the interaction method.

Plan the Solution
Compute the section properties of the tube, and then use the Aluminum Association 

equations to determine the allowable compression stress for the 2.25-m-long fi xed-free 

column. Express both the allowable stress and interaction methods in terms of P and e, 

and solve for the allowable eccentricity e.

SOLUTION
Section Properties
The inside diameter of the tube is d � 130 mm – 2(12.5 mm) � 105 mm. 

The cross-sectional area of the tube is

A �
�

� �[ ]
4

130 1052 2 2( mm) ( mm) mm4,614.2

The moments of inertia about both the y and z centroidal axes are identical:

I I Iy z [ ]
64

130 1054 4 4( mm) ( mm) mm8,053,246� � � � �
�

Similarly, the radii of gyration about both centroidal axes are the same:

r r ry z
8,053,246

4,614.2

mm

mm
. mm

4

2
41 78� � � �

stress is specifi ed as (�allow)b � 24 ksi. With these values, the interaction equation for the 

eccentrically loaded W12 � 58 column is

 
1 47

12 04

16 36

24
0 1221 0 6817 0 8

. ksi

. ksi

. ksi

ksi
. . . 0038 1 O.K.� � � � 	  Ans.

Since the value of the interaction equation is less than 1, the column is safe for a load of 

P � 25 kips, according to the interaction method.

(d) Magnitude of the largest eccentric load P: The sum of the axial and bending compression 

stresses for the eccentrically loaded W12 � 58 column can be expressed in terms of an 

unknown P:

 
P

A
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⎡

⎣
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⎢

⎤

⎦
⎥
⎥

b

1� � � �
� � � �  (f)

Equation (f) can be solved for the largest load magnitude P:

P
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I
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⎤⎤
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⎥
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0 032144
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� �
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� �

Ans.
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40 kN
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Allowable Compression Stress
From Figure 16.7, the effective-length factor for a fi xed-free column is K � 2.0. There-

fore, the effective-slenderness ratio for the 2.25-m-long 6061-T6 tube is

KL

r

( . )( mm)

. mm
.

2 0

41 78
107 7

2,250
� �

Since this slenderness ratio is greater than 66, the allowable compression stress is deter-

mined from Equation (16.24):

 σallow MPa
( . )

. MP
( )

351,000 351,000

KL /r 2 2107 7
30 26 aa� � �  (a)

(a) Maximum eccentricity based on the allowable stress method: The axial and bending 

stresses in the allowable stress method equation can be expressed as

 x
P

A

Pec

I
P

A

ec

I
⎡
⎣
⎢

⎤
⎦
⎥

1
� � � ��  (b)

where c is the outside radius of the tube (c � 130 mm/2 � 65 mm). Set Equation (b) equal 

to the allowable compression stress determined in Equation (a), and solve for the maxi-

mum eccentricity e:

30 26
1 65

2
. MPa ( N)

mm

( mm)

m
40,000

4,614.2 8,053,246

e

mm

.

N mm

mm

4

2

2

30 26 1 65

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

N/mm

40,000 4,614.2 8,0053,246 mm

. mmmax

4

66 9

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥
e

e

� �

� �

��

 

Ans.

(b) Maximum eccentricity based on the interaction method: To determine the maximum 

eccentricity e, the interaction equation for axial and bending stresses is expressed as

 

P

A

Pec

I
P

A

ec

Ia b aallow allow allow allo( ) ( ) ( )

1

ww( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

b

1� � � �
� � � �  (c)

The allowable compression stress was computed in Equation (a); therefore, (�allow)a � 

30.26 MPa. The allowable bending stress was specifi ed as (�allow)b � 150 MPa. The 

maximum allowable eccentricity emax based on the interaction method can be computed 

with these values, along with P � 40 kN:
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1
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Since the effective-slenderness ratio of the tube is relatively large, the allowable compres-

sion stress computed in Equation (a) is relatively small. Since the allowable stress method 

depends entirely on this allowable stress, the 66.9-mm maximum eccentricity is very 

conservative. In the interaction method, only the axial stress term (i.e., P/A) is directly 

affected by the small allowable compression stress. The bending stress component, which 

is a signifi cant portion of the total stress, is divided by the 150-MPa allowable bending 

stress. Therefore, the maximum eccentricity determined from the interaction method is 

much larger than the eccentricity found from the allowable stress method.

733

P16.79 A compression load P is applied at an eccentricity of 

e � 10 mm from the centerline of a solid 40-mm-diameter steel rod 

(Figure P16.79). The rod has a length of L � 1,200 mm, and it is 

pinned-connected at A and B. Using the allowable stress method, 

determine the magnitude of the largest eccentric load P that may be 

applied to the column. Assume that E � 200 GPa and �Y � 415 MPa, 

and use the AISC equations given in Section 16.5.

P16.81 A HSS203.2 � 101.6 � 9.5 structural steel shape (see 

Appendix B for its cross-sectional properties) is used as a column 

to support an eccentric axial load. The 2-m-long column is fi xed at 

its base and free at its upper end. At the upper end of the column 

(Figure P16.80/81), a load P is applied to a bracket at an eccentric-

ity e from the x axis, creating a bending moment about the weak 

axis of the HSS shape (i.e., the y axis). By the allowable stress 

method, determine the maximum eccentricity e that may be used at 

the bracket if the applied load is

(a) P � 80 kN.

(b) P � 160 kN. 

Apply the AISC equations given in Section 16.5, and assume that 

E � 200 GPa and �Y � 320 MPa.

P16.80 A HSS10 � 4 � 3/8 structural steel shape (see 

 Appendix B for its cross-sectional properties) is used as a column 

to support an eccentric axial load P. The column is 80 in. long, 

and it is fi xed at its base and free at its upper end. At the upper end 

of the column (Figure P16.80/81), the load P is applied to a 

bracket at a distance of e � 8 in. from the x axis, creating a bending 

moment about the weak axis of the HSS shape (i.e., the y axis). 

Apply the AISC equations given in Section 16.5 and assume that 

E � 29,000 ksi and �Y � 46 ksi. By the allowable stress method, 

determine

(a)  whether the column is safe for a load of P � 25 kips; report 

the results in the form of the stress ratio �x /�allow.

(b)  the magnitude of the largest load P that may be applied to the 

column.

A

B

L

P
Eccentricity e

FIGURE P16.79

x

y

z
P

HSS
strong
axis

Eccentricity e

FIGURE P16.80/81
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P16.82 The structural steel column shown in Figure P16.82/83 

is fi xed at its base and free at its upper end. At the top of the col-

umn, a load P is applied to the stiffened seat support at an eccen-

tricity of e � 9 in. from the centroidal axis of the wide-fl ange 

shape. Use the AISC equations given in Section 16.5, and assume 

that E � 29,000 ksi and �Y � 36 ksi. Employ the allowable stress 

method to determine

(a)  whether the column is safe for a load of P � 15 kips; report 

the results in the form of the stress ratio �x /�allow.

(b)  the magnitude of the largest eccentric load P that may be 

applied to the column.

P16.85 A W10 � 54 structural steel shape (see Appendix B for 

its cross-sectional properties) is used as a column to support an ec-

centric axial load P. The column is 25 ft long, and it is pinned both 

at its base and at its upper end. At the upper end of the column 

(Figure P16.85/86), the load P is applied to a bracket at a distance 

of e � 9 in. from the x axis, creating a bending moment about the 

strong axis of the W10 � 54 shape (i.e., the z axis). Use the AISC 

equations given in Section 16.5, and assume that E � 29,000 ksi 

and �Y � 50 ksi. Using the allowable stress method, determine

(a)  whether the column is safe for a load of P � 75 kips; report 

the results in the form of the stress ratio �x /�allow.

(b)  the magnitude of the largest eccentric load P that may be 

applied to the column.

P16.83 The structural steel column shown in Figure P16.82/83 

is fi xed at its base and free at its upper end. At the top of the column, 

a load P is applied to the stiffened seat support at an eccentricity of 

e from the centroidal axis of the wide-fl ange shape. Using the 

 allowable stress method, determine the maximum allowable eccen-

tricity e if 

(a) P � 15 kips.

(b) P � 35 kips. 

Apply the AISC equations given in Section 16.5, and assume that 

E � 29,000 ksi and �Y � 50 ksi.

P16.84 The structural steel pipe column BC shown in Figure 

P16.84 is fi xed at its base and free at its top. The outside diameter 

of the pipe column is 8.625 in., and the wall thickness is 0.322 in. 

A load P is applied to beam AB, which is connected to the upper 

end of the column. Use the AISC equations given in Section 16.5, 

and assume that E � 29,000 ksi, �Y � 36 ksi, and (�allow)b � 24 ksi. 

Using the interaction equation method, determine

P16.86 A W200 � 46.1 structural steel shape (see Appendix B 

for its cross-sectional properties) is used as a column to support an 

eccentric axial load P. The column is 3.6 m long, and it is fi xed at 

(a)  whether column BC is safe for a load of P � 2.5 kips; report 

the value of the interaction equation.

(b)  the magnitude of the largest load P that may be applied to the 

column.

734
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Eccentricity e
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its base and free at its upper end. At the upper end of the column 

(Figure P16.85/86), the load P is applied to a bracket at a distance 

of e � 170 mm from the x axis, creating a bending moment about 

the strong axis of the W200 � 46.1 shape (i.e., the z axis). Apply 

the AISC equations given in Section 16.5, and assume that 

E � 200 GPa and �Y � 250 MPa. By the allowable stress method, 

determine

(a)  whether the column is safe for a load of P � 125 kN; report 

the results in the form of the stress ratio �x /�allow.

(b)  the magnitude of the largest eccentric load P that may be 

applied to the column.

P16.87 The column shown in Figure P16.87/88 is fabricated 

from two C250 � 30 standard steel shapes (see Appendix B for its 

cross-sectional properties) that are oriented back-to-back with a 

gap of 25 mm between the two channels. The column is fi xed at its 

base and free to translate in the y direction at its upper end. Transla-

tion in the z direction, however, is restrained at its upper end. The 

load P is applied at an offset distance from the channel fl anges. 

 Using the allowable stress method, determine the maximum offset 

distance that is acceptable if

(a) P � 125 kN. 

(b) P � 200 kN. 

Use the AISC equations given in Section 16.5, and assume that 

E � 200 GPa and �Y � 250 MPa.

P is applied at an offset distance of 500 mm from the channel 

fl anges. Use the AISC equations given in Section 16.5, and assume 

that E � 200 GPa, �Y � 250 MPa, and (�allow)b � 150 MPa. Using 

the interaction equation method, determine

(a)  whether the column is safe for a load of P � 75 kN; report the 

value of the interaction equation.

(b)  the magnitude of the largest load P that may be applied to the 

column.

P16.89 A 3-m-long column consists of a wide-fl ange shape 

made of 6061-T6 aluminum alloy. The column, which is pinned at 

its upper and lower ends, supports an eccentric axial load P. At 

the upper end of the column, the load P is applied at an eccentricity 

of e � 180 mm from the x–y plane (Figure P16.89a), creating a 

bending moment about the weak axis of the fl anged shape (i.e., 

the y axis). The cross-sectional dimensions of the aluminum 

wide-fl ange shape are shown in Figure P16.89b. Use the interac-

tion method to determine the maximum allowable magnitude of P. 

Use the Aluminum Association equations given in Section 16.5, 

and assume that the allowable bending stress of the 6061-T6 alloy 

is 150 MPa.

P16.88 The column shown in Figure P16.87/88 is fabricated 

from two C250 � 30 standard steel shapes (see Appendix B for its 

cross-sectional properties) that are oriented back-to-back with a 

gap of 25 mm between the two channels. The column is fi xed at its 

base and free to translate in the y direction at its upper end. Transla-

tion in the z direction, however, is restrained at its upper end. A load 

x

y

z
P

Eccentricity e

FIGURE P16.89a

226 mm

12 mm

12 mm

7 mm

160 mm

y

z

FIGURE P16.89b
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P16.90 An eccentric compression load of P � 32 kN is 

 applied at an eccentricity of e � 12 mm from the centerline of a 

solid 45-mm-diameter 6061-T6 aluminum-alloy rod (Figure 

P16.90/91). Using the interaction method and an allowable 

bending stress of 150 MPa, determine the longest effective 

length L that can be used.

P16.91 An eccentric compression load of P � 13 kips is applied 

at an eccentricity of e � 0.75 in. from the centerline of a solid 

6061-T6 aluminum-alloy rod (Figure P16.90/91). The rod has an 

effective length of 45 in. Using the interaction method and an allow-

able bending stress of 21 ksi, determine the smallest diameter that 

can be used.

P16.92 A square tube shape made of 6061-T6 aluminum alloy 

supports an eccentric compression load P that is applied at an 

 eccentricity of e � 4.0 in. from the centerline of the shape (Figure 

P16.92). The width of the square tube is 3 in., its wall thickness is 

0.12 in., and its effective length is L � 65 in. Using the interaction 

method and an allowable bending stress of 21 ksi, determine the 

maximum allowable load P that can be supported by the column.

P16.93 A sawn wood post of rectangular cross section (Figure 

P16.93) consists of No. 1 Spruce-Pine-Fir lumber (Fc � 1,050 psi; 

E � 1,200,000 psi). The fi nished dimensions of the post are b � 

5.5 in. and h � 7.25 in. The post is 12 ft long, and the ends of the 

post are pinned. Using the interaction method and an allowable 

bending stress of 850 psi, determine the maximum allowable 

load that can be supported by the post if the load P acts at an 

 eccentricity of e � 6 in. from the centerline of the post. Use the 

NFPA NDS column design formula.

P16.94 A square wood column is made from No. 1 Spruce-Pine-

Fir lumber (Fc � 7.2 MPa; E � 8.3 GPa). The fi nished dimensions of 

the column are 140 mm by 140 mm, the column is 3.5 m long, and the 

ends of the column can be assumed to be pinned. Using the interaction 

method and an allowable bending stress of 6.0 MPa, determine the 

maximum allowable load that can be supported by the column if 

the load P acts at an offset of 400 mm from the face of the column 
(Figure P16.94). Use the NFPA NDS column design formula.

P16.95 A square wood column is made from No. 2 cedar lum-

ber (Fc � 7.2 MPa; E � 8.3 GPa). The fi nished dimensions of the

column are 140 mm by 140 mm, and the effective length of 

the column is 5 m. Using the allowable stress method, determine 

the maximum allowable load that can be supported by the column 

if the load P acts at an eccentricity of e � 90 mm (Figure P16.95). 

Use the NFPA NDS column design formula.
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When a solid body deforms as a consequence of applied loads, work is done on the body 

by these loads. Since the applied loads are external to the body, this work is called 

 external work. As deformation occurs in the body, internal work, commonly referred 

to as strain energy, is stored within the body as potential energy. If the proportional 

limit of the material is not exceeded (i.e., the material remains elastic), then no energy 

dissipation occurs and all strain energy is completely recoverable. For this situation, the 

principle of conservation of energy can be stated as follows: The work performed on 

an elastic body in static equilibrium by external forces is equal to the strain energy 

stored in the body.

From this principle, internal deformations in a body can be related to the external 

loads acting on the body. Energies related to axial, bending, torsional, and shear loadings 

will be considered next.

The load–deformation relationships based on energy principles that will be presented 

here will be limited to linearly elastic systems (although these energy principles are appli-

cable for any conservative system). These relationships make possible the application of 

powerful methods for the analysis of elastic bodies, particularly with regard to statically 

indeterminate structures, trusses, frames, and beams. Energy methods are also quite useful 

in investigating the effects of dynamic loads on solid bodies.

The total energy of a system in static equilibrium subjected to any combination of 

loads is the sum of the strain energies stored in the system as a result of each type of load. 

17.1 Introduction

Energy Methods
17CHAPTER

737

c17EnergyMethods.indd Page 737  08/05/12  3:55 PM user-F391c17EnergyMethods.indd Page 737  08/05/12  3:55 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



738
ENERGY METHODS

Work of a Force

Work W is defi ned as the product of a force times the distance that it moves in the direc-

tion of the f0orce. For example, Figure 17.1 shows two forces acting on a body. As the 

body moves from initial position (a) to displaced position (b), force F1 moves from loca-

tion A to location A�, a distance of d1, and force F2 moves from location B to location B�, 
a distance of d2.

Even though force F1 has moved a total distance of d1, the work done by this force is 

simply W1 � F1s1 because the work done by a force is defi ned as the product of the force 

and the distance moved in the direction that the force acts. Similarly, the work done by 

force F2 is W2 � F2s2. Work can be either a positive or a negative quantity. Positive work 

occurs when the force moves in the same direction as it acts. Negative work occurs when 

the force moves opposite to its direction. In Figure 17.1, the work of forces F1 and F2 is 

positive if the body moves from position (a) to position (b). The work of forces F1 and F2 

is negative if the body moves from position (b) to position (a).

Next, consider a prismatic bar of length L that is subjected to a constant external load 

P as shown in Figure 17.2. The load will be applied to the bar very slowly—increasing 

from zero to its maximum value P—so that any dynamic or inertial effects due to motion 

are precluded. As the load is applied, the bar gradually elongates. The bar attains its maxi-

mum deformation � when the full magnitude of P is reached. Thereafter, both the load and 

the deformation remain unchanged.

The work done by the load is the product of the force magnitude and the distance the 

force moves; however, the force in this instance changes its magnitude from zero to its fi nal 

value P. The work done by the load as the bar elongates is dependent on the manner in 

which the force and the corresponding deformation vary. This information is summarized 

in a load–deformation diagram, such as the one shown in Figure 17.3. The shape of this 

diagram depends upon the particular material being considered.

17.2 Work and Strain Energy

FIGURE 17.1 Forces acting on a body that 

changes position.
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FIGURE 17.2 Prismatic bar 

with static load P.
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FIGURE 17.3 Load–deformation diagram.

Consequently, energy methods make it possible to readily determine the total deformation 

of a solid body subjected to multiple loads; this situation is frequently encountered in engi-

neering applications.
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739
WORK AND STRAIN ENERGYConsider an arbitrary value of load P1 between zero and the maximum value P. At 

this load, the corresponding deformation of the bar is �1. From this state, an additional 

load increment dP will produce an increment of deformation d�. During this incremental 

deformation, the load P1 will also move, and in so doing, it will perform work equal to 

dW � P1 d�. This work is shown in Figure 17.3 by the shaded area beneath the load–

deformation curve. The total work done by the load as it increases in magnitude from 

zero to P can be determined by the summation of all such infi nitely small increments:

0
W Pd�

�

�

When the load–deformation diagram is linear (Figure 17.4), the work done by P is

 1

2
W P��  (17.1)

which is simply the area under the P-� diagram.

Strain Energy

As external load P1 is applied to the bar in Figure 17.2, work is performed and energy is 

expended. Since this work is performed by an external load, it is typically referred to as 

external work. The load causes the bar to deform, and in the process, it produces strains 

in the bar. The principle of conservation of energy asserts that energy in a closed system 

is never created or destroyed; rather, it is only transformed from one state to another. So, 

where does the energy expended by the work of external load P1 go? This energy is trans-

formed into internal energy stored in the strains of the bar. The energy absorbed by the bar 

during the loading process is termed strain energy. In other words, strain energy is the 

energy that is stored in a material body as a consequence of its deformation. Provided that 

no energy is lost in the form of heat, the strain energy U is equal in magnitude to the 

 external work W:

 1

0
U W Pd�

�
� �

 
(17.2)

While external work may be either a positive or a negative quantity, strain energy is always 

a positive quantity.

An examination of Equation (17.2) reveals that work and energy are ex-

pressed in the same units—that is, the product of force and distance. In SI, the 

unit of work and energy is the joule (J), which is equal to 1 N-m. In U.S. Custom-

ary Units, work and energy may be expressed in units of lb-ft, lb-in., kip-ft, or 

kip-in.

Because of its stored energy, the bar in Figure 17.2 is capable of doing work 

in order to return to its undeformed confi guration after the load is removed. If 

the elastic limit is not exceeded, the bar will return to its original length. If the 

elastic limit is exceeded as illustrated in Figure 17.5, a residual strain will re-

main after the load is removed. The total strain energy is always the area under 

the load–deformation curve (area OABCDO); however, only the elastic strain 

energy (triangular area BCD) can be recovered. The other portion of the area 

under the load–deformation curve (area OABDO) represents the strain energy 

that is spent in permanently deforming the material. This energy dissipates in the 

form of heat.

Strain energy is sometimes 

referred to as internal work to 

distinguish it from the external 

work done by the load.

P

P

O

P1
2U W

FIGURE 17.4 Linear load– 

deformation diagram.

FIGURE 17.5 Elastic and inelastic 

strain energy.

P

Inelastic strain
energy

Elastic strain
energy

A

B

CDO
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740
ENERGY METHODS Strain-Energy Density for Uniaxial Normal Stress

Axial deformation of an elastic bar affords a simple introduction to the concept of strain 

energy. For more complex situations, it is sometimes necessary to consider how stored 

strain energy is distributed throughout a deformed body. For such cases, a quantity called 

strain-energy density is convenient. Strain-energy density is defi ned as the strain energy 

per unit volume of material.

Consider a small volume element dV in a linearly elastic bar subjected to an axial 

load, as shown in Figure 17.6. The force acting on each x face of this element is dFx � �x 
dy dz. If this force is applied gradually, like the force P1 considered in Figure 17.2, then the 

force on the element increases from zero to dFx while the element elongates by the amount 

d�x � �x dx. By Equation (17.1), the work done by dFx can be expressed as

( )1
2 x xdW dy dz dx� � �

Furthermore, by conservation of energy, the strain energy stored in the volume ele-

ment must equal the external work

( )1

2 x xdU dW dy dz dx� � � �

The volume of the element is dV � dx dy dz. Thus, the strain energy in the volume 

element can be expressed as

1

2 x xdU dV� � �

Note that strain energy must be a positive quantity because the normal stress and the 

normal strain always act in the same sense, either both positive (i.e., tension and elonga-

tion) or both negative (i.e., compression and contraction).

The strain-energy density u can be determined by dividing the strain energy dU by the 

volume dV of the element

 

1

2 x x
dUu
dV

�� � �
 

(17.3)

If the material is linearly elastic, �x � E�x, and the strain-energy density can then be ex-

pressed solely in terms of stress as

 

2

2

xu
E

�
�

 
(17.4)

or strain as

 

2

2

xEu
�

�
 

(17.5)

Equations (17.4) and (17.5) have a straightforward geometric interpretation, as both 

are equal to the triangular area below the stress–strain curve for a linear elastic material 

(Figure 17.7). For materials that are not linearly elastic, the strain-energy density is still 

equal to the area under the stress–strain curve; however, the area under the curve must be 

evaluated by numerical or other methods.

FIGURE 17.6 Volume element 

in uniaxial tension.

FIGURE 17.7 Strain-energy 

density for elastic materials.

xx E

x

x

u Strain-energy
density
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741
WORK AND STRAIN ENERGY

Strain-energy density has units of energy per volume. In SI, an appropriate unit for 

strain-energy density is joules per cubic meter (J/m3). In the U.S. Customary system, units 

of lb-ft/ft3 or lb-in./in.3 are suitable. However, notice that all of these units reduce to stress 

units; therefore, strain-energy density can also be expressed in pascals (Pa) or pounds per 

square inch (psi).

The area under the straight-line portion of the stress–strain curve (Figure 17.8a), eval-

uated from zero to the proportional limit, defi nes a material property known as the modu-
lus of resilience. The modulus of resilience is defi ned as the maximum strain-energy den-

sity that a material can store or absorb without exhibiting permanent deformations. In 

practice, the yield stress �Y, rather than the proportional limit, is generally used to deter-

mine the modulus of resilience.

The area under the entire stress–strain curve from zero to fracture (Figure 17.8b) gives 

a property known as the modulus of toughness. This modulus denotes the strain-energy 

density necessary to rupture the material. From the fi gure, it is evident that the modulus of 

toughness greatly depends both on the strength and the ductility of the material. A high 

modulus of toughness is particularly important when materials are subjected to dynamic or 

impact loads.

The total strain energy associated with uniaxial normal stress can be found by inte-

grating the strain-energy density [Equation (17.4)] over the volume of the member:

 

2

2

x
V

U dV
E

�
�

 
(17.6)

Equation (17.6) can be used to determine strain energy for both axially loaded bars and 

beams in pure bending.

Strain-Energy Density for Shear Stress

Next, consider an elemental volume dV subjected to a shear stress �xy � �yx (Figure 17.9). 

Notice that the shear stress on the upper face displaces the upper face of the element rela-

tive to the lower face. The vertical faces of the element do not displace relative to each 

other—they only rotate. Therefore, only the shear force acting on the upper face performs 

work as the element deforms. The shear force acting on the y face is dF � �xy dx dz, and 

this force displaces through a horizontal distance of �xy dy relative to the bottom face. The 

work done by dF; hence, the strain energy stored by the element is

 
( )1

2 xy xydU dx dz dy� � �  

FIGURE 17.8 Geometric interpretation of (a) modulus of resilience and (b) modulus of toughness.

Y

(a)

Modulus of
resilience

(b)

Fracture

Modulus of
toughness

FIGURE 17.9 Volume element 

subjected to pure shear stress 

�xy � �yx.

xy

yx xy

xy

dx

dy

dz

xz

y
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742
ENERGY METHODS Since the volume of the element is dV � dx dy dz, the strain-energy density in pure 

shear is

 

1

2 xy xyu� � �
 (17.7)

For linearly elastic material, �xy � G�xy, and the strain-energy density can then be 

expressed solely in terms of stress as

 

2

2

xyu
G

�
�

 
(17.8)

or strain as

 

2

2

xyG
u�

�

 
(17.9)

The total strain energy associated with shear stress can be found by integrating the 

strain-energy density [Equation (17.8)] over the volume of the member:

 

2

2

xy

V
U dV

G
�

�

 
(17.10)

Equation (17.10) can be used to determine strain energy for bars in torsion as well as 

to consider the strain energy associated with transverse shear stress in beams.

Although Equations (17.3) and (17.7) were derived for �x, �x, �xy, and �xy, additional strain-

energy density expressions can be derived for the remaining stress components in a similar man-

ner. The general expression for strain-energy density of a linearly elastic body is thus

 

1

2
x x y y z z xy xy yz yz zx zxu ⎡ ⎤⎣ ⎦� � � �� � �� � � � � �� �� ��

 
(17.11)

FIGURE 17.10 Prismatic bar 

with constant axial load P.

L

P
A

B

The concept of strain energy was introduced in the previous section by considering the 

work done by a slowly applied axial load P in elongating a prismatic bar by an amount �. 

If the load–deformation diagram is linear (Figure 17.4), the external work W done in elon-

gating the bar is

 

1

2
W P��  

and since the strain energy stored in the bar must equal the external work, the strain energy 

U in the bar is given by

 

1

2
U P��  

The prismatic bar shown in Figure 17.10 has a constant cross-sectional area A and mod-

ulus of elasticity E. When the load magnitude is such that the axial stress does not exceed the 

proportional limit for the material, the deformation of the bar is given by � � PL/AE. Conse-

quently, the elastic strain energy of the bar can be expressed in terms of the force P as

 

2

2

P LU
AE

�
 

(17.12)

17.3 Elastic Strain Energy for Axial Deformation
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743
ELASTIC STRAIN ENERGY FOR 

AXIAL DEFORMATION
or in terms of the deformation � as

 

2

2

AEU
L

�
�

 
(17.13)

The total strain energy of a bar that consists of several segments (each having constant 

force, area, and elastic modulus) is equal to the sum of the strain energies in each segment. 

For example, the strain energy in the multi-segment bar shown in Figure 17.11 is equal to 

the sum of the strain energies in segment AB and segment BC. In general terms, the strain 

energy of a bar with n segments can be expressed as

 

2

1 2

n
i i

i i i

F LU
A E∑�

�  
(17.14)

where Fi is the internal force in segment i and Li, Ai, and Ei are the lengths, areas, and elas-

tic moduli for the respective segments.

For a nonprismatic bar having a slightly tapered, variable cross section and a continu-

ously varying axial force (Figure 17.12), the strain energy can be derived by integrating the 

strain energy in a differential element dx over the total length of the bar:

 

2

0

( )

2 ( )

L F x
U dx

A x E
�

 
(17.15)

Here, F(x) is the internal force and A(x) the cross-sectional area at a distance of x from the 

origin of the bar.

2P
1P

A B
C

FIGURE 17.11 Bar with mul-

tiple prismatic segments.

x dx
L

F(x)

A
B

A(x)

FIGURE 17.12 Nonprismatic 

bar subjected to varying axial 

loading.

Segmented rod ABC is made of a brass that has a yield strength of �Y � 124 MPa 

and a modulus of elasticity of E � 115 GPa. The diameter of segment (1) is 

25 mm, and the diameter of segment (2) is 15 mm. For the loading shown, deter-

mine the maximum strain energy that can be absorbed by the rod if no permanent 

deformation is caused.

Plan the Solution
The maximum force that can be applied to the segmented rod will be dictated by 

the capacity of segment (2). From the yield strength and the cross-sectional area 

of segment (2), determine the maximum force P. The internal force in each segment will 

equal the external load. The strain energy in each segment can be calculated from the 

internal force along with the length, area, and elastic modulus of each segment. The total 

strain energy U is simply the sum of the strain energies in segments (1) and (2), as indi-

cated by Equation (17.14).

SOLUTION
Compute the cross-sectional areas of segments (1) and (2).

2 2 2

1 1

2 2 2

2 2

(25 mm) 490.874 mm
4 4

(15 mm) 176.715 mm
4 4

A d

A d

�

� �

�

� � �

�� �

EXAMPLE 17.1

900 mm

1,100 mm

(1)

(2)
A

B
C

P
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The maximum force P that can be applied without causing any permanent deforma-

tion will be controlled by the smaller of these two areas. Therefore, P is calculated from 

the yield strength �Y and A2:

2 2

1 (124 N/mm )(176.715 mm) 21,912.61 NYP A�� � �

Use Equation (17.14) to calculate the strain energy of each segment as well as the 

total strain energy in the brass rod.

 

2 2 2

1 1 2 2

1 1 1 2 2

2 2

2 2 2 2

2 2 2

(21,912.61 N) (900 mm) (21,912.61 N) (1,100 mm)

2(490.874 mm )(115,000 N/mm ) 2(176.715 mm )(115,000 N/mm )

3,827.7 N-mm 12,995.1 N-mm

16.82 N-m 16.82 J

n
i i

i i i

F L F L F LU
A E A E A E

�

�

�

� �

�

�

�

� �∑

 Ans.

Consider a circular prismatic shaft of length L that is subjected to a torque T as shown in 

Figure 17.13. If the torque is applied gradually, the free end B of the shaft rotates through 

an angle of �. If the bar is linearly elastic, the relationship between the torque T and the 

rotation angle of the shaft will also be linear, as shown in the torque-rotation diagram of 

Figure 17.14 and as given by the torque–twist relationship � � TL/JG, where J is the polar 

moment of inertia of the cross-sectional area. The external work W done by the torque as it 

rotates through the angle � is equal to the area of the shaded triangle. From the principle of 

conservation of energy, and with no dissipation of energy in the form of heat, the strain 

energy U of the circular shaft is thus

1

2
U W T�� �

From the torque–twist relationship � � TL/JG, the strain energy in the shaft can be 

expressed in terms of the torque T as

 

2

2

T LU
JG

�
 

(17.16)

or in terms of the rotation angle � as

 

2

2

JG�U
L

�
 

(17.17)

Notice the parallels in form between Equations (17.12) and (17.13), which express the 

strain energy in a prismatic bar with constant axial load, and Equations (17.16) and (17.17), 

which give the strain energy for a prismatic shaft with constant torque.

The total strain energy of a shaft that consists of several segments (each having 

constant torque, polar moment of inertia, and shear modulus) is equal to the sum of the 

17.4  Elastic Strain Energy for Torsional 
Deformation

xA

B

L

T

FIGURE 17.13 Prismatic shaft 

in pure torsion.

FIGURE 17.14 Torque-rotation 

diagram for linearly elastic 

material.

T

T

O

T1
2U W
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745
ELASTIC STRAIN ENERGY FOR 

TORSIONAL DEFORMATION
strain energies in each segment. The strain energy of a shaft with n segments can be ex-

pressed as

 

2

1 2

n
i i

i i i

T LU
J G

�
�

∑
 

(17.18)

where Ti is the internal force in segment i and Li, Ji, and Gi the length, polar moment of 

inertia, and shear moduli for the respective segments.

For a nonprismatic shaft having a slightly tapered, variable cross section and a con-

tinuously varying internal torque, the strain energy can be derived by integrating the strain 

energy in a differential element dx over the total length of the shaft:

 

2

0

( )

2 ( )

L T x
U dx

J x G
�

 

(17.19)

Here, T(x) is the internal torque and J(x) the polar moment of inertia of the cross-sectional 

area at a distance of x from the origin of the shaft.

L
3 2L

3

T

T

L
3 2L

3

T

L

T
(a)

(b)

(c)

A
B

C

A
B

C

A

C

EXAMPLE 17.2

Three identical shafts of identical torsional rigidity JG and length L are sub-

jected to torques T as shown. What is the elastic strain energy stored in each 

shaft?

Plan the Solution
The elastic strain energy for cases (a) and (b) can be determined from 

Equation (17.16). The strain energy for case (c) can be found from Equa-

tion (17.18).

SOLUTION
From Equation (17.16), the strain energy for case (a) is

 

2

2
a

T LU
JG

�
 

Ans.

In case (b), strain energy is created in only one-third of the shaft from A to B:

 

2 2( /3)

2JGb
T L T LU

6JG
� �

 
Ans.

In case (c), the internal torque in segment AB is 2T, and the internal torque in 

segment BC is T. From Equation (17.18), the total strain energy in shaft ABC is

 

2 2 2 2

2

(2 ) ( /3) (2 /3) 2

2 2 3 3
c

T L T L T L T LU
JG JG JG JG

T L
JG

�

�

� ��

 
Ans.

Notice that the sum of the strain energies for cases (a) and (b) does not equal the 

strain energy for case (c); that is, Uc ≠ Ua � Ub. The torque term in Equations (17.16) and 

(17.18) is squared; thus, superposition is not valid for strain energies.
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746

Consider an arbitrary axisymmetric prismatic beam such as the one depicted in Figure 

17.15a. As the external load P acting on the beam is gradually intensifi ed from zero to its 

maximum value, the internal bending moment M acting on a differential element dx steadily 

increases from zero to its fi nal value. In response to the bending moment M, the sides of the 

differential element rotate by an angle d� with respect to each other as shown in Figure 

17.15b. If the beam is linearly elastic, the relationship between the bending moment M and 

the rotation angle d� of the beam will also be linear, as shown in the moment-rotation angle 

diagram of Figure 17.16. Therefore, the internal work and, hence, the strain energy stored 

in the differential element dx is
1

2
dU Md��

The following expression relates a beam’s bending moment to its rotation angle:

d M
dx EI

�
�

From this expression, the strain energy stored in the differential element dx can be 

stated as
2

2

MdU dx
EI

�

The strain energy in the entire beam is found by integrating this expression over the 

length L of the beam. Note that the bending moment M may vary as a function of x.

 

2

2

MU dx
EI

�
0

L

 
(17.20)

When the quantity M/EI is not a continuous function of x over the entire length of the 

beam, the beam must be subdivided into segments in which M/EI is continuous. The inte-

gral on the right-hand side of Equation (17.20) is then evaluated as the sum of the integrals 

for each of these segments.

In the derivation of Equation (17.20), only the effects of bending moments were con-

sidered in evaluating the strain energy in a beam. Transverse shear forces are also present 

in beams subjected to nonuniform bending, and these shear forces will also increase the 

strain energy stored in the beam. However, the strain energy associated with shear defor-

mations is negligibly small compared with the strain energy of fl exure for most ordinary 

beams, and consequently, it may be disregarded.

17.5 Elastic Strain Energy for Flexural Deformation

FIGURE 17.15 (a) Arbitrary prismatic beam. (b) Bending moments acting on a 

differential beam element.

FIGURE 17.16 Moment-

rotation angle diagram for 

linearly elastic material.
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EXAMPLE 17.3

A cantilever beam AB of length L and fl exural rigidity EI supports 

the linearly distributed loading shown. Determine the elastic 

strain energy due to bending stored in this beam.

Plan the Solution
Consider a free-body diagram that cuts through the beam at a 

distance x from the free end of the cantilever. Derive the bending-

moment equation M(x), and then use it in Equation (17.20) to 

determine the elastic strain energy.

SOLUTION
Cut through the beam at an arbitrary distance x from the origin, and draw a free-body 

diagram. The equilibrium equation for the sum of moments about section a–a is

0 0
2 3

a a
w x x xM M
L

⎛ ⎞ ⎛ ⎞
�� � �⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑

Therefore, the bending-moment equation for this beam is

3

0( )
6

w xM x
L

��

The elastic strain energy in a beam is given by Equation (17.20) as

2

2

MU dx
EI

�
0

L

For the cantilevered beam considered here,

2
3 2

60 0

2

1

2 6 72

w x wU dx x dx
EI L EI L

⎛ ⎞
� � �⎜ ⎟⎝ ⎠0

L

0

L

or

 

2 7 2 5
0 0

2504 504

w L w L
U

EI L EI
� �

 
Ans. 

EXAMPLE 17.4

A simply supported beam ABC of length L and fl exural rigidity 

EI supports the concentrated load shown. What is the elastic 

strain energy due to bending that is stored in this beam?

Plan the Solution
Determine the beam reactions from a free-body diagram of 

the entire beam. Then, consider two free-body diagrams that 

cut through the beam. Cut the fi rst free-body diagram at a 

distance x from pin support A. From this free-body diagram, 

derive the bending-moment equation M(x) for segment AB of 

the beam. Cut a second free-body diagram at a distance of x� 

747

c17EnergyMethods.indd Page 747  09/05/12  10:17 PM user-F391c17EnergyMethods.indd Page 747  09/05/12  10:17 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



from roller support C, and derive the bending-moment equation M(x�) for segment BC of 

the beam. Use these two moment expressions in Equation (17.20) to determine the elastic 

strain energy for the complete beam.

SOLUTION
From the free-body diagram for the entire beam, determine 

the vertical reaction force at A:

y
PbA
L

�

Also, determine the reaction force at C:

y
PaC
L

�

Note that the horizontal reaction force at A has been omitted since Ax � 0.

Cut a free-body diagram through the beam between A and B at a distance of x from 

pin support A. Sum moments about section a–a to derive the bending-moment equation 

for segment AB of the beam:

0

(0 ≤ x ≤ a)

a a
PbM x
L
PbM x
L

��

��

� �∑ M

Similarly, cut a free-body diagram through the beam between B and C at a distance 

of x� from roller support C. Sum moments about section b–b to derive the bending-mo-

ment equation for segment BC of the beam:

0

(0 )

b b
PaM M x
L
PaM x x b
L

��

��

� � ��

≤ ≤

∑

� �

The total elastic strain energy in the beam is the sum of the elastic strain energies in 

segments AB and BC. By Equation (17.20),

( )

2 2

2 2 2 2
3 3

2 2

2 2 2

2

1 1
� �

2 2

6 6

6

AB BCU U U

Pb Pa
x dx x dx

EI L EI L

P b P a
a b

L EI L EI

P a b
a b

L EI

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

�

�

�

� �

�

�

�

0

a

0

b

A

x

V

M

a

a

Pb
L
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or since a � b � L,

 

2 2 2

6

P a bU
LEI

�
 

Ans.

This example demonstrates that the strain energy for a beam can be computed with 

any suitable x coordinate. For this beam, the bending moment equation for segment BC 

of the beam is much easier to derive and integrate if we consider a free-body diagram 

taken at the far end of the beam (around roller C).

749

(1)

(2)

A

B

C

P

d1

d2

1L

2L

FIGURE P17.3/4

P17.1 Determine the modulus of resilience for each of the fol-

lowing aluminum alloys:

(a) 7075-T651   E � 71.7 GPa, �Y � 503 MPa

(b) 5082-H112  E � 70.3 GPa, �Y � 190 MPa

(c) 6262-T651  E � 69.0 GPa, �Y � 241 MPa

P17.2 For each of the following metals, calculate the modulus 

of resilience:

(a) Red Brass UNS C23000 E � 115 GPa, �Y � 125 MPa

(b) Titanium Ti-6Al-4V  E � 114 GPa, �Y � 830 MPa

(Grade 5) Annealed 

(c) 304 Stainless Steel E � 193 GPa, �Y � 215 MPa

P17.3 The compound solid steel rod shown in Figure P17.3/4 is 

subjected to a tensile force P. Assume that E � 29,000 ksi, d1 � 

0.50 in., L1 �18 in., d2 � 0.875 in., L2 � 27 in., and P � 5.5 kips. 

Determine

(a) the elastic strain energy in rod ABC.

(b) the corresponding strain-energy density in segments (1) and 

(2) of the rod.

P17.4 In Figure P17.3/4, the compound solid aluminum rod is 

subjected to a tensile force P. Make the assumption that E � 69 GPa, 

d1 � 16 mm, L1 � 600 mm, d2 � 25 mm, L2 � 900 mm, and �Y � 

276 MPa. Calculate the largest amount of strain energy that can be 

stored in the rod without causing any yielding.

P17.5 A solid 2.5-m-long stainless steel rod has a yield strength 

of 276 MPa and an elastic modulus of 193 GPa. A strain energy of 

U � 13 N-m must be stored in the rod when a tensile load P is 

 applied to the rod. What is

(a) the maximum strain-energy density that can be stored in the 

solid rod if a factor of safety of 4.0 with respect to yielding is 

specifi ed?

(b) the minimum diameter d required for the solid rod?

P17.6 The tubular bronze [G � 45 GPa] shaft shown in Figure 

P17.6/7 has an outside diameter of 36 mm and an inside diameter 

of 30 mm. Torques TB � 600 N-m and TC � 400 N-m act on the 

shaft at B and C in the directions shown. The shaft segment lengths 

are L1 � 0.5 m and L2 � 1.25 m. Determine the total strain energy 

U stored in the shaft.

PROBLEMSPROBLEMS

FIGURE P17.6/7

(1)

(2)

A

B

C
1L

2L

BT

CT

P17.7 Figure P17.6/7 shows a tubular bronze [G � 6,500 psi] 

shaft with an outside diameter of 1.50 in. and an inside diameter of 

1.125 in. Torques TB � 11,500 lb-in. and TC � 7,000 lb-in. act on 

the shaft at B and C in the directions shown. The shaft segment 

lengths are L1 � 18 in. and L2 � 40 in. Calculate the total strain 

energy U stored in the shaft.
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P17.8 A solid stepped shaft made of AISI 1020 cold-rolled steel 

[G � 11,600 psi] is shown in Figure P17.8/9/10. The diameters of 

segments (1) and (2) are d1 � 2.25 in. and d2 � 1.00 in., respectively. 

The segment lengths are L1 � 36 in. and L2 � 27 in. Determine the 

elastic strain energy U stored in the shaft if the torque TC produces 

a rotation angle of 4� at C.

P17.9 In Figure P17.8/9/10, a solid stepped shaft made of AISI 

1020 cold-rolled steel [G � 80 GPa] has diameters for segments (1) 

and (2) of d1 � 30 mm and d2 � 15 mm, respectively, and segment 

lengths of L1 � 320 mm and L2 � 250 mm. What is the maximum 

torque TC that can be applied to the shaft if the elastic strain energy 

must be limited to U � 5.0 J?

P17.10 Figure P17.8/9/10 shows a solid stepped shaft made 

of 2014-T4 aluminum [G � 28 GPa] that has diameters for seg-

ments (1) and (2) of d1 � 20 mm and d2 � 12 mm. The segment 

lengths are L1 � 240 mm and L2 � 180 mm. Determine the elas-

tic strain energy stored in the shaft when the maximum shear 

stress is 130 MPa.

P17.11 Determine the elastic strain energy of the prismatic 

beam AB shown in Figure P17.11 if w � 6 kN/m, L � 5 m, and 

EI � 3 � 107 N-m2.

P17.12 For the prismatic beam in Figure P17.12, calculate the 

elastic strain energy if P � 42 kN, L � 7 m, a � 1.5 m, and EI � 

3 � 107 N-m2.

P17.13 In Figure P17.13, what is the elastic strain energy of 

the prismatic beam if w � 4,000 lb/ft, L � 18 ft, and EI � 1.33 � 
108 lb-ft2?

P17.15 If P � 35 kN, L � 7 m, a � 3 m, and EI � 5.10 � 
107 N-m2, calculate the elastic strain energy of the prismatic beam 

in Figure P17.15.

P17.14 Determine the elastic strain energy of the prismatic 

beam shown in Figure P17.14 if P � 75 kN, L � 8 m, and EI � 

5.10 � 107 N-m2.

(1)

(2)

A

B

C
1L

2L

CT

FIGURE P17.8/9/10

FIGURE P17.11

x

A B

L

w

FIGURE P17.12

P P

x

A DB C
a

L

a

FIGURE P17.13

x

A B

L

w

FIGURE P17.14

x

A CB

2L/2L/

P

FIGURE P17.15

x

A B C

L a

P
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When the motion of a body is changed (i.e., accelerated), the force necessary to produce 

the acceleration is called a dynamic force or a dynamic load. Some examples of dynamic 

loads include

•  the force that an elbow in a pipeline exerts on the fl uid in the pipe to change its direc-

tion of fl ow.

• the pressure on the wings of an airplane pulling out of a dive.

• the force of wind on the exterior walls of a building.

• the weight of a vehicle as it rolls across a bridge.

• the force of a hammer striking the head of a nail.

• the collision of a ship and a bridge pier.

• the weight of a man jumping on a diving board.

A dynamic load may be expressed in terms of

• the mass times the acceleration of the mass center,

• the rate of change of the momentum, or

• the change of the kinetic energy of the body.

A suddenly applied load is called an impact load. The last three examples of dynamic 

load are considered impact loads. In each example, one object strikes another such that 

large forces are developed between the objects in a very short period. When subjected to 

impact loading, the loaded structure or system will vibrate until equilibrium is established 

if the material remains elastic.

In the loaded system, dynamic loading produces stresses and strains, the magnitude 

and distribution of which depend not only on the usual parameters (member dimensions, 

loading, elastic modulus, etc.), but also on the velocity of the strain waves that propagate 

through the solid material. This latter consideration, although very important when loads 

are applied with extremely high velocities, may often be neglected when the velocity of the 

impact load is relatively low. The loading may be considered a low-velocity impact when 

the loading time permits the material to act in the same manner as it does under static 

load—that is, when the relations between stress and strain and between load and defl ection 

are essentially the same as those already developed for static loading. For low-velocity 

impact, the time of application of the load is greater than several times the natural period of 

the loaded member. If the time of application of the load is short compared with the natural 

period of vibration of the member, the load is usually said to be a high-velocity impact.
Energy methods can be used to obtain solutions for many problems involving impact 

in mechanics of materials, and they enable us to develop some insight into the signifi cant 

differences between static and dynamic loading.

Investigation of Impact Loading with Simple 
Block-and-Spring Models

Freely Falling Weight: As an illustration of an elastic system subjected to an impact load, 

consider the simple block-and-spring system shown in Figure 17.17. A block having mass 

m � W/g is initially positioned at a height of h above a spring. Here, W represents the 

weight of the block and g the gravitational acceleration constant. At this initial position, the 

block’s velocity is v � 0; hence, its kinetic energy is also zero. When the block is released 

from rest, it falls a distance h, where it fi rst contacts the spring. The block continues to 

17.6 Impact Loading

h

max

m

m

k

FIGURE 17.17 Freely falling 

weight and spring.
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752
ENERGY METHODS move downward, compressing the spring until its velocity is momentarily halted (i.e., 

v � 0). At this instant, the spring has been compressed an amount �max, and the kinetic 

energy of the block is once again zero. If the mass of the spring is neglected and the spring 

responds elastically, then the principle of conservation of energy requires that the potential 

energy of the block at its initial position must be transformed into stored energy in the 

spring at its fully compressed position. In other words, the work done by gravity as the 

block moves downward by a distance of h � �max is equal to the work required to compress 

the spring by �max. The maximum force Fmax developed in the spring is related to �max by 

Fmax � k �max, where k is the spring stiffness (expressed in force per unit of defl ection). 

Therefore, from conservation of energy, and assuming no dissipation of energy at impact, 

the external work done by the weight W of the block as it moves downward must equal the 

internal work of the spring as it stores energy:

 

21 1

max max max max2 2
( ) ( )W h k k� � ���� �

 
(a)

Note that the factor of one-half appears in Equation (a) because the force in the spring 

gradually increases from zero to its maximum value. Equation (a) can be rewritten as

2

max max

2 2
0

W W h
k k

� � � ��

This quadratic equation can be solved for �max, and the positive root is

 

2

max 2
W W W

h
k k k

⎛ ⎞ ⎛ ⎞
� � �� ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

(b)

Note that the negative root implies that the spring elongates when the block strikes it, 

which clearly makes no sense for this system. Therefore, the positive root is the only mean-

ingful solution to this equation.

If the block had been slowly and gradually placed on top of the spring, the defl ection 

corresponding to the static force W acting on the spring would be �st � W/k. Therefore, 

Equation (b) can be restated in terms of the static spring defl ection as

( )2

max st st st2 h� � � �� � �

or

 

max st

st

2
1 1

h⎡ ⎤
� �� � �⎢ ⎥Δ⎣ ⎦

 

(17.21)

If Equation (17.21) is substituted into Fmax � k �max, the dynamic force acting on the 

spring can be stated as

max st

st

2
1 1

hF k
⎡ ⎤
⎢ ⎥Δ⎣ ⎦

�� � �

and since the block weight can be expressed in terms of the spring constant and the static 

defl ection as W � k�st,

 

max

st

2
1 1

hF W
⎡ ⎤

�
�

� �⎢ ⎥
⎣ ⎦

 

(17.22)

At the instant a moving body is 

stopped, its energy (both 

potential and kinetic) has been 

transformed into internal energy 

in the resisting system.
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753
IMPACT LOADINGThe force Fmax is the dynamic force that acts on the spring. This force, along with its 

associated defl ection �max, occurs only for an instant. Unless the block rebounds off of the 

spring, the block will vibrate up and down until the motion dampens out and the block 

comes to equilibrium in the static defl ected position �st.

The expression in brackets in Equations (17.21) and (17.22) is termed an impact fac-
tor, which will be denoted here by the symbol n:

 
st

2
1 1

h
n� � �

�
 

(17.23)

Thus, the maximum dynamic load Fmax can be replaced by an equivalent static load, 

which is defi ned for the spring-and-block system as the product of the impact factor n and 

the actual static load W of the block:

maxF nW�

The notion of an impact factor is useful in that both the dynamic force Fmax and the 

dynamic defl ection �max,

max stn� ��

can be readily expressed in terms of the static force and the static defl ection for a particular 

impact factor. Expressed another way, the impact factor is simply the ratio of the dynamic 

effect to the static effect:

max max

st

Fn
W

� �
�

�

Special cases. Two extreme situations are of interest. First, if the drop height h for the 

block is much greater than the maximum spring defl ection �max, the work term W�max in 

Equation (a) can be neglected; thus,

21
max2

Wh k� �

and the maximum spring defl ection is

max st

2
2

Wh
h

k
� � � �

For the other extreme, if the drop height h of the block is zero, then

max st st

st

2(0)
1 1 2

⎡ ⎤
� � � � �� �

�
⎢ ⎥
⎣ ⎦

In other words, when the block is dropped from the top of the spring as a dynamic load, 

the spring defl ection is twice as large as it would have been if the block were slowly and 

gradually placed on top of the spring. When a load is applied so gradually that the maximum 

defl ection is the same as the static defl ection, the impact factor is 1.0. However, if the load 

is applied suddenly, the effect produced in the elastic system is signifi cantly amplifi ed.

Impact from a Weight Moving Horizontally: By a procedure similar to that used for a 

freely falling weight, the impact load of a horizontally moving weight can be investigated. 

A block having mass m � W/g slides on a smooth (i.e., frictionless) horizontal surface with 

a velocity of v, as shown in Figure 17.18. The kinetic energy of the block before it contacts 

FIGURE 17.18 Horizontally 

moving weight and spring.

v
max

m

k
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754
ENERGY METHODS the spring is 2v1

2
m . If the mass of the spring is neglected and the spring responds elastically, 

then the principle of conservation of energy requires that the kinetic energy of the block 

before it contacts the spring will be transformed into stored energy in the spring at its fully 

compressed position:

2 2

max

1 1

2 2

W v kg
⎛ ⎞

� �⎜ ⎟⎝ ⎠

Thus,

2

max

W v
gk

� �

If we again defi ne the static defl ection of the spring caused by the weight of the block 

as �st � W/k (note that this is horizontal defl ection which would occur in the spring from 

application of a horizontal force equal in magnitude to the weight of the block), the maxi-

mum spring defl ection can be expressed as

 

2

max st

st

v
g

�� �
�

 

(17.24)

and the impact force Fmax of the block on the spring can be stated as

 

2

max

st

vF W
g

�
�

 

(17.25)

where the impact factor n is the radical expression

 

2

st

vn
g

�
�

 

(17.26)

Signifi cance: In the two cases just described, impact forces are imparted to an elastic spring 

by a freely falling weight and by a weight in motion. For these investigations, it has been as-

sumed that the materials behave elastically and that no dissipation of energy (in the form of 

heat or sound or permanent deformation) takes place at the point of impact. The inertia of the 

resisting system has been neglected, and perfect rigidity of the block was implicit.

At fi rst glance, the behavior of a spring system may not seem particularly useful or 

relevant. After all, mechanics of materials is the study of deformable solid materials such 

as axial members, shafts, and beams. However, the elastic behavior of these types of com-

ponents is conceptually equivalent to the behavior of a spring. Therefore, the two models 

discussed previously can be seen as very general cases that are widely applicable to com-

mon engineering components.

In this investigation, the defl ection of a system is directly proportional to the magnitude 

of the applied force, regardless of whether that force is statically or dynamically applied. 

The block-and-spring models analyzed here show that the maximum dynamic response of a 

deformable solid can be determined from the product of its static response and an appropri-

ate impact factor. Once the maximum defl ection �max due to impact has been determined, 

the maximum dynamic force can be found from Fmax � k�max. The maximum dynamic load 

Fmax can be considered an equivalent static load (a slowly applied load that will produce 

the same maximum defl ection as the dynamic load). Provided that the assumption of identical 

material behavior under both static and dynamic loads is valid (a valid assumption for most 
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755
IMPACT LOADINGmechanical-type loadings), the stress–strain diagram for any point in the loaded system does 

not change. Consequently, the stress and strain distributions produced by the equivalent 

static load will be the same as those produced by the dynamic load.

It is also signifi cant that we have assumed no dissipation of energy during impact. 

There will always be some energy dissipation in the form of sound, heat, local deformations, 

and permanent distortions. Because of dissipation, less energy must be stored by the elastic 

system, and therefore, the actual maximum defl ection due to impact loads is reduced. Given 

the assumptions delineated here, the actual impact factor will have a value somewhat less 

than that predicted by Equations (17.23) and (17.26); thus, the equivalent static load ap-

proach will be conservative. All in all, the equivalent static load approach provides the engi-

neer a conservative, rational analysis of the stresses and strains produced by impact loading, 

using only the familiar equations found in mechanics of materials theory.

A

B

750 mm

30 mm

1,200-N Collar

EXAMPLE 17.5

The 1,200-N collar shown is released from rest and slides without friction downward a 

distance of 30 mm, where it strikes a head fi xed to the end of the rod. The AISI 1020 

cold-rolled steel [E � 200 GPa] rod has a diameter of 15 mm and a length of 750 mm. 

Determine

(a) the axial deformation and the normal stress in the rod under static conditions; that 

is, the collar is gradually lowered until it contacts the rod head and comes to rest 

without impact.

(b) the maximum axial deformation of the rod if the collar is dropped from the height 

of 30 mm.

(c) the maximum dynamic force exerted on the rod by the collar.

(d) the maximum normal stress in the rod due to the dynamic force.

(e) the impact factor n.

Plan the Solution
The axial deformation and the normal stress in the rod under static conditions are deter-

mined with the weight of the collar applied to the lower end of the rod. Work and energy 

principles can be used to equate the work done by the 1,200-N weight as the collar falls 

30 mm and elongates the rod to the strain energy stored in the rod at the instant of maximum 

deformation. From this energy balance, the maximum rod deformation can be calculated. 

The maximum deformation can then be used to determine the maximum dynamic force, 

the corresponding normal stress, and the impact factor n.

SOLUTION
(a) The static force Fst applied to the rod is simply the weight W of the collar; thus,

st 1, 200 NF W� �

The axial deformation in the 15-mm-diameter rod due to the 1,200-N weight of the 

collar is

2 2 2

st
st 2 2

(15 mm) 176.7146 mm
4 4

(1, 200 N)(750 mm)
0.025465 mm 0.0255 mm

(176.7146 mm )(200,000 N/mm )

A d

F L
AE

δ

�

� � � �

� �
� �

 Ans.
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and the static normal stress is

 

st

st 2

1, 200 N
6.79061 MPa 6.79 MPa

176.7146 mm

F
A

�� � � �
 

Ans.

(b) The maximum rod deformation when the collar is dropped can be determined from 

work and energy principles. The external work done by the 1,200-N weight as the 

collar is dropped from height h must equal the strain energy stored by the rod at its 

maximum deformation. Recall from Section 17.3 that the strain energy stored in an 

axial member can be expressed in terms of the member deformation by Equation 

(17.13); thus,

2

max
st max

2

max st max

2 st
max max

External work � Internal strain energy 

( )
2

( ) 0
2

2 ( ) 0

AEF h
L

AE F h
L

F L h
AE

�

�

� � �

� �

�
�

�

� �

�

�

Recognizing that the term FstL /AE is the static deformation �st, rewrite this 

 equation as

2

max st max2 ( ) 0h�� � �� �

Expand this equation as

2

max st max st2 2 0h�� � � �� �

and solve for �max, using the quadratic formula to fi nd

2

st st st 2

max st st st

2 ( 2 ) 4(1)( 2 )
2

2

h
h��

� � �
� � �

� � � �
� � �

From the positive root, the maximum rod deformation can now be expressed in 

terms of the static deformation and the drop height h as

 

2

max st st st2 h�� � � �� �
 

(a)

The maximum axial deformation of the rod if the collar is dropped from the height 

of 30 mm can now be computed:

 

2

max 0.025465 mm (0.025465 mm) 2(0.025465 mm)(30 mm)

0.025465 mm 1.236345 mm

1.261810 mm 1.262 mm

��

�

� �

�

� �

 Ans.

(c) The maximum dynamic force exerted on the rod is calculated from the maximum 

dynamic deformation. If it is assumed that the rod behaves elastically and that the 

stress–strain curve applicable for this dynamic load is the same as the stress–strain 
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curve for a static load, the relationship of the rod force and the deformation for the 

dynamic load is

max

max

F L
AE

��

Therefore, the maximum dynamic force is

 

max max

2 2(176.7146 mm )(200,000 N/mm )
(1.261810 mm)

750 mm

59,461.4 N 59,500 N

AEF
L

�

�

� �

�

 Ans.

The maximum dynamic normal stress in the rod is thus

 

max

max 2

59, 461.4 N
336 MPa

176.7146 mm

F
A

�� � �
 

Ans.

(e) The impact factor n is simply the ratio of the dynamic effect to the static effect:

max max max

st st st

Fn
F

�
� �

� �
� �

Therefore,

 

1.261810 mm
49.551

0.025465 mm
n� �

 

Ans.

SIMPLIFIED SOLUTION
An equation similar to Equation (17.23) can be derived for the impact factor n. Equation 

(a), derived previously, is

2

max st st st2 h�� � � �� �

The right-hand side of this equation can be manipulated as

2 2

max st st st st st st

st st st

2 2 2
1 1 1

h h h⎡ ⎤
�� � � � � � �

� � �
� � � � � � � �⎢ ⎥

⎣ ⎦

so that the impact factor n can be written as

max

st st

2
1 1

hn�
�

� �
� � �

Since the static defl ection was calculated previously as �st � 0.025465 mm, the im-

pact factor for the 30-mm drop height is

 

2(30 mm)
1 1 49.551

0.025465 mm
n� � � �

 
Ans.
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The static results can now be multiplied by the impact factor to give the dynamic 

deformation, force, and stress:

 max st 49.551(0.025465 mm) 1.262 mmn�� � � �  
Ans.

 max st 49.551(1, 200 N) 59, 461 NF nF� � �  
Ans.

 max st 49.551(6.79061 MPa) 336 MPan�� � � �  
Ans.

EXAMPLE 17.6

The simply supported beam shown in the fi gure to the right 

spans 20 ft. The beam consists of a W14 � 34 shape of A992 

steel [E � 29 � 106 psi]. Calculate the defl ection at B and the 

largest bending stress in the beam if the 3,000-lb load is

(a) applied statically.

(b) dropped from a height of h � 5 in.

Plan the Solution
The beam defl ection and the maximum normal stress at B due to a static loading are de-

termined for the 3,000-lb load. Work and energy principles can be used to equate the 

work done by the load to the strain energy stored in the beam at the instant of maximum 

defl ection. From this energy balance, the maximum beam defl ection at B can be calcu-

lated. The maximum deformation can then be used to determine the maximum dynamic 

load, the corresponding bending stress, and the impact factor n.

SOLUTION
(a) Load Applied Statically. Application of the load statically means that the 3,000-lb 

load is applied slowly and gradually from a height of h � 0. The W14 � 34 shape used 

for the beam has section properties of

4

14.0 in.

340 in.

d
I

�

�

Defl ection at B: The defl ection formula found in Appendix C for a simply supported 

beam with a concentrated load applied anywhere will be used here. For this span, L � 

20 ft � 240 in., a � 12 ft � 144 in., and b � 8 ft � 96 in. The 3,000-lb static load 

 produces a downward defl ection at B of

 

2 2 2 2

st

st 6 2 4

(3,000 lb)(144 in.) (96 in.)

3 3(240 in.)(29 10  lb/in. )(340 in. )

0.080757 in. 0.0808 in.

P a bv
LEI

�
�

� �

�

 Ans.

Note: Throughout the previous chapters in this book, the symbol v has been used to 

 denote defl ection perpendicular to the longitudinal axis of a beam. In this chapter, veloc-

ity has been introduced as an additional consideration, and the symbol v is also used to 

denote velocity. In this example, beam defl ections are being considered; therefore, the 

symbol v used in this context represents beam defl ections.

x

12 ft 8 ft

A CB

3,000 lb

W14 � 34 h
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Largest Bending Stress: From Example 17.4, the static beam reaction at A is

st

y
P bA
L

�

Therefore, the maximum bending moment (which occurs at B) is

st

st

(3,000 lb)(96 in.)
(144 in.) 172,800 lb-in.

240 in.
y

P bM A a a
L

� � � �

The largest bending stress in the beam is

 

st

st 4

(172,800 lb-in.)(14 in. / 2)
3,557.65 psi 3,560 psi

340 in.

M c
I

�� � � �
 

Ans.

(b) Load Dropped from h � 5 in. The maximum beam defl ection when the load is 

dropped can be determined from work and energy principles. The external work done 

by the 3,000-lb load dropped from height h must equal the strain energy stored by the 

beam at its maximum defl ection. Recall from Section 17.5 that the strain energy stored 

in a fl exural member can be expressed in terms of the member deformation, by 

Equation (17.20), as

2

2

MU dx
EI

�
0

L

The total elastic strain energy U for this type of beam and loading was derived in 

Example 17.4:

2 2 2

6

P a bU
LEI

�

Defl ection at B: Equate the internal strain energy of the beam to the work done by gravity 

as the 3,000-lb load moves downward:

2 2 2
2max

st max max2 2

2

max st max2 2

2 2
2 st
max max

External work � Internal strain energy 

3
( )

6 2

3
( ) 0

2

2
( ) 0

3

P a b LEIP h v v
LEI a b

LEI v P h v
a b

P a bv h v
LEI

� �

�

� � �

� �

�

Since the static defl ection vst at B is

2 2

st

st
3

P a bv
LEI

�

this quadratic equation can be rewritten as

2

max st max2 ( ) 0v v h v� � �
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Expand this equation:

2

max st max st2 2 0v v v v h� � �

Now solve for vmax, using the quadratic formula, to fi nd

 

2

st st st 2

max st st st

2 ( 2 ) 4(1)( 2 )
2

2

v v v h
v v v v h�

� � � �
� � �

 

(a)

The maximum defl ection of the beam at B if the load is dropped from the height of 

5 in. can now be computed:

 

2

max 0.080757 in. (0.080757 in.) 2(0.080757 in.)(5 in.)

0.080757 in. 0.902270 in.

0.983027 in. 0.983 in.

v �

�

� �

�

� �

 Ans.

Largest Bending Stress: The maximum dynamic force exerted on the beam is calculated 

from the maximum dynamic defl ection. If the beam behaves elastically and the stress–

strain curve applicable for this dynamic load is the same as the stress–strain curve for a 

static load, the dynamic load is

2 2

max

max

6 2 4

max max2 2 2 2

3

3 3(240 in.)(29 10  lb/in. )(340 in. )
(0.983027 in.)

(144 in.) (96 in.)

36,518.0 lb 36,500 lb

P a bv
LEI

LEIP v
a b

�

� �

� �

	
�

The maximum dynamic bending moment in the beam is

6max

max

(36,518.0 lb)(96 in.)
(144 in.) 2.103437 10  lb-in.

240 in.

P bM a
L

� � � 	

and the largest bending stress in the beam is

6

max

max 4

(2.103437 10  lb-in.)(14 in. / 2)
43,306.1 psi 43,300 psi

340 in.

M c
I

�� � � �
	

  Ans.
Note that the impact factor n is

max

st

0.983027 in.
12.173

0.080757 in.

vn
v

� � �

SIMPLIFIED SOLUTION
An equation similar to Equation (17.23) can be derived for the beam’s impact factor n. 

Equation (a), derived previously, is

2

max st st st2v v v v h� � +
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The right-hand side of this equation can be manipulated to give

max st

st

2
1 1

hv v
v

⎡ ⎤
� � �⎢ ⎥

⎣ ⎦

so that the impact factor n can be written as

max

st st

2
1 1

v hn
v v

� � � �

The static defl ection was calculated previously as vst � 0.080757 in. Based on this 

static defl ection, the impact factor for the 5-in. drop height is

 

2(5 in.)
1 1 12.173

0.080757 in.
n� � � �

 

Ans.

The static results can now be multiplied by the impact factor to give the dynamic 

deformation and bending stress:

 max st 12.173(0.080757 in.) 0.983 in.v nv� � �  
Ans.

 max st 12.173(3,557.65 psi) 43,300 psin�� � � �  
Ans.
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EXAMPLE 17.7

Collar D shown is released from rest and slides without friction downward a  distance 

of 180 mm where it strikes a head fi xed to the end of compound rod ABC. The com-

pound rod is made of aluminum [E � 70 GPa], and the diameters of rod segments 

(1) and (2) are 18 mm and 25 mm, respectively.

(a) Determine the largest mass of the collar for which the maximum normal stress 

in the rod is 240 MPa.

(b) If the diameter of rod segment (2) is reduced to 18 mm, what is the largest 

mass of the collar for which the maximum normal stress in the rod is 

240 MPa?

Plan the Solution
From the maximum normal stress, calculate the maximum dynamic force allowed 

in the segment that has the smaller cross-sectional area, segment (1). Compute the 

total strain energy stored in the compound rod for this maximum load. Equate the 

total strain energy to the work performed by the maximum force on the rod to calculate 

the maximum deformation of the compound rod. Use the dynamic deformation and 

the drop height to determine fi rst the static deformation and then the static load. Deter-

mine the allowable mass from the static load. Repeat this process for a rod that has a 

constant diameter of 18 mm, and compare the allowable masses for the two cases.

A

C

B

900 mm

180 mm

600 mm Collar D

(1)

(2)
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SOLUTION
(a) The areas of the two rod segments are

2 2

1

2 2

2

(18 mm) 254.4690 mm
4

(25 mm) 490.8739 mm
4

A

A

�

� �

�

�

�

The maximum stress occurs in segment (1). The maximum dynamic load that can be 

applied to this segment without exceeding the 240-MPa limit is

2 2

max max 1 (240 N/mm )(254.4690 mm ) 61,072.6 NP A� � ��

For this dynamic load, the strain energy in compound rod ABC can be determined 

from Equation (17.14):

2 2

1 1 2 2
total

1 1 2 2

2

2 2 2

2 2

(61,072.6 N) 600 mm 900 mm

2(70,000 N/mm ) 254.4690 mm 490.8739 mm

111,664.5 N-mm

F L F LU
A E A E

�

�

�

�

�

⎡ ⎤
⎢ ⎥⎣ ⎦

Equate the strain energy stored in the compound rod to the work done by the falling 

collar to determine the maximum deformation of the entire rod due to the impact load.

max max

max

1
111,664.5 N-mm

2

2(111,664.5 N-mm)
3.6568 mm

61,072.6 N

P ��

� ��

The static deformation of the entire rod can be related to the dynamic deformation by

2

max st max2 ( ) 0h�� � �� �

which was derived in Example 17.5. The static deformation is thus

2 2

max
st

max

(3.6568 mm)
0.036405 mm

2( ) 2(180 mm 3.6568 mm)h
�

� �
�

�

�
� �

The static deformation of this compound rod can be expressed as

st1 1 2 2 1 2
st

1 1 2 2 1 2

2

st

2 2

(0.036405 mm)(70,000 N/mm )
608.00 N

600 mm 900 mm

254.4690 mm 490.8739 mm

FF L F L L L
A E A E E A A

F

⎡ ⎤
��

� �

�

�

� � �⎢ ⎥
⎣ ⎦

Consequently, the largest mass that can be dropped is

 st

2

608.00 N
62.0 kg

9.807 m/s

Fm
g

� � �  Ans.
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(b) If the rod has a constant diameter of 18 mm, the strain energy in the rod is

2 2

total 2 2

(61,072.6 N) (1,500 mm)

2 2(70,000 N/mm )(254.4690 mm )

157,043.9 N-mm

F LU
AE

�

�

�

Equate the strain energy stored in the prismatic rod to the work done by the falling 

collar to calculate the maximum deformation of the rod.

max max

max

1
157,043.9 N-mm

2

2(157,043.9 N-mm)
5.1429 mm

61,072.6 N

P �

��

�

�

As before, compute the static deformation

2 2

max
st

max

(5.1429 mm)
0.071430 mm

2( ) 2(180 mm 5.1429 mm)h
��

�

�� �
� �

and the static load

st
st

2 2

st

(0.071430 mm)(254.4690 mm )(70,000 N/mm )
848.25 N

1,500 mm

F L

AE

F

�

� ��

�

Consequently, the largest mass that can be dropped if the entire rod has a diameter 

of 18 mm is

 st

2

848.25 N
86.5 kg

9.807 m/s

Fm
g

� � �  Ans.

Note that the allowable mass for case (b) is about 40 percent larger than the allow-

able mass for case (a).

Comments: The results for cases (a) and (b) seem to be paradoxical because a larger 

mass can be dropped when some of the material in the rod is removed. This apparent 

discrepancy is probably best explained by considering strain-energy densities. The 

strain-energy density of the 18-mm-diameter segment when subjected to the dynamic 

load is

2 2

1
1

1

(240 MPa)
0.4114 MPa

2 2(70,000 MPa)
u

E
�

�
� �

This strain-energy density is represented by area OCD on the stress–strain diagram 

shown. The strain-energy density in the 25-mm-diameter segment for the maximum dynamic 

load is

2 2

2 2
2

2
2

61,072.6 N
124.416 MPa

490.8739 mm

(124.416 MPa)
0.1106 MPa

2 2(70,000 MPa)
u

E

σ

�

� � �

� �
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which is represented by area OAB of the stress–strain diagram. The strain-energy 

density of the 25-mm-diameter segment is roughly one-fourth as much as the 

strain-energy density of the 18-mm-diameter segment. When its diameter is 

 reduced to 18 mm, the volume of segment (2) is roughly halved. However, the 

strain energy absorbed by each unit volume of the remaining material is roughly 

quadrupled (i.e., area OCD compared with area OAB), resulting in a net gain in 

energy-absorbing capacity. For the rod considered in this example, this gain 

amounts to about a 40 percent increase in the allowable collar mass for the con-

stant-diameter rod.

764

EXAMPLE 17.8

The cantilever post AB consists of a steel pipe that has an outside 

 diameter of 33 mm and a wall thickness of 3 mm. A 30-kg block 

moving horizontally with a velocity v0 strikes the post squarely at B. 

What is the maximum velocity v0 for which the largest normal stress 

in the post does not exceed 190 MPa? Assume that E � 200 GPa for 

the steel pipe.

Plan the Solution
Calculate the maximum dynamic moment from the allowable normal 

stress and the section properties of the post. Then  determine the maxi-

mum allowable dynamic load and the corresponding horizontal 

 defl ection of the post at B. Use conservation of energy to equate the 

work done on the post to the kinetic energy of the block, and solve for 

the maximum velocity v0.

SOLUTION
The moment of inertia for the pipe is

4 4 4(33 mm) (27 mm) 32,127.7 mm
64

I ⎡ ⎤�
�

� �⎣ ⎦

The maximum dynamic moment that can be applied to the post at A without exceed-

ing the 190-MPa limit is

2 4

max

max

(190 N/mm )(32,126.7 mm )
369,944 N-mm

33 mm / 2

IM
c

� � �
�

Since the cantilever post has a span of 850 mm, the maximum allowable dynamic load is

max

369,944 N-mm
435.2 N

850 mm
P � �

From Appendix C, the maximum horizontal defl ection of the post at B can be calcu-

lated as

3 3

max

max 2 4

(435.2 N)(850 mm)
13.865 mm

3 3(200,000 N/mm )(32,127.7 mm )

P Lv
EI

� � �
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Note: Throughout the previous chapters in this book, the symbol v has been used to 

 denote defl ection perpendicular to the longitudinal axis of a beam. In this chapter, veloc-

ity has been introduced as an additional consideration, and the symbol v is also used to 

denote velocity. In this example, both beam defl ections and the velocity of a block are 

being considered. The problem context and the subscripts used with the symbol v clearly 

indicate whether a defl ection or a velocity is intended; however, the reader is cautioned to 

examine the context in which the symbol v is used.

By the conservation of energy, the work that is performed on the post must equal the 

 kinetic energy of the block:

2

max max 0

1 1

2 2
P v mv�

Note: On the left-hand side of this equation, vmax is a displacement. On the right-hand 

side, v0 is a velocity.

Therefore, the maximum velocity of the block must not exceed

 max max

0

(435.2 N)(0.013865 m)
0.448 m/s

30 kg

P vv
m

� � �  Ans.

This problem can also be solved with the impact factor given in Equation (17.26). 

The weight of the block is (30 kg)(9.807 m/s2) � 294.2 N. If this force were gradually 

applied horizontally to the post at B, the static defl ection would be

3 3

st

st 2 4

(294.2 N)(850 mm)
9.373 mm

3 3(200,000 N/mm )(32,127.7 mm )

P Lv
EI

� � �

The impact factor can be calculated from the static and dynamic defl ections at B:

max

st

13.866 mm
1.479

9.373 mm

vn
v

� � �

The impact factor for a weight, moving horizontally, given in Equation (17.26),

2

0

st

vn
g v

�

can be solved for the maximum velocity v0:

 

2

0 st

2 2(1.479) (9.807 m/s )(0.009373 m)

0.448 m/s

v n g v�

�

�

 

Ans.
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766

P17.16 A 19-mm-diameter steel [E � 200 GPa] rod is required 

to absorb the energy of a 25-kg collar that falls h � 75 mm, as shown 

in Figure P17.16/17. Determine the minimum required rod length L 

so that the maximum stress in the rod does not exceed 210 MPa.

A

B

L

h

Collar
m

FIGURE P17.16/17

P17.17 In Figure P17.16/17, a 500-mm-long steel [E � 200 

GPa] rod is required to absorb the energy of a 16-kg mass that falls 

a distance of h. If the rod diameter is 10 mm, what is the maximum 

drop height h so that the maximum stress in the rod does not exceed 

210 MPa?

P17.18 A weight W � 4,000 lbs falls from a height of h � 18 in. 

onto the top of a 10-in.-diameter wood pole, as shown in Figure 

P17.18. The pole has a length of L � 24 ft and a modulus of elasticity 

of E � 1.5 � 106 psi. For this problem, disregard any potential 

buckling effects. Calculate

(a) the impact factor n.

(b) the maximum shortening of the pole.

(c) the maximum compression stress in the pole.

A

B
h

L

Weight W

FIGURE P17.18

P17.19 Collar D shown in Figure P17.19/20 is released from 

rest and slides without friction downward a distance of h where it 

strikes a head fi xed to the end of compound rod ABC. The com-

pound rod is made of aluminum [E � 10,000 ksi]. Rod segment (1) 

has a length of L1 � 15 in. and a diameter of d1 � 1.25 in. Rod seg-

ment (2) has a length of L2 � 27 in. and a diameter of d2 � 0.75 in. 

The weight of collar D is 80 lbs. Compute the maximum height h 

from which the collar can be dropped if the maximum normal stress 

in the rod is limited to 24,000 psi.

A

C

B

h
1L

2L

Collar D

(1)

(2)

FIGURE P17.19/20

P17.20 In Figure P17.19/20, collar D, released from rest, slides 

without friction downward a distance of h � 2.5 in. where it strikes 

a head fi xed to the end of compound rod ABC, which is made of 

aluminum [E � 10,000 ksi]. Rod segment (1) has a length of L1 � 

7 in. and a diameter of d1 � 0.75 in., and rod segment (2) has a 

length of L2 � 13 in. and a diameter of d2 � 0.50 in. Collar D 

weighs 20 lbs. Determine

(a) the equivalent static load for this impact case.

(b) the maximum normal stress in rod segment (1).

(c) the maximum normal stress in rod segment (2).

P17.21 As seen in Figure P17.21/22, collar D is released from 

rest and slides without friction downward a distance of h � 300 mm 

where it strikes a head fi xed to the end of compound rod ABC. Rod 

segment (1) is made of aluminum [E1 � 70 GPa], and it has a 

length of L1 � 800 mm and a diameter of d1 � 12 mm. Rod seg-

ment (2) is made of bronze [E2 � 105 GPa], and it has a length of 

L2 � 1,300 mm and a diameter of d2 � 16 mm. What is the allow-

able mass for collar D if the maximum normal stress in the alumi-

num rod segment must be limited to 200 MPa?

PROBLEMSPROBLEMS
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A

C

B

1L

2L

h

Collar D
(1)

(2)

FIGURE P17.21/22

P17.22 Collar D shown in Figure P17.21/22 has a mass of 11 kg. 

When released from rest, the collar slides without friction down-

ward a distance of h where it strikes a head fi xed to the end of 

compound rod ABC. Rod segment (1) is made of aluminum [E1 � 

70 GPa] and has a length of L1 � 600 mm and a diameter of d1 � 

12 mm. Rod segment (2) is made of bronze [E2 � 105 GPa] and has 

a length of L2 � 1,000 mm and a diameter of d2 � 16 mm. If the 

maximum normal stress in the aluminum rod segment must be lim-

ited to 250 MPa, determine the largest acceptable drop height h.

P17.23 In Figure P17.23, the 12-kg mass is falling at a velocity 

of v � 1.5 m/s at the instant it is h � 300 mm above the spring and 

post assembly. The solid bronze post has a length of L � 450 mm, 

a diameter of 60 mm, and a modulus of elasticity of E � 105 GPa. 

Compute the maximum stress in the bronze post and the impact 

factor

(a) if the spring has a stiffness of k � 5,000 N/mm.

(b) if the spring has a stiffness of k � 500 N/mm.

A

B

L

h

k

v

FIGURE P17.23

P17.24 The 32-mm-diameter rod AB shown in Figure P17.24 

has a length of L � 1.5 m. The rod is made of bronze [E � 105 GPa] 

that has a yield stress of �Y � 330 MPa. Collar C moves along the 

rod at a speed of v0 � 3.5 m/s until it strikes the rod end at B. If a 

factor of safety of 4 with respect to yield is required for the maxi-

mum normal stress in the rod, determine the maximum allowable 

mass for collar C.

A
B

L

v0

Collar C

FIGURE P17.24

P17.25 The block E has a horizontal velocity of v0 � 9 ft/s 

when it squarely strikes the yoke BD that is connected to the 

3/4-in.-diameter rods AB and CD. (See Figure P17.25/26.) The rods 

are made of 6061-T6 aluminum that has a yield strength of �Y � 40 ksi 

and an elastic modulus of E � 10,000 ksi. Both rods have a length 

of L � 5 ft. Yoke BD may be assumed to be rigid. What is the 

maximum allowable weight of block E if a factor of safety of 3 with 

respect to yield is required for the maximum normal stress in the 

rods?

A B

C D

L

v0E

FIGURE P17.25/26

P17.26 In Figure P17.25/26, the 20-lb block E possesses a hori-

zontal velocity v0 when it hits squarely the yoke BD that is con-

nected to the 1/4-in.-diameter rods AB and CD. Both rods are made 

of 6061-T6 aluminum that has a yield strength of �Y � 40 ksi and 

an elastic modulus of E � 10,000 ksi, and both have a length of 

L � 30 in. Yoke BD may be assumed to be rigid. Calculate the 

maximum allowable velocity v0 of block E if a factor of safety of 3 

with respect to yield is required for the maximum normal stress in 

the rods.

P17.27 The 150-lb block D shown in Figure P17.27/28 is 

dropped from a height of h � 3 ft onto a wide-fl ange steel beam 

that spans L � 24 ft. The steel beam has a moment of inertia of I � 

300 in.4, a depth of d � 12 in., and an elastic modulus of E � 

29,000 ksi. Determine

(a) the maximum bending stress in the beam.

(b) the maximum beam defl ection due to the falling block.
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A CB

2L/ 2L/

D

h

FIGURE P17.27/28

P17.28 Figure P17.27/28 shows a 250-lb block D dropped 

from a height of h onto a wide-fl ange steel beam that spans L � 

28 ft. The steel beam’s moment of inertia is I � 450 in.4, its depth 

is d � 14 in., and its elastic modulus is E � 29,000 ksi. The 

maximum bending stress due to impact must not exceed 33 ksi. If 

the falling block produces the maximum dynamic bending stress, 

compute

(a) the equivalent static load.

(b) the beam dynamic beam defl ection at B.

(c) the maximum height h from which the 250-lb block D can be 

dropped.

P17.29 The 120-kg block C shown in Figure P17.29 is dropped 

from a height of h onto a wide-fl ange steel beam that spans L � 6 m. 

The steel beam has a moment of inertia of I � 125 � 106 mm4, a 

depth of d � 300 mm, a yield stress of �Y � 340 MPa, and an elas-

tic modulus of E � 200 GPa. A factor of safety of 3.5 with  respect 

to the yield stress is required for the maximum dynamic bending 

stress. If the falling block produces the maximum allowable dy-

namic bending stress, determine

(a) the equivalent static load.

(b) the maximum dynamic beam defl ection at A.

(c) the maximum height h from which the 120-kg block C can be 

dropped.

A B

L

C

h

FIGURE P17.29

P17.30 The overhanging beam ABC shown in Figure P17.30/31 

is made from an aluminum I-shape, which has a moment of inertia 

of I � 25 � 106 mm4, a depth of d � 200 mm, and an elastic 

modulus of E � 70 GPa. The beam spans are a � 2.5 m and b � 

1.5 m. A block D with a mass of 90 kg is dropped from a height 

h � 1.5 m onto the free end of the overhang at C. Calculate

(a) the maximum bending stress in the beam.

(b) the maximum beam defl ection at C due to the falling block.

768

A CB

ba

D

h

FIGURE P17.30/31

P17.31 In Figure P17.30/31, the overhanging beam ABC, made 

from an aluminum I-shape, has a moment of inertia of I � 25 � 
106 mm4, a depth of d � 200 mm, and an elastic modulus of E � 

70 GPa. Beam span a � 3.5 m, and b � 1.75 m. A block D with a 

mass of 110 kg is dropped from a height h onto the free end of the 

overhang at C. If the maximum bending stress due to impact must 

not exceed 125 MPa, compute

(a) the maximum dynamic load allowed at C.

(b) the impact factor n.

(c) the maximum height h from which the 110-kg block D can be 

dropped.

P17.32 Figure P17.32 shows block D, weighing 200 lb, dropped 

from a height of h � 6 ft onto a wide-fl ange steel beam that spans 

L � 24 ft with a � 8 ft and b � 16 ft. The steel beam has a moment 

of inertia of I � 300 in.4, a depth of d � 12 in., and an elastic 

modulus of E � 29,000 ksi. Determine

(a) the dynamic load applied to the beam.

(b) the maximum bending stress in the beam.

(c) the beam defl ection at B due to the falling block.

A CB

a b

D

h

FIGURE P17.32

P17.33 A 75-lb block D at rest is dropped from a height of 

h � 2 ft onto the top of the simply supported timber beam. (See 

Figure P17.33.) The cross section of the timber beam is square—8 

in. wide by 8 in. deep—and the modulus of elasticity of the wood 

is E � 1,600 ksi. The beam spans L � 14 ft, and it is supported at 

A and C by springs that each have a stiffness of k � 1,000 lb/in. 

Assume that the springs at A and C do not restrain beam rotation. 

Compute

(a) the maximum beam defl ection at B due to the falling block.

(b) the equivalent static load required to produce the same 

defl ection.

(c) the maximum bending stress in the timber beam.
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FIGURE P17.33

P17.34 The 120-kg block (Figure P17.34) is falling at 1.25 m/s 

when it is h � 1,400 mm above the spring that is located at midspan 

of the simply supported steel beam. The steel beam’s moment of 

inertia is I � 70 � 106 mm4, its depth is d � 250 mm, and its elas-

tic modulus is E � 200 GPa. L � 5.5 m is the beam span. The 

spring constant is k � 100 kN/m. Calculate

(a) the maximum beam defl ection at B due to the falling block.

(b) the equivalent static load required to produce the same 

defl ection.

(c) the maximum bending stress in the steel beam.

A CB
L
2

v0

L
2

h

FIGURE P17.34

P17.35 The post AB shown in Figure P17.35/36 has a length of 

L � 2.25 m. The post is made from a steel HSS that has a moment 

of inertia of I � 8.7 � 106 mm4, a depth of d � 150 mm, a yield 

strength of �Y � 315 MPa, and an elastic modulus of E � 200 GPa. 

A block with a mass of m � 25 kg moves horizontally with a velocity 

of v0 and strikes the HSS post squarely at B. If a factor of safety of 

1.5 is specifi ed for the maximum bending stress, what is the largest 

acceptable velocity v0 for the block?

P17.36 In Figure P17.35/36, the post AB, length of L � 4.2 m, is 

made from a steel HSS with a moment of inertia of I � 24.4 � 106 mm4, 

a depth of d � 200 mm, a yield strength of �Y � 315 MPa, and an 

elastic modulus of E � 200 GPa. A block with a mass of m moves 

769

horizontally with a velocity of v0 � 4.5 m/s and strikes the HSS post 

squarely at B. A safety of 1.75 is specifi ed for the maximum bending 

stress; determine the largest acceptable mass m for the block.

A

B

L

v0

m

d

FIGURE P17.35/36

P17.37 The simply supported steel beam shown in Figure 

P17.37 is struck squarely at midspan by a 180-kg block moving 

horizontally with a velocity of v0 � 2.5 m/s. The beam’s span is 

L � 4 m, its moment of inertia is I � 15 � 106 mm4, its depth is 

d � 155 mm, and its elastic modulus is E � 200 GPa. Compute

(a) the maximum dynamic load applied to the beam.

(b) the maximum bending stress in the steel beam.

(c) the maximum beam defl ection at B due to the moving block.

A

C

B

L
2

L
2

v0

m

d

FIGURE P17.37  

As discussed in Section 17.2, the conservation of energy principle declares that energy in a 

closed system is never created or destroyed—it is only transformed from one state to 

 another. The work of an external load acting on a deformable body is transformed into 

17.7 Work–Energy Method for Single Loads
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ENERGY METHODS  internal strain energy. And, provided that no energy is lost in the form of heat, the strain 

energy U is equal in magnitude to the external work W:

 W U�  (17.27)

This principle can be used to determine the defl ection or slope of a member or struc-

ture for very selective conditions. Specifi cally, the member or structure must be loaded by 

a single external concentrated force or concentrated moment. Corresponding displace-

ments can be determined only at the location of the single load in the direction that the load 

acts. Why is this approach limited to a single external load or moment? Equation (17.27) is 

the only equation available in this method. The strain energy U of the structure will be a 

single number. The work W performed by an external force acting on a deformable solid is 

one-half of the product of the force magnitude and the displacement through which the 

force moves. (See Section 17.2.) Similarly, the work W performed by an external moment 

acting on a deformable solid is one-half of the product of the moment magnitude and the 

angle through which the moment rotates. (See Section 17.5.) Consequently, if more than 

one external force or moment is applied, then W in Equation (17.27) will have more than 

one unknown defl ection or rotation angle. Obviously, one equation cannot be solved for 

more than one unknown quantity.

Formulations for the strain energy were developed in Sections 17.3, 17.4, and 17.5 for 

axial deformation, torsional deformation, and fl exural deformation, respectively. To recap, 

the strain energy in prismatic axially loaded members can be determined from Equation 

(17.12):

2

2

P LU
AE

�

For compound axial members and structures consisting of n prismatic axial 

 members, the total strain energy in the member or structure can be computed with 

 Equation (17.14):

2

1 2

n
i i

i i i

F LU
A E

�
�

∑

The strain energy in prismatic torsionally loaded members can be determined from 

Equation (17.16):

2

2

T LU
JG

�

The total strain energy in compound torsional members can be computed from Equa-

tion (17.18):

2

1 2

n
i i

i i i

T LU
J G

�
�

∑

For a fl exural member, the strain energy stored in the beam can be determined from 

Equation (17.20):

2

2

MU dx
EI

�
0

L
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771
WORK–ENERGY METHOD FOR 

SINGLE LOADS
The external work of a force acting on an axial member that deforms is

1

2
W Pδ�

where � is the distance (which equals the axial deformation) that the force moves in the 
direction of the force. The external work of a torque that acts on a shaft is

1

2
W T��

where � is the rotation angle (in radians) through which the external torque rotates. For a 

beam subjected to a single external force, the work of the load is

1

2
W P v�

where v is the beam defl ection at the location of the external force in the direction of the 
load. If the beam is subjected to a single external concentrated moment, the work of the 

external moment is

1

2
W M��

where � is the beam slope (i.e., dv/dx) at the location of the external concentrated moment.

Another common use for the work–energy method involves the determination of de-

fl ections for simple trusses and for other assemblies of axial members. The work of a single 

external load acting on such a structure is

1

2
W P� �

where � is the defl ection of the structure in the direction that the force acts at the location 

of the external load. To reiterate, the method described here and in the example that follows 

can be used only for structures subjected to a single external load, and only the defl ection 

in the direction of the load can be determined.

While the work–energy method used here has limited application, it serves as a useful 

introduction to more powerful energy methods, which will be developed in subsequent sec-

tions. These other energy methods can be used to perform a completely general defl ection 

analysis of a member or structure.

A B

C

(1)

(2)

1.25 m

1.15 m50 kN

x

y

EXAMPLE 17.9

A tie rod (1) and a pipe strut (2) are used to support a 50-kN 

load as shown. The cross-sectional areas are A1 � 650 mm2 for 

the tie rod and A2 � 925 mm2 for pipe strut (2). Both members 

are made of structural steel that has an elastic modulus of E � 

200 GPa. Determine the vertical defl ection of the two-member 

assembly at B.

Plan the Solution
From a free-body diagram of joint B, the internal axial forces in 

members (1) and (2) can be calculated. From Equation (17.12), 

the strain energy of each member can be computed. The total 

strain energy in the assembly is found from the sum of these 

two strain energies. The total strain energy is then set equal to 

the work done by the 50-kN load as it defl ects downward at B. 

From this conservation of energy equation, the unknown down-

ward defl ection of joint B can be determined.
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SOLUTION
The internal axial forces in members (1) and (2) can be calculated from equilibrium equa-

tions based on a free-body diagram of joint B. The sum of forces in the horizontal (x) 

 direction can be written as

1 2 cos 42.61 0xF F FΣ �� � �


and the sum of forces in the vertical (y) direction can be expressed as

2

2

sin 42.61 50 kN 0

73.85 kN

yF F
F

Σ �

���

� � �


Backsubstituting this result into the preceding equation gives

1 54.36 kNF �

The strain energy in tie rod (1) is

2 2 2

1 1
1 2 2

1

(54.36 kN) (1.25 m)(1,000 N/kN)
14.2068 N-m

2 2(650 mm )(200,000 N/mm )

F LU
A E

� � �

The length of inclined pipe strut (2) is

2 2

2 (1.25 m) (1.15 m) 1.70 mL � � �

Thus, its strain energy is

2 2 2
2 2

2 2 2

2

( 73.85 kN) (1.70 m)(1,000 N/kN)
25.0581 N-m

2 2(925 mm )(200,000 N/mm )

F L
U

A E� �
�

�

The total strain energy of the two-bar assembly is, therefore,

1 2 14.2068 N-m 25.0581 N-m 39.2649 N-mU U U� � � � �

The work of the 50-kN load can be expressed in terms of the downward defl ection � 

of joint B as

1
2
(50 kN)(1,000 N/kN) (25,000 N)W � � ��

From the conservation of energy principle, W � U; thus,

 3

(25,000 N) 39.2649 N-m

1.571 10  m 1.571 mm

��

�� � � � �  Ans.

Compare this calculation method with the method demonstrated in Example 

5.4, in which the same two-member assembly was considered. By the work–energy 

method, the downward deflection at B can be determined in a much simpler manner. 

However, the work–energy method cannot be used to determine the horizontal de-

flection of B.

F2

F1

50 kN

42.61°

B(1)

(2)

772
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773

P17.38 What is the vertical displacement of joint B of the two-

bar assembly shown in Figure P17.38 if P � 25 kips? For this struc-

ture, x1 � 7.0 ft, y1 � 3.75 ft, x2 � 9.5 ft, and y2 � 8.0 ft. Assume 

that A1E1 � A2E2 � 1.25 � 104 kips.

(1)

(2)

A

B

C

P

x1 x2

y1

y2

FIGURE P17.38

P17.39 In Figure P17.39, compute the horizontal displacement 

of joint B of the two-bar assembly if P � 80 kN and if x1 � 3.0 m, 

y1 � 3.5 m, and x2 � 2.0 m. Assume that A1E1 � 9.0 � 104 kN and 

A2E2 � 38.0 � 104 kN.

(1)
(2)

A

B

C

P

x1 x2

y1

FIGURE P17.39

P17.40 Calculate the vertical displacement of joint C of the 

truss seen in Figure P17.40 if P � 120 kN. For this structure, a � 

5.5 m and b � 7.0 m. Assume that AE � 3.75 � 105 kN for all 

members.

FIGURE P17.40

P17.41 If P � 215 kN, a � 3.5 m, and b � 2.75 m, determine 

the vertical displacement of joint C of the truss in Figure P17.41. 

Assume that AE � 8.50 � 105 kN for all members.

FIGURE P17.41

P17.42 Rigid bar BCD in Figure P17.42 is supported by a pin at 

C and by steel rod (1). A concentrated load P � 2.5 kips is applied 

to the lower end of aluminum rod (2), which is attached to the rigid 

bar at D. For this structure, a � 20 in. and b � 30 in. For steel rod 

(1), L1 � 50 in., A1 � 0.4 in.2, and E1 � 30,000 ksi. For aluminum 

rod (2), L2 � 100 in., A2 � 0.2 in.2, and E2 � 10,000 ksi. What is 

the vertical displacement of point E?

A B

C D
Rigid bar

E

P

a

(2)

(1)

1L

b

2L

FIGURE P17.42

P17.43 In Figure P17.43, bronze rod (1) and aluminum rod (2) 

support rigid bar ABC. A concentrated load P � 90 kN is applied 

to the free end of aluminum rod (3). For this structure, a � 

800 mm and b � 500 mm. For bronze rod (1), L1 � 1.8 m, d1 � 

15 mm, and E1 � 100 GPa. For aluminum rod (2), L2 � 2.5 m, 

d2 � 25 mm, and E2 � 70 GPa. For aluminum rod (3), L3 � 1.0 m, 

d3 � 25 mm, and E3 � 70 GPa. Calculate the vertical displace-

ment of point D.

PROBLEMSPROBLEMS
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(1)

(2)

(3)

A C

P

B

D

a b
1L

2L

3L

Bronze

Aluminum

Aluminum

FIGURE P17.43

P17.44 Links (1) and (2), which are made from a polymer mate-

rial [E � 16 GPa], support the rigid beam in Figure P17.44. Link 

(1) has a cross-sectional area of 300 mm2 and a length of 1.00 m. 

Link (2) has a cross-sectional area of 650 mm2 and a length of 1.25 m. 

A concentrated load of P � 40 kN is applied to the rigid beam at C. 

For this structure, a � 750 mm and b � 425 mm. Compute the 

vertical displacement of the rigid beam at point C.

(1)

(2)

A B

P

C

ba
1L

2L

Rigid beam

FIGURE P17.44

The method of virtual work is probably the most direct, versatile, and foolproof conservation-

of-energy method for calculating defl ections. This method may be used to determine defor-

mations or defl ections, at any location in a structure, that are caused by any type or combi-

nation of loads. The only limitation to the theory is that the principle of superposition 

must apply.

The principle of virtual work was fi rst stated by John Bernoulli (1667–1748) in 1717. 

The term “virtual” as used in this context refers to an imaginary or hypothetical force or 

deformation, either fi nite or infi nitesimal. Accordingly, the resulting work is only imagi-

nary or hypothetical in nature. Before we discuss the virtual-work method in detail, some 

further discussion of work will be helpful.

Further Discussion of Work

As discussed in Section 17.2, work is defi ned as the product of a force times the distance 

that it moves in the direction of the force. Work can be either a positive or a negative quan-

tity. Positive work occurs when the force moves in the same direction as it acts. Negative 

work occurs when the force moves opposite to its direction.

Consider the simple axial rod shown in Figure 17.19a subjected to a load P1. If  applied 

gradually, the load increases in magnitude from zero to its fi nal intensity P1. The rod de-

forms in response to the increasing load, with each load increment dP producing an incre-

ment of deformation d�. When the full magnitude of P1 has been applied, the deformation 

of the rod is �1. The total work done by the load as it increases in magnitude from zero to 

P1 can be determined from

 
1

0
W Pd�

�

�  (17.28)

As indicated by Equation (17.28), the work is equal to the area under the load– 

deformation diagram shown in Figure 17.19b. If the material behaves in a linear-elastic 

17.8 Method of Virtual Work

774
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METHOD OF VIRTUAL WORK

manner, the deformation varies linearly with the load as shown in Figure 17.19c. The work 

for linear-elastic behavior is given by the triangular area under the load–deformation dia-

gram and is expressed as

W �     P1�1 1

2

Now, suppose that load P1 has already been applied to the rod and a second load P2 is 

gradually added, as shown in Figure 17.20a. The load P2 causes the rod to elongate by an 

additional amount �2. The work done initially by the gradual application of the fi rst load P1 is

 W � ½ P1�1  (a)

which corresponds to area OAE shown in Figure 17.20b. The work done by the gradual 

application of the second load P2 is

 W � ½ P2�2  (b)

which corresponds to area ABC. Area ACDE, the remaining area under the load– deformation 

diagram, represents the work performed by load P1 as the rod deforms by the amount �2:

 W � P1�2  (c)

Note that in this case the load P1 does not change its magnitude, because it was fully 

acting on the rod before load P2 was applied.

1

1P

(a) (b) (c)

FIGURE 17.19 Work of single load on axial rod.

1

2

1P

2P

(a) (b)

FIGURE 17.20 External work of two loads on axial rod.

c17EnergyMethods.indd Page 775  08/05/12  4:00 PM user-F391c17EnergyMethods.indd Page 775  08/05/12  4:00 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop



776
ENERGY METHODS To summarize, when a load is gradually applied, the expression for work contains a 

factor of ½, as seen in Equations (a) and (b). Since the loads P1 and P2 increase from 0 to 

their maximum values, the terms ½P1 and ½P2 can be thought of as average loads. If a load 

is constant, however, the expression for work does not contain the factor ½, as seen in 

Equation (c). These two types of expressions will be used to develop different methods for 

computing defl ections.

The expressions for the work of concentrated moments are similar in form to those of 

concentrated forces. A concentrated moment does work when it rotates through an angle. 

The work dW that a concentrated moment M performs as it rotates through a incremental 

angle d� is given by

dW Md��

The total work W of a gradually applied concentrated moment M through the rotation � can 

be expressed by

0
W M dθ

� �

If the material behaves linearly elastically, the work of a concentrated moment as it gradu-

ally increases in magnitude from 0 to its maximum value M can be expressed as

1
2W M� �

and if M remains constant during a rotation of �, the work is given by

W M��

Principle of Virtual Work for Deformable Solids

The principle of virtual work for deformable solids can be stated as follows:

If a deformable body is in equilibrium under a virtual force system and remains in equi-

librium while it is subjected to a set of small, compatible deformations, then the exter-

nal virtual work done by the virtual external forces acting through the real external 

displacements (or rotations) is equal to the virtual internal work done by the virtual 

 internal forces acting through the real internal displacements (or rotations).

There are three important provisions in the statement of this principle. First, the force 

system is in equilibrium, both externally and internally. Second, the set of deformations is 

small, implying that the deformations do not alter the geometry of the body signifi cantly. 

Finally, the deformations of the structure are compatible, meaning that the elements of the 

structure must deform so that they do not break apart or displace away from the points of 

support. The parts of the body must stay connected after deformation and continue to sat-

isfy the restraint conditions at the supports. These three conditions must always be satisfi ed 

in any application of the principle.

The principle of virtual work makes no distinction about the cause of the deforma-

tions, with the principle holding whether the deformation is due to loads, temperature 

changes, misfi ts in lengths of members, or other causes. Further, the material may or may 

not follow Hooke’s law.

To demonstrate the validity of the principle of virtual work, consider the statically 

determinate two-bar assembly shown in Figure 17.21a. The assembly is in equilibrium for 

an external virtual load P� that is applied at B. The free-body diagram of joint B is shown 

in Figure 17.21b. Since joint B is in equilibrium, the virtual external force P� and virtual 
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METHOD OF VIRTUAL WORK

internal forces f1 and f2 acting in members (1) and (2), respectively, must satisfy the follow-

ing two equilibrium equations:

 
1 1 2 2

1 1 2 2

os cos 0

sin sin 0

x

y

F P f f
F f f

Σ
Σ

� �

� �

��

� � �

� � �c

 
(d)

Next, we will assume that pin B is given a small real displacement � in the horizontal 

direction. Note that the displacement � is shown greatly exaggerated, for clarity, in Figures 

17.21a and 17.21b. The real displacement � should be assumed to be small enough so that 

the displaced geometry of the two-bar assembly is essentially the same as the equilibrium 

geometry. Furthermore, the deformation of the two-bar assembly is compatible, meaning 

that bars (1) and (2) remain connected together at joint B and attached to their respective 

supports at A and C.

Since supports A and C do not move, the virtual forces f1 and f2 acting at these joints 

do not perform any work. The total virtual work for the two-bar assembly is thus equal to 

the algebraic sum of the work at joint B. The horizontal virtual external force P� moves 

through a real displacement of �; thus, the work it performs is P��. Recalling that work is 

defi ned as the product of a force times the distance that it moves in the direction of the 

force, we observe that the virtual internal force f1 in member (1) moves through a distance 

of � cos �1 in the direction of the force, but it moves in a direction opposite to the direction 

of force f1. Therefore, this work is defi ned as a negative value, and it follows that the virtual 

work done by the internal force in member (1) is 	f1(� cos �1). Similarly, the virtual inter-

nal force f2 in member (2) moves through a distance of � cos �2 in the direction of the force, 

but it also moves opposite to the direction of the force. Therefore, the virtual work done by 

the internal force in member (2) is 	f2(� cos �2). Consequently, the total work Wv done by 

the virtual forces acting at joint B is

1 1 2 2
( cos ) ( cos )vW P f f� �� � �� �� �

which can be restated as

 1 1 2 2( cos cos )vW P f f� � � �� � �  (e)

The term in parentheses on the right-hand side of Equation (e) also appears in the 

equilibrium equation for the sum of forces in the x direction; therefore, from Equation (d), 

FIGURE 17.21 Statically determinate two-bar assembly.

A

B

C

1

2
P 

x

y

(1)

(2)

Equilibrium geometry

(a) Overall confi guration.

B
1

12

2

cos 2

cos
1

f1

f2

P 

(b) Free-body diagram of joint B.
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ENERGY METHODS we can conclude that the total virtual work for the two-bar assembly is Wv � 0. From this 

observation, Equation (e) can be rewritten as

 
1 1 2 2
( cos ) ( cos )P f f��� � � ���  (f )

The term on the left-hand side of Equation (f) represents the external virtual work Wve 

done by the virtual external load P� acting through the real external displacement �. On the 

right-hand side of Equation (f), the terms � cos �1 and � cos �2 are equal to the real internal 

deformations of bars (1) and (2), respectively. Consequently, the right-hand side of Equa-

tion (f) represents the virtual internal work Wvi of the virtual internal forces acting through 

the real internal displacements. As a result, Equation (f) can be restated as

 ve viW W�  (g)

which is the mathematical statement of the principle of virtual work for deformable solids 

given at the beginning of this section.

The general approach used to implement the principle of virtual work to determine 

defl ections or deformations in a solid body can be described as follows:

1.  Begin with the solid body to be analyzed. The solid body can be an axial member, a 

torsion member, a beam, a truss, a frame, or other types of deformable solids. Initially, 

consider the solid body without external loads.

2.  Apply an imaginary or hypothetical virtual external load to the solid body at the loca-

tion where defl ections or deformations are to be determined. Depending on the situa-

tion, this imaginary load may be a force, a torque, or a concentrated moment. For con-

venience, this imaginary load is assigned a “unit” magnitude such as P� � 1.

3.  The virtual load should be applied in the same direction as the desired defl ection or 

deformation. For example, if the vertical defl ection of a specifi c truss joint is desired, 

the virtual load should be applied in a vertical direction at that truss joint.

4.  The virtual external load causes virtual internal forces throughout the body. These inter-

nal forces can be computed by the customary statics or mechanics of materials tech-

niques for any statically determinate system.

5.  With the virtual load remaining on the body, apply the actual loads (i.e., the real loads) 

or introduce any specifi ed deformations, such as those due to a change in temperature. 

These real external loads (or deformations) create real internal deformations, which can 

also be calculated by the customary mechanics of materials techniques for any statically 

determinate system.

6.  As the solid body defl ects or deforms in response to the real loads, the virtual external load 

and the virtual internal forces are displaced by some real amount. Consequently, the vir-

tual external load and the virtual internal forces perform work. However, the virtual exter-

nal load was present on the body, and the virtual internal forces were present in the body, 

before the real loads were applied. Accordingly, the work performed by them does not 

include the factor ½. [Refer to Equation (c) and Figure 17.20b.]

7.  Conservation of energy as shown in Equation (g) requires that the virtual external work 

must equal the virtual internal work. From this relationship, the desired real external 

defl ection or deformation can be determined.

Equation (g) can be restated in words as

 
virtu ralvirtual

external intern
ealreal

external internal
di

al
load forcesplacement displaceme ts n s

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑� � �  (17.29)
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779
DEFLECTIONS OF TRUSSES BY 

THE VIRTUAL-WORK METHOD
in which the terms force (or load) and displacement are used in a general sense and 

 include moment and rotation, respectively. As Equation (17.29) indicates, the method of 

virtual work employs two independent systems: (a) a virtual force system and (b) the real 

system of loads (or other effects) that create the deformations to be determined. To com-

pute the defl ection (or slope) at any location in a solid body or structure, a virtual force 

system is chosen so that the desired defl ection (or rotation) will be the only unknown in 

Equation (17.29).

The next sections illustrate the application of Equation (17.29) to trusses and beams.

The method of virtual work is readily applied to structures such as trusses whose members 

are axially loaded. To develop the method, consider the truss shown in Figure 17.22a that 

is subjected to two external loads P1 and P2. This truss consists of j � 7 axial members. The 

vertical defl ection of the truss at joint B is to be determined.

Since the truss is statically determinate, the real internal force Fj created in each truss 

member by the application of real external loads P1 and P2 can be calculated by means of 

the method of joints. If Fj represents the real internal force in an arbitrary truss member j 
(e.g., member CE in Figure 17.22a), then the real internal deformation �j of the member is 

given by

j j
j

j j

F L
A E

��

in which L, A, and E denote the length, cross-sectional area, and elastic modulus of member 

j. We will assume that each member has a constant cross-sectional area and that the load in 

each member is constant throughout the member’s length.

Next, a virtual load system that is separate and independent from the real load system 

is carefully chosen so that the desired joint defl ection can be determined. For this truss, the 

vertical defl ection of joint B is desired. For this defl ection to be obtained, the real external 

loads P1 and P2 are fi rst removed from the truss and then a virtual external load having a 

magnitude of one is applied in a downward direction at joint B, as shown in Figure 17.22b. 

In response to this unit load, axial forces necessary to maintain equilibrium will be devel-

oped in each of the truss members. These forces, termed the virtual internal forces fj, can 

17.9  Defl ections of Trusses 
by the Virtual-Work Method

FIGURE 17.22 Statically determinate truss.

(a) Real System. (b) Virtual System.
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780
ENERGY METHODS be determined for the truss (loaded solely by the virtual external load at B), as shown in 

Figure 17.22b.

 Imagine that the truss is initially loaded only by the virtual external load (Figure 

17.22b). Then, with the virtual load still in place, the real external loads P1 and P2 shown 

in Figure 17.22a are applied at joints D and E, respectively. Equation (17.29) can now be 

applied to express the virtual work for the entire truss. The product of the virtual external 

load and the real external defl ection � gives the virtual external work Wve:

1veW � ��

The virtual internal work Wvi includes the work for all truss members. For each mem-

ber, the virtual internal work is the product of the virtual internal force fj and the real inter-

nal deformation �j :

j j
vi j j j

j j j j

F L
W f f

A E

⎛ ⎞
� � � ⎜ ⎟⎝ ⎠

∑ ∑

Equating the external and internal virtual-work expressions gives

 
1

j j
j

j j j

F L
f

A E
⎛ ⎞

��� ⎜ ⎟⎝ ⎠
∑  (17.30)

in which

1 � virtual external unit load acting in the direction desired for �
� � real joint displacement caused by the real loads that act on the truss

fj �  virtual internal force created in truss member j when the truss is loaded with only 

the single virtual external unit load

Fj �  real internal force created in truss member j when the truss is loaded with all of 

the real loads

Lj � length of truss member j
Aj � cross-sectional area of truss member j
Ej � elastic modulus of truss member j

The desired defl ection � is the only unknown in Equation (17.30); consequently, we 

can determine its value by solving that equation.

Temperature Changes and Fabrication Errors

The length of axial members changes in response to temperature changes. The axial defor-

mation of truss member j due to a change in temperature �Tj can be expressed as

j j j jT L� �� 	

where 	j is the coeffi cient of thermal expansion and Lj the length of the member. Therefore, 

the displacement of a specifi c truss joint in response to temperature changes in some or all 

of the truss members can be determined from the virtual-work equation

 ( )1 j j j j
j

f T Lα∑�� ��  (17.31)
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DEFLECTIONS OF TRUSSES BY 

THE VIRTUAL-WORK METHOD
Truss defl ections due to fabrication errors can be determined by a simple substitution 

of changes in member lengths �Lj for �j in the virtual-work equation

 ( )1 j j
j

f L∑�� ��  (17.32)

where �Lj is the difference in length of the member from its intended length caused by a 

fabrication error.

The right-hand sides of Equations (17.30), (17.31), and (17.32) can be merged to 

consider trusses with combinations of external loads along with temperature changes or 

fabrication errors in some or all of its members:

 1
j j

j j j j j
j j j

F L
f T L L

A E
α

⎛ ⎞
Δ⎜ ⎟⎝ ⎠

∑� � �� ��  (17.33)

Procedure for Analysis

The following procedure is recommended when you are calculating truss defl ections with 

the virtual-work method:

1.  Real System: If real external loads act on the truss, use the method of joints or the 

method of sections to determine the real internal forces in each truss member. Take 

care to be consistent in the signs associated with truss member forces and deforma-

tions. It is strongly recommended that tensile axial forces and elongation deforma-

tions be considered as positive quantities. This means that a positive member force 

corresponds to an increase in member length. If this convention is followed, then in-

creases in temperature and increases in member length due to fabrication errors 

should also be taken as positive quantities.

2.  Virtual System: Begin by removing all real external loads that act on the truss. Then 

apply a single virtual unit load at the joint at which the defl ection is desired. This unit 

load should act in the direction of the desired defl ection. With the unit load in place and 

all real loads removed, analyze the truss to determine the member forces fj produced in 

response to the virtual external load. The sign convention used for the member forces 

must be the same as that adopted in step 1.

3.  Virtual-Work Equation: Apply the virtual-work equation, Equation (17.30), to de-

termine the defl ection at the desired joint due to real external loads. It is important to 

retain the algebraic sign for each of the fj and Fj forces when these terms are substituted 

into the equation. If the right-hand side of Equation (17.30) turns out to be positive, then 

the displacement � is in the direction assumed for the virtual unit load. A negative result 

for the right-hand side of Equation (17.30) means that the displacement � actually acts 

opposite to the direction assumed for the virtual unit load.

If the truss defl ection is caused by temperature changes, then Equation (17.31) will 

be used. If the truss defl ection is caused by fabrication errors, then Equation (17.32) is 

called for. Equation (17.33) can be used when a combination of real external loads, 

temperature changes, and fabrication misfi ts must be considered.

The application of these virtual-work expressions can be facilitated by an arrange-

ment of the real and virtual quantities in a tabular format, which will be demonstrated 

in subsequent examples.
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EXAMPLE 17.10

Compute the vertical defl ection at joint B for the truss shown in Figure 17.22a. Assume 

that P1 � 10 kN and P2 � 40 kN. For each member, the cross-sectional area is A � 525 mm2 

and the elastic modulus E � 70 GPa.

Plan the Solution
Calculate the length of each truss member. Determine the real internal forces Fj in all 

truss members, using an appropriate method such as the method of joints. Remove both 

P1 and P2 from the truss, apply a unit load downward at joint B, and perform a second 

truss analysis to determine the member forces fj created by the unit load. Construct a table 

of results from the two truss analyses, and then apply Equation (17.30) to determine the 

downward defl ection � of joint B.

SOLUTION
A tabular format is a convenient way to organize the calculations. Compute the member 

lengths and record them in a column. Perform a truss analysis, using the real loads P1 � 10 kN 

and P2 � 40 kN, and record the real internal forces F (i.e., the forces produced in the truss 

members by the real loads) in a second column. Note that tension member forces are assumed 

to be positive values here. These real internal forces will be used to calculate the real internal 

deformations. Accordingly, a positive force corresponds to elongation of the member.

Remove the real loads P1 and P2 from the truss. Since the downward defl ection of 

the truss at joint B is to be determined, apply a downward virtual load of 1 kN at joint B, 

as shown in Figure P17.22b, and perform a second truss analysis. Again, use the sign 

convention that tension forces are positive. The member forces obtained from this second 

analysis are the virtual internal forces f. Record these results in a column.

Multiply the virtual internal force f, the real internal force F, and the member length 

L for each truss member, and record the product in a fi nal column. Sum these values, tak-

ing care to note the units that have been used.

Note that the cross-sectional area A and the elastic modulus E are the same for all 

members in this particular example. Therefore, they can be included after the summation 

here. If A and E differ for truss members, additional columns would need to be added to 

the tabular format to account for these differences.

Member

L 

(m)

F 

(kN)

f 

(kN)

f (FL) 

(kN2-m)

AB 5.0 10.0 0.0000 0.000

AD 4.0 	10.0 	0.3750 15.000

BC 3.0 22.5 0.4688 31.644

BD 6.403 16.008 0.6003 61.530

BE 4.0 	10.0 0.6250 	25.000

CE 5.0 	37.5 	0.7813 146.494

DE 5.0 	22.5 	0.4688 52.740

( )f FL �∑ 282.408

Equation (17.30) can now be applied.

( )1
1 j j

j j j j
j jj j

F L
f f F L

A E AE

⎛ ⎞
� � �⎜ ⎟⎝ ⎠

∑ ∑�
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Recall that the left-hand side of this equation represents the external work performed 

by the virtual external load as it moves through the real joint defl ection at B. The right-

hand side represents the internal work performed by the virtual internal forces f as they 

move through the real internal deformations that occur in the truss members in response 

to the real external loads P1 and P2.

From the tabulated results,

 

2

2 2

(282.408 kN -m)(1,000 N/kN)(1,000 mm/m)
(1 kN)

(525 mm )(70,000 N/mm )

7.68 mm

B

B

�

�

�

�

�  

Ans.

Since the virtual load was applied in a downward direction at B, the positive value of 

the result confi rms that joint B does displace downward.

783783

EXAMPLE 17.11

For the truss shown, members BF, CF, CG, and DG have 

cross-sectional areas of 750 mm2. All other members 

have cross-sectional areas of 1,050 mm2. The elastic 

modulus of all members is 70 GPa. Compute

(a) the horizontal defl ection at joint G.

(b) the vertical defl ection at joint G.

Plan the Solution
Calculate the length of each truss member. Determine 

the real internal forces Fj in all truss members, using an 

 appropriate method such as the method of joints or the 

method of sections. To compute the horizontal defl ec-

tion at G, remove all loads from the truss, apply a unit load horizontally at joint G, and 

perform a second truss analysis to determine the member forces fj created by the horizon-

tal unit load. Construct a table of results from the two truss analyses, and then apply 

Equation (17.30) to determine the horizontal defl ection � of joint G. To compute the 

vertical defl ection at G, remove all loads from the truss, apply a unit load vertically at 

joint G, and perform a third truss analysis to determine the member forces fj created by 

the vertical unit load. Construct a table of results from the two truss analyses, and then 

apply Equation (17.30) to calculate the vertical defl ection � of joint G.

SOLUTION

(a) Horizontal Defl ection of Joint G: Compute the member lengths and record them 

in a column. Note the member cross-sectional areas and record them in a second 

column. With the real external loads acting on the truss, perform a truss analysis to 

determine the real internal forces in each of the truss members. Record these real 

internal forces in a third column.
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Remove the real loads from the truss. Since the horizontal defl ection of the truss 

at joint G is to be determined, apply a horizontal virtual load of 1 kN at joint G. For 

this analysis, the virtual load will be directed to the right. Perform a second analysis 

of the truss where the only load acting on the truss is the horizontal virtual load. This 

second analysis yields the virtual member forces f. Record these virtual member 

forces in a  column.

Member

L 

(mm)

A 

(mm2)

F 

(kN)

f 

(kN)

FL
f

A
⎛ ⎞
⎜ ⎟⎝ ⎠

 (kN2/mm)

AB 3,000 1,050 	9.375 0.500 	13.393

AF 5,000 1,050 15.625 0.833 61.979

BC 3,000 1,050 	9.375 0.500 	13.393

BF 4,000 750 75.000 0 0

CD 3,000 1,050 	18.750 0 0

CF 5,000 750 	109.375 	0.833 607.396

CG 5,000 750 	93.750 0 0

DE 3,000 1,050 	18.750 0 0

DG 4,000 750 50.000 0 0

EG 5,000 1,050 31.250 0 0

FG 6,000 1,050 75.000 1.000 428.571

FLf
A

⎛ ⎞
�⎜ ⎟⎝ ⎠∑ 1,071.161

Equation (17.30) can now be applied:

1
1

j j j j
j j

j jj j

F L F L
f f

E E A
⎛ ⎞ ⎛ ⎞

� ��� ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∑

From the tabulated results,

 

2

2

(1,071.161 kN /mm)(1,000 N/kN)
(1 kN)

(70,000 N/mm )

15.30 mm

G

G

� �

�

�

� →  Ans.

Since the virtual load was applied horizontally to the right at G, the positive value of 

the result confi rms that joint G does displace to the right.

(b) Vertical Defl ection of Joint G: Again, remove all loads from the truss. The vertical 

defl ection of the truss at joint G is to be determined next; therefore, apply a vertical 

virtual load of 1 kN at joint G. For this analysis, the virtual load will be directed 

downward. Perform a third analysis of the truss where the vertical virtual load is the 

only load acting on the truss. This analysis produces a different set of virtual internal 

forces f. Replace the previous values of f with these results.

784
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Member

L 

(mm)

A 

(mm2)

F 

(kN)

f 

(kN)

FL
f

A
⎛ ⎞
⎜ ⎟⎝ ⎠  

(kN2/mm)

AB 3,000 1,050 	9.375 	0.375 10.045

AF 5,000 1,050 15.625 0.625 46.503

BC 3,000 1,050 	9.375 	0.375 10.045

BF 4,000 750 75.000 0 0.000

CD 3,000 1,050 	18.750 0 0.000

CF 5,000 750 	109.375 	0.625 455.729

CG 5,000 750 	93.750 	1.250 781.250

DE 3,000 1,050 	18.750 0 0.000

DG 4,000 750 50.000 0 0.000

EG 5,000 1,050 31.250 0 0.000

FG 6,000 1,050 75.000 0.750 321.429

FLf
A

⎛ ⎞
�⎜ ⎟⎝ ⎠∑ 1,625.001

From the tabulated results,

 

2

2

(1,625.001 kN /mm)(1,000 N/kN)
(1 kN)

(70,000 N/mm )

23.2 mm

G�� �

G � � ↓  Ans.

785785

EXAMPLE 17.12

For the truss shown, determine the vertical defl ection of joint D if the 

temperature of the truss drops 90�F. Each member has a cross-sectional 

area of 1.25 in.2, a coeffi cient of thermal expansion of 13.1 � 10	6/�F, 

and an elastic modulus of 10,000 ksi.

Plan the Solution
Calculate the length of each truss member. There are no external loads 

on the truss, but the temperature change will cause each member to 

contract in length. Determine the axial deformation that will occur in 

each member in response to a temperature change of �T � 	90�F. To 

compute the vertical defl ection at D, apply a unit load vertically down-

ward at joint D and perform truss analysis to determine the member 

forces fj created by the vertical unit load. Construct a table of results that consists of the 

values for the member deformations and the virtual internal forces, and then apply Equa-

tion (17.31) to determine the vertical defl ection � of joint D.
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SOLUTION
Calculate the member lengths and record them in a column. The axial deformation of a 

truss member due to a change in temperature is given by � � 	 �TL. With this expres-

sion, calculate the real internal deformation produced in each member by the tempera-

ture change, and record the values in a second column.

For this example, there are no real external loads that perform work on the truss. 

Since the vertical defl ection of the truss at joint D is to be determined, apply a vertical 

virtual load of 1 kip in a downward direction at joint D. Perform a truss analysis and 

compute the corresponding virtual internal forces f. Record these results in a column.

Member
L 

(in.)
��T L
 (in.)

f 

(kips)
f (��T L)
 (kip-in.)

AB 192 	0.2264 0.550 	0.125

AC 187 	0.2210 	0.716 0.158

AD 301 	0.3545 2.088 	0.740

BC 129.244 	0.1524 	1.481 0.226

CD 144 	0.1698 	1.833 0.311

∑ f (	�T L) � 	0.170

Equation (17.31) can now be applied:

( )1 j j j j
j

f T L�� � 	 �∑

The left-hand side of this equation represents the external work performed by the virtual 

external load as it moves through the real joint defl ection at D. The right-hand side of 

this equation represents the internal work performed by the virtual internal forces f as 

they move through the real internal deformations that occur in the truss members in re-

sponse to the temperature change.

From the tabulated results,

 

(1 kip) 0.170 kip-in.

0.170 in. 0.170 in.

D

D

�� ��

�� � ↑�  Ans.

The virtual load at D was applied in a downward direction. The negative value ob-

tained here means that joint D actually moves in the opposite direction—that is, upward.

The principle of virtual work can be used to determine the defl ection of a beam. Consider 

a beam subjected to an arbitrary loading, as shown in Figure 17.23a. Assume that the verti-

cal defl ection of the beam at point B is desired. To determine this defl ection, a virtual 

 external unit load will fi rst be applied to the beam at B in the direction of the desired defl ec-

tion, as shown in Figure 17.23b. If this beam (in Figure 17.23b) is then subjected to the 

17.10  Defl ections of Beams 
by the Virtual-Work Method

786
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787
DEFLECTIONS OF BEAMS BY 

THE VIRTUAL-WORK METHOD

deformations created by the real external loads (in Figure 17.23a), the virtual external work 

Wve performed by the virtual external load as it moves downward through the real defl ec-

tion � will be

 
W ve � 1��

 (a)

To obtain the virtual internal work, recall from Section 17.5 that the internal work of 

a beam is related to the moment and the rotation angle � of the beam. Consider a differen-

tial element dx of the beam located at a distance of x from the left support, as shown in 

Figures 17.23a and 17.23b. When the real external loads are applied to the beam, bending 

moments M rotate the plane sections of the beam segment dx through an angle of

 
M

d� � EI
dx  (b)

When the beam with the virtual unit load (Figure 17.23b) is subjected to the real rota-

tions caused by the external loading (Figure 17.23a), the virtual internal bending moment 

m acting on the element dx performs virtual work as it undergoes the real rotation d�, as 

shown in Figure 17.23c. For beam element dx, the virtual internal work dWvi performed by 

the virtual internal moment m as it rotates through the real internal rotation angle d� is

 dWvi � md�  (c)

Note that the virtual moment m remains constant during the real rotation d�; therefore, 

Equation (c) does not contain a factor of ½. (Compare Equation (c) with the expression for 

work in Figure 17.16.)

Substitute the expression for d� in Equation (b) into Equation (c) to obtain

 
MdWvi  � m
EI

⎛ ⎞
⎜ ⎟⎝ ⎠

dx  (d)

FIGURE 17.23 Virtual-work method for beams.

(a)  Prismatic beam subjected to 

an arbitrary real loading.

(b)  Virtual external load 

to determine � at B.

(b)  Virtual external moment 

to determine � at C.

(c) Internal work of virtual moment m.

c17EnergyMethods.indd Page 787  09/05/12  10:18 PM user-F391c17EnergyMethods.indd Page 787  09/05/12  10:18 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop
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ENERGY METHODS Obtain the total virtual internal work for the beam by integrating this expression over 

the length of the beam:

 
MWvi � dx
EI

⎛ ⎞
⎜ ⎟⎝ ⎠

m
0

L

 (17.34)

This expression represents the amount of virtual strain energy that is stored in the beam.

Finally, the virtual external work [Equation (a)] can be equated to the virtual internal 

work [Equation (17.34)] to express the virtual-work equation for beam defl ections:

 1� Δ �
M dx
EI

⎛ ⎞
⎜ ⎟⎝ ⎠

m
0

L

 (17.35)

The principle of virtual work can also be used to determine the angular rotation of a 

beam. Note that the slope of a beam can be expressed in terms of its angular rotation � 

(measured in radians) as

 
dv
dx

� tan � 

If the beam defl ections are assumed to be small, as is typically the case, then tan � � � 

and the slope of the beam is equal to

 
dv
dx

� � ∼  

The terms angular rotation and slope are effectively synonymous, provided that the 

beam defl ections are small.

Again consider the beam subjected to an arbitrary loading shown in Figure 17.23a. 

Assume that the angular rotation � of the beam at point C is desired. To determine �, a 

virtual external unit moment will fi rst be applied to the beam at C in the direction of the 

anticipated slope, as shown in Figure 17.23d. If this beam (in Figure 17.23d ) is then sub-

jected to the deformations created by the real external loads (in Figure 17.23a), the virtual 

external work Wve performed by the virtual external moment as it rotates counterclockwise 

through the real beam angular rotation � is

 W ve � 1��  (e)

The expression for the virtual internal work developed in Equation (17.34) remains 

the same as before, with the exception that m now represents the virtual internal moment 

created by the load of Figure 17.23d. Thus, the virtual-work equation for beam slopes is

 1�� � M
m dx

EI
⎛ ⎞
⎜ ⎟⎝ ⎠0

L

 (17.36)

In deriving Equation (17.34) for the virtual internal work performed in the beam, the 

internal work performed by virtual shear forces acting through real shear deformations has 

been neglected. Consequently, the virtual-work expressions in Equations (17.35) and 

(17.36) do not account for shear deformations in beams. However, shear deformations are 

very small for most common beams (with the exception of very deep beams), and they can 

be neglected for ordinary analyses.

In evaluating the integrals in Equations (17.35) and (17.36), a single integration over 

the entire length of the beam may not be possible. Concentrated forces or moments, or 
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THE VIRTUAL-WORK METHOD

distributed loadings spread across only a portion of the span will cause discontinuities in 

the moment equation for a beam. For example, suppose that the defl ection at point D is to 

be determined for the beam shown in Figure 17.24a. The real internal bending moments M 

could be expressed in equations written for segments AB, BC, and CE of the beam. From 

Figure 17.24b, we observe that the virtual internal moment m could be expressed with only 

two equations: one equation for segment AD and another for segment DE. However, both 

the M and the m equations used in the integration of Equations (17.35) and (17.36) must be 

continuous throughout the length of the segment. In other words, the product mM in the 

integrals in Equations (17.35) and (17.36) must be continuous. Since the m equation is 

discontinuous at D, segment CE of the beam must be further subdivided into segments CD 

and DE.

Typically, several x coordinates must be employed in order to express the moment 

equation for various regions of the beam span. To evaluate the integral in Equation (17.35), 

equations for the real internal bending moments M and the virtual internal bending  moments 

m in segments AB, BC, CD, and DE of the beam must be derived. Separate x coordinates 

may be chosen to facilitate the formulation of moment equations for each of these seg-

ments. It is not necessary that each of these x coordinates have the same origin; however, it 
is necessary that the same x coordinate be used for both the real moment and the virtual 
moment equations that are derived for any specifi c segment of the beam. For example, 

 coordinate x1 with origin at A may be used for both the M and m equations for segment AB 

of the beam. A separate coordinate x2 with origin at A may be used for the moment equa-

tions applicable to segment BC. A third coordinate x3 with origin at E may be used for 

segment DE of the beam, and a fourth coordinate x4 could be used to formulate the M and 

m expressions for segment CD. In any case, each x coordinate should be chosen to facilitate 

the formulation of equations describing both the real internal moment M and the virtual 

internal moment m.

Procedure for Analysis

The following procedure is recommended when you calculate beam defl ections and slopes 

by the virtual-work method:

1. Real System: Draw a beam diagram showing all real loads.

2.  Virtual System: Draw a diagram of the beam with all real loads removed. If a beam 

defl ection is to be determined, apply a unit load at the location desired for the defl ection. 

If a beam slope is to be determined, apply a unit moment at the desired location.

3.  Subdivide the Beam: Examine both the real and virtual load systems. Also con-

sider any variations of the fl exural rigidity EI that may exist in the beam. Divide the 

beam into segments so that the equations for the real and virtual loadings, as well as the 

fl exural rigidity EI, are continuous in each segment.

FIGURE 17.24 Choice of x coordinates for integration of M and m expressions.

x4

x1 x3

x2

A D EB C

w

P

x4

x1 x3

x2

A D EB C

1

(a) Real loads. (a) Virtual loads.
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790
ENERGY METHODS 4.  Derive Moment Equations: For each segment of the beam, formulate an equation 

for the bending moment m produced by the virtual external load. Formulate a second 

equation expressing the variation of the bending moment M produced in the beam by 

the real external loads. (Review Section 7.2 for a discussion on deriving bending mo-

ment equations.) For both equations, the same x coordinate must be used. The origin for 

the x coordinate may be located anywhere on the beam and should be chosen so that the 

number of terms in the equation is minimized. Use the standard convention for bending 

moment signs illustrated in Figures 7.6 and 7.7 for both m and M equations.

5.  Virtual-Work Equation: Determine the desired beam defl ection by applying Equa-

tion (17.35), or compute the desired beam slope by applying Equation (17.36). If the beam 

has been divided into segments, then you can evaluate the integral on the right-hand side 

of Equations (17.35) or (17.36) by algebraically adding the integrals for all segments of the 

beam. It is important to retain the algebraic sign of each integral calculated within a segment.

If the algebraic sum of all integrals for the beam is positive, then � or � is in the 

same direction as the virtual unit load or virtual unit moment. If a negative value is ob-

tained, then the defl ection or slope acts opposite to the direction of the virtual unit load 

or virtual unit moment.

The following examples illustrate use of the virtual-work method to determine 

beam defl ections and beam slopes:

EXAMPLE 17.13

A B

L

w

A B

L

1

x

v

m

A

x

1

Calculate (a) the defl ection and (b) the slope at end A of the cantile-

ver beam shown. Assume that EI is constant.

Plan the Solution
The defl ection at end A can be determined through the use of a virtual 

unit load acting downward at A. Consider the beam with the real load 

w removed and a virtual load applied at A. An equation for the varia-

tion of the virtual internal moment m can be derived, and this equation will be continuous 

over the entire length of the span. Next, consider the beam without the virtual load, but 

with the real load w reapplied. Derive an equation for the variation of the real internal mo-

ment M. This equation will also be continuous over the entire span. Therefore, the beam 

need not be subdivided for this calculation. Once equations for m and M are obtained, 

 apply Equation (17.35) to compute the beam defl ection � at A. To determine the slope of 

the beam at A, the virtual load will be a concentrated moment applied at A. After deriving 

a new equation for m, use Equation (17.36) to calculate �.

SOLUTION
(a) Virtual Moment m for Defl ection Calculation: To determine 

the downward defl ection of the cantilever beam, fi rst remove the real 

load w from the beam and apply a virtual unit load downward at A.

For this beam, draw a free-body diagram around end A of the beam. Place the origin 

of the x coordinate system at A. From the free-body diagram, derive the following equa-

tion for the virtual internal moment m:

m � �1x 0 � x � L
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Real Moment M: Remove the virtual load and reapply the 

real load w.

Again, draw a free-body diagram around end A of the 

beam. Note that the same x coordinate used to derive the virtual 

moment must also be used to derive the real moment; there-

fore, the origin of the x coordinate system must be placed at 

A. From the free-body diagram, derive the following equation 

for the real internal moment M:

2

0 � x � L
2

wx
M � �

Virtual-Work Equation for Beam Defl ection: From Equation (17.35), the beam defl ec-

tion at A can now be calculated:

 

2
3

4

( 1 )( / 2)
1� �A

2

8

M x wx wm dx dx x dx
EI EI EI
wL
EI

− −⎛ ⎞
�

�

⎜ ⎟⎝ ⎠

∴�A ↓

� �
0

L

0

L

0

L

 

Ans.

Since the result is a positive value, the defl ection occurs in the same direction as-

sumed for the unit load—that is, downward.

(b) Virtual Moment m for Slope Calculation: To compute 

the angular rotation of the cantilever beam at A, remove the 

real load w from the beam and apply a virtual unit moment 

at A. The unit moment will be applied counterclockwise in 

this instance because it is expected that the beam will slope 

upward from A.

Again, draw a free-body diagram around end A of the 

beam, placing the origin of the x coordinate system at A. 

From the free-body diagram, derive the following equation 

for the virtual internal moment m:

m � �1 0 � x � L

Real Moment M: The real moment equation M is the same as was derived previously.

Virtual-Work Equation for Beam Slope: From Equation (17.36), the beam slope at A 

can now be determined:

 

2
2

3

( 1)( / 2)
1

2

(CCW)
6

A

A

M wx wm dx dx x dx
EI EI EI

wL
EI

θ

⎛ ⎞
� ⎜ ⎟⎝ ⎠

� �

���
� �

�
0

L

0

L

0

L

 

Ans.

Since the result is a positive value, the angular rotation occurs in the same direction 

assumed for the unit moment—that is, counterclockwise.

A B

L

w

x

V

M

A

x

w

A B

L
x

1

v

m

x

1 A
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EXAMPLE 17.14

C
A B

300 mm 165 mm

1,400 N
900 N

I � 160,000 mm4 I � 20,000 mm4 

C
A B

300 mm 165 mm

1 N

x

v

m

C

x

1 N

V

M

C

x

900 N

C
B

165 mm

x

1,400 N
900 N

V

M

Calculate the defl ection at end C of the cantilever beam shown. 

 Assume that E � 70 GPa for the entire beam.

Plan the Solution
For the cantilever beam considered here, the virtual moment equa-

tion will be continuous over the entire span, but the real moment 

equation is discontinuous at B. Therefore, the beam must be consid-

ered in two segments: AB and BC. The moment equations will be 

simpler to derive if the origin of the x coordinate system is placed 

at the free end C.

SOLUTION
Virtual Moment m: Remove the real loads from the beam and ap-

ply a virtual unit load downward at C, where the defl ection is de-

sired. At this stage of the calculation, it makes no difference that the 

beam depth changes along the span since only the virtual moment 

m is needed here.

For this beam, draw a free-body diagram around end C of the 

beam. Place the origin of the x coordinate system at C. From the 

free-body diagram, derive the following equation for the virtual in-

ternal moment m:

             (1 N) 0 465 mmm x x= − ≤ ≤

Real Moment M: Remove the virtual load, and reapply the real loads at B and 

C. Draw a free-body diagram around end C that cuts through segment BC of the 

beam. The same x coordinate used to derive the virtual moment must also be used 

to derive the real moment; therefore, the origin of the x coordinate system must 

be placed at C. From the free-body diagram, derive the following equations for 

the real internal moment M:

0 � x � 165 mmM �� (900 N) x

Draw a second free-body diagram that cuts through segment AB of the beam 

and includes the free end of the cantilever. From the free-body diagram, derive 

the following equations for the real internal moment M:

(1,400 N)( 165 mm) (900 N)

(2,300 N) (1,400 N)(165 mm)

165 mm 465 mm

M x x
x

x

��

�� �

�

� �

�

The moment of inertia differs for segments AB and BC. This difference will 

be incorporated into the calculation in the term M/EI. The equations developed 

so far, along with the limits of integration, are conveniently summarized in the 

following table:
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    x Coordinate 

Beam 

Segment
Origin

Limits

(mm)
I

m 

(N-mm)

M 

(N-mm)

M
m dx

EI
⎛ ⎞
⎜ ⎟⎝ ⎠

BC C 0–165 20,000 	1x 	900x 267,381.875 N /mm

E

AB C 165–

465

160,000 	1x 	2,300x � 
1,400(165)

2323,817.188 N /mm

E

2391,199.063 N /mm

E

Virtual-Work Equation: From Equation (17.35), the beam defl ection at C can now be 

determined:

 

2 2

2

391,199.063 N /mm 391,199.063 N /mm
(1 N)

70,000 N/mm

5.59 mm

C

C

E
��

��

�

�

�

↓  
Ans.
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EXAMPLE 17.15

A EB DC

3 m 1.5 m 3 m1.5 m

180 kN

45 kN/m

A EB DC

3 m 1.5 m 3 m1.5 m

1 kN

1
2 kN 1

2 kN

x1

x2
x4

x3

Compute the defl ection at point C for the simply supported 

beam shown. Assume that EI � 3.4 � 105 kN-m2.

Plan the Solution
The real loadings are discontinuous at points B and D, 

while the virtual loading for the beam is discontinuous at 

C. Therefore, this beam must be considered in four seg-

ments: AB, BC, CD, and DE. To facilitate the derivation of 

moment equations, it will be convenient to locate the x co-

ordinate origin at A for segments AB and BC and at E for 

segments CD and DE. To organize the calculation, it will 

also be convenient to summarize the pertinent equations in 

a tabular format.

SOLUTION
Virtual Moment m: Remove the real loads from the beam 

and apply a virtual unit load downward at C, where the 

defl ection is desired. A free-body diagram of the beam is 

shown.
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Draw a free-body diagram around end A of the beam. Place the origin of the x coor-

dinate system at A when considering segments AB and BC. From the free-body diagram, 

derive the following equations for the virtual internal moment m:

1 1

2 2

1
 kN 0 m 3 m

2

1
 kN 3 m 4.5 m

2

m x x

m x x

⎛ ⎞
� � �

� � �

⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟⎝ ⎠

Draw a free-body diagram around end E of the beam. Place the origin of the x coor-

dinate system at E when considering segments CD and DE. Derive the following equa-

tions for the virtual internal moment m:

3 3

4 4

1
 kN 3 m 4.5 m

2

1
 kN 0 m 3 m

2

m x x

m x x

⎛ ⎞
� � �

� � �

⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟⎝ ⎠

Real Moment M: Remove the virtual load and reapply 

the real loads. Determine the beam reactions, which are 

Ay � 300 kN and Ey � 150 kN acting in the upward 

 direction as shown.

Draw a free-body diagram around support A of 

the beam that cuts through segment AB. The same x 

coordinate used to derive the virtual moment must also 

be used to derive the real moment; therefore, the origin 

of the x coordinate system must be placed at A. From 

the free-body diagram, derive the following equation 

for the real internal moment M in segment AB of the 

beam:

2

1 1

1

45 kN/m
(300 kN)

2

0 3 m

M x x

x

�

� �

� �

Repeat the process with a free-body diagram cut through segment BC 

of the beam. From the free-body diagram, derive the following equation for 

the real internal moment M in segment BC of the beam:

2

2 2 2

2

45 kN/m
(180 kN)( 3 m) (300 kN)

2

3 m 4.5 m

M x x x

x

�� �

� �

� �

V

M

A

x1

45 kN/m

300 kN

V

M

A B

x2

3 m

45 kN/m

300 kN

180 kN
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For segment CD, draw a free-body diagram around support E that cuts through 

segment CD of the beam. From the free-body diagram, derive the following equation 

for the real internal moment M in segment CD of the beam:

2

3 3

3

45 kN/m
( 3 m) (150 kN)

2

3 m 4.5 m

M x x

x

�� �

� �

�

And fi nally, derive the following equation for the real internal moment M in segment 

DE of the beam:

4

4

(150 kN)

0 3 m

M x
x

�

� �

The m and M equations, along with the appropriate limits of integration, are summa-

rized in the table that follows. The results for the integration in each segment are also given.

x Coordinate

Beam 

Segment
Origin

Limits 

(m)

m 

(kN-m)

M 

(kN-m)

M
m dx

EI
⎛ ⎞
⎜ ⎟⎝ ⎠

AB A 0–3 1

1

2
x 2

1 1

45
300

2
x x� �

2 3
1,122.188 kN -m

EI

BC A 3–4.5 2

1

2
x 2

2 2 2

45
180( 3) 300

2
x x x� � � �

2 31,875.762 kN -m

EI

CD E 3–4.5 3

1

2
x 2

3 3

45
( 3) 150

2
x x� � �

2 31,550.918 kN -m

EI

DE E 0–3
4

1

2
x 4150x

2 3675.0 kN -m

EI
2 35, 223.868 kN -m

EI
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P17.45 Use the virtual-work method to determine the vertical 

displacement of joint B for the truss shown in Figure P17.45/46. 

Assume that each member has a cross-sectional area of A � 1.25 in.2 

and an elastic modulus of E � 10,000 ksi. The loads acting on the 

truss are P � 21 kips and Q � 7 kips.

P17.46 Calculate the horizontal displacement of joint B for 

the truss in Figure P17.45/46 by applying the virtual-work 

method. Make the assumptions that each member has a cross-

sectional area of A � 1.25 in.2 and an elastic modulus of E � 

10,000 ksi, and that the loads acting on the truss are P � 21 kips 

and Q � 7 kips.

4.5 ft

5 ft6.5 ft

y

x

A

B

C

P

Q

FIGURE P17.45/46

PROBLEMSPROBLEMS
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P17.47 In Figure P17.47/48, employ the virtual-work method to 

compute the vertical displacement of joint B for the truss. The as-

sumptions are that the loads acting on the truss are P � 15 kips and 

Q � 20 kips and that each member has a cross-sectional area of 

A � 0.75 in.2 and an elastic modulus of E � 10,000 ksi.

FIGURE P17.47/48

P17.48 Utilizing the virtual-work method, determine the hori-

zontal displacement of joint B for the truss in Figure P17.47/48. 

Assume that each member has a cross-sectional area of A � 0.75 

in.2 and an elastic modulus of E � 10,000 ksi. The loads acting on 

the truss are P � 15 kips and Q � 20 kips.

P17.49 In Figure P17.49/50, calculate the vertical displacement 

of joint D for the truss, using the virtual-work method. Each mem-

ber is assumed to have a cross-sectional area of A � 1,400 mm2 and 

an elastic modulus of E � 200 GPa, with loads acting on the truss 

of P � 175 kN and Q � 100 kN.

FIGURE P17.49/50

P17.50 Use the virtual-work method to compute the horizontal 

displacement of joint D for the truss shown in Figure P17.49/50. 

Make the assumption that each member has a cross-sectional area 

of A � 1,400 mm2 and an elastic modulus of E � 200 GPa. The 

loads acting on the truss are P � 175 kN and Q � 100 kN.

P17.51 Employing the virtual-work method, determine the ver-

tical displacement of joint D for the truss shown in Figure P17.51/52. 

Each member is assumed to have a cross-sectional area of A � 1.60 in.2 

and an elastic modulus of E � 29,000 ksi. The loads acting on the 

truss are P � 20 kips and Q � 30 kips.

FIGURE P17.51/52

P17.52 Calculate the horizontal displacement of joint D for the 

truss in Figure P17.51/52 by using the virtual-work method. Assume 

that the loads acting on the truss are P � 20 kips and Q � 30 kips and 

that each member has a cross-sectional area of A � 1.60 in.2 and an 

elastic modulus of E � 29,000 ksi.

P17.53 In Figure P17.53/54, utilize the virtual-work method to 

fi nd the vertical displacement of joint B for the truss. Assume that 

each member has a cross-sectional area of A � 800 mm2 and an 

elastic modulus of E � 70 GPa. The loads acting on the truss are 

P � 175 kN and Q � 60 kN.

FIGURE P17.53/54

P17.54 Use the virtual-work method to compute the horizontal 

displacement of joint B for the truss shown in Figure P17.53/54. 

Assume that each member has a cross-sectional area of A � 800 mm2 

and an elastic modulus of E � 70 GPa, and that the loads acting on 

the truss are P � 175 kN and Q � 60 kN.

P17.55 Determine the horizontal displacement of joint A for the 

truss in Figure P17.55/56/57 by applying the virtual-work method. 

Make the assumption that each member has a cross-sectional area 

of A � 750 mm2 and an elastic modulus of E � 70 GPa.

P17.56 In Figure P17.55/56/57, calculate the vertical displacement 

of joint B for the truss, employing the virtual-work method. Each 

member is assumed to have a cross-sectional area of A � 750 mm2 and 

an elastic modulus of E � 70 GPa.

P17.57 The truss shown in Figure P17.55/56/57 is constructed 

from aluminum [E � 70 GPa; 	 � 23.6 � 10	6/�C] members 

that each have a cross-sectional area of A � 750 mm2. Use the 
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virtual-work method to determine the vertical displacement of joint 

A for the following two conditions:

(a) �T � 0�C.

(b) �T � �40�C.

FIGURE P17.55/56/57

P17.58 In Figure P17.58/59, the truss is subjected to concen-

trated loads PD � 66 kN and PE � 42 kN. Members AB, AC, BC, 

and CD each have a cross-sectional area of A � 1,500 mm2. Members 

BD, BE, and DE each have a cross-sectional area of A � 600 mm2. All 

members are made of steel [E � 200 GPa]. For the given loads, use 

the virtual-work method to determine the horizontal displacement 

of (a) joint E, and (b) joint D.

FIGURE P17.58/59

P17.59 The truss in Figure P17.58/59 is subjected to concen-

trated loads PD � 50 kN and PE � 70 kN. Members AB, AC, BC, 

and CD each have a cross-sectional area of A � 1,500 mm2, while 

members BD, BE, and DE each have a cross-sectional area of A � 

600 mm2. All members are made of steel [E � 200 GPa]. For the 

given loads, compute the horizontal displacement of (a) joint E and 

(b) joint D, using the virtual-work method.

P17.60 Figure P17.60/61 shows a truss subjected to concen-

trated loads P � 320 kN and Q � 60 kN. Its members AB, BC, DE, 

and EF each have a cross-sectional area of A � 2,700 mm2, with all 

other members each having a cross-sectional area of A � 1,060 mm2. 

All members are made of steel [E � 200 GPa]. For the given loads, 

utilize the virtual-work method to calculate the horizontal displace-

ment of (a) joint F and (b) joint B.

FIGURE P17.60/61

P17.61 In Figure P17.60/61, the truss is subjected to concen-

trated loads P � 200 kN and Q � 35 kN. Members AB, BC, DE, 

and EF each have a cross-sectional area of A � 2,700 mm2, and all 

other members each have a cross-sectional area of A � 1,060 mm2. 

All members are made of steel [E � 200 GPa]. During construction, 

it was discovered that members AE and BF were fabricated 15 mm 

shorter than their intended length. For the given loads and the two 

member misfi ts, employ the virtual-work method to determine the 

horizontal displacement of (a) joint F, and (b) joint B.

P17.62 The wood truss in Figure P17.62/63/64 is subjected to 

concentrated loads on its upper chord. The upper chord members 

(BD, DF, FH, and HJ) and lower chord members (AC, CE, EG, and 

GI ) each have a cross-sectional area of A � 8.00 in.2. The web 

members (AB, AD, CD, CF, EF, FG, GH, HI, and IJ) each have a 

cross-sectional area of A � 5.25 in.2. The elastic modulus for all 

members is E � 1,080 ksi. Assume that all joints behave as pin 

joints. Use P � 2.5 kips, and compute the vertical displacement of 

joint E by applying the virtual-work method.

P17.63 A wood truss is subjected to concentrated loads on its 

upper chord. (See Figure P17.62/63/64.) Upper chord members 

(BD, DF, FH, and HJ) and lower chord members (AC, CE, EG, and 

GI ) each have a cross-sectional area of A � 8.00 in.2, with web 

members (AB, AD, CD, CF, EF, FG, GH, HI, and IJ) each having 

a cross-sectional area of A � 5.25 in.2. The elastic modulus for all 

member is E � 1,080 ksi. Assume that all joints behave as pin 

joints. Make the assumption that P � 2.5 kips, and calculate the 

vertical displacement of joint C by employing the virtual-work 

method.

P17.64 In Figure P17.62/63/64, the wood truss is subjected to 

concentrated loads on its upper chord. The upper chord members 

(BD, DF, FH, and HJ) and lower chord members (AC, CE, EG, and 

GI ) each have a cross-sectional area of A � 8.00 in.2, while the web 

members (AB, AD, CD, CF, EF, FG, GH, HI, and IJ) each have a 

cross-sectional area of A � 5.25 in.2. The elastic modulus for each 
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member is E � 1,080 ksi. P is assumed to equal 3.5 kips. Assume 

that all joints behave as pin joints. Determine the vertical displace-

ment of joint G, using the virtual-work method.

FIGURE P17.62/63/64

P17.65 The truss seen in Figure P17.65/66/67 is subjected to 

concentrated loads of P � 160 kN and 2P � 320 kN. All mem-

bers are made of steel [E � 200 GPa], and each has a cross- 

sectional area of A � 3,500 mm2. Use the virtual-work method to 

determine

(a) the horizontal displacement of joint A.

(b) the vertical displacement of joint A.

P17.66 Figure P17.65/66/67 shows a truss subjected to concen-

trated loads of P � 160 kN and 2P � 320 kN. Each member has a 

cross-sectional area of A � 3,500 mm2, with all members being 

made of steel [E � 200 GPa; � � 11.7 � 10�6/�C]. If the tempera-

ture of the truss increases by 30�C, use the virtual-work method to 

compute

(a) the horizontal displacement of joint A.

(b) the vertical displacement of joint A.

P17.67 The truss in Figure P17.65/66/67 is subjected to con-

centrated loads of P � 160 kN and 2P � 320 kN. All members are 

made of steel [E � 200 GPa; � � 11.7 � 10�6/�C], and each has a 

cross-sectional area of A � 3,500 mm2. Utilizing the virtual-work 

method, calculate

(a) the vertical displacement of joint D.

(b) the vertical displacement of joint D if the temperature of the 

truss decreases by 40�C.

FIGURE P17.65/66/67

P17.68 Use the virtual-work method to fi nd the slope of the 

beam at A for the loading shown in Figure P17.68. Assume that EI 
is constant for the beam.

FIGURE P17.68

P17.69 In Figure P17.69, compute the defl ection of the beam at 

B for the loading, employing the virtual-work method. Assume that 

EI is constant for the beam.

A CB
a b

L

P

FIGURE P17.69

P17.70 By applying the virtual-work method, determine the de-

fl ection of the beam at A for the loading in Figure P17.70. Assume 

that EI is constant for the beam.

FIGURE P17.70

P17.71 Employ the virtual-work method to calculate the slope 

of the beam at A for the loading seen in Figure P17.71. Assume that 

EI is constant for the beam.

FIGURE P17.71

P17.72 In Figure P17.72, fi nd the slope and the defl ection of the 

beam at B for the loading, using the virtual-work method. Assume 

that EI is constant for the beam.

FIGURE P17.72
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P17.73 What are the slope and defl ection of the beam at C for 

the loading shown in Figure P17.73? Utilize the virtual-work 

method and assume that EI is constant for the beam.

A B C

L L
2

P

FIGURE P17.73

P17.74 Use the virtual-work method to determine the defl ection 

of the compound rod at C for the loading shown in Figure P17.74. 

Between A and B, the rod has a diameter of 30 mm. Between B and 

C, the rod diameter is 15 mm. Assume that E � 200 GPa for both 

segments of the compound rod.

A CB

640 mm 320 mm

500 N

FIGURE P17.74

P17.75 Figure P17.75/76 shows a compound steel [E � 200 GPa] 

rod that has a diameter of 15 mm in segments AB and DE and a 

diameter of 30 mm in segments BC and CD. For the given loading, 

apply the virtual-work method to fi nd the slope of the compound 

rod at A.

A EB DC

100 mm100 mm 65 mm 65 mm

120 N/mm

FIGURE P17.75/76

P17.76 The compound steel [E � 200 GPa] rod in Figure 

P17.75/76 has a diameter of 15 mm in segments AB and DE and a 

diameter of 30 mm in segments BC and CD. For the given loading, 

compute the defl ection of the compound rod at C, employing the 

virtual-work method.

P17.77 In Figure P17.77, use the virtual-work method to deter-

mine the defl ection of the beam at C for the loading. Assume that 

EI � 1.72 � 105 kN-m2 for the beam.

A DB C

3 m 3 m 4 m

180 kN120 kN

FIGURE P17.77

P17.78 Figure P17.78 shows a simply supported beam. Assume 

that EI � 15 � 106 kip-in.2 for the beam. Apply the virtual-work 

method and calculate

(a) the defl ection at A.

(b) the slope at C.

A CB

8 ft 20 ft

3.5 kips/ft

FIGURE P17.78

P17.79 A cantilever beam is loaded as shown in Figure P17.79. 

Assume that EI � 74 � 103 kN-m2 for the beam, and use the virtual-

work method to fi nd

(a) the slope at C.

(b) the defl ection at C.

A CB

2 m3 m

40 kN/m

FIGURE P17.79

P17.80 In Figure P17.80/81, calculate the defl ection at C for the 

simply supported beam by employing the virtual-work method. 

 Assume that EI � 37.7 � 106 kip-in.2.

A CB D E

10 ft 7 ft12.5 ft

2.5 ft

34 kips

5 kips/ft

FIGURE P17.80/81

P17.81 Use the virtual-work method to compute the defl ection 

at E for the simply supported beam in Figure P17.80/81. Assume 

that EI � 37.7 � 106 kip-in.2.
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P17.82 Applying the virtual-work method, determine the slope 

at A for the beam shown in Figure P17.82/83. Assume that EI � 

11.4 � 106 kip-in.2 for the beam.

A DB C

9 ft6 ft 3 ft

6 kips/ft90 kip-ft

FIGURE P17.82/83

P17.83 Find the defl ection at C for the beam in Figure P17.82/83. 

Use the virtual-work method, and assume that EI � 11.4 � 106 

kip-in.2 for the beam.

P17.84 Utilize the virtual-work method to determine the mini-

mum moment of inertia I required for the beam in Figure P17.84 if 

the maximum beam defl ection must not exceed 35 mm. Assume 

that E � 200 GPa.

A DB C

4 m 4 m 4 m

125 kN125 kN

FIGURE P17.84

P17.85 In Figure P17.85, calculate the minimum moment of 

inertia I required for the beam if the maximum beam defl ection 

must not exceed 0.5 in. Assume that E � 29,000 ksi, and employ 

the virtual-work method.

A B

15 ft

1.5 kips/ft 75 kip-ft

FIGURE P17.85
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Strain-energy techniques are frequently used to analyze the defl ections of beams and struc-

tures. Of the many available methods, the application of Castigliano’s second theorem, to 

be developed here, is one of the most widely used. It was presented in 1873 by the Italian 

engineer Alberto Castigliano (1847–1884). Although the theorem will be derived by con-

sidering the strain energy stored in beams, it is applicable to any structure for which the 

force-deformation relations are linear.1 The method incorporates strain-energy princi-

ples developed earlier. Further, it is remarkably similar to the virtual-work method 

 developed previously.

If the beam shown in Figure 17.25a is slowly and simultaneously loaded by two 

forces P1 and P2, with resulting defl ections �1 and � 2, the strain energy U of the beam 

is equal to the work done by the forces. Therefore,

1 1 2 2

1 1

2 2
U P P� �� �

Recall that the factor of ½ in each term is required because the loads build up from 

zero to their fi nal magnitude. [See Equation (17.1).]

Let the force P1 be increased by a small amount dP1 while force P2 remains con-

stant, as shown in Figure 17.25b. The changes in defl ection due to this incremental load 

will be denoted d�1 and d�2. The strain energy in the beam increases by the amount 

½dP1d�1 as the incremental force dP1 defl ects through the distance d�1. However, 

17.11 Castigliano’s Second Theorem

1Castigliano’s fi rst theorem, which can be used to establish equations of equilibrium, will not be discussed in this 

text. This theorem, however, is a powerful method for solving problems for statically indeterminate structures and 

has application in many computer-based analytical methods such as fi nite-element analysis.

FIGURE 17.25 Beam 

subjected to incremental load.

(a)

(b)
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801
CASTIGLIANO’S SECOND 

THEOREM
forces P1 and P2, which remain present on the beam, also perform work as the beam de-

fl ects. Altogether, the increase in the strain energy due to the application of dP1 is

 
1 1 2 2 1 1

1

2
dU P d P d dP d� � � �� �

 

(a)

so that the total strain energy in the beam is

 
1 1 2 2 1 1 2 2 1 1

1 1 1

2 2 2
U dU P P P d P d dP d� � � � � �� � � � �

 

(b)

If the order of loading is reversed so that the incremental force dP1 is applied fi rst, 

followed by P1 and P2, the resulting strain energy will be

 
1 1 2 2 1 1 1 1

1 1 1

2 2 2
U dU P P dP dP d� � � � �� � � �

 

(c)

Note that since the beam is linearly elastic, the loads P1 and P2 cause the same defl ec-

tions �1 and � 2 regardless of whether or not any other load is acting on the beam. Since 

dP1 remains constant during the additional defl ection �1 at its point of application, the term 

dP1�1 does not contain the factor ½.

Since elastic deformation is reversible and energy losses are neglected, the resulting 

strain energy must be independent of the order of loading. Hence, by equating Equations 

(b) and (c), we obtain

 1 1 1 1 2 2dP P d P d�� � ��
 

(d)

Equations (a) and (d) can be combined to give

 
1 1 1 1

1

2
dU dP dP d� � ��

 

(e)

The term

1 1

1

2
dP d�

is a second-order differential that may be neglected. Furthermore, the strain energy U is a 

function of both P1 and P2; therefore, the change in strain energy dU due to the incremental 

load dP1 is expressed by the partial derivative of U with respect to P1 as

1

1

UdU dP
P

�
�

�

Equation (e) can then be written as

1 1 1

1

U dP dP
P

� �
�

�

which can be simplifi ed to

 

1

1

U
P

�
�

�
�

 

(f )
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802
ENERGY METHODS For the general case in which there are many loads involved, Equation (f) is written as

 
i

i

U
P

��
�

�
 

(17.37)

The following is a statement of Castigliano’s second theorem:

The strain energy in an axial member was developed in Section 17.3. For compound axial 

members and structures consisting of n prismatic axial members, the total strain energy in 

the member or structure can be computed with Equation (17.14),

2

1 2

n
i i

i i i

F LU
A E�

�∑

To compute the defl ection of a truss, the general expression for strain energy given by 

Equation (17.14) can be substituted into Equation (17.37) to obtain

2

2

F L
P AE
�

�
�� ∑

where the subscripts i have been omitted. It is generally easier to perform the differentia-

tion before summation, expressed as

2

2

F L
P AE

��
�

�
∑

17.12  Calculating Defl ections of Trusses 
by Castigliano’s Theorem

If the strain energy of a linearly elastic structure is expressed in terms of the system of 

external loads, the partial derivative of the strain energy with respect to a concentrated 

external load is the defl ection of the structure at the point of application and in the direc-

tion of that load.

By a similar development, Castigliano’s theorem can also be shown to be valid for 

applied moments and the resulting rotations (or changes in slope) of the structure. Thus,

 

i
i

U
M

��
�

�
 

(17.38)

If the defl ection is required either at a point where there is no unique point load or in 

a direction not aligned with the applied load, a dummy load is introduced at the desired 

point, acting in the proper direction. We obtain the defl ection by fi rst differentiating the 

strain energy with respect to the dummy load and then taking the limit as the dummy load 

approaches zero. Also, for the application of Equation (17.38), either a unique point 

 moment or a dummy moment must be applied at point i. The moment will be in the direc-

tion of rotation at the point. Note that if the loading consists of a number of point loads, all 

expressed in terms of a single parameter (e.g., P, 2P, 3P, wL, or 2wL), and if the defl ection 

is wanted at one of the applied loads, we must either write the moment equation with this 

load as a separate identifi able term or add a dummy load at the point so that the partial 

derivative can be taken with respect to this load only.

Castigliano’s second theorem 

applies to any elastic system at 

constant temperature and on 

unyielding supports and that 

obeys the law of superposition.
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803
CALCULATING DEFLECTIONS 

OF TRUSSES BY CASTIGLIANO’S 
THEOREM

The terms L, A, and E are constant for each particular member. Since the partial de-

rivative 
F2/
P � 2F(
F/
P), the expression of Castigliano’s second theorem for trusses 

can be written as

 

F FL
P AE

⎛ ⎞
��

�

�
⎜ ⎟⎝ ⎠∑

 

(17.39)

where

� � displacement of the truss joint

P � external force applied to the truss joint in the direction of � and expressed as a variable
F � internal axial force in a member caused by both the force P and the loads on the truss

L � member length

A � cross-sectional area of the member

E � elastic modulus of the member

To determine the partial derivative 
F/
P, the external force P must be treated as a 

variable, not a specifi c numeric quantity. Consequently, each internal axial force F must be 

expressed as a function of P.

If the defl ection is required at a joint at which either there is no external load or the 

defl ection is required for a direction not aligned with the external load, then a dummy load 

must be added in the proper direction at the desired joint. We obtain the joint defl ection by 

fi rst differentiating the strain energy with respect to the dummy load and then taking the 

limit as the dummy load approaches zero.

Procedure for Analysis

The following procedure is recommended when Castigliano’s second theorem is applied to 

calculate truss defl ections:

1.  Load P Expressed as a Variable: If an external load acts on the truss at the joint 

where defl ections are to be calculated and in the direction of the desired defl ection, then 

designate that load as the variable P. This means that subsequent calculations will be 

performed in terms of the variable P rather than in terms of the actual numeric value 

known for this particular external load. Otherwise, apply a fi ctitious load (a dummy 

load) in the direction of the desired defl ection at the particular joint. Designate this 

dummy load as P.

2.  Member Forces F in Terms of P: Develop expressions for the internal axial force 

F created in each truss member by the actual external loads and the variable load P. It 

is likely that the internal force expression for a particular member will include both a 

numeric value and a function in terms of P. Assume that tensile forces are positive and 

compressive forces are negative.

3.  Partial Derivatives for Each Truss Member: Differentiate the expressions for 

the truss-member forces F with respect to P to compute 
F/
P.

4.  Substitute Numeric Value for P: Substitute the actual numeric value for load P 

into the expressions for F and 
F/
P for each truss member. If a dummy load has been 

used for P, its numeric value is zero.

5.  Summation: Perform the summation indicated by Equation (17.39) to calculate the 

desired joint defl ection. A positive answer indicates that the defl ection acts in the same 

direction as P, and vice versa.

The use of Castigliano’s theorem to compute truss joint defl ections is illustrated in the 

following examples:
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EXAMPLE 17.16

Determine the vertical defl ection at joint A for the truss shown. For all 

members, the cross-sectional area is A � 1,100 mm2 and the elastic modu-

lus is E � 200 GPa.

Plan the Solution
The vertical defl ection is to be determined at joint A. Since a vertical load is 

present at A for the truss, this load will be designated as P. This means that 

instead of performing a truss analysis with the 75-kN load at A, we will replace 

the 75-kN load with a variable load designated as P. Using this variable load P 

at joint A instead of the given 75-kN load, we will then perform a truss analysis, 

using an appropriate method such as the method of joints. From the analysis, 

an expression in terms of P and any additional values that arise from the other joint load (i.e., 

the 125-kN load applied at C) will be obtained for each truss member.

Construct a table to organize the truss analysis results. For each truss member, re-

cord the complete member-force expressions F in one column. Four additional operations 

will then be performed:

(1)  Differentiate the member-force expression F with respect to P, and record the partial 

derivatives.

(2)  Substitute the actual 75-kN value for P in the member-force expression F, and calculate 

the actual member force.

(3)  Calculate the length of each truss member.

(4)  Multiply the partial derivative 
F/
P, the actual member-force value F, and the member 

length L.

The product (
F/
P)FL for all truss members will be summed. Since the area A and 

the elastic modulus E are the same for all members, these values will be introduced after 

the summation. Finally, Equation (17.39) will be applied to determine the downward 

defl ection � of joint A.

SOLUTION
Since the vertical defl ection at joint A is desired and since there 

is already a load applied at this joint in the desired direction, we 

will replace the 75-kN load with a variable load P. A free-body 

diagram of the truss with load P applied at joint A is shown.

Perform a truss analysis, using the loadings shown in the 

free-body diagram, to fi nd the axial force in each truss member. 

With these loads, the member forces F will each be expressed 

as a unique function of P. Some member-force functions F may 

also contain constant terms arising from the 125-kN load that 

acts at joint C.

The tabular format shown shortly is a convenient way to organize the truss defl ection 

calculation. The member name is shown in column (1), and the expression for the internal 

member force F in terms of the variable P is listed in column (2). Differentiate the function 

in column (2) with respect to P, and record this result in column (3). Next, substitute the 

actual value of P � 75 kN into the member-force functions in column (2), and record the 

result in column (4). These values are the actual member forces for the truss in response to 

the 75-kN and 125-kN loads. These values will be used for the term FL/AE found in Equa-

tion (17.39). Finally, calculate the member lengths and record them in column (5).

Castigliano’s second theorem applied to trusses is expressed by Equation (17.39). 

For this particular truss, each member has a cross-sectional area of A � 1,100 mm2 and 
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an elastic modulus of E � 200 GPa; therefore, the calculation process can be simplifi ed 

by moving both A and E outside of the summation operation:

1 F FL
AE P

⎛ ⎞
�

�

�
⎜ ⎟⎝ ⎠∑�

For each truss member, multiply the terms in columns (3), (4), and (5) and record the 

result in column (6). Sum these values for all members.

(1) (2) (3) (4) (5) (6)

Member

F

(kN)

F

P

�

�

F 

(for P � 75 kN) 

(kN)

L 

(m)

F
FL

P

�

�

⎛ ⎞
⎜ ⎟⎝ ⎠

(kN-m)

AB �1.25P �1.25  �93.75 7.5   878.91

AC   0.75P 0.75    56.25 4.5   189.84

BC   1.00P 1.00    75.00 6.0   450.00

BD �0.75P �0.75  �56.25 7.5   316.41

CD �1.60P � 200.10 �1.60 �320.10 9.605  4,919.30

CE   2.00P � 156.25 2.00   306.25 7.5  4,593.75

DE   1.00P � 125.00 1.00   200.00 6.0  1,200.00

F FL
P

⎛ ⎞
�

�

�
⎜ ⎟⎝ ⎠∑ 12,548.20

Apply Equation (17.39) to compute the defl ection of joint A from the tabulated results:

 

2 2

(12,548.20 kN-m)(1,000 N/kN)(1,000 mm/m)

(1,100 mm )(200,000 N/mm )

57.0 mm ↓

A

�

��

 Ans.

Since the load P was applied in a downward direction at A, the positive value of the 

result confi rms that joint A does displace downward.

EXAMPLE 17.17

Calculate the horizontal defl ection at joint D for the truss shown. 

For all members, the cross-sectional area is A � 3.7 in.2 and the 

elastic modulus E � 29,000 ksi.

Plan the Solution
The horizontal defl ection is to be determined at joint D. Since 

there is no external load in the horizontal direction at D, a dummy 

load P will be required. Apply a dummy load P acting in the hori-

zontal direction at D and include it in the truss analysis. Follow the 

same procedure outlined in Example 17.16. However, when calcu-

lating the actual member force, substitute a value of P � 0 kips in 

the member-force expressions. Apply Equation (17.39) to deter-

mine the horizontal defl ection � of joint D.
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SOLUTION
Since the horizontal defl ection at joint D is desired 

and since there is not an external load acting horizon-

tally at joint D, a dummy load will be applied in the 

horizontal direction at this joint. A free-body diagram 

of the truss with load P applied at joint D is shown.

Perform a truss analysis, using the loadings shown 

in the free-body diagram, to fi nd the axial force in each 

truss member. With these loads, the member forces F 

will each be expressed as a unique function of P.

In the table that follows, expressions for each 

member’s internal force in terms of the variable P are 

listed in column (2). The partial derivative 
F/
P is 

listed in column (3). The actual force F in each member is calculated by substituting a 

value of P � 0 kips into each force expression listed in column (2). These member forces 

are listed in column (4). Finally, the length of each member is shown in column (5).

Castigliano’s second theorem applied to trusses is expressed by Equation (17.39). 

For this particular truss, each truss member has a cross-sectional area of A � 3.7 in.2 and 

an elastic modulus of E � 29,000 ksi; therefore, the calculation process can be simplifi ed 

when both A and E are moved outside of the summation operation:

1 F FL
AE P

⎛ ⎞
�

�

�
� ⎜ ⎟⎝ ⎠∑

For each truss member, the terms in columns (3), (4), and (5) are multiplied together 

and recorded in column (6).

(1) (2) (3) (4) (5) (6)

Member

F

(kips)

F

P

�

�

F 

(for P � 0 kips) 

(kips)

L 

(ft)

F
FL

P

�

�

⎛ ⎞
⎜ ⎟⎝ ⎠
(kip-ft)

AB 0.447P � 48.3 0.447   48.3 17.9 386.46

AC 0.8P 	 21.6 0.8 	21.6 20 	345.60

BC 	0.778P 	 84.0 	0.778 	84.0 20 1,307.04

BD 0.703P � 75.9 0.703   75.9 25.3 1,349.95

CD 0.401P 	 86.5 0.401 	86.5 14.4 	499.49

F FL
P

�

�
�

⎛ ⎞
⎜ ⎟⎝ ⎠∑ 2,198.36

Apply Equation (17.39) to compute the horizontal defl ection of joint D from the 

tabulated results:

 

2

(2,198.36 kip-ft)(12 in./ft)

(3.7 in. )(29,000 ksi)

0.246 in.

D

→�

��

 Ans.

Since the dummy load was applied to the right at D, the positive value of the result 

confi rms that joint D does displace to the right.
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807
CALCULATING DEFLECTIONS 

OF BEAMS BY CASTIGLIANO’S 
THEOREM

The strain energy in a fl exural member was developed in Section 17.5. The total strain 

 energy in a beam of length L is given by Equation (17.20) as

2

2

MU dx
EI

�
0

L

To compute the defl ection of a beam, the general expression for strain energy given by 

Equation (17.20) can be substituted into Equation (17.37) to obtain

2

2

M dx
P EI

��
�

�
0

L

From the rules of calculus, the integral can be differentiated by differentiating inside 

the integral sign. If the elastic modulus E and the moment of inertia I are constant with 

respect to the applied load P, then

2 2 1

2 2

M Mdx dx
P EI P EI

⎛ ⎞
⎜ ⎟⎝ ⎠

�

� �

�
�

0

L

0

L

Since the partial derivative 
M2/
P � 2M(
M/
P), the expression of Castigliano’s 

second theorem for beam defl ections can be written as

 

M M dx
P EI

⎛ ⎞
�

�

�
� ⎜ ⎟⎝ ⎠0

L

 

(17.40)

where

� � displacement of a point on the beam

P � external force applied to the beam in the direction of � and expressed as a variable
M �  internal bending moment in the beam expressed as a function of x and caused by both 

the force P and the loads on the beam

I � moment of inertia of the beam cross section about the neutral axis

E � elastic modulus of the beam

L � beam length

Similarly, Castigliano’s second theorem can also be used to compute the rotation 

angle (i.e., slope) of a beam from

 

M M dx
M EI

⎛ ⎞
�

�

�
� ⎜ ⎟⎝ ⎠′0

L

 

(17.41)

where � is the rotation angle (or slope) of the beam at a point and M� is a concentrated mo-

ment applied to the beam in the direction of � at the point of interest and expressed as a 
variable.

If the defl ection is required at a point where either there is no external load or the 

 defl ection is required for a direction not aligned with the external load, then a dummy load 

must be added in the proper direction at the desired point. Likewise, if the slope is required 

at a point where there is no external concentrated moment, then a dummy moment must be 

added in the proper direction at the desired point.

Differentiation inside the integral 

is permissible when P is not a 

function of x.

17.13  Calculating Defl ections of Beams 
by Castigliano’s Theorem
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808
ENERGY METHODS Procedure for Analysis

The following procedure is recommended when Castigliano’s second theorem is applied to 

calculate defl ections for beams:

1.  Load P Expressed as a Variable: If an external load acts on the beam at the point 

where defl ections are to be calculated and in the direction of the desired defl ection, then 

designate that load as the variable P. This means that subsequent calculations 

will be performed in terms of the variable P rather than in terms of the actual numeric 

value known for this particular external load. Otherwise, apply a fi ctitious load 

(a dummy load) in the direction of the desired defl ection at the particular point. Desig-

nate this dummy load as P.

2.  Beam Internal Moment M in Terms of P: Establish appropriate x coordinates for 

regions of the beam where there is no discontinuity of force, distributed load, or concen-

trated moment. Develop expressions for the internal moment M in terms of the actual 

external loads and the variable load P. The internal moment expression M for a particu-

lar segment of the beam will likely include both a numeric value and a function in terms 

of P. Use the standard convention for bending moment signs illustrated in Figures 7.6 

and 7.7 for the M equations.

3.  Partial Derivatives: Differentiate the internal moment expressions with respect to 

P in order to compute 
M/
P.

4.  Substitute Numeric Value for P: Substitute the actual numeric value for load P 

into the expressions for M and 
M/
P. If a dummy load has been used for P, its numeric 

value is zero.

5.  Integration: Perform the integration indicated by Equation (17.40) to calculate the 

desired defl ection. A positive answer indicates that the defl ection acts in the same direc-

tion as P, and vice versa.

The following procedure is recommended when Castigliano’s second theorem is 

 applied to calculate slopes for beams:

1.  Concentrated Moment M� Expressed as a Variable: If an external concen-

trated moment acts on the beam at the point where slopes are to be calculated and in the 

direction of the desired beam rotation, then designate that concentrated moment as the 

variable M�. This means that subsequent calculations will be performed in terms of the 

variable M� rather than in terms of the actual numeric value known for this particular 

external concentrated moment. Otherwise, apply a fi ctitious concentrated moment (a 

dummy moment) in the direction of the desired slope at the particular point. Designate 

this dummy moment as M�.

2.  Beam Internal Moment M in Terms of P: Establish appropriate x coordinates for 

regions of the beam where there is no discontinuity of force, distributed load, or concen-

trated moment. Determine expressions for the internal moment M in terms of the actual 

external loads and the variable moment M�. Be aware that the internal moment expres-

sion M for a particular segment of the beam may include both a numeric value and a 

function in terms of M�. Use the standard convention for bending moment signs illus-

trated in Figures 7.6 and 7.7 for the M equations.

3.  Partial Derivatives: Differentiate the internal moment expressions with respect to 

M� in order to compute 
M/
M�.

4.  Substitute Numeric Value for M�: Substitute the actual numeric value for moment 

M� into the expressions for M and 
M/
M�. If a dummy moment has been used for M�, 
its numeric value is zero.
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809
CALCULATING DEFLECTIONS 

OF BEAMS BY CASTIGLIANO’S 
THEOREM

5.  Integration: Perform the integration indicated by Equation (17.41) to calculate the 

desired slope. A positive answer indicates that the rotation acts in the same direction as 

M�, and vice versa.

The use of Castigliano’s theorem to compute beam defl ections and slopes is illustrated 

in the following example:

EXAMPLE 17.18

Use Castigliano’s second theorem to determine (a) the defl ection 

and (b) the slope at end A of the cantilever beam shown. Assume 

that EI is constant.

Plan the Solution
Since no external concentrated loads or concentrated moments 

act at A, dummy loads will be required for this problem. To deter-

mine the defl ection at end A, a dummy load P acting downward will be applied at A. An 

expression for the internal moment M in the beam will be derived in terms of both the 

actual distributed load w and the dummy load P. The moment expression will be dif-

ferentiated with respect to P to obtain 
M/
P. A value of P � 0 will be substituted in 

the moment expression, and then the moment expression M and the partial derivative 


M/
P will be multiplied. The resulting expression will be integrated over the beam 

length L to obtain the beam defl ection at A. A similar procedure will be used to deter-

mine the beam slope at A. The dummy load for this calculation will be a concentrated 

moment M� applied at A.

SOLUTION
(a) Defl ection Calculation: To determine the downward 

 defl ection of the cantilever beam, apply a dummy load P 

downward at A.

Draw a free-body diagram around end A of the beam. The 

origin of the x coordinate system will be placed at A. From the 

free-body diagram, derive the following equation for the inter-

nal bending moment M:

2

0
2

wxM Px x L�� � � �

Differentiate this expression to obtain 
M/
P:

M x
P

�
�

�
�

Substitute P � 0 into the bending-moment equation to obtain

2

2

wxM ��
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Castigliano’s second theorem applied to beam defl ections is expressed by Equation 

(17.40). When the expressions derived for 
M/
P and M are substituted, Equation (17.40) 

becomes

2 3

2 2

M M wx wxdx x dx dx
P EI EI EI

⎛ ⎞⎛ ⎞
�� ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

�
�

�
� � �

0

L

0

L

0

L

Integrate this expression over the beam length L to determine the vertical beam 

 defl ection at A:

 

4

8
A

wL
EI

�� ↓
 

Ans.

Since the result is a positive value, the defl ection occurs in the same direction as-

sumed for the dummy load P—that is, downward.

(b) Slope Calculation: To determine the angular rotation 

of the cantilever beam at A, a dummy concentrated moment 

M� will be applied. The dummy moment will be applied 

counterclockwise in this instance because it is expected 

that the beam will slope upward from A.

Again, draw a free-body diagram around end A of the 

beam, placing the origin of the x coordinate system at A. 

From the free-body diagram, derive the following equation for the internal bending 

 moment M:

2

0
2

wxM M x L�� � � ��

Differentiate this expression to obtain 
M/
M�:

1
M
M

�

�
��

�

Substitute M� � 0 into the bending-moment equation to obtain

2

2

wxM ��

Castigliano’s second theorem applied to beam slopes is expressed by Equation (17.41). 

When the expressions derived for 
M/
M� and M are substituted, Equation (17.41) becomes

2 2

1
2 2

M M wx wxdx dx dx
M EI EI EI

⎛ ⎞⎛ ⎞
� � � � �⎜ ⎟ ⎜ ⎟⎝ ⎠

�

� � ⎝ ⎠
�

0

L

0

L

0

L

Integrate this expression over the beam length L to determine the beam slope at A:

 

3

(CCW)
6

A
wL
EI

��
 

Ans.

Since the result is a positive value, the angular rotation occurs in the same direction 

 assumed for the dummy moment—that is, counterclockwise.
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EXAMPLE 17.19

Compute the defl ection at point C for the simply supported 

beam shown. Assume that EI � 3.4 � 105 kN-m2.

Plan the Solution
Since the defl ection is desired at C and no external load acts at 

that location, a dummy load P will be required at C. With 

dummy load P placed at C, the bending-moment equation will 

be discontinuous at points B, C, and D. Therefore, this beam 

must be considered in four segments: AB, BC, CD, and 

DE. To facilitate the derivation of moment equations, it 

will be convenient to locate the x coordinate origin at A 

for segments AB and BC, and at E for segments CD and 

DE. To organize the calculation, it will also be convenient 

to summarize the pertinent equations in a tabular format.

SOLUTION
Place a dummy load P at point C, which is located at the 

center of the 9-m beam span. Determine the beam reac-

tions, taking care to include both the actual loads and the 

dummy load P. The reaction forces at A and E are shown 

on the beam free-body diagram.

Draw a free-body diagram around support A of the beam, cutting through segment 

AB. The origin of the x coordinate system will be placed at A. From the free-body dia-

gram, derive the following equation for the internal moment M in segment AB of the 

beam:

2

1 1

1

45 kN/m
300 kN

2 2

 m

PM x x

x

⎛ ⎞
⎜ ⎟⎝ ⎠�� � �

� �0 3

Repeat the process with a free-body diagram cut through segment BC of the 

beam. From the free-body diagram, derive the following equation for the internal mo-

ment M in segment BC of the beam:

2

2 2 2

2

45 kN/m
(180 kN)( 3 m) 300 kN

2 2

3 m 4.5 m

PM x x x

x

⎛ ⎞
⎜ ⎟⎝ ⎠�� � � ��

� �

For segment CD, draw a free-body diagram around support E, cutting through 

segment CD of the beam. From the free-body diagram, derive the following equation 

for the internal moment M in segment CD of the beam:

2

3 3

3

45 kN/m
( 3 m) 150 kN

2 2

3 m 4.5 m

PM x x

x

⎛ ⎞
⎜ ⎟⎝ ⎠�� � � �

��

� �

�

�

811 811

�
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And fi nally, derive the following equation for the real internal moment M in segment 

DE of the beam:

4

4

150 kN
2

0 3 m

PM x

x

⎛ ⎞
⎜ ⎟⎝ ⎠� �

� �

Differentiate each M equation with respect to P to obtain 
M/
P. Then substitute 

P � 0 into each M equation for the beam. These expressions are summarized in the fol-

lowing table:

Beam 

Segment

M 

(kN-m)

M

P

(m)

M 

(for P � 0 kN) 

(kN-m)

AB
2

1 1

45
300

2 2

Px x⎛ ⎞
⎜ ⎟⎝ ⎠� � � 1

1

2
x 2

1 1

45
300

2
x x� �

BC
2

2 2 2

45
(180)( 3) 300

2 2

Px x x⎛ ⎞
� � � �� ⎜ ⎟⎝ ⎠ 2

1

2
x 2

2 2 2

45
180( 3) 300

2
x x x� � � �

CD
2

3 3

45
( 3) 150

2 2

Px x⎛ ⎞
⎜ ⎟⎝ ⎠� � � � 3

1

2
x 2

3 3

45
( 3) 150

2
x x� � �

DE 4150
2

P x⎛ ⎞
⎜ ⎟⎝ ⎠�

4

1

2
x

4150x

Castigliano’s second theorem applied to beam defl ections is expressed by Equation 

(17.40). Substitute the expressions derived for 
M/
P and M for each beam segment into 

Equation (17.40), taking care to note the appropriate limits of integration for each seg-

ment. These expressions, as well as the results of the integration, are summarized in the 

following table:

Beam 

Segment

x Coordinate

Origin Limits

        (m)

M
M

P
⎛ ⎞
⎜ ⎟⎝ ⎠

�

�

(kN-m2)

M M
dx

P EI
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

�

�

AB     A    0–3 3 2

1 111.25 150x x� � 31,122.188 kN-m

EI

BC     A    3–4.5 3 2

2 2 211.25 60 270x x x� � � 31,875.762 kN-m

EI

CD     E    3–4.5 3 2

3 3 311.25 142.5 101.25x x x� � � 31,550.918 kN-m

EI

DE     E    0–3 2

475x 3675.0 kN-m

EI

35, 223.868 kN-m

EI
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From Equation (17.40), the beam defl ection at C can now be determined:

 

3 3

5 2

3

5, 223.868 kN-m 5,223.868 kN-m

3.4 10  kN-m

15.3643 10  m 15.36 mm

C

C

EI
� ↓

� �
	

	

�

� � ��
 

Ans.

813 813

P17.86 Use Castigliano’s second theorem to determine the ver-

tical displacement of joint B for the truss shown in Figure P17.86/87. 

Assume that each member has a cross-sectional area of A � 0.85 in.2 

and an elastic modulus of E � 10,000 ksi. The loads acting on the 

truss are P � 17 kips and Q � 9 kips.

FIGURE P17.86/87

P17.87 Applying Castigliano’s second theorem, fi nd the hori-

zontal displacement of joint B for the truss in Figure P17.86/87. 

Assume that each member has a cross-sectional area of A � 0.85 in.2 

and an elastic modulus of E � 10,000 ksi, and that the loads acting 

on the truss are P � 17 kips and Q � 9 kips.

P17.88 In Figure P17.88/89, calculate the vertical displacement 

of joint B for the truss, using Castigliano’s second theorem. The 

loads acting on the truss are P � 36 kips and Q � 22 kips. Each 

member is assumed to have a cross-sectional area of A � 1.75 in.2 

and an elastic modulus of E � 10,000 ksi.

FIGURE P17.88/89

P17.89 Compute the horizontal displacement of joint B for the 

truss shown in Figure P17.88/89. Employ Castigliano’s second 

theorem, and assume that each member has a cross-sectional area 

of A � 1.75 in.2 and an elastic modulus of E � 10,000 ksi, and that 

the loads acting on the truss are P � 36 kips and Q � 22 kips.

P17.90 In Figure P17.90/91, utilize Castigliano’s second theo-

rem to determine the vertical displacement of joint D for the truss. 

Assume that the loads acting on the truss are P � 135 kN and Q � 

50 kN, and that each member has a cross-sectional area of A � 

1,850 mm2 and an elastic modulus of E � 200 GPa.

FIGURE P17.90/91

P17.91 Use Castigliano’s second theorem to fi nd the horizontal 

displacement of joint D for the truss in Figure P17.90/91. Each 

member is assumed to have a cross-sectional area of A � 1,850 mm2 

and an elastic modulus of E � 200 GPa. The loads acting on the 

truss are P � 135 kN and Q � 50 kN.

P17.92 Compute the vertical displacement of joint D for the 

truss in Figure P17.92/93. Assume that each member has a cross-

sectional area of A � 2.25 in.2 and an elastic modulus of E � 

29,000 ksi. The loads acting on the truss are P � 13 kips and Q � 

25 kips. Employ Castigliano’s second theorem.

FIGURE P17.92/93

PROBLEMSPROBLEMS
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P17.93 In Figure P17.92/93, use Castigliano’s second theorem 

to fi nd the horizontal displacement of joint D for the truss. The as-

sumptions are that each member has a cross-sectional area of A � 

2.25 in.2 and an elastic modulus of E � 29,000 ksi and that the 

loads acting on the truss are P � 13 kips and Q � 25 kips.

P17.94 Utilize Castigliano’s second theorem to determine the 

vertical displacement of joint B for the truss shown in Figure 

P17.94/95. The loads acting on the truss are P � 140 kN and Q � 

90 kN. Assume that each member has a cross-sectional area of A � 

2,100 mm2 and an elastic modulus of E � 70 GPa. The loads acting 

on the truss are P � 140 kN and Q � 90 kN.

FIGURE P17.94/95

P17.95 What is the horizontal displacement of joint B for the 

truss in Figure P17.94/95? Apply Castigliano’s second theorem, 

and assume that each member has a cross-sectional area of A � 

2,100 mm2 and an elastic modulus of E � 70 GPa. The loads acting 

on the truss are P � 140 kN and Q � 90 kN.

P17.96 Calculate the horizontal displacement of joint A for the 

truss in Figure P17.96/97 by employing Castigliano’s second theo-

rem. Make the assumption that each member has a cross-sectional 

area of A � 1,600 mm2 and an elastic modulus of E � 200 GPa.

FIGURE P17.96/97

P17.97 In Figure P17.96/97, use Castigliano’s second theorem 

to compute the vertical displacement of joint B for the truss. Each 

member is assumed to have a cross-sectional area of A � 1,600 mm2 

and an elastic modulus of E � 200 GPa.

P17.98 The truss shown in Figure P17.98/99 is subjected to 

concentrated loads PD � 90 kN and PE � 70 kN. Members AB, AC, 

BC, and CD each have a cross-sectional area of A � 1,900 mm2. 

Members BD, BE, and DE each have a cross-sectional area of A � 

850 mm2. All members are made of steel [E � 200 GPa]. For the 

given loads, use Castigliano’s second theorem to determine the 

horizontal displacement of (a) joint E, and (b) joint D.

P17.99 Figure P17.98/99 shows a truss subjected to concen-

trated loads PD � 130 kN and PE � 40 kN. Members AB, AC, BC, 

and CD each have a cross-sectional area of A � 1,900 mm2, while 

members BD, BE, and DE each have a cross-sectional area of A � 

850 mm2. All members are made of steel [E � 200 GPa]. For the 

given loads, employ Castigliano’s second theorem to fi nd the hori-

zontal displacement of (a) joint E, and (b) joint D.

FIGURE P17.98/99

P17.100 In Figure P17.100/101, the truss is subjected to con-

centrated loads P � 200 kN and Q � 40 kN. Members AB, BC, DE, 

and EF each have a cross-sectional area of A � 2,700 mm2, with all 

other members each having a cross-sectional area of A � 1,060 mm2. 

All members are made of steel [E � 200 GPa]. For the given loads, 

calculate the horizontal displacement of joint F by applying Casti-

gliano’s second theorem.

 
FIGURE P17.100/101
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P17.101 The truss in Figure P17.100/101 is subjected to con-

centrated loads P � 200 kN and Q � 40 kN. Members AB, BC, DE, 

and EF each have a cross-sectional area of A � 2,700 mm2. All 

other members each have a cross-sectional area of A � 1,060 mm2. 

All members are made of steel [E � 200 GPa]. For the given loads, 

utilize Castigliano’s second theorem to determine the horizontal 

displacement of joint B.

P17.102 Figure P17.102/103/104 shows a wood truss subjected 

to concentrated loads on its upper chord. The upper chord members 

(BD, DF, FH, and HJ ) and lower chord members (AC, CE, EG, and 

GI) each have a cross-sectional area of A � 8.00 in.2. The web 

members (AB, AD, CD, CF, EF, FG, GH, HI, and IJ) each have a 

cross-sectional area of A � 5.25 in.2. The elastic modulus for all 

members is E � 1,080 ksi. Assume that all joints behave as pin 

joints. Use P � 4 kips and determine the vertical displacement of 

joint E, using Castigliano’s second theorem.

P17.103 The wood truss in Figure P17.102/103/104 is sub-

jected to concentrated loads on its upper chord. The upper chord 

members (BD, DF, FH, and HJ) and lower chord members (AC, 

CE, EG, and GI ) each have a cross-sectional area of A � 8.00 in.2, 

with the web members (AB, AD, CD, CF, EF, FG, GH, HI, and IJ) 

each having a cross-sectional area of A � 5.25 in.2. The elastic 

modulus for all member is E � 1,080 ksi. Assume that all joints 

behave as pin joints. With P � 4 kips and by Castigliano’s second 

theorem, what is the vertical displacement of joint C?

P17.104 In Figure P17.102/103/104, the wood truss is sub-

jected to concentrated loads on its upper chord. The upper chord 

members (BD, DF, FH, and HJ) and lower chord members (AC, 

CE, EG, and GI) each have a cross-sectional area of A � 8.00 in.2, 

while the web members (AB, AD, CD, CF, EF, FG, GH, HI, and IJ) 

each have a cross-sectional area of A � 5.25 in.2. The elastic modu-

lus for all member is E � 1,080 ksi. Assume that all joints behave 

as pin joints. For P � 3 kips, fi nd the vertical displacement of joint 

G, employing Castigliano’s second theorem.

FIGURE P17.102/103/104

P17.105 The truss in Figure P17.105 is subjected to concen-

trated loads of P � 130 kN and 2P � 260 kN. All members are 

made of steel [E � 200 GPa], and each has a cross-sectional area of 

A � 4,200 mm2. Use Castigliano’s second theorem to determine

(a) the horizontal displacement of joint A.

(b) the vertical displacement of joint D.

FIGURE P17.105

P17.106 Employing Castigliano’s second theorem, calculate 

the slope of the beam at A for the loading shown in Figure P17.106. 

Assume that EI is constant for the beam.

FIGURE P17.106

P17.107 What is the defl ection of the beam at B for the loading 

in Figure P17.107? Assume that EI is constant for the beam, and 

apply Castigliano’s second theorem.

FIGURE P17.107

P17.108 Determine the defl ection of the beam at A for the load-

ing in Figure P17.108, utilizing Castigliano’s second theorem. As-

sume that EI is constant for the beam.

FIGURE P17.108

P17.109 In Figure P17.109, fi nd the slope of the beam at A for 

the loading, using Castigliano’s second theorem. Assume that EI is 

constant for the beam.

815 815
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FIGURE P17.109

P17.110 Calculate the slope and the defl ection of the beam at B 

for the loading shown in Figure P17.110. Use Castigliano’s second 

theorem, and assume that EI is constant for the beam.

A B

L

w0

FIGURE P17.110

P17.111 Apply Castigliano’s second theorem to compute the 

slope and defl ection of the beam at C for the loading shown in 

 Figure P17.111. Assume that EI is constant for the beam.

A B C

L L
2

P

FIGURE P17.111

P17.112 What is the defl ection of the compound rod at C for 

the loading shown in Figure P17.112? Between A and B, the rod’s 

diameter is 35 mm, and between B and C, its diameter is 20 mm. 

Assume that E � 200 GPa for both segments of the compound rod, 

and use Castigliano’s second theorem.

A CB

640 mm 320 mm

500 N

FIGURE P17.112

P17.113 The compound steel [E � 200 GPa] rod shown in 

 Figure P17.113/114 has a diameter of 20 mm in segments AB and 

DE, and a diameter of 35 mm in segments BC and CD. For the 

given loading, employ Castigliano’s second theorem to fi nd the 

slope of the compound rod at A.

P17.114 Figure P17.113/114 shows a compound steel [E � 

200 GPa] rod with a diameter of 20 mm in segments AB and DE, 

and a diameter of 35 mm in segments BC and CD. For the given 

loading, calculate the defl ection of the compound rod at C, using 

Castigliano’s second theorem.

A EB DC

100 mm100 mm 65 mm 65 mm

120 N/mm

FIGURE P17.113/114

P17.115 Apply Castigliano’s second theorem to compute the 

defl ection of the beam at C for the loading in Figure P17.115. Assume 

that EI � 1.72 � 105 kN-m2 for the beam.

A DB C

3 m 3 m 4 m

180 kN120 kN

FIGURE P17.115

P17.116 Figure P17.116 shows a simply supported beam. 

 Assume that EI � 15 � 106 kip-in.2 for the beam. Use Castigliano’s 

second theorem to determine

(a) the defl ection at A.

(b) the slope at C.

A CB

8 ft 20 ft

3.5 kips/ft

FIGURE P17.116

P17.117 A cantilever beam is loaded as shown in Figure 

P17.117. Assume that EI � 74 � 103 kN-m2 for the beam, and 

employ Castigliano’s second theorem to fi nd

(a) the slope at C.

(b) the defl ection at C.

A CB

2 m3 m

40 kN/m

FIGURE P17.117
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P17.118 In Figure P17.118/119, apply Castigliano’s second 

theorem to compute the defl ection at C for the simply supported 

beam. Assume that EI � 37.7 � 106 kip-in.2.

P17.119 What is the defl ection at E for the simply supported 

beam shown in Figure P17.118/119? Utilize Castigliano’s second 

theorem, and assume that EI � 37.7 � 106 kip-in.2.

A CB D E

10 ft 7 ft12.5 ft

2.5 ft

34 kips

5 kips/ft

FIGURE P17.118/119

P17.120 Find the slope at A for the beam shown in Figure 

P17.120/121 by applying Castigliano’s second theorem. Assume 

that EI � 11.4 � 106 kip-in.2 for the beam.

P17.121 Using Castigliano’s second theorem, determine the 

defl ection at C for the beam shown in Figure P17.120/121. Assume 

that EI � 11.4 �106 kip-in.2 for the beam.

A DB C

9 ft6 ft 3 ft

6 kips/ft90 kip-ft

FIGURE P17.120/121

P17.122 Compute the minimum moment of inertia I required 

for the beam in Figure P17.122 if the maximum beam defl ection 

must not exceed 35 mm. Assuming that E � 200 GPa, employ Cas-

tigliano’s second theorem.

A DB C

4 m 4 m 4 m

125 kN125 kN

FIGURE P17.122

P17.123 In Figure P17.123, if the maximum beam defl ection 

must not exceed 0.5 in., what is the minimum moment of inertia I 
required for the beam? Utilize Castigliano’s second theorem, and 

assume that E � 29,000 ksi.

A B

15 ft

1.5 kips/ft 75 kip-ft

FIGURE P17.123
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Geometric Properties 
of an Area

AAPPENDIX

819

The centroid of an area refers to the point that defi nes the geometric center of the area. For 

an arbitrary shape (Figure A.1a), the x and y coordinates of the centroid c are determined 

from the formulas:

 x
x dA

dA
y

y dA

dA

A

A

A

A

� �  (A.1)

The expressions x dA and y dA are termed the fi rst moments of area dA about the y and the 

x axis, respectively (Figure A.1b). The denominators in Equation (A.1) are expressions of 

the total area A of the shape.

The centroid will always lie on an axis of symmetry. In cases where an area has two 

axes of symmetry, the centroid will be found at the intersection of the two axes. Centroids 

for several common plane shapes are summarized in Table A.1.

Composite Areas

The cross-sectional area of many common mechanical and structural components can 

often be subdivided into a collection of simple shapes such as rectangles and circles. 

This subdivided area is termed a composite area. By virtue of the symmetry inherent in 

rectangles and circles, the centroid locations for these shapes are easily determined; 

A.1 Centroid of an Area

The term fi rst moment is used to 

describe x dA since x is a term 

raised to the fi rst power, as in 

x1 � x. Another geometric 

property of an area, the moment 

of inertia, includes the term x2, 

and hence, the area moment of 

inertia is sometimes referred to 

as the second moment of area.
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820

1. Rectangle 6. Circle

2. Right Triangle 7. Hollow Circle

3. Triangle 8. Parabola

4. Trapezoid 9. Parabolic Spandrel

5. Semicircle 10. General Spandrel

C

b

h x

x�

x−
yy�

y−

b

h

C
x

x�

x−
yy�

y−

b

h

C
x

x−

y

y�

y−

a

x�

b

h

C
x

y−

a

C
x

x�

y, y�

y−
r

d

C
x

y

r

d

D

C

r
x

y

R

Zero slope

h C
x

b
x�

x−
yy�

y−

b

h

y−C
x

x�

x−
yy�

Zero
slope

b

h

y−C
x

x�

x−
yy�

Zero
slope

A bh�

h
2

�y−

b
2

�x−

bh3

3
�Ix�

hb3

3
�Iy�

bh3

12
�Ix

hb3

12
�Iy

A

h
3

�

bh
2

�

y−

b
3

�x−

bh3

12
�Ix�

hb3

12
�Iy�

bh3

36
�Ix

hb3

36
�Iy

A

h
3

�

bh
2

�

y−

(a � b)
(a2 � ab � b2)

3
�x−

bh3

12
�Ix�

bh3

36
�Ix

bh
36

�Iy

1

3
�y−

h3

36(a � b)
(a2 � 4ab � b2)�Ix

A

h

�
(a � b)h

�       �2a � b
a � b

2

y−

A �
�r2

�       �
2

�
4r
3�

�r4

8

�
r4

8

8

9�

�Ix�

� �Ix

�Iy�

A � ��r2
�d2

4

�r4

4

�d4

64
�Ix � �Iy

A �

�Ix �Iy

�(R2 � r2) �
�

4
(D2 � d2)

�

4
(R4 � r4)

�
�

64
(D4 � d4)

A
2bh
3

�

3b
8

�x− 3h
5

�y−

h
b2

�y� x�2

A
bh
3

�

3b
4

�x− 3h
10

�y−

h
b2

�y� x�2

A
bh

n � 1
�

n � 1
n � 2

b�x− n � 1
4n � 2

h�y−

h
bn

�y� x�n

Table A.1 Properties of Plane Figures
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821
CENTROID OF AN AREA

hence, the centroid calculation procedure for composite areas can be arranged so that 

integration is not necessary. Expressions analogous to Equation (A.1) in which the inte-

gral terms are replaced with summation terms can be used. For a composite area com-

posed of i simple shapes, the centroid location can be computed with the following 

 expressions:

 
Σxi Ai

ΣAi
�x− Σyi Ai

ΣAi
�y−  (A.2)

where xi and yi are the algebraic distances or coordinates measured from some defi ned 

reference axes to the centroids of each of the simple shapes comprising the composite 

area. The term �Ai represents the sum of the simple areas, which add up to the total area 

of the composite area. If a hole or region having no material lies within a composite area, 

then that hole is treated as a negative area in the calculation procedure.

y−

x−

x

y

c

Area A y

x

x

y

dA

Area A

FIGURE A.1 Centroid of an area.

 (a) (b)

The Centroids Game: Learning the Ropes  
A game that helps to build profi ciency in centroid calculations 

for composite areas made up of rectangles.

 MecMovies Example A.1
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EXAMPLE A.1

Determine the location of the centroid for the fl anged shape 

shown.

Plan the Solution
The centroid location in the horizontal direction can be determined 

from symmetry alone. To determine the vertical location of the cen-

troid, the shape is subdivided into three rectangular areas. Using the 

lower edge of the shape as a reference axis,  Equation (A.2) is then 

used to compute the centroid location.

SOLUTION
The centroid location in the horizontal direction can be determined 

from symmetry alone; however, the centroid location in the y 
 direction must be calculated. The fl anged shape is fi rst subdivided 

into rectangular shapes (1), (2), and (3), and the area Ai for each of 

these shapes is computed. For calculation purposes, a reference 

axis must be established. In this example, the reference axis will 

be placed at the lower edge of the shape. The distance yi in the 

vertical direction from the reference axis to the centroid of each 

rectangular area Ai is determined, and the product yi Ai (termed the 

fi rst moment of area) is computed. The centroid location y
_

 mea-

sured from the reference axis is computed as the sum of the fi rst 

moments of area yi Ai divided by the sum of the areas Ai. The cal-

culation for the shape is summarized in the table below.

Ai

(mm2)

yi

(mm)

yi Ai

(mm3)

(1)  900  5  4,500

(2)  540  55  29,700

(3)  540  109  58,860

 1,980  93,060

 y
y A

A
i i

i

� � �
Σ
Σ

93,060

1,980

mm

mm
. mm

3

2
47 0  Ans.

Therefore, the centroid is located 47.0 mm above the lower edge 

of the shape.

10 mm

18 mm

90 mm

90 mm

6 mm

30 mm

10 mm

18 mm

90 mm

90 mm

6 mm

30 mm

Reference
axis

(1)

(2)

(3)

5 mm

55 mm

109 mm

10 mm

18 mm

90 mm

90 mm

6 mm

30 mm

y

z

Reference
axis

y− � 47.0 mm
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Animated example of the centroid calculation procedure for a tee shape.

 MecMovies Example A.2 

Animated example of the centroid calculation procedure for a U-shape.

 MecMovies Example A.3 

The terms �x dA and �y dA appear in the defi nition of a centroid [Equation (A.1)], and these 

terms are called fi rst moments of area about the y and x axes, respectively, because x and y 
are fi rst-order terms. In mechanics of materials, several equations are derived that contain 

integrals of the form �x2 dA and �y2 dA, and these terms are called second moments of area 
because x2 and y2 are second-order terms. However, the second moment of area is more 

commonly called the moment of inertia of an area.

In Figure A.2, the moment of inertia for area A about the x axis is defi ned as

 Ix
A

� 2 dAy  (A.3)

Similarly, the moment of inertia for area A about the y axis is defi ned as

 Iy
A

� 2 dAx   (A.4)

A.2 Moment of Inertia for an Area

The term moment of inertia is 

applied to the second moment 

of area because of its similarity 

to the moment of inertia of the 

mass of a body.
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824
GEOMETRIC PROPERTIES 
OF AN AREA

A second moment expression can also be stated for a reference axis that is normal to the 

plane (such axes are called poles). In Figure A.2, the z axis that passes through origin O is 

perpendicular to the plane of the area A. An integral expression called the polar moment of 
inertia J can be written in terms of the distance r from the reference z axis to dA:

 J
A

� 2 dAr  (A.5)

Using the Pythagorean theorem, distance r is related to distances x and y by r2 � x2 � y2. 

Accordingly, Equation (A.5) can be expressed as

J r dA x y dA x dA y dA
AAAA

� � �( ) � �2 2 2 2 2

and thus,

 J I Iy x� �  (A.6)

Notice that the x and y axes can be any pair of mutually perpendicular axes intersecting 

at O.

From the defi nitions given in Equations (A.3), (A.4), and (A.5), moments of inertia 

are always positive terms that have dimensions of length raised to the fourth power (L4). 

Common units are mm4 and in.4.

Area moments of inertia for several common plane shapes are summarized in Table A.1.

Parallel-Axis Theorem for an Area

When the moment of inertia of an area has been determined with respect to a given axis, the 

moment of inertia with respect to a parallel axis can be obtained by means of the parallel-axis 
theorem, provided that one of the axes passes through the centroid of the area.

The moment of inertia of the area in Figure A.3 about the b reference axis is

 
I y d dA y dA d y dA d dA

I d y dA d

b AAAA

x

� � � � �

� � �

( ) 222

2

2

2 AA
A

 (a)

The integral y dA
A

 is simply the fi rst moment of area A about the x axis. From Equation (A.1),

y dA yA
A

�

If the x axis passes through the centroid c of the area, then y
_
 � 0 and Equation (a) 

reduces to

 I Ib c�     � 2d A  (A.7)

where Ic is the moment of inertia of area A about the centroidal axis that is parallel to the 

reference axis (i.e., the b axis in this instance), and d is the perpendicular distance between 

the two axes. In a similar manner it can be shown that the parallel-axis theorem is also 

 applicable for polar moments of inertia:

 J J d Ab c r�      � 2  (A.8)

The parallel-axis theorem states that the moment of inertia for an area about an axis is equal 

to the area’s moment of inertia about a parallel axis passing through the centroid plus the 

product of the area and the square of the distance between the two axes.

x

y

O

y

x

r

dA

Area A

FIGURE A.2

x

b

y

B

O

y

dA

d
Area

A

c

dr

Reference axis

FIGURE A.3
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825
MOMENT OF INERTIA 

FOR AN AREA
Composite Areas

It is often necessary to calculate the moment of inertia for an irregularly shaped area. If 

such an area can be subdivided into a number of simple shapes such as rectangles, trian-

gles, and circles, then the moment of inertia for the irregular area can be conveniently 

found by using the parallel-axis theorem. The moment of inertia for the composite area is 

equal to the sum of the moments of inertia for the constituent shapes:

I I d Ac�          �( )Σ 2

If an area such as a hole is removed from a larger area, then its moment of inertia must be 

subtracted in the summation above.

The Moment of Inertia Game: Starting from 
Square One
A game that helps to build profi ciency in moment of inertia 

calculations for composite areas made up of rectangles.

 MecMovies Example A.4 

Determine the centroid location and the moment of inertia about the centroidal 

axis for a tee shape.

 MecMovies Example A.5 
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EXAMPLE A.2

Determine the moment of inertia about the z and y axes for the fl anged 

shape shown in Example A.2.

Plan the Solution
In Example A.1, the fl anged shape was subdivided into three rectangles. 

The moment of inertia of a rectangle about its centroidal axis is given 

by Ic � bh3/12. To compute Iz, this relationship will be used with the 

parallel-axis theorem to compute the moments of inertia for each of 

the three rectangles about the z centroidal axis of the fl anged shape. 

These three terms will be added together to give Iz for the entire shape. 

The computation of Iy will be similar; however, the parallel-axis theorem 

will not be required since the centroids for all three rectangles lie on the 

y centroidal axis.

SOLUTION
(a) Moment of Inertia About the z Centroidal Axis
The moment of inertia Ici of each rectangular shape about 

its own centroid must be computed to begin the calcula-

tion. The moment of inertia of a rectangle about its cen-

troidal axis is given by the general equation Ic � bh3/12, 

where b is the dimension parallel to the axis and h is the 

perpendicular dimension.

  For example, the moment of inertia of area (1) about its 

 horizontal centroidal axis is calculated as Ic1 � bh3/12 � 

(90 mm)(10 mm)3/12 � 7,500 mm4. Next, the perpendicular 

distance di between the z centroidal axis for the entire 

fl anged shape and the z centroidal axis for area Ai must be 

determined. The term di is squared and multiplied by Ai and 

the result is added to Ici to give the moment of inertia for 

each rectangular shape about the z centroidal axis of the 

 entire fl anged cross section. The results for all areas Ai are 

summed to determine the moment of inertia of the fl anged 

cross  section about its z centroidal axis. The complete calcu-

lation procedure is summarized in the table below.

Ici

(mm4)
�di�

(mm)
di

2Ai

(mm4)
Iz

(mm4)

(1)  7,500  42.0  1,587,600  1,595,100

(2)  364,500  8.0  34,560  399,060

(3)  14,580  62.0  2,075,760  2,090,340

   4,084,500

Thus, the moment of inertia of the fl anged shape about its z centroidal axis is  

Iz � 4,080,000 mm4. Ans. 

10 mm

18 mm

90 mm

90 mm

6 mm

30 mm

y

z

47.0 mm

71.0 mm

10 mm

18 mm

90 mm

90 mm

6 mm

30 mm

y

z

Reference axis

(1)

(2)

(3)

8 mm

42 mm

62 mm

y− � 47.0 mm
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(b) Moment of Inertia About the y Centroidal Axis
As before, the moment of inertia Ici of each rectangular shape about its own centroid 

must be computed to begin the calculation. However, it is the moment of inertia about 

the  vertical centroidal axis that is required here. For example, the moment of inertia of 

area (1) about its vertical centroidal axis is calculated as Ic1 � bh3/12 � (10 mm)

(90 mm)3/12 � 607,500 mm4. (Compared to the Iz calculation, notice that different values 

are associated with b and h in the standard formula bh3/12.) The parallel-axis theorem is 

not needed for this calculation because the centroids of each rectangle lie on the y centroi-

dal axis of the fl anged shape. The complete calculation procedure is summarized in the 

table below.

Ici

(mm4)
�di�

(mm)
di

2Ai

(mm4)
Iy

(mm4)

(1) 607,500 0 0 607,500

(2)  1,620 0 0 1,620

(3)  40,500 0 0 40,500

  649,620

The moment of inertia of the fl anged shape about its y centroidal axis is thus 

Iy � 650,000 mm4. Ans. 

EXAMPLE A.3

Determine the moment of inertia about the x and y centroidal axes for 

the zee shape shown.

Plan the Solution
After subdividing the zee shape into three rectangles, the moments of 

inertia Ix and Iy will be computed using Ic = bh3/12 and the parallel-

axis theorem.

SOLUTION 
The centroid location for the zee shape is shown in the sketch. The 

complete calculation for Ix and Iy is summarized in the tables on the 

next page.

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x
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(a) Moment of Inertia About the x Centroidal Axis

Ici

(mm4)
�di�

(mm)
Ai

(mm2)
di

2Ai

(mm4)
Iz

(mm4) 

(1)  720  18.0  240 77,760  78,480

(2)  13,500  0  180 0  13,500

(3)  720  18.0  240 77,760  78,480

   170,460

(b) Moment of Inertia About the y Centroidal Axis

Ici

(mm4)
�di�

(mm)
Ai

(mm2)
di

2Ai

(mm4)
Iz

(mm4) 

(1)  32,000  17.0  240  69,360  101,360

(2)  540  0  180       0  540

(3)  32,000  17.0  240  69,360  101,360

   203,260

The moments of inertia for the zee shape are Ix � 170,500 mm4 

and Iy � 203,000 mm4. Ans.

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x

(1)

(2)

(3)

17 mm

17 mm

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x

(1)

(2)

(3)

18 mm

18 mm

The product of inertia dIxy of the area element dA in Figure A.4 with respect to the x and y 
axes is defi ned as the product of the two coordinates of the element multiplied by the area 

of the element. The product of inertia of the total area A is thus

 I xy dAxy
A

�  (A.9)

The dimensions of the product of inertia are the same as those of the moment of inertia 

(i.e., length units raised to the fourth power). Whereas the moment of inertia is always 

positive, the product of inertia can be positive, negative, or zero.

The product of inertia for an area with respect to any two orthogonal axes is zero 
when either of the axes is an axis of symmetry. This statement can be demonstrated by 

A.3 Product of Inertia for an Area

x

y

O

y

x

dA

Area A

FIGURE A.4
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829
PRODUCT OF INERTIA 

FOR AN AREA
Figure A.5 in which the area is symmetric with respect to the x axis. The products of inertia 

of the elements dA and dA� on opposite sides of the axis of symmetry will be equal in mag-

nitude and opposite in sign; thus, they will cancel each other in the summation. The result-

ing product of inertia for the entire area will be zero.

The parallel-axis theorem for products of inertia can be derived from Figure A.6 in 

which the x� and y� axes pass through the centroid c and are parallel to the x and y axes. The 

product of inertia with respect to the x and y axes is

 

I xy dA

x x y y dA

x y dA x y dA y

xy
A

c c
A

c c c
A

�

�             � �( ) � �( )

�                    � � � cc
A A A

x dA x y dA� � � �

 

The second and third integrals in the preceding equation are zero since x� and y� are cen-

troidal axes. The last integral is the product of inertia of the area A with respect to its cen-

troid. Consequently, the product of inertia is

 x y Ax y c c�� � �xyI I  (A.10)

The parallel-axis theorem for products of inertia can be stated as follows: The product of 
inertia for an area with respect to any two orthogonal axes x and y is equal to the product 
of inertia of the area with respect to a pair of centroidal axes parallel to the x and y axes 

added to the product of the area and the two centroidal distances from the x and y axes.
The product of inertia is used in determining principal axes of inertia, as discussed in 

the following section. The determination of the product of inertia is illustrated in the next 

two examples.

x

y

dA

dA�

FIGURE A.5

x

y y�

y�

x�

O

x
x�xc

dA

yc
yArea

A

c

FIGURE A.6

EXAMPLE A.4

Determine the product of inertia for the zee shape shown in 

Example A.3.

Plan the Solution
The zee shape can be subdivided into three rectangles. Since rectangles 

are symmetric, their respective products of inertia about their own cen-

troidal axes are zero. Consequently, the product of inertia for the entire 

zee shape will derive entirely from the parallel-axis theorem.

SOLUTION
The centroid location for the zee shape is shown in the sketch. In com-

puting the product of inertia using the parallel-axis theorem [Equation 

(A.10)], it is essential that careful attention be paid to the signs of xc 
and yc. The terms xc and yc are measured from the centroid of the over-

all shape to the centroid of the individual area. The complete calcula-

tion for Ixy is summarized in the table on the next page.

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x
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Ix�y�

(mm4)
xc

(mm)
yc

(mm)
Ai

(mm2)
xc yc Ai

(mm4)
Ixy

(mm4) 

(1) 0  17.0  18.0 240 73,440  73,440

(2) 0  0  0 180 0 0

(3) 0  �17.0  �18.0 240 73,440  73,440

   146,880

The product of inertia for the zee shape is thus 

Ixy � 146,900 mm4. Ans.

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x

(1)

(2)

(3)

�18 mm

�18 mm

�17 mm

�17 mm

EXAMPLE A.5

Determine the moments of inertia and the product of inertia for the unequal-leg angle 

shape shown with respect to the centroid of the area.

Plan the Solution
The unequal-leg angle is divided into two rectangles. The moments of inertia are com-

puted about both the x and y axes. The product of inertia calculation is performed as dem-

onstrated in Example A.4.

x

y

1 in.

8 in.

1 in. 5 in.
6 in.

1.654 in.

2.654 in. x

y

1 in.

8 in.

1 in. 5 in.
6 in.

(1)

(2)

1.654 in.
1.154 in.

1.846 in.

2.654 in.
2.154 in.

1.346 in.

SOLUTION
The centroid location for the unequal-leg angle shape is shown in the sketch. The moment 

of inertia for the unequal-leg angle shape about the x centroidal axis is

Ix
( ) ( )

( ) ( ) ( . )
(1 8

12
1 8 1 346

53
2

in. in.
in. in. in.

in.. in.
in. in. in.

in.

) ( )
( ) ( ) ( . )

.

1

12
5 1 2 154

80 8

3
2

4

� ���

�
 

Ans.
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and the moment of inertia about the y centroidal axis is

Iy
( ) ( )

( ) ( ) ( . )
(8 1

12
8 1 1 154

13
2

in. in.
in. in. in.

in.. in.
in. in. in.

in.

) ( )
( ) ( ) ( . )

.

5

12
1 5 1 846

38 8

3
2

4

���

�

�

 
Ans.

In computing the product of inertia using the parallel-axis theorem [Equation (A.10)], it 

is essential that careful attention be paid to the signs of xc and yc . The terms xc and yc are 

measured from the centroid of the overall shape to the centroid of the individual area. The 

complete calculation for Ixy is summarized in the table below.

Ix�y�

(in.4)
xc

(in.)
yc

(in.)
Ai

(in.2)
xc yc Ai

(in.4)
Ixy

(in.4)

(1) 0 �1.154 1.346 8.0 �12.426 �12.426

(2) 0 1.846 �2.154 5.0 �19.881 �19.881

  �32.307

The product of inertia for the unequal-leg angle shape is thus Ixy � �32.3 in.4. Ans.

The moment of inertia of the area A in Figure A.7 with respect to the 

x� axis through O will, in general, vary with the angle �. The x and y 
axes used to obtain Equation (A.6) were any pair of orthogonal axes 

in the plane of the area passing through O; therefore,

 J I II I��x x� y�y ��  

where x� and y� are any pair of orthogonal axes through O. Since 

the sum of Ix� and Iy� is a constant, Ix� will be the maximum moment 

of inertia and the corresponding Iy� will be the minimum moment of 

inertia for one particular value of �.

The sets of axes for which the moments of inertia are maxi-

mum and minimum are called the principal axes of the area through 

point O and are designated as the p1 and p2 axes. The moments of 

inertia with respect to these axes are called the principal moments 

of inertia for the area and are designated Ip1 and Ip2. There is only 

one set of principal axes for any area unless all axes have the same 

second moment, such as the diameters of a circle.

A convenient way to determine the principal moments of inertia 

for an area is to express Ix� as a function of Ix, Iy, Ixy, and �, and then 

set the derivative of Ix� with respect to � equal to zero to obtain the 

value of � that gives the maximum and minimum moments of iner-

tia. From Figure A.7,

dI y dA y x dA2 2( cos sin )x� � ���� �

A.4 Principal Moments of Inertia

O
x

y

x�

y�

x

y �

�

y�
cos �y

sin �x

x�
cos �x

sin �y

dA

FIGURE A.7
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and thus,

 
I y dA xy dA x dA

I

x
A A A

x

� cos sin cos sin

c

2 2 2 22

oos sin cos sin2 22I Ixy y ����

����

�

�

�

��

�
 

which is commonly rearranged to the form

 I I I Iy xycos sin sin cos2 2 2 ����x� x ���  (A.11)

Equation (A.11) can be written in an equivalent form by substituting the following double-

angle identities from trigonometry:

 

cos ( cos )

sin (

sin cos sin

2

2

1

2
1 2

1

2

2 22� ��

�

� �

cos )1 2�

�

�

�

�

�

 

to give

 I
I I I I

Ix y x y
xy

2 2
2 2cos sin  ��x�

�
� �

�
�  (A.12)

The angle 2� for which Ix� is maximum can be obtained by setting the derivative of Ix� with 

respect to � equal to zero; thus,

 dI

d

I I
Ix y

xy( ) sin cos2
2

2 2 2x� ��
�

�
�

� �� 0 

from which

 tan 2
2

p
xy

x y

I

I I
�

�
��  (A.13)

where �p represents the two values of � that locate the principal axes p1 and p2. Positive 
values of � indicate a counterclockwise rotation from the reference x axis.

Notice that the two values of �p obtained from Equation (A.13) are 90° apart. The 

principal moments of inertia can be obtained by substituting these values of �p into Equation 

(A.12). From Equation (A.13),

 cos
( )

2
2

2

2

2

p
x y

x y
xy

I I

I I
I

( )
�

�

�

�

���  

and

 
sin 2

2

2

2

p
xy

x y
xy

I

I I
I

( )
�

�
�

� ��
 

When these expressions are substituted in Equation (A.12), the principal moments of 

 inertia reduce to

 I
I I I I

Ip p
x y x y

xy1 2

2

2

2 2
,

��
����  (A.14)
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PRINCIPAL MOMENTS 

OF INERTIA
Equation (A.14) does not directly indicate which principal moment of inertia, either Ip1 or 

Ip2, is associated with the two values of � that locate the principal axes [Equation (A.13)].  

The solution of Equation (A.13) always gives a value of �p between �45° and −45° (inclu-

sive). The principal moment of inertia associated with this value of �p can be determined 

from the following two-part rule:

• If the term Ix � Iy is positive, �p indicates the orientation of Ip1.

• If the term Ix � Iy is negative, �p indicates the orientation of Ip2.

The principal moments of inertia determined from Equation (A.14) will always be positive 
values. In naming the principal moments of inertia, Ip1 is the larger value algebraically.

The product of inertia of the element of area in Figure A.7 with respect to the x� and 

y� axes is

 dI dA x y y x dA( cos sin ) ( cos sin )��� �x�y� x�y� ����  

and the product of inertia for the area is

 
I xy dA y dA

A
( )cos sin sin cos sin cos2 2 2

AA A

xy x y

x dA

I I I( )

2

2 2cos sin sin cos sin cos

x�y�

������

������

� ��

���

�

�
 

which is commonly rearranged to the form

 I Ix y xy� � � �( ) ( )sin cos cos sin2 2� � � �I Ix y� �  (A.15)

An equivalent form of Equation (A.15) is obtained with the substitution of double-angle 

trigonometric identities:

 I
I I

Ix y
x y

xy� � �
�

�
2

2 2sin cos� �  (A.16)

The product of inertia Ix�y� will be zero for values of � given by

 tan 2
2

� �
�

I

I I
xy

x y

�  

Notice that this expression is the same as Equation (A.13), which gives the orientation of 

the principal axes. Consequently, the product of inertia is zero with respect to the principal 
axes. Since the product of inertia is zero with respect to any axis of symmetry, it follows 

that any axis of symmetry must also be a principal axis.

EXAMPLE A.6

Determine the principal moments of inertia for the zee shape considered in Example A.4. 

Indicate the orientation of the principal axes.

Plan the Solution
Using the moments of inertia and the product of inertia determined in Examples A.3 and 

A.4, Equation (A.14) will give the magnitudes of Ip1 and Ip2, and Equation (A.13) will 

defi ne the orientation of the principal axes.
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SOLUTION
From Examples A.3 and A.4, the moments of inertia and the product of 

inertia for the zee shape are

I

I

I

x

y

xy

�

�

�

170,460

203,260

146,880

mm

mm

mm

4

4

4

The principal moments of inertia can be calculated from Equation (A.14):

I
I I I I

Ip p
x y x y

xy1 2

2

2

2 2
, �

�
��

��

��

�
�

�
�170,460 2033,260 170,460 203,260

146,880
2 2

2
2�

�

�

( )

1186,860 147,793

335,000 39,100� mm , mm4 4

 

Ans.

The orientation of the principal axes is found from Equation (A.13):

           

tan
( )

.2
2 2

8�p
xy

x y

I

I I
� � � �

�

�

�
�

146,880

170,460 203,260
99561

2 8 3 629�p . �
 

Therefore, �p � 41.8°. Since the denominator of this expression (i.e., 

Ix � Iy) is negative, the value obtained for �p gives the orientation of 

the p2 axis relative to the x axis. The positive value of �p indicates that 

the p2 axis is rotated 41.8° counterclockwise from the x axis.

The orientation of the principal axes is shown in the sketch.

834

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x

p2 axis

p1 axis

41.8�

6 mm

6 mm

30 mm

40 mm

6 mm

40 mm

y

x

EXAMPLE A.7

Determine the principal moments of inertia for the unequal-leg angle shape considered in 

Example A.5. Indicate the orientation of the principal axes.

Plan the Solution
Using the moments of inertia and the product of inertia determined in Example A.5, 

Equation (A.14) will give the magnitudes of Ip1 and Ip2, and Equation (A.13) will defi ne 

the orientation of the principal axes.
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SOLUTION
From Example A.5, the moments of inertia and the product of inertia for 

the unequal-leg angle shape are

 

I

I

I

x

y

xy

�

�

� �

80 8

38 8

32 3

4

4

4

.

.

.

in.

in.

in.

The principal moments of inertia can be calculated from Equation (A.14):

 

I
I I I I

Ip p
x y x y

xy1 2

2

2

2 2

80 8 38 8

2

,

. .

� ��

�� � �

��

� �
�

�

�

� �

�

80 8 38 8

2
32 3

59 8 38 5

98 3

2
2

. .
( . )

. .

. iin. in.4 421 3, .
 

Ans.

The orientation of the principal axes is found from Equation (A.13):

tan
( . )

. .
.2

2 2 32 3

80 8 38 8
1 538095

2

�p
xy

x y

I

I I�

�

�
�� �� �

�p � 56 97. �

Therefore, �p � 28.5°. Since the denominator of this expression (i.e., 

Ix � Iy) is positive, the value obtained for �p gives the orientation of the 

p1 axis relative to the x axis. The positive value indicates that the p1 axis 

is rotated 28.5° counterclockwise from the x axis.

The orientation of the principal axes is shown in the sketch.

x

y

1 in.

8 in.

1 in. 5 in.

6 in.

1.654 in.

2.654 in.

x

y

1 in.

8 in.

1 in. 5 in.

6 in.

2.654 in.

1.654 in.

p1 axis

p2
axis

28.5�

The use of Mohr’s circle for determining principal stresses was discussed in Section 12.9. 

A comparison of Equations (12.5) and (12.6) with Equations (A.12) and (A.16) suggests 

that a similar procedure can be used to obtain the principal moments of inertia for an area.

Figure A.8 illustrates the use of Mohr’s circle for moments of inertia. Assume that 

Ix is greater than Iy and that Ixy is positive. Moments of inertia are plotted along the 

horizontal axis, and products of inertia are plotted along the vertical axis. Moments of 

inertia are always positive and are plotted to the right of the origin. Products of inertia 

can be either positive or negative. Positive values are plotted above the horizontal axis. 

The horizontal distance OA� is equal to Ix, and the vertical distance A�A is equal to Ixy. 

Similarly, horizontal distance OB� is equal to Iy and vertical distance B′B is equal to �Ixy 

A.5 Mohr’s Circle for Principal Moments of Inertia

835
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(i.e., the algebraic negative of the product of inertia value, which can be either a positive 

or a negative number). The line AB intersects the horizontal axis at C, and line AB is the 

diameter of Mohr’s circle. Each point on the circle represents Ix� and Ix�y� for one par-

ticular orientation of the x� and y� axes. As in Mohr’s circle for stress analysis, angles in 

Mohr’s circle are double angles 2�. Thus, all angles on Mohr’s circle are twice as large 

as the corresponding angles for the particular area.

Since the horizontal coordinate of each point on the circle represents a particular value 

of Ix�, the maximum and minumum moments of inertia are found where the circle intersects 

the horizontal axis. The maximum moment of inertia is Ip1 and the minimum moment of 

inertia is Ip2. The center C of the circle is located at

 C
I Ix y

�
�

2
 

and the circle radius is the length of CA, which can be found from the Pythagorean 

 theorem:

 
CA R

I I
Ix y

xy� �
�

�
2

2

2

 

The maximum moment of inertia Ip1 is thus

 I C R
I I I I

Ip
x y x y

xy1

2

2

2 2

�
� �� �

�
�  

and the minimum moment of inertia Ip2 is

 I C R
I I I I

Ip
x y x y

xy2

2

2

2 2

�
� � � �

�
�  

These expressions agree with Equation (A.14).

Ixy Ix Iy�

2

Ix Iy�

2

2 p�

Ix Iy,

Iy

Ixy�

Ix

Ixy

Ip1

Ip2

A

A�

B

B�

CO

FIGURE A.8 Mohr’s circle for moments of inertia.
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The theory and procedures for determining principal moments of 

inertia using Mohr’s circle are presented in an interactive 

 animation.

 MecMovies Example A.6 

EXAMPLE A.8

Solve Example A.7 by means of Mohr’s circle.

Plan the Solution
The moments of inertia and the product of inertia determined in 

Example A.5 will be used to construct Mohr’s circle for moments of inertia.

SOLUTION
From Example A.5, the moments of inertia and the product of inertia for 

the unequal-leg angle shape are

I

I

I

x

y

xy

�

�

� �

80 8

38 8

32 3

4

4

4

.

.

.

in.

in.

in.

Moments of inertia are plotted along the horizontal axis, and products of 

inertia are plotted on the vertical axis. Begin by plotting the point (Ix, Ixy) 

and labeling it x. Notice that since Ixy has a negative value, point x plots 

below the horizontal axis.

Next, plot the point (Iy, �Ixy) and label this point y. Since Ixy has a 

negative value, point y plots above the horizontal axis.

Draw the circle diameter that connects points x and y. The center of 

the circle is located where this diameter crosses the horizontal axis. Label 

the circle center as C. Using the circle center C, draw the circle that 

passes through points x and y. This is Mohr’s circle for moments of iner-

tia. Points on Mohr’s circle represent possible  combinations of moment 

of inertia and product of inertia.

The center of the circle is located midway between points x and y:

C �
�

�
80 8 38 8

2
59 8

. .
.

x

y

1 in.

8 in.

1 in. 5 in.

6 in.

1.654 in.

2.654 in.

BMappendixA.indd Page 837  12/05/02  19:36 user-F408BMappendixA.indd Page 837  12/05/02  19:36 user-F408 /Users/user-F408/Desktop/Users/user-F408/Desktop



Using the coordinates of point x and center C, the radius R of the circle can be computed 

from the Pythagorean theorem:

 R �
�

� ��
80 8 59 8

2
32 3 38 5

2
2

. .
( . ) .  

The principal moments of inertia are given by

I C R I C Rp p1 259 8 38 5 98 3 59 8 38 5 21 3� � ��� ��  �� � . . . and . . .

The orientation of the principal axes is found from the angle between the radius to 

point x and the horizontal axis:

 
tan

.

. .
.

.

2
32 3

80 8 59 8
1 538095

2 56 97

�

�

p

p

�
�

�
�

� �
 

Note that the absolute value is used in the numerator because only the magnitude of 2�p 
is needed here. From inspection of Mohr’s circle, it is evident that the angle from point x 
to Ip1 turns in a counterclockwise sense.

Finally, the results obtained from the Mohr’s circle must be referred back to the 

 actual unequal-leg angle shape. Since the angles found in Mohr’s circle are doubled, the 

angle from the x axis to the axis of maximum moment of inertia is �p � 28.5°, turned in 

a counterclockwise direction. The maximum moment of inertia for the unequal-leg angle 

shape occurs about the p1 axis. The axis of minimum moment of inertia Ip2 is perpendicular 

to the p1 axis.

Ixy

(59.8, 0) C
2 p� � 56.97�

Ix Iy,

x (80.8, �32.3)

(38.8, 32.3) y

(98.3, 0)

(21.3, 0)

R � 38.5 80.8 � 59.8 � 21.0

|�32.3|

Ip1

Ip2

x

y

1 in.

8 in.

1 in. 5 in.

6 in.

2.654 in.

1.654 in.

p1 axis

p2
axis

28.5�
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Wide-Flange Sections or W Shapes—U.S. Customary Units

Designation
Area 

A
Depth 

d

Web 
thickness 

tw

Flange 
width 

bf

Flange 
thickness 

tf Ix Sx rx Iy Sy ry

in.2 in. in. in. in. in.4 in.3 in. in.4 in.3 in.

W24 × 94

24 × 76 

24 × 68 

24 × 55

27.7

22.4

20.1

16.2

24.3

23.9

23.7

23.6

0.515

0.440

0.415

0.395

9.07

8.99

8.97

7.01

0.875

0.680

0.585

0.505

2700

2100

1830

1350

222

176

154

114

9.87

9.69

9.55

9.11

109

82.5

70.4

29.1

24.0

18.4

15.7

8.30

1.98

1.92

1.87

1.34

W21 × 68 

21 × 62

21 × 50 

21 × 44

20.0

18.3

14.7

13.0

21.1

21.0

20.8

20.7

0.430

0.400

0.380

0.350

8.27

8.24

6.53

6.50

0.685

0.615

0.535

0.450

1480

1330

984

843

140 

127

94.5

81.6

8.60

8.54

8.18

8.06

64.7

57.5

24.9

20.7

15.7

14.0

7.64

6.37

1.80

1.77

1.30

1.26

W18 × 55 

18 × 50 

18 × 40 

18 × 35

16.2

14.7

11.8

10.3

18.1

18.0

17.9

17.7

0.390

0.355

0.315

0.300

7.53

7.50

6.02

6.00

0.630

0.570

0.525

0.425

890

800

612

510

98.3

88.9

68.4

57.6

7.41

7.38

7.21

7.04

44.9

40.1

19.1

15.3

11.9

10.7

6.35

5.12

1.67

1.65

1.27

 1.22

W16 × 57 

16 × 50 

16 × 40 

16 × 31

16.8

14.7

11.8

9.13

16.4

16.3

16.0

15.9

0.430

0.380

0.305

0.275

7.12

7.07

7.00

5.53

0.715

0.630

0.505

0.440

758

659

518

375

92.2

81.0

64.7

47.2

6.72

6.68

6.63

6.41

43.1

37.2

28.9

12.4

12.1

10.5

8.25

4.49

1.60

1.59

1.57

1.17

W14 × 68

14 × 53

14 × 48

14 × 34

14 × 30

14 × 26

14 × 22

20.0

15.6

14.1

10.0

8.85

7.69

6.49

14.0

13.9

13.8

14.0

13.8

13.9

13.7

0.415

0.370

0.340

0.285

0.270

0.255

0.230

10.0 

8.06 

8.03

6.75

6.73

5.03

5.00

0.720

0.660

0.595

0.455

0.385

0.420

0.335

722

541

484

340

291

245

199

103 

77.8

70.2

48.6

42.0

35.3

29.0

6.01

5.89

5.85

5.83

5.73

5.65

5.54

121

57.7 

51.4 

23.3 

19.6 

8.91 

7.00

24.2

14.3

12.8

6.91

5.82

3.55

2.80

2.46

1.92

1.91

1.53

1.49

1.08

1.04
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Designation
Area 

A
Depth 

d

Web 
thickness 

tw

Flange 
width 

bf

Flange 
thickness 

tf Ix Sx rx Iy Sy ry

in.2 in. in. in. in. in.4 in.3 in. in.4 in.3 in.

W12 × 58

12 × 50

12 × 40

12 × 30

12 × 26

12 × 22

12 × 14

17.0

14.6

11.7

8.79

7.65

6.48

4.16

12.2

12.2

11.9

12.3

12.2

12.3

11.9

0.360

0 370

0.295

0.260

0.230

0.260

0.200

10.0 

8.08 

8.01 

6.52 

6.49 

4.03 

3.97

0.640

0.640

0.515

0.440

0.380

0.425

0.225

475

391

307

238

204

156

86.6

78.0

64.2

51.5

38.6

33.4

25.4

14.9

5.28

5.18

5.13

5.21

5.17

4.91

4.62

107

56.3

44.1 

20.3

17.3 

4.66 

2.36

21.4

13.9

11.0

6.24

5.34

2.31

1.19

2.51

1.96

1.94

1.52

1.51

0.848

0.753

W10 × 54

10 × 45

10 × 30

10 × 26

10 × 22

10 × 15

15.8

13.3

8.84

7.61

6.49

4.41

10.1

10.1

10.5

10.3

10.2

10.0

0.370

0.350

0.300

0.260

0.240

0.230

10.0

8.02

5.81

5.77

5.75

4.00

0.615

0.620

0.510

0.440

0.360

0.270

303 

248 

170 

144 

118 

68.9

60.0

49.1

32.4

27.9

23.2

13.8

4.37

4.32

4.38

4.35

4.27

3.95

103 

53.4 

16.7 

14.1 

11.4 

2.89

20.6

13.3

5.75

4.89

3.97

1.45

2.56

2.01

1.37

1.36

1.33

0.81

W8 × 48

8 × 40

8 × 31

8 × 24

8 × 15

14.1

11.7 

9.12

7.08

4.44

8.50

8.25

8.00

7.93

8.11

0.400

0.360

0.285

0.245

0.245

8.11

8.07

8.00

6.50

4.01

0.685

0.560

0.435

0.400

0.315

184 

146 

110 

82.7 

48

43.2

35.5

27.5

20.9

11.8

3.61

3.53

3.47

3.42

3.29

60.9

49.1

37.1

18.3

3.41

15.0

12.2

9.27

5.63

1.70

2.08

2.04

2.02

1.61

0.876

W6 × 25

6 × 20

6 × 15

6 × 12

7.34

5.87

4.43

3.55

6.38

6.20

5.99

6.03

0.320

0.260

0.230

0.230

6.08

6.02

5.99

4.00

0.455

0.365

0.260

0.280

53.4

41.4

29.1

22.1

16.7

13.4

9.72

7.31

2.70

2.66

2.56

2.49

17.1

13.3

9.32

2.99

5.61

4.41

3.11

1.50

1.52

1.50

1.45

0.918

bf

d

tw

tftf
XX

Y

Y
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Wide-Flange Sections or W Shapes—SI Units

Designation
Area 

A
Depth 

d

Web 
thickness

 tw

Flange 
width 

bf

Flange 
thickness 

tf Ix Sx rx Iy Sy ry

mm2 mm mm mm mm
106

 mm4
103

mm3 mm
106

mm4
103

mm3 mm

W610 × 140

610 × 113

610 × 101

610 × 82

17900

14500

13000

10500

617

607

602

599

13.1

11.2

10.5

10.0

230

228

228

178

22.2

17.3

14.9

12.8

1120

874

762

562

3640

2880

2520

1870

251

246

243

231

45.4

34.3

29.3

12.1

393

302

257

136

50.3

48.8

47.5

34.0

W530 × 101

530 × 92

530 × 74

530 × 66

12900

11800

9480

8390

536

533

528

526

10.9

10.2

9.65

8.89

210

209

166

165

17.4

15.6

13.6

11.4

616

554

410

351

2290

2080

1550

1340

218

217

208

205

26.9

23.9

10.4

8.62

257

229

125

104

45.7

45.0

33.0

32.0

W460 × 82

460 × 74

460 × 60

460 × 52

 10500

 9480

 7610

 6650

460

457

455

450

9.91

9.02

8.00

7.62

191

191

153

152

16.0

14.5

13.3

10.8

370

333

255

212

1610

1460

1120

944

188

187

183

179

18.7

16.7

7.95

6.37

195

175 

104

83.9

42.4

41.9

32.3

31.0

W410 × 85

410 × 75

410 × 60

410 × 46.1

 10800

 9480

 7610

 5890

417

414

406

404

10.9 

9.65

7.75

6.99

181

180

178

140

18.2

16.0

12.8 

11.2

316

274

216

156

1510

1330

1060

773

171

170

168

163

17.9

15.5

12.0

5.16

198 

172 

135

73.6

40.6

40.4

39.9

29.7

W360 × 101

360 × 79 

360 × 72

360 × 51 

360 × 44

360 × 39

360 × 32.9

 12900

 10100

 9100

 6450

 5710

 4960

 4190

356

353

351

356

351

353

348

10.5

9.40

8.64

7.24

6.86

6.48

5.84

254

205

204

171

171

128

127

18.3

16.8

15.1

11.6

9.78

10.7

8.51

301

225 

201 

142 

121 

102 

82.8

1690

1270

1150

796

688

578

475

153

150

149

148

146

144

141

50.4

24.0

21.4

9.70

8.16

3.71

2.91

397 

234 

210 

113

95.4

58.2

45.9

62.5

48.8

48.5

38.9

37.8

27.4

26.4
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Designation
Area 

A
Depth 

d

Web 
thickness

 tw

Flange 
width 

bf

Flange 
thickness 

tf Ix Sx rx Iy Sy ry

mm2 mm mm mm mm
106

 mm4
103

mm3 mm
106

mm4
103

mm3 mm

W310 × 86

310 × 74 

310 × 60 

310 × 44.5 

310 × 38.7 

310 × 32.7 

310 × 21

 11000

 9420

 7550

 5670

 4940

 4180

 2680

310

310

302

312

310

312

302

9.14

9.40

7.49

6.60

5.84

6.60

5.08

254

205

203

166

165

102

101

16.3

16.3

13.1

11.2

9.65

10.8

5.72

198

163 

128 

99.1

84.9

64.9

36.9

1280

1050

844

633

547

416

244

134

132

130

132

131

125

117

44.5 

23.4 

18.4 

8.45 

7.20 

1.94

0.982

351 

228 

180 

102 

87.5

37.9

19.5

63.8 

49.8 

49.3 

38.6 

38.4 

21.5 

19.1

W250 × 80

250 × 67

250 × 44.8

250 × 38.5

250 × 32.7

250 × 22.3

 10200

 8580

 5700

 4910

 4190

 2850

257

257

267

262

259

254

9.40

8.89

7.62

6.60

6.10

5.84

254

204

148

147

146

102

15.6

15.7

13.0

11.2

9.14

6.86

126 

103

70.8

59.9

49.1

28.7

983

805

531

457

380

226

111

110

111

110

108

100

42.9

22.2

6.95

5.87

4.75

1.20

338 

218

94.2

80.1

65.1

23.8

65.0

51.1

34.8

34.5 

33.8

20.6

W200 × 71 

200 × 59 

200 × 46.1 

200 × 35.9 

200 × 22.5

 9100

 7550 

 5880

 4570

 2860

216

210

203

201

206

10.2

9.14

7.24

6.22

6.22

206

205

203

165

102

17.4

14.2

11.0

10.2

8.00

76.6

60.8

45.8

34.4

20

708

582

451

342

193

91.7

89.7

88.1

86.9

83.6

25.3

20.4

15.4

7.62

1.42

246 

200 

152 

92.3

27.9

52.8

51.8

51.3 

40.9 

22.3

W150 × 37.1 

150 × 29.8 

150 × 22.5 

150 × 18

 4740

 3790

 2860

 2290

162

157

152

153

8.13

6.60

5.84

5.84

154

153

152

102

11.6

9.27

6.60

7.11

22.2

17.2

12.1

9.2

274

220

159

120

68.6

67.6

65.0

63.2

7.12

5.54

3.88

1.24

91.9

72.3

51.0

24.6

38.6 

38.1 

36.8

23.3

bf

d

tw

tftf
XX

Y

Y
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American Standard Channels or C Shapes—U.S. Customary Units

Designation
Area 

A
Depth 

d

Web 
thickness

 tw

Flange 
width 

bf

Flange 
thickness 

tf

 

Centroid 
x
_

Ix Sx rx Iy Sy ry

in.2 in. in. in. in. in. in.4 in.3 in. in.4 in.3 in.

C15 × 50

  15 × 40

  15 × 33.9

C12 × 30

  12 × 25

  12 × 20.7

C10 × 30

  10 × 25

  10 × 20

  10 × 15.3

C9 × 20

  9 × 15

  9 × 13.4

C8 × 18.7

  8 × 13.7

  8 × 11.5

C7 × 14.7

  7 × 12.2

  7 × 9.8

C6 × 13

  6 × 10.5

14.7

11.8

10.0

8.81

7.34

6.08

8.81

7.34

5.87

4.48

5.87

4.41

3.94

5.51

4.04

3.37

4.33

3.6

2.87

3.81

3.08

15 

15 

15

12 

12 

12

10 

10 

10 

10

9

9

9

8

8

8

7

7

7

6

6

0.716

0.520

0.400

0.510

0.387

0.282

0.673

0.526

0.379

0.240

0.448

0.285

0.233

0.487

0.303

0.220

0.419

0.314

0.210

0.437

0.314

3.72

3.52

3.40

3.17

3.05

2.94

3.03

2.89

2.74

2.60

2.65

2.49

2.43

2.53

2.34

2.26

2.30

2.19

2.09

2.16

2.03

0.650

0.650

0.650

0.501

0.501

0.501

0.436

0.436

0.436

0.436

0.413

0.413

0.413

0.390

0.390

0.390

0.366

0.366

0.366

0.343

0.343

0.799

0.778

0.788

0.674

0.674

0.698

0.649

0.617

0.606

0.634

0.583

0.586

0.601

0.565

0.554

0.572

0.532

0.525

0.541

0.514

0.500

404

348

315

162 

144 

129

103

91.1

78.9

67.3

60.9

51.0

47.8

43.9

36.1

32.5

27.2

24.2

21.2

17.3

15.1

53.8

46.5

42.0

27.0

24.0

21.5

20.7

18.2

15.8

13.5

13.5

11.3

10.6

11.0

9.02

8.14

7.78

6.92

6.07

5.78

5.04

5.24

5.45

5.62

4.29

4.43

4.61

3.42

3.52

3.66

3.87

3.22

3.40

3.49

2.82

2.99

3.11

2.51

2.60

2.72

2.13

2.22

11.0

9.17

8.07

5.12

4.45

3.86

3.93

3.34

2.80

2.27

2.41

1.91 

1.75

1.97

1.52 

1.31

1.37

1.16

0.957

1.05

0.86

3.77

3.34

3.09

2.05

1.87

1.72

1.65

1.47

1.31

1.15

1.17

1.01

0.954

1.01

0.848

0.775

0.772

0.696

0.617

0.638

0.561

0.865

0.883

0.901

0.762

0.779

0.797

0.668

0.675

0.690

0.711

0.640

0.659

0.666

0.598

0.613

0.623

0.561

0.568

0.578

0.524

0.529

bf

tw

tftf
x–

dXX

Y

Y
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American Standard Channels or C Shapes—SI Units

Designation
Area 

A
Depth 

d

Web 
thickness

 tw

Flange 
width 

bf

Flange 
thickness 

tf

 

Centroid 
x
_

Ix Sx rx Iy Sy ry

mm2 mm mm mm mm mm
106

 mm4
103

mm3 mm
106

mm4
103

mm3 mm

C380 × 74

  380 × 60

  380 × 50.4

C310 × 45

  310 × 37

  310 × 30.8

C250 × 45

  250 × 37

  250 × 30

  250 × 22.8

C230 × 30

  230 × 22

  230 × 19.9

C200 × 27.9

  200 × 20.5

  200 × 17.1

C180 × 22

  180 × 18.2

  180 × 14.6

C150 × 19.3

  150 × 15.6

9480

7610

6450

5680

4740

3920

5680

4740

3790

2890

3790

2850

2540

3550

2610

2170

2790

2320

1850

2460

1990

381

381

381

305

305

305

254

254

254

254

229

229

229

203

203

203

178

178

178

152

152

18.2

13.2

10.2

13.0

9.83

7.16

17.1

13.4

9.63

6.10

11.4

7.24

5.92

12.4

7.70

5.59

10.6

7.98

5.33

11.1

7.98

94.5

89.4

86.4

80.5

77.5

74.7

77.0

73.4

69.6

66.0

67.3

63.2

61.7

64.3

59.4

57.4

58.4

55.6

53.1

54.9

51.6

16.5

16.5

16.5

12.7

12.7

12.7

11.1 

11.1 

11.1 

11.1

10.5

10.5

10.5

9.91

9.91

9.91

9.30

9.30

9.30

8.71

8.71

20.3

19.8

20.0

17.1

17.1

17.7

16.5

15.7

15.4

16.1

14.8

14.9

15.3

14.4

14.1

14.5

13.5

13.3

13.7

13.1

12.7

168

145 

131

67.4

59.9

53.7

42.9

37.9

32.8

28.0

25.3

21.2

19.9

18.3

15.0

13.5

11.3 

10.1

8.82

7.20

6.29

882

762

688

442

393

352

339

298

259

221

221 

185

174

180 

148

133

127 

113 

100

94.7

82.6

133 

138 

143

109 

113

117

86.9

89.4

93.0

98.3

81.8

86.4

88.6

71.6

75.9

79.0

63.8

66.0

69.1

54.1

56.4

4.58

3.82

3.36

2.13

1.85

1.61

1.64

1.39

1.17

0.945

1.00

0.795

0.728

0.820

0.633

0.545

0.570

0.483

0.398

0.437

0.358

61.8

54.7

50.6

33.6

30.6

28.2

27.0

24.1

21.5

18.8

19.2

16.6

15.6

16.6

13.9

12.7

12.7

11.4

10.1

10.5

9.19

22.0

22.4

22.9

19.4

19.8

20.2

17.0

17.1

17.5

18.1

16.3

16.7

16.9

15.2

15.6

15.8

14.2

14.4

14.7

13.3

13.4

bf

tw

tftf
x–

dXX

Y

Y
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Shapes Cut from Wide-Flange Sections or WT Shapes

Designation
Area 

A
Depth 

d

Web 
thickness

 tw

Flange 
width 

bf

Flange 
thickness 

tf

 

Centroid 
y
_

Ix Sx rx Iy Sy ry

in.2 in. in. in. in. in. in.4 in.3 in. in.4 in.3 in.

WT12 × 47

   12 × 38

   12 × 34

   12 × 27.5

WT10.5 × 34

   10.5 × 31

   10.5 × 25

   10.5 × 22

WT9 × 27.5

   9 × 25

   9 × 20

   9 × 17.5

WT8 × 28.5

   8 × 25

   8 × 20

   8 × 15.5

13.8

11.2

10.0

8.10

10.0

9.13

7.36

6.49

8.10

7.33

5.88

5.15

8.39

7.37

5.89

4.56

 12.2

 12.0

 11.9

 11.8

 10.6

 10.5

 10.4

 10.3

 9.06

 9.00

 8.95

 8.85

 8.22

 8.13

 8.01

 7.94

0.515

0.440

0.415

0.395

0.430

0.400

0.380

0.350

0.390

0.355

0.315

0.300

0.430

0.380

0.305

0.275

9.07

8.99

8.97

7.01

8.27

8.24

6.53

6.50

7.53

7.50

6.02

6.00

7.12

7.07

7.00

5.53

0.875

0.680

0.585

0.505

0.685

0.615

0.535

0.450

0.630

0.570

0.525

0.425

0.715

0.630

0.505

0.440

2.99

3.00

3.06

3.50

2.59

2.58

2.93

2.98

2.16

2.12

2.29

2.39

1.94

1.89

1.81

2.02

186

151

137

117

103

93.8

80.3

71.1

59.5

53.5

44.8

40.1

48.7

42.3

33.1

27.5

20.3

16.9

15.6

14.1

12.9

11.9

10.7

9.68

8.63

7.79

6.73

6.21

7.77

6.78

5.35

4.64

3.67

3.68

3.70

3.80

3.20

3.21

3.30

3.31

2.71

2.70

2.76

2.79

2.41

2.40

2.37

2.45

54.5

41.3

35.2

14.5

32.4

28.7

12.5

10.3

22.5

20.0

9.55

7.67

21.6

18.6

14.4

6.2

12.0

9.18

7.85

4.15

7.83

6.97

3.82

3.18

5.97

5.35

3.17

2.56

6.06

5.26

4.12

2.24

1.98

1.92

1.87

1.34

1.80

1.77

1.30

1.26

1.67

1.65

1.27

1.22

1.60

1.59

1.56

1.17
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Designation
Area 

A
Depth 

d

Web 
thickness

 tw

Flange 
width 

bf

Flange 
thickness 

tf

 

Centroid 
y
_

Ix Sx rx Iy Sy ry

mm2 mm mm mm mm mm
106

 mm4
103

mm3 mm
106

mm4
103

mm3 mm

WT305 × 70

   305 × 56.5

   305 × 50.5

   305 × 41

WT265 × 50.5

   265 × 46

   265 × 37

   265 × 33

WT230 × 41

   230 × 37

   230 × 30

   230 × 26

WT205 × 42.5

   205 × 37.5

   205 × 30

   205 × 23.05

8900

7230

6450

5230

6450

5890

4750

4190

5230

4730

3790

3320

5410

4750

3800

2940

310

305

302

300

269

267

264

262

230

229

227

225

209

207

203

202

13.1

11.2

10.5

10.0

10.9

10.2

9.65

8.89

9.91

9.02

8.00

7.62

10.9

9.65

7.75

6.99

230

228

228

178

210

209

166

165

191 

191

153

152

181

180

178

140

22.2

17.3

14.9

12.8

17.4

15.6

13.6

11.4

16.0

14.5

13.3

10.8

18.2

16.0

12.8

11.2

75.9

76.2

77.7

88.9

65.8

65.5

74.4

75.7

54.9

53.8

58.2

60.7

49.3

48.0

46.0

51.3

77.4

62.9

57.0

48.7

42.9

39.0

33.4

29.6

24.8

22.3

18.6

16.7

20.3

17.6

13.8

11.4

333 

277

256

231

211 

195 

175 

159

141

128 

110 

102

127 

111

 87.7

 76.0

93.2

93.5

94.0

96.5

81.3

81.5

83.8

84.1

68.8

68.6

70.1

70.9

61.2

61.0

60.2

62.2

22.7

17.2

14.7

6.04

13.5

11.9

5.20

4.29

9.37

8.32

3.98

3.19

8.99

7.74

5.99

2.58

197

150

129

 68.0

128

114

 62.6

 52.1

 97.8

 87.7

 51.9

 42.0

 99.3

 86.2

 67.5

 36.7

50.3

48.8

47.5

34.0

45.7

45.0

33.0

32.0

42.4

41.9

32.3

31.0

40.6

40.4

39.6

29.7

bf
tftf

d
tw

XX

Y

Y

y–
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Hollow Structural Sections or HSS Shapes

Designation
Depth

d
Width

b

Wall
thickness

 (nom.)
t

Weight
per
foot

Area
A Ix Sx rx Iy Sy ry

in. in. in. lb/ft in.2 in.4 in.3 in. in.4 in.3 in.

HSS12 × 8 × 1/2

 × 8 × 3/8

 × 6 × 1/2

 × 6 × 3/8

12

12

12

12

8

8

6

6

0.5

0.375

0.5

0.375

62.3

47.8

55.5

42.7

17.2

13.2

15.3

11.8

333

262

271

215

55.6

43.7

45.2

35.9

4.41

4.47

4.21

4.28

178

140

91.1

72.9

44.4

35.1

30.4

24.3

3.21

3.27

2.44

2.49

HSS10 × 6 × 1/2

 × 6 × 3/8

 × 4 × 1/2

 × 4 × 3/8

10

10

10

10

6

6

4

4

0.5

0.375

0.5

0.375

48.7

37.6

41.9

32.5

13.5

10.4

11.6

8.97

171

137

129

104

34.3

27.4

25.8

20.8

3.57

3.63

3.34

3.41

76.8

61.8

29.5

24.3

25.6

20.6

14.7

12.1

2.39

2.44

1.59

1.64

HSS8 × 4 × 1/2

 × 4 × 3/8

 × 4 × 1/4

 × 4 × 1/8

8

8

8

8

4

4

4

4

0.5

0.375

0.25

0.125

35.1

27.4

19.0

9.85

9.74

7.58

5.24

2.70

71.8

58.7

42.5

22.9

17.9

14.7

10.6

5.73

2.71

2.78

2.85

2.92

23.6

19.6

14.4

7.90

11.8

9.80

7.21

3.95

1.56

1.61

1.66

1.71

HSS6 × 4 × 3/8

 × 4 × 1/4 

 × 4 × 1/8

 × 3 × 3/8

 × 3 × 1/4

 × 3 × 1/8

6

6

6

6

6

6

4

4

4

3

3

3

0.375

0.25

0.125

0.375

0.25

0.125

22.3

15.6

8.15

19.7

13.9

7.30

6.18

4.30

2.23

5.48

3.84

2.00

28.3

20.9

11.4

22.7

17.0

9.43

9.43

6.96

3.81

7.57

5.66

3.14

2.14

2.20

2.26

2.04

2.10

2.17

14.9

11.1

6.15

7.48

5.70

3.23

7.47

5.56

3.08

4.99

3.80

2.15

1.55

1.61

1.66

1.17

1.22

1.27
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Designation
Depth

d
Width

b

Wall
thickness

(nom.)
t

Mass 
per 

meter
Area

A Ix Sx rx Iy Sy ry

mm mm mm kg/m mm2
106 

mm4
103

mm3 mm
106

mm4
103 

mm3 mm

HSS304.8 × 203.2 × 12.7

× 203.2 × 9.5

× 152.4 × 12.7

× 152.4 × 9.5

304.8

304.8

304.8

304.8

203.2

203.2

152.4

152.4

12.7

9.53

12.7

9.53

137

105

122

94.2

 11100

 8520

 9870

 7610

139

109

113

89.5

911

716

741

588

112

114

107

109

74.1

58.3

37.9

30.3

728

575

498

398

81.5

83.1

62.0

63.2

HSS254 × 152.4 × 12.7

 × 152.4 × 9.5

 × 101.6 × 12.7

 × 101.6 × 9.5

254

254

254

254

152.4

152.4

101.6

101.6

12.7

9.53

12.7

9.53

107

82.9

92.4

71.7

 8710

 6710

 7480

 5790

71.2

57.0

53.7

43.3

562

449

423

341

90.7

92.2

84.8

86.6

32.0

25.7

12.3

10.1

420

338

241

198

60.7

62.0

40.4

41.7

HSS203.2 × 101.6 × 12.7

× 101.6 × 9.5

× 101.6 × 6.4

× 101.6 × 3.2

203.2

203.2

203.2

203.2

101.6

101.6

101.6

101.6

12.7

9.53

6.35

3.18

77.4

60.4

41.9

21.7

6280

4890

3380

1740

29.9

24.4

17.7

9.53

293

241

174

93.9

68.8

70.6

72.4

74.2

9.82

8.16

5.99

3.29

193 

161

118

64.7

39.6

40.9

42.2

43.4

HSS152.4 × 101.6 × 9.5

 × 101.6 × 6.4

 × 101.6 × 3.2

 × 76.2 × 9.5

 × 76.2 × 6.4

 × 76.2 × 3.2

152.4

152.4

152.4

152.4

152.4

152.4

101.6

101.6

101.6

76.2

76.2

76.2

9.53

6.35

3.18

9.53

6.35

3.18

49.2

34.4

18.0

43.5

30.6

16.1

3990

2770

1440

3540

2480

1290

11.8

8.70

4.75

9.45

7.08

3.93

155

114

62.4

124

92.8

51.5

54.4

55.9

57.4

51.8

53.3

55.1

6.20

4.62

2.56

3.11

2.37

1.34

122

91.1

50.5

81.8

62.3

35.2

39.4

40.9

42.2

29.7

31.0

32.3

b

d

t

XX

Y

Y
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Angle Shapes or L Shapes

Designation

Weight
per
foot

Area
A Ix Sx rx y Iy Sy ry x rz tan α

lb/ft in.2 in.4 in.3 in. in. in.4 in.3 in. in. in.

L5 × 5 × 3/4

 × 5 × 1/2

 × 5 × 3/8

23.6

16.2

12.3

6.94

4.75

3.61

15.7

11.3

8.76

4.52

3.15

2.41

1.50

1.53

1.55

1.52

1.42

1.37

15.7

11.3

8.76

4.52

3.15

2.41

1.50

1.53

1.55

1.52

1.42

1.37

0.972

0.980

0.986

1.00

1.00

1.00

L5 × 3 × 1/2

 × 3 × 3/8

 × 3 × 1/4

12.8 

9.80

6.60

3.75

2.86

1.94

9.43

7.35

5.09

2.89

2.22

1.51

1.58

1.60

1.62

1.74

1.69

1.64

2.55

2.01

1.41

1.13

0.874

0.600

0.824

0.838

0.853

0.746

0.698

0.648

0.642

0.646

0.652

0.357

0.364

0.371

L4 × 4 × 1/2

 × 4 × 3/8

 × 4 × 1/4

12.8 

9.80

6.60

3.75

2.86

1.94

5.52

4.32

3.00

1.96

1.50

1.03

1.21

1.23

1.25

1.18

1.13

1.08

5.52

4.32

3.00

1.96

1.50

1.03

1.21

1.23

1.25

1.18

1.13

1.08

0.776

0.779

0.783

1.00

1.00

1.00

L4 × 3 × 5/8

 × 3 × 3/8

 × 3 × 1/4

13.6

8.50

5.80

3.89

2.48

1.69

6.01

3.94

2.75

2.28

1.44

0.988

1.23

1.26

1.27

1.37

1.27

1.22

2.85

1.89

1.33

1.34

0.851

0.585

0.845

0.873

0.887

0.867

0.775

0.725

0.631

0.636

0.639

0.534

0.551

0.558

L3 × 3 × 1/2

 × 3 × 3/8

 × 3 × 1/4

9.40

7.20

4.90

2.75

2.11

1.44

2.20

1.75

1.23

1.06

0.825

0.569

0.895

0.910

0.926

0.929

0.884

0.836

2.20

1.75

1.23

1.06

0.825

0.569

0.895

0.910

0.926

0.929

0.884

0.836

0.580

0.581

0.585

1.00

1.00

1.00

L3 × 2 × 1/2

 × 2 × 3/8

 × 2 × 1/4

7.70

5.90

4.10

2.25

1.73

1.19

1.92

1.54

1.09

1.00

0.779

0.541

0.922

0.937

0.953

1.08

1.03

0.980

0.667

0.539

0.390

0.470

0.368

0.258

0.543

0.555

0.569

0.580

0.535

0.487

0.425

0.426

0.431

0.413

0.426

0.437
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Designation

Mass
per

meter
Area

A Ix Sx rx y Iy Sy ry x rz tan α

kg/m mm2
106

mm4
103

mm3 mm mm
106

mm4
103

mm3 mm mm mm

L127 × 127 × 19

 × 127 × 12.7

 × 127 × 9.5

35.1

24.1

18.3

4480

3060

2330

6.53

4.70

3.65

74.1 

51.6 

39.5

38.1

38.9

39.4

38.6

36.1

34.8

6.53

4.70

3.65

74.1

51.6

39.5

38.1

38.9

39.4

38.6

36.1

34.8

24.7

24.9

25.0

1.00

1.00

1.00

L127 × 76 × 12.7

 × 76 × 9.5 

 × 76 × 6.4

19.0

14.5

9.80

2420

1850

1250

3.93

3.06

2.12

47.4 

36.4 

24.7

40.1

40.6

41.1

44.2

42.9

41.7

1.06

0.837

0.587

18.5

14.3

9.83

20.9

21.3

21.7

18.9

17.7

16.5

16.3

16.4

16.6

0.357

0.364

0.371

L102 × 102 × 12.7

 × 102 × 9.5

 × 102 × 6.4

19.0 

14.6 

9.80

2420

1850

1250

2.30 

1.80 

1.25

32.1

24.6 

16.9

30.7

31.2

31.8

30.0

28.7

27.4

2.30

1.80

1.25

32.1

24.6

16.9

30.7

31.2

31.8

30.0

28.7

27.4

19.7

19.8

19.9

1.00

1.00

1.00

L102 × 76 × 15.9

 × 76 × 9.5

 × 76 × 6.4

20.2

12.6 

8.60

2510

1600

1090

2.50

1.64 

1.14

37.4 

23.6 

16.2

31.2

32.0

32.3

34.8

32.3

31.0

1.19

0.787

0.554

22.0

13.9

9.59

21.5

22.2

22.5

22.0

19.7

18.4

16.0

16.2

16.2

0.534

0.551

0.558

L76 × 76 × 12.7

 × 76 × 9.5

 × 76 × 6.4

14.0 

10.7 

7.30

1770

1360

 929

0.916

0.728

0.512

17.4 

13.5 

9.32

22.7 

23.1

23.5

23.6

22.5

21.2

0.916

0.728

0.512

17.4

13.5

9.32

22.7

23.1

23.5

23.6

22.5

21.2

14.7

14.8

14.9

1.00

1.00

1.00

L76 × 51 × 12.7

 × 51 × 9.5

 × 51 × 6.4

11.5

8.80

6.10

1450

1120

768

0.799

0.641

0.454

16.4 

12.8 

8.87

23.4

23.8

24.2

27.4

26.2

24.9

0.278

0.224

0.162

7.70

6.03

4.23

13.8

14.1

14.5

14.7

13.6

12.4

10.8

10.8

10.9

0.413

0.426

0.437

Z

Z

y

x

XX

Y

Y
�
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Average Properties 0f 
Selected Materials

DAPPENDIX

857

Mechanical properties of metalic engineering materials vary signifi cantly as a result of 

mechanical working, heat treatment, chemical content, and various other factors. The 

 values presented in Table D.1a and D.1b should be considered representative values that 

are intended for educational purposes only. Commercial design applications should be 

based on appropriate values for specifi c materials and specifi c usages rather than the average 

values given here.

BMappendixD.indd Page 857  12/05/02  19:45 user-F408BMappendixD.indd Page 857  12/05/02  19:45 user-F408 /Users/user-F408/Desktop/Users/user-F408/Desktop



858

Table D.1a Average Properties of Selected Materials (U.S. Customary Units)

Materials

Specifi c 
weight 
(lb/ft3)

Yield
strength
(ksi)a b

Ultimate
strength

(ksi)a

Modulus 
of elasticity 
(1,000 ksi)

Shear
modulus

(1,000 
ksi)

Poisson’s
ratio

Percent 
elongation 
over 2-in. 

gage length

Coeffi cient 
of thermal 
expansion
(10–6/°F)

Aluminum Alloys
 Alloy 2014-T4 (A92014)

 Alloy 2014-T6 (A92014)

 Alloy 6061-T6 (A96061)

175

175

170

42

60

40

62

70

45

10.6

10.6

10

4

4

3.8

0.33

0.33

0.33

20

13

17

12.8

12.8

13.1

Brass
 Red Brass C23000

 Red Brass C83600

550

550

18

17

44

37

16.7

12

6.4

4.5

0.307

0.33

45

30

10.4

10.0

Bronze
 Bronze C86100

 Bronze C95400 TQ50

490

465

48

45

95

90

15.2

16

6.5

6

0.34

0.316

20

8

12.2

9.0

Cast Iron
 Gray, ASTM A48 Grade 20

 Ductile, ASTM A536 80-55-06

 Malleable, ASTM A220 45008

450

450

450

55

45

20

80

65

12.2

24.4

26

5

9.3

10.2

0.22

0.32

0.27

<1

6

8

5.0

6.0

6.7

Steel
 Structural, ASTM-A36

 Structural, ASTM-A992

 AISI 1020, Cold-rolled

 AISI 1040, Hot-rolled

 AISI 1040, Cold-rolled

 AISI 1040, WQT 900

 AISI 4140, OQT 1100

 AISI 5160, OQT 700

 SAE 4340, Heat-treated

 Stainless (18-8) annealed

 Stainless (18-8) cold-rolled

490

490

490

490

490

490

490

490

490

490

490

36

50

62

60

82

90

131

238

132

36

165

58

65

90

90

97

118

147

263

150

85

190

29

29

30

30

30

30

30

30

31

28

28

11.2

11.2

11.6

11.5

11.5

11.5

11.5

11.5

12

12.5

12.5

0.3

0.3

0.29

0.3

0.3

0.3

0.3

0.3

0.29

0.12

0.12

21

21

15

25

16

22

16

9

20

55

8

6.5

6.5

6.5

6.3

6.3

6.3

6.2

6.2

6.0

9.6

9.6

Titanium
 Alloy (6% Al, 4%V) 280 120 130 16.5 6.2 0.33 10 5.3

Plastics
 ABS

 Nylon 6/6

 Polycarbonate

 Polyethylene, Low-density

 Polyethylene, High-density

 Polypropylene

 Polystyrene

 Vinyl, rigid PVC

 66

 69

 90

 58

 60

 71

 73

 81

6

9

16

1.4

3.3

11

7.5

6.7

5.5

–

17

1.7

4.3

12

7.5

5.5

0.3

0.2

1.1

0.029

0.128

0.9

0.54

0.41

–

–

–

–

–

–

0.2

0.145

–

–

–

–

–

–

0.33

0.42

36

–

–

–

721

4

39

100

48.8

65.6

14.5

100

88

22.6

47.2

35

aFor ductile metals, it is customary to assume that the properties in compression have the same values as those in tension.
bFor most metals, this is the 0.2% offset value.
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Table D.1b Average Properties of Selected Materials (SI Units)

Materials

Specifi c 
weight 

(kN/m3)

Yield
strength
(MPa)a b

Ultimate
strength
(MPa)a

Modulus 
of elasticity 

(GPa)

Shear
modulus

(GPa)
Poisson’s

ratio

Percent 
elongation 
over 50-
mm gage 

length

Coeffi cient 
of thermal 
expansion
(10–6/°C)

Aluminum Alloys
 Alloy 2014-T4 (A92014)

 Alloy 2014-T6 (A92014)

 Alloy 6061-T6 (A96061)

27

27

27

290

414

276

427

483

310

73

73

69

28

28

26

0.33

0.33

0.33

20

13

17

23.0

23.0

23.6

Brass
 Red Brass C23000

 Red Brass C83600

86

86

124

117

303

255

115

83

44

31

0.307

0.33

45

30

18.7

18.0

Bronze
 Bronze C86100

 Bronze C95400 TQ50

77

73

331

310

655

621

105

110

45

41

0.34

0.316

20

8

22.0

16.2

Cast Iron
 Gray, ASTM A48 Grade 20

 Ductile, ASTM A536 80-55-06

 Malleable, ASTM A220 45008

71

71

71

379

310

138

552

448

84

168

179

34

64

70

0.22

0.32

0.27

<1

6

8

9.0

10.8

12.1

Steel
 Structural, ASTM-A36

 Structural, ASTM-A992

 AISI 1020, Cold-rolled

 AISI 1040, Hot-rolled

 AISI 1040, Cold-rolled

 AISI 1040, WQT 900

 AISI 4140, OQT 1100

 AISI 5160, OQT 700

 SAE 4340, Heat-treated

 Stainless (18-8) annealed

 Stainless (18-8) cold-rolled

77

77

77

77

77

77

77

77

77

77

77

250

345

427

414

565

621

903

1,641

910

248

1,138

400

450

621

621

669

814

1,014

1,813

1,034

586

1,310

200

200

207

207

207

207

207

207

214

193

193

77.2

77.2

80

80

80

80

80

80

83

86

86

0.3

0.3

0.29

0.3

0.3

0.3

0.3

0.3

0.29

0.12

0.12

21

21

15

25

16

22

16

9

20

55

8

11.7

11.7

11.7

11.3

11.3

11.3

11.2

11.2

10.8

17.3

17.3

Titanium
 Alloy (6% Al, 4%V) 44 827 896 114 43 0.33 10 9.5

Plastics
 ABS

 Nylon 6/6

 Polycarbonate

 Polyethylene, Low-density

 Polyethylene, High-density

 Polypropylene

 Polystyrene

 Vinyl, rigid PVC

1,060

1,105

1,440

930

960

1,140

1,170

1,300

41

62

110

9.7

22.8

75.8

52

46

38

–

117

11.7

29.6

82.7

52

38

2.1

1.4

7.6

0.2

0.9

6.2

3.7

2.8

–

–

–

–

–

–

1.4

1.0

–

–

–

–

–

–

0.33

0.42

36

–

–

–

721

4

39

100

88

118

26

180

158

40.7

85

63

aFor ductile metals, it is customary to assume that the properties in compression have the same values as those in tension.
bFor most metals, this is the 0.2% offset value.
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Table D.2 Typical Properties of Selected Wood Construction Materials 

Allowable Stresses

Bending

Tension
parallel
to grain

Horizontal 
shear

Compression 
perpendicular 

to grain

Compression 
parallel to 

grain
Modulus of 

elasticity

Type and grade psi      MPa  psi    MPa  psi    MPa  psi    MPa  psi    MPa  ksi    GPa

Framing Lumber: 2 in. to 4 in. thick by 2 in. and wider

Douglas Fir-Larch

 Select Structural 1,450 10.0 1,000 6.9 95 0.66 625 4.3 1,700 11.7 1,900 13.1

 No. 2 875 6.0 575 4.0 95 0.66 625 4.3 1,300 9.0 1,600 11.0

Hem-Fir

 Select Structural 1,400 9.7 900 6.2 75 0.52 405 2.8 1,500 10.3 1,600 11.0

 No. 2 850 5.9 500 3.4 75 0.52 405 2.8 1,250 8.6 1,300 9.0

Spruce-Pine-Fir (South)

 Select Structural 1,300 9.0 575 4.0 70 0.48 335 2.3 1,200 8.3 1,300 9.0

 No. 2 750 5.2 325 2.2 70 0.48 335 2.3 975 6.7 1,100 7.6

Western Cedars

 Select Structural 1,000 6.9 600 4.1 75 0.52 425 2.9 1,000 6.9 1,100 7.6

 No. 2 700 4.8 425 2.9 75 0.52 425 2.9 650 4.5 1,000 6.9

Beams: 5 in. and thicker, width more than 2 in. greater than thickness

 Douglas Fir-Larch

 Select Structural 1,600 11.0 950 6.6 85 0.59 625 4.3 1,100 7.6 1,600 11.0

 No. 2 875 6.0 425 2.9 85 0.59 625 4.3 600 4.1 1,300 9.0

Hem-Fir

 Select Structural 1,250 8.6 725 5.0 70 0.48 405 2.8 925 6.4 1,300 9.0

 No. 2 675 4.7 325 2.2 70 0.48 405 2.8 475 3.3 1,100 7.6

Spruce-Pine-Fir (South)

 Select Structural 1,050 7.2 625 4.3 65 0.45 335 2.3 675 4.7 1,200 8.3

 No. 2 575 4.0 300 2.1 65 0.45 335 2.3 350 2.4 1,000 6.9

Western Cedars

 Select Structural 1,150 7.9 700 4.8 70 0.48 425 2.9 875 6.0 1,000 6.9

 No. 2 625 4.3 325 2.2 70 0.48 425 2.9 475 3.3 800 5.5

Posts: 5 in. by 5 in. and larger, width not more than 2 in. greater than thickness

Douglas Fir-Larch

 Select Structural 1,500 10.3 1,000 6.9 85 0.59 625 4.3 1,150 7.9 1,600 11.0

 No. 2 700 4.8 475 3.3 85 0.59 625 4.3 475 3.3 1,300 9.0

Hem-Fir

 Select Structural 1,200 8.3 800 5.5 70 0.48 405 2.8 975 6.7 1,300 9.0

 No. 2 525 3.6 350 2.4 70 0.48 405 2.8 375 2.6 1,100 7.6

Spruce-Pine-Fir (South)

 Select Structural 1,000 6.9 675 4.7 65 0.45 335 2.3 700 4.8 1,200 8.3

 No. 2 350 2.4 225 1.6 65 0.45 335 2.3 225 1.6 1,000 6.9

Western Cedars

  Select Structural 1,100 7.6 720 5.0 70 0.48 425 2.9 925 6.4 1,000 6.9

  No. 2 500 3.4 350 2.4 70 0.48 425 2.9 375 2.6 800 5.5
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Answers to Odd Numbered 
Problems

Chapter 1

1.1 P � 172.8 kN

1.3 d1 � 0.691 in., d2 � 1.545 in.

1.5 �1 � 5.09 ksi (C), �2 � 7.92 ksi (T),  

�3 � 3.68 ksi (C)

1.7 d1 � 19.96 mm, d2 � 16.13 mm

1.9 �AB � 5.97 ksi (C), �AC � 7.51 ksi (T), 

�BC � 7.93 ksi (C)

1.11 �AB � 41.6 MPa (T), �AC � 87.3 MPa (T), 

�BC � 62.6 MPa (C)

1.13 Pmax � 13.50 kips

1.15 (a) � � 4,380 psi (T)

(b) � � 1,730 psi (T)

1.17 P � 14.92 kN

1.19 dmin � 16.77 mm

1.21 Pmin � 125.3 kips

1.23 a � 324 mm

1.25 5 in. � 5 in. plate at A, 6 in. � 6 in. plate at B

1.27 �b � 23,900 psi

1.29 (a) �rod � 10,190 psi

(b) �bolt � 3,260 psi

(c) �b � 8,530 psi

1.31 (a) �pin � 11.58 MPa

(b) �b � 18.19 MPa

1.33 (a) dmin � 14.42 mm

(b) dmin � 16.33 mm

(c) dmin � 6.60 mm

1.35 dmin � 2.21 in.

1.37 �n � 3.43 ksi, �nt � 5.94 ksi

1.39 Pmax � 479 kN

1.41 tmin � 15.32 mm

1.43 tmin � 0.900 in.

1.45 (a) P � 187.5 kN

(b) � � 16.00 MPa

(c) �max � 25.0 MPa, �max � 12.50 MPa
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Chapter 2

2.1 �2 � 0.1170 in., �1 � 825 ��

2.3 (a) �2 � 1,147 ��
(b) �2 � 2,260 �� 

(c) �2 � 35.6 ��

2.5 �2 � 3,040 ��

2.7 (a) 
2

6

L
E�

�
�

 (b) 
avg 6

L
E�

�
�

 (c) 
max 3

L
E�

�
�

2.9 � � 412,000 �rad, � � 627 kPa

2.11 �Q� � 2,300 �rad

2.13 (a) �R � �0.210 rad

(b) �S � 0.210 rad

2.15 � � �52.0 mm

2.17 	D � 0.1999 mm, 	d � 0.1762 mm, 

	L � 2.54 mm

2.19 35.1
C

2.21 vpointer � 0.0241 in. c

2.23 	T � 175.9
C; T � 25
C � 175.9
C � 201
C

Chapter 3

3.1 (a) E � 10,360 ksi

(b) � � 0.321

(c) �PL � 43.0 ksi

3.3 (a) E � 2.17 GPa

(b) � � 0.370

(c) 	thickness � �0.0833 mm

3.5 (a) � � 0.306

(b) E � 117.3 GPa

3.7 P � 35.3 kips (C)

3.9 (a) permanent set � 0.0035 mm/mm

(b) bar length unloaded � 351.225 mm

(c) �PL � 444 MPa

3.11 G � 64.7 psi

3.13 � � 1.336 mm

3.15 (a) �1 � 87.5 MPa

(b) P � 20.4 kN

(c) vC � 13.82 mm T

3.17 (a) E � 30,000 ksi

(b) �PL � 60 ksi

(c) �U � 159 ksi

(d) �Y � 80 ksi

(e) �fracture � 135 ksi

(f) true �fracture � 270 ksi

3.19 (a) E � 138,400 MPa

(b) �PL � 234 MPa

(c) �U � 394 MPa

(d) 0.05% offset �Y � 239 MPa

(e) 0.20% offset �Y � 259 MPa

(f) �fracture � 350 MPa

(g) true �fracture � 457 MPa

3.21 (a) E � 11,180 ksi

(b) �PL � 33.6 ksi

(c) �U � 70.4 ksi

(d) 0.05% offset �Y � 44.4 ksi

(e) 0.20% offset �Y � 54.5 ksi

(f) �fracture � 70.4 ksi

(g) true �fracture � 87.9 ksi

3.23 (a) P � 5.74 kips

(b) �2 � 1,833 ��

3.25 (a) P � 18.19 kN (b) �C � 42.7 MPa

Chapter 4

4.1 (a)  bar stress � � 362.5 MPa,

�Y � 550 MPa, FSyield � 1.517

 (b) �U � 1,100 MPa, FSultimate � 3.03

4.3 bar (1) red brass FS � 1.494,

bar (2) aluminum FS � 1.303

4.5 Pallow � 79.3 kips,

bar (1): FS � 1.825, bar (2): FS � 1.600

4.7 (a) FS � 4.46

(b) FS � 2.60

(c) FS � 3.90

4.9 (a) Pmax � 15.03 kN

(b) dmin � 13.46 mm

4.11 Pmax � 5.65 kips
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4.13 (a) d1 � 1.335 in.

(b) dB � 0.771 in.

(c) dA � 1.033 in.

4.15 Pmax � 11.28 kips

4.17 (a) Amin � 6.01 in.2

(b) Amin � 5.78 in.2

4.19 (a) dmin � 1.578 in.

(b) dmin � 1.358 in.

Chapter 5

5.1 dmin � 21.9 mm

5.3 P � 118.7 kN

5.5 uA � 3.18 mm S (i.e., moves toward C)

5.7 (a) P � 80.6 kN

(b) uB � 0.497 mm T

5.9 (a) �1 � �0.0581 in.

(b) uD � �0.0946 in.

(c) �max � 29.0 ksi (C)

5.11 � � 0.000393 in. T

5.13 � � 90.6 � 10�6 in. T

5.15 (a) �1 � 158.7 MPa (C), �2 � 26.0 MPa (T)

(b) vA � 1.190 mm T
(c) P � 72.3 kN

5.17 (a) Pmax � 15.05 kips

(b) vD � 0.248 in. T
(c) dmin � 0.730 in.

5.19 Pmax � 77.3 kN

5.21 (a) dmin � 1.309 in.

5.23 (a) �1 � 75.0 MPa (C), �2 � 4.50 MPa (C) 

(b) uB � 0.450 mm T

5.25 (a) �1 � 74.8 MPa (T), �2 � 6.58 MPa (C) 

(b) uB � 1.122 mm T

5.27 (a) �1 � 7.84 ksi (T), �2 � 17.10 ksi (C)

(b) uB � 0.1254 in. S

5.29 dmin � 26.4 mm

5.31 (a) Pmax � 130.6 kips

(b) uB � 0.0720 in. T

5.33 L2 � 28.8 in.

5.35 (a) �1 � 25.8 MPa (T), �2 � 11.69 MPa (T)

(b) vA � 0.554 mm T

5.37 P � 21.1 kN T

5.39 (a)  F1 � 40.0 kN, F2 � 25.0 kN,

F3 � 10.00 kN

 (b) vB � 3.40 mm T

5.41 (a) �1 � 12.25 ksi (T), �2 � 8.33 ksi (T)

(b) vD � 0.0333 in. T

5.43 Pmax � 30.9 kN

5.45 (a) �1 � 26.0 ksi (T), �2 � 8.66 ksi (C)

(b) FS1 � 2.38, FS2 � 8.66

(c) uB � 0.1458 in. T

5.47 �1 � 22.3 ksi (T), �2 � 12.74 ksi (C)

5.49 (a) F1 � 45.2 kN

(b) �bolt � 119.0 MPa

(c) �bolt � 0

5.51 (a) 	T � �94.0
F
(b) dmin � 0.405 in.

5.53 (a) � � 561 psi (C)

(b) � � 3,125 ��

5.55 (a) 108.6
F
(b) �1 � 20.9 ksi (C), �2 � 31.4 ksi (C)

(c) �1 � 283 �� (C), �2 � 703 �� (C)

(d) 	width � 0.00913 in. (increase)

5.57 	T � �50.1
C

5.59 �1 � 15.24 MPa (T), �2 � 19.51 MPa (C)

(b) �1 � �693 ��, �2 � �693 ��

5.61 (a) �1 � 1.550 ksi (T), �2 � 9.66 ksi (T)

(b) vD � 0.1767 in. T

5.63 (a) �1 � 74.5 MPa (T), �2 � 9.97 MPa (C)

(b) vD � 0.454 mm T

5.65 (a) �1 � 35.0 MPa (C), �2 � 70.0 MPa (C)

(b) vA � 0.365 mm c

5.67 (a)  aluminum: �1 � 124.0 MPa (C),

cast iron: �2 � 53.1 MPa (C),

bronze: �3 � 186.0 MPa (C)

 (b) force on supports � 148.8 kN (C)

(c) uB � 0.01257 mm S, uC � 0.1600 mm S

5.69 Pallow � 103.3 kN

5.71 Pallow � 51.1 kN

5.73 rmin � 9 mm

5.75 (a) dmax � 37 mm

(b) rmin � 5 mm
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Chapter 6

6.1 �max � 7,850 psi

6.3 (a) �max � 47.4 MPa

(b) dmin � 83.9 mm

6.5 �1 � 7.22 ksi, �2 � 16.95 ksi

6.7 (a) d1 � 125.0 mm

(b) d2 � 109.2 mm

6.9 (b) dmin � 24.1 mm

6.11 (a) � � 76.0 MPa

(b) � � 0.0815 rad � 4.67


6.13 dmax � 2.66 in.

6.15 dmin � 51.9 mm

6.17 (a) �1 � 3,080 psi

(b) �C � 0.01690 rad

(c) �D � 0.00749 rad

6.19 (a) �max � 5,010 psi

(b) �C � 0.0520 rad

(c) �E � 0.0433 rad

6.21 TC � 136.8 N-m

6.23 dmin � 67.0 mm

6.25 dmin � 211 mm

6.27 TD � 31.4 N-m

6.29 (a) d1 � 53.5 mm, d2 � 39.9 mm

(b) dmin � 53.5 mm

6.31 (a) TE � 3,600 N-m

(b) d1 � 50.8 mm, d2 � 64.0 mm

6.33 �1 � 3,740 psi, �2 � 2,080 psi

6.35 (a) T1 � �1,200 lb-ft, T2 � 1,800 lb-ft

(b) �1 � �0.0601 rad, �2 � 0.0676 rad

(c) �B � �0.0601 rad, �C � 0.0401 rad

(d) �D � 0.1076 rad

6.37 � � 44.6 MPa

6.39 (a) P � 40.6 hp

(b) P � 146.0 hp

6.41 (a) P � 85.8 kW

(b) � � 0.0854 rad

6.43 Dmin � 2.88 in.

6.45 (a) 4.11 hp

(b) � � 3,750 psi

6.47 16.33 Hz

6.49 (a) d1 � 87.7 mm

(b) d3 � 56.9 mm

(c) �D � 0.0503 rad

6.51 (a) �1 � 61.5 MPa, �2 � 25.0 MPa

(b) P � 5.65 kW @ 120 rpm

(c) TA � 450 N-m

6.53 (a) �1 � 4,890 psi, �2 � 16,510 psi

(b) �D � 0.0394 rad

6.55 (a) 2.67 hp

(b) d1 � 0.983 in.

6.57 (a) �1 � 31.1 MPa, �2 � 46.7 MPa

(b) �D � 0.0747 rad

6.59 (a) Pmax � 19.28 kW

(b) TE � 368 N-m

(c) �E � 8.33 Hz

6.61 (a) Tallow � 35.2 kip-in.

(b) T1 � 21.0 kip-in., T2 � 14.22 kip-in.

(c) � � 0.0475 rad per 10-in. length

6.63 (a) �1 � 67.5 MPa, �2 � 77.2 MPa

(b) �B � 0.0289 rad

6.65 (a) Tallow � 1,196 N-m

(b) T1 � 736 N-m, T2 � 460 N-m

(c) �B � 0.0540 rad

6.67 (a) �1 � 58.0 MPa, �2 � 39.4 MPa

(b) �B � 0.0259 rad

6.69 (a) TB, allow � 1.837 kip-in.

(b) T1 � 1.571 kip-in., T2 � 0.266 kip-in.

(c) �B � 0.0429 rad

6.71 (a) �1 � 6.69 ksi, �2 � 9.32 ksi

(b) �B � 0.01903 rad

6.73 (a) �1 � 27.2 ksi

(b) �3 � 9.81 ksi

(c) �C � 0.0420 rad

6.75 (a) TC, allow � 15.91 kN-m

(b) �1 � 40.1 MPa

(c) �3 � 152.0 MPa

BManswerstoOddNumberedProblems.indd Page 864  03/05/12  5:25 PM user-F392BManswerstoOddNumberedProblems.indd Page 864  03/05/12  5:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop



865

6.77 (a) T0,allow � 41.5 kip-in.

(b) �3 � 21.8 ksi

(c) �2 � 3.02 ksi

6.79 (a) �3 � 169.0 MPa

(b) �2 � 91.9 MPa

(c) �C � �0.0326 rad

6.81 (a) �1 � 77.8 MPa

(b) �2 � 72.2 MPa

(c) �2 � 188.6 MPa

(d) �B � 0.0463 rad

(e) �C � �0.0343 rad

6.83 (a) �1 � 11.46 ksi

(b) �3 � 5.64 ksi

(c) �E � �0.0353 rad

(d) �C � 0.1846 rad

6.85 (a) �1 � 12.93 ksi

(b) �3 � 14.55 ksi

(c) �E � �0.0213 rad

(d) �C � 0.0329 rad

6.87 (a) T�B � 14.24 kip-in.

(b) �initial � 4.01 ksi

(c) �1 � 18.54 ksi, �2 � 19.05 ksi

6.89 � � 40.4 MPa

6.91 rmin � 0.25 in.

6.93 rmin � 7 mm

6.95 Pmax � 202 kW

6.97 Tmax � 310 N-m

6.99 Pmax � 4.08 hp

6.101 (a) bmin � 27.0 mm

(b) bmin � 26.5 mm

(c) bmin � 19.87 mm

6.103 (a) Ta � 230 N-m, Tb � 308 N-m

(b) �a � 0.0542 rad, �b � 0.0424 rad

6.105 (a) T � 110.0 kip-in.

(b) T � 66.5 kip-in.

(c) T � 86.4 kip-in.

(d) T � 76.8 kip-in.

6.107 tmin � 0.0983 in.

6.109 �max � 12.73 ksi

6.111 �max � 12.20 ksi

Chapter 7

7.1 (a) 0

2 20
0

( ),

( )
2

V w L x

w
M L x w Lx

� �

�� � �

7.3 (a) 2

2
2

0 : ,
2

: ( )

( )
( )

2 2

a
a

a b b

b a b
a b

w
x a V w x M x

a x a b V w w a w x,

w w w a
M x w w ax

� � �� ��

� � �  �� ��

�� � �
�

�

7.5 (a) 2 30 0,
2 6

w w
V x M x

L L
�� ��

7.7 (a)  0 � x 
 3 m:

V � 65 kN, M � (65 kN)x
3 m � x 
 6 m:

V � 15 kN, M � (15 kN)x � 150 kN-m

6 m � x 
 10 m:

V � �60 kN, M � �(60 kN)x � 600 kN-m

7.9 (a)  0 � x 
 9 ft: 

V � �(7 kips/ft)x, M � �(3.5 kips/ft)x2

 9 ft � x 
 30 ft: 

V � �(7 kips/ft)x � 150 kips,

M � �(3.5 kips/ft)x2 � (150 kips)x � 1,350 kip-ft

7.11 (a)  0 � x 
 10 ft: 

V � 68 kips, M � (68 kips)x
10 ft � x 
 30 ft: 

V � �(6 kips/ft)x � 86 kips,

M � �(3 kips/ft)x2 � (86 kips)x � 120 kip-ft

7.13 (a)  0 � x 
 8 ft: 

V � 0, M � �120 kip-ft

 8 ft � x 
 14 ft: 

V � �(5 kips/ft)x � 40 kips,

M � �(2.5 kips/ft)x2 � (40 kips)x � 280 kip-ft

7.15 (a)  0 � x 
 13 ft: 

V � �(7 kips/ft)x � 61.03 kips,

M � �(3.5 kips/ft)x2 � (61.03 kips)x
 13 ft � x 
 17 ft: 

V � �(7 kips/ft)x � 61.03 kips,

M � �(3.5 kips/ft)x2 � (61.03 kips)x � 250 kip-ft

 17 ft � x 
 25 ft: 

V � �(7 kips/ft)x � 175 kips,

M � �(3.5 kips/ft)x2 � (175 kips)x � 2,187.5 kip-ft

 (c)  Max �M � 266 kip-ft at x � 8.72 ft,

Max �M � �224 kip-ft at x � 17 ft

BManswerstoOddNumberedProblems.indd Page 865  03/05/12  5:25 PM user-F392BManswerstoOddNumberedProblems.indd Page 865  03/05/12  5:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop



866

7.17

 

7.19

 

7.21

 

7.23
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7.25

 

7.27

 

7.29

 

7.31 (a) Vmax � 16.50 kips 

(b) Mmax � 33.0 kip-ft

7.33 (a) V � 177.5 kN, M � 1,167 kN-m

(b) V � �323 kN, M � 442 kN-m

7.35 (a) V � 91.3 kN, M � 199.2 kN-m

(b) V � �103.8 kN, M � 180.5 kN-m

7.37 (a) V � 93.7 kN, M � 23.9 kN-m

(b) V � �125.1 kN, M � 75.7 kN-m

7.39 (a) V � 285 kN, M � 63.8 kN-m

(b) V � �190.0 kN, M � 331 kN-m

7.41 Vmax � 32.3 kips, Mmax � 88.3 kip-ft

7.43 Vmax � �32.0 kips, Mmax � 90.0 kip-ft

7.45 Vmax � 55.0 kN, Mmax � �50.0 kN-m

7.47 Vmax � �5,640 lb, Mmax � 20,700 lb-ft

7.49 Vmax � �245 kN, Mmax � �208 kN-m
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7.51 

7.53

 

7.55 

7.57 (a) w(x) �  �10 kN ˚x � 0 m¬�1 � 29 kN ˚x � 2.5 m¬�1

�35 kN ˚x � 5.5 m¬�1 � 16 kN ˚x � 7.5 m¬�1

 (b) V(x) �  �10 kN ˚x � 0 m¬0 � 29 kN ˚x � 2.5 m¬0

�35 kN ˚x � 5.5 m¬0 � 16 kN ˚x � 7.5 m¬0

 M(x) �  �10 kN ˚x � 0 m¬1 � 29 kN ˚x � 2.5 m¬1

�35 kN ˚x � 5.5 m¬1 � 16 kN ˚x � 7.5 m¬1

7.59 (a) w(x) �  �5 kN ˚x � 0 m¬�1 � 20 kN-m ˚x � 3 m¬�2

�5 kN ˚x � 6 m¬�1 � 10 kN-m ˚x � 6 m¬�2

 (b) V(x) �  �5 kN ˚x � 0 m¬0 � 20 kN-m ˚x � 3 m¬�1

�5 kN ˚x � 6 m¬0 � 10 kN-m ˚x � 6 m¬�1

 M(x) �  �5 kN ˚x � 0 m¬1 � 20 kN-m ˚x � 3 m¬0

�5 kN ˚x � 6 m¬1 � 10 kN-m ˚x � 6 m¬0

7.61 (a) w(x) �  83 kN ˚x � 0 m¬�1 � 25 kN/m ˚x � 0 m¬0

�25 kN/m ˚x � 4 m¬0 � 32 kN ˚x � 6 m¬�1

�49 kN ˚x � 8 m¬�1

 (b) V(x) �  83 kN ˚x � 0 m¬0 � 25 kN/m ˚x � 0 m¬1

�25 kN/m ˚x � 4 m¬1 � 32 kN ˚x � 6 m¬0

�49 kN ˚x � 8 m¬0

      

1 2

2 1

1

25 kN/m
( ) 83 kN 0 m 0 m

2
25 kN/m

4 m 32 kN 6 m
2

49 kN 8 m

M x x x

x x

x

� � � �

� � � �

� �
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7.63

  (a)

  

1 2

0 0

0 0

( ) 14,400 lb 0 ft 158,400 lb-ft 0 ft

800 lb-ft 0 ft 800 lb/ft 12 ft

800 lb/ft 18 ft 800 lb/ft 24 ft

w x x x

x x

x x

� �
� � � �

� � � �

� � � �

 

 (b)

  

0 1

1 1

1 1

( ) 14,400 lb 0 ft 158,400 lb-ft 0 ft

800 lb-ft 0 ft 800 lb/ft 12 ft

800 lb/ft 18 ft 800 lb/ft 24 ft

V x x x

x x

x x

�
� � � �

� � � �

� � � �

        

1 0

2 2

2 2

( ) 14,400 lb 0 ft 158,400 lb-ft 0 ft

800 lb-ft 800 lb/ft
0 ft 12 ft

2 2
800 lb/ft 800 lb/ft

18 ft 24 ft
2 2

M x x x

x x

x x

� � � �

� � � �

� � � �

7.65 (a)

    

1 0

1 0

1 1

0

( ) 57.27 kips 0 ft 6 kips/ft 0 ft

110.73 kips 22 ft 6 kips/ft 22 ft

9 kips/ft 9 kips/ft
22 ft 30 ft

8 ft 8 ft

9 kips/ft 30 ft

w x x x

x x

x x

x

�

�

� � � �

� � � �

� � � �

� �

 (b) 

0 1

0 1

2 2

1

( ) 57.27 kips 0 ft 6 kips/ft 0 ft

110.73 kips 22 ft 6 kips/ft 22 ft

9 kips/ft 9 kips/ft
22 ft 30 ft

2(8 ft) 2(8 ft)

9 kips/ft 30 ft

V x x x

x x

x x

x

� � � �

� � � �

� � � �

� �

1 2

1 2

3 3

2

6 kips/ft
( ) 57.27 kips 0 ft 0 ft

2
6 kips/ft

110.73 kips 22 ft 22 ft
2

9 kips/ft 9 kips/ft
22 ft 30 ft

6(8 ft) 6(8 ft)

9 kips/ft
30 ft

2

M x x x

x x

x x

x

� � � �

� � � �

� ���

� �

 (c) 

7.67 (a) 
2 1

0 1

1 1

( ) 9  kN-m 0 m 21 kN 1 m

18 kN/m
18 kN/m 1 m 1 m

3 m
18 kN/m

4 m 6 kN 4 m
3 m

w x x x

x x

x x

� �

�

�� � � �

� � � �

� � � �

 (b) 
1 0

1 2

2 0

( ) 9 kN-m 0 m 21 kN 1 m

18 kN/m
18 kN/m 1 m 1 m

2(3 m)

18 kN/m
4 m 6 kN 4 m

2(3 m)

V x  x x

x x

x x

−
�� � � �

� ���

� ���

0 1

2 3

3 1

( ) 9 kN-m 0 m 21 kN 1 m

18 kN/m 18 kN/m
1 m 1 m

2 6(3 m)

18 kN/m
4 m 6 kN 4 m

6(3 m)

M x x x

x x

x x

�� � � �

���

� � � �

�
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 (c) 

7.69 (a) 
1 0

0 0

1 1

1

( ) 42.09 kips 0 ft 5 kips/ft 0 ft

5 kips/ft 6 ft 9 kips/ft 6 ft

9 kips/ft
6 ft 82.41 kips 16 ft

21 ft
9 kips/ft

27 ft
21 ft

w x x x

x x

x x

x

�

�

� � � �

� �� �

� � � �

� �

 (b) 
0 1

1 1

2 0

2

( ) 42.09 kips 0 ft 5 kips/ft 0 ft

5 kips/ft 6 ft 9 kips/ft 6 ft

9 kips/ft
6 ft 82.41 kips 16 ft

2(21 ft)

9 kips/ft
27 ft

2(21 ft)

V x x x

x x

x x

x

� � � �

� � � �

� � � �

� �

1 2

2 2

3 1

3

5 kips/ft
( ) 42.09 kips 0 ft 0 ft

2
5 kips/ft 9 kips/ft

6 ft 6 ft
2 2

9 kips/ft
6 ft 82.41 kips 16 ft

6(21 ft)

9 kips/ft
27 ft

6(21 ft)

M x x x

x x

x x

x

��� �

� � � �

� � � �

� �

 (c) 

7.71 (a) 
0 0

1 1

0 1

1 0

0

30 kN/m 0 m 40 kN/m 0 m

40 kN/m
0 m 234.24 kN 1.5 m

7.0 m
40 kN/m

30 kN/m 7 m 7 m
7.0 m

215.76 kN 7 m 50 kN/m 7.0 m

50 kN/m 9.0 m

x x

x x

x x

x x

x

�

�

( )w x �� � � �

� � � �

��� �

� � � �

� �

 (b) 
1 1

2 0

1 2

0 1

1

30 kN/m 0 m 40 kN/m 0 m

40 kN/m
0 m 234.24 kN 1.5 m

2(7.0 m)

40 kN/m
30 kN/m 7 m 7 m

2(7.0 m)

215.76 kN 7 m 50 kN/m 7.0 m

50 kN/m 9.0 m

x x

x x

x x

x x

x

( )V x �� � � �

� � � �

� � � �

� � � �

� �

2 2

3 1

2 3

1 2

2

30 kN/m 40 kN/m
( ) 0 m 0 m

2 2
40 kN/m

0 m 234.24 kN 1.5 m
6(7.0 m)

30 kN/m 40 kN/m
7 m 7 m

2 6(7.0 m)

50 kN/m
215.76 kN 7 m 7.0 m

2
50 kN/m

9.0 m
2

M x x x

x x

x x

x x

x

�� � � �

�

�

����

���

���

� �
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(c) 

Chapter 8

8.1 � � 1.979 ksi

8.3 � � 443 MPa

8.5 (a) y– � 110.0 mm above the bottom surface, 

  Iz � 18,646,000 mm4, Sz � 169,500 mm3

(b) at H, �x � 25.7 MPa (C)

(c) �x � 70.8 MPa (T)

8.7 (a) y– � 19.67 mm above the bottom surface, 

  Iz � 257,600 mm4, Sz � 8,495 mm3 

(b) at H, �x � 21.3 MPa (T)

(c) �x � 55.3 MPa (C)

8.9 (a) Mz � 790 N-m

(b) at H, �x � 130.8 MPa (T)

8.11 Mz � 483 kN-m

8.13 (a) at H: �x � 68.1 MPa (T)

(b) Mz � 379 kN-m

8.15 (a) �x � 4,580 psi (T)

(b) �x � 3,320 psi (C)

8.17 max. tension: �x � 157.8 MPa (T),

max. compression: �x � 40.7 MPa (C)

8.19 (a) �x � 133.9 MPa (T)

(b) �x � 196.8 MPa (C)

8.21 (a) �x � 14.73 ksi (T)

(b) �x � 9.94 ksi (C)

8.23 (a) �x � 11.51 ksi (T)

(b) �x � 12.80 ksi (C)

8.25 �x � 116.5 MPa

8.27 w0 � 70.2 kN/m

8.29 �x � 26.9 ksi

8.31 dmin � 1.563 in.

8.33 bmin � 4.74 in.

8.35 w0 � 4.56 kN/m

8.37 (a) answer not given

(b) W16�31

8.39 (a) answer not given

(b) W460�74

8.41 (a) answer not given

(b) HSS10�4�3/8

8.43 (a) �fi berglass@face � 11.12 MPa,

  �core � 2.65 MPa

(b) �fi berglass@interface � 7.94 MPa

8.45 (a) �alum � 4,970 psi (T),

  �steel � 9,570 psi (C)

(b) �alum � 1,706 psi (T),

  �steel � 5,120 psi (T)

8.47 Mmax � 97.7 kip-ft

8.49 (a) 225 mm

(b) �H � 58.3 MPa (T)

8.51 Pmax � 5.02 kips

8.53 �H � 16,430 psi (T), �K � 14,930 psi (C)

8.55 d � 1.774 in.

8.57 � � 12.09 ksi (C)

8.59 P � 88.3 kips

8.61 �H � 40.0 MPa (C), �K � 44.0 MPa (T)

8.63 �H � 3,840 psi (T), �K � 1,875 psi (C)

8.65 P � 9,570 lb

8.67 �H � �201 ��, �K � 721 ��

8.69 (a) Q � 7.71 kips

(b) �K � �665 ��

8.71 (a) �x � �102.7 MPa

(b) 	 � 128.0
 or 	 � �52.0


8.73 (a) �H � 3.42 ksi (C)

(b) �K � 3.42 ksi (T)

(c) �x � �9.47 ksi

(d) 	 � 54.9
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8.75 Mmax � 42.0 kN-m

8.77 Mmax � 26.3 kip-in.

8.79 (a) �H � 40.8 MPa (T)

(b) �K � 82.6 MPa (C)

(c) �max � 101.0 MPa (T),

  �max � 82.6 MPa (C)

(d) 	 � 40.1


8.81 Mmax� 5.82 kip-ft

8.83 Mmax � 796 N-m

8.85 Mmax � 111.8 lb-ft

8.87 Pmax � 1,525 N

8.89 Pmax � 1,572 N

Chapter 9

9.1 (b) F1A � 8.36 kips (C), F1B � 9.75 kips (C) 

(c)  FH � 1.393 kips directed from A to B required 

for equilibrium of area (1).

9.3 (b) F1A � 20.5 kN (T), F1B � 11.33 kN (T) 

(c)  FH � 9.21 kN directed from A to B required for 

equilibrium of area (1).

9.5 (b) F1A � 3.41 kips (T), F1B � 2.92 kips (T) 

(c)  FH � 0.487 kips directed from A to B required 

for equilibrium of area (1).

9.7 (b) F1A � 7.15 kN (C), F1B � 7.63 kN (C)

(c)  FH � 0.477 kN directed from A to B required 

for equilibrium of area (1).

9.9 y � 140 mm, � � 0 kPa; y � 105 mm, � � not 

given; y � 70 mm, � � 241 kPa; y � 35 mm, 

� � not given; y � 0 mm, � � not given.

9.11 (a) �H � 756 kPa

(b) �K � 416 kPa

(c) �max � 1,500 kPa

(d) �x � 25.0 MPa (C)

9.13 (a) w � 723 lb/ft

(b) �H � 67.8 psi

(c) �x � 2,240 psi (T)

9.15 (a) �max � 633 kPa

(b) �x � 8,680 kPa (T)

9.17 (a) �max � 522 psi

(b) �x � 17,520 psi (T)

9.19 (a) �max � 5.41 MPa

(b) �x � 137.5 MPa (C)

9.21 (a) �max � 5.98 MPa

(b) �x � 78.2 MPa (T)

9.23 (a) Q � 128,170 mm3

(b) Pmax � 189.0 kN

9.25 (a) �max � 1,427 psi

(b) �x � 17,130 psi (T)

9.27 (a) QK � 26.3343 in.3

(b) Pmax � 49.7 kips

9.29 (a) �K � 49.1 MPa

(b) �max � 53.3 MPa

9.31 (a) �H � 42.3 MPa

(b) �max � 42.9 MPa

9.33 (a) �H � 4.80 ksi

(b) �K � 7.42 ksi

9.35 (a) Vmax � 126.4 kN

(b) �H � 44.8 MPa

(c) �max � 47.4 MPa

(d) �max � 118.8 MPa

9.37 (a) �max � 2,230 psi

(b) �x � 21,300 psi (C)

(c) �x � 18,250 psi (T)

9.39 (a) Vmax � 3,664 lb

(b) �H � 1,307 psi

(c) �max � 1,439 psi

(d) �x � 6,670 psi (C) 5.86 ft to the right of A.

9.41 (a) Pmax � 831 lb

(b) Pmax � 2,140 lb, smax � 1.750 in.

9.43 smax � 52.8 mm

9.45 Vmax � 6.14 kN, Mmax � 15.79 kN-m

9.47 (a) �web � 133.9 psi

(b) �bolts � 4,550 psi

(c) �max � 753 psi

9.49 (a) �max � 228 kPa

(b) Vf � 802 N

(c) �max � 8.31 MPa (T)

9.51 (a) Vmax � 6.85 kN

(b) smax � 281 mm

9.53 (a) smax � 466 mm

(b)  W360 � 51 alone: Mallow � 119.7 kN-m, 

W360�51 with cover plate: Mallow � 140.4 kN-m, 

percentage increase � 17.33%

9.55 dmin � 22.7 mm
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9.57 (a) Vf � 32.5 kN

(b) dmin � 23.5 mm

9.59 qC � 435 N/mm, qD � 0 N/mm

9.61 (a) qB � 249 lb/in.

(b) qC � 279 lb/in.

(c) qF � 222 lb/in.

9.63 qmax � 742 lb/in.

9.65 �A � 3.24 ksi, �B � 8.35 ksi

9.67 (a) e � 32.7 mm

(b)  stiffener: �A � 0 MPa, �B � 19.82 MPa

fl ange: �B � 11.89 MPa, �C � 70.0 MPa

web: �C � 116.7 MPa, �D � 137.9 MPa

9.69 e � 30.3 mm

9.71 e � 17.50 mm

9.73 e � 0

9.75
 

e r
⎛ ⎞

� ⎜ ⎟⎝ ⎠
��2

��4

9.77 e � 20.2 mm

Chapter 10

10.1 (a) 
2

0

2

M x
v

EI
��

 (b) 
2

0

2B

M L
v

EI
��

 (c) 0
B

M L

EI
θ ��

10.3 (a) 5 4 50 ( 5 4 )
120

w
v L x L

LEI
� ��� x

 (b) 
4

0

30A

w L
v

EI
��

 (c) 
3

0

24
�A

w L

EI
�

10.5 (a) 2 20 ( 3 2 )
6

M x
v Lx L

LEI
� ��� x

 (b) 0

3A

M L

EI
� ��

 (c) 0

6B

M L

EI
��

 (d) 
2

0
/2 16x L

M L
v

EI� ��

10.7 (a) 2 2( )
12

Px
v x

EI
� �L

 (b) 
3

/ 2 32x L

PL
v

EI� �

 (c) 
2

12A

PL

EI
��

 (d) 
2

6B

PL

EI
���

10.9 (a) 3 2 3 2 2( 2 ) ( )
24 24

wx Px
v Lx L x L

EI EI
�� � � � �x

 (b) 
4 3

/ 2

5

384 64x L

wL PL
v

EI EI� �� �

 (c) 
3 2

24 12B

wL PL

EI EI
� ��

10.11 vB � �8.27 mm

10.13 vB � �18.10 mm

10.15 (a) 
2

3 2 30 ( 10 20 )
120

w x
v L x L

LEI
�� � �x

 (b) 
4

011

120B

w L
v

EI
��

 (c) 
3

0

8B

w L

EI
���

10.17 (a) 
2

(9 4 ) (0 /2)
48

wLx
xxv L

EI
�� � � �L

4 3 2 2 3 4(16 64 96 8 )
384

2( /

w
v Lx

x

L x

)L

L x L
EI

L

�� � � � �

� �

x

 (b) 
47

192B

wL
v

EI
��

 (c) 
441

384C

wL
v

EI
��

 (d) 

37

48C

wL

EI
���

10.19 (a) 
36

wLx
v

EI
��

24

w
v

EI
�� [(4L � x)4 � 16L3x � 49L4]

[x2 � 9L2]       (0 � x � 3L)

(3L � x � 4L)
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 (b) 
45

8C

wL
v

EI
��

 (c) 
3

2B

wL

EI
���

10.21 (a) 5 4 50 ( 5 4 )
120

w
v L x L

LEI
�� � �x

 (b) 
4

0
max 30

w L
v

EI
��

10.23 (a) 7 6 70
3

( 7 6 )
840

w
v L x L

EI L
�� � �x

 (b) 
4

0

140A

w L
v

EI
��

 (c) 
2

00 , (CW)
4 20y B

w L w L
B M� ↑ � 0

10.25 (a)

 

  

4 2 2 20
4

3 4

32 cos 4
2

8( 2) 4 (4 )

w x
v L x

EI 2L

L x L

⎡
⎢⎣

⎤⎦

�
�

�
�

� � � �

� �

�� ��

L

 (b) 
4

00.1089A

w L
v

EI
��

 (c) 
2

0 0
2

2 4
, (CW)y B

w L w L
B ↑ ��

� �
My

10.27 (a)

 

4 2 3 2 30
4

2
24 sin (24 )

3 2

w x
v Lx L x

EI L
⎡ ⎤
⎢ ⎥⎣ ⎦

�
� �

�
�� � ��L

 (b) 
4

0
/2 0.00869x L

w L
v

EI
���

 (c) 
3

00.0262A

w L

EI
� ��

 (d) 
0 0
2 2

2
( 2) ,y y

w L w L
A Bπ ↑↑

��
�� �

4

10.29 vD � 0.226 in. T

10.31 (a) �C � �0.00915 rad

(b) vC � 8.15 mm T

10.33 vC � 27.3 mm T

10.35 (a) �A � �0.01174 rad

(b) vmidspan � 27.7 mm T

10.37 (a) �A � �0.00994 rad

(b) vmidspan � 0.712 in. T

10.39 (a) vA � 0.0407 in. T
(b) vC � 0.0951 in. T

10.41 (a) �E � 0.01326 rad

(b) vC � 0.858 in. T

10.43 (a) �B � 0.00575 rad

(b) vA � 1.028 in. T

10.45 (a) �A � �0.00778 rad

(b) vB � 0.717 in. T

10.47 (a) vA � 6.77 mm c
(b) vC � 11.30 mm T

10.49 (a) vH � 7.50 mm c
(b) vH � 4.00 mm T
(c) vH � 9.33 mm T
(d) vH � 12.00 mm T

10.51 (a) vH � 9.00 mm c
(b) vH � 4.64 mm T
(c) vH � 11.25 mm T
(d) vH � 6.00 mm c

10.53 vC � 0.584 in. T

10.55 vB � 12.50 mm T

10.57 (a) vB � 0.257 in. T
(b) vC � 0.577 in. T

10.59 (a) vB � 0.0566 in. T
(b) vC � 0.242 in. T

10.61 (a) vA � 0.0942 in. c
(b) vC � 0.432 in. T

10.63 (a) vA � 0.0641 in. c
(b) vC � 0.219 in. c

10.65 (a) vA � 4.14 mm T
(b) vC � 6.37 mm T

10.67 vB � 1.933 mm T

10.69 vB � 6.06 mm T

10.71 (a) vA � 1.520 mm T
(b) vC � 13.30 mm T

10.73 (a) vC � 0.432 in. T
(b) vF � 0.0665 in. c

10.75 (a) vC � 8.79 mm T
(b) vE � 9.43 mm T

10.77 vC � 21.4 mm T

10.79 (a) vA � 0.1230 in. T
(b) vD � 0.409 in. T

10.81 (a) vA � 0.733 in. T
(b) vC � 0.214 in. T
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10.83 vC � 41.0 mm T

10.85 vC � 1.325 in. S

Chapter 11

11.1
 

2

0 (CW)
6

wLM �

11.3 3

8

wL
P� ↑

11.5 (a) 

23 5wL
, , (CW)

8 8 8
y y B

wL wLA B M↑ ↑� � �

11.7
 

013

60
y

w LB ↑�

11.9
 

0 0

4

2 48
y

w L w LA
� �

� �

11.11
 

2

0 0

3

2
,y y A B

w L w LA B M M↓
��

����

11.13 (a) 

2 2

,
2

(CCW),  (CW)
12 12

y

A B

wL
A yB

wL wL
M

↑�

� �

�

M

 (c) 
4

/2 384x L

wL
v

EI
↓��

11.15 (a) 
5 11

, , (CW)
16 16 16

y y C
P P 3PLA C M↑ ↑� � �

 (c) 
37

768
B

PLv
EI

↓�

11.17 (a)
 

2

41

128

23 7
, (CW)

128 128

y

y C

wLA

wL wLC M

↑

↑

�

� �

11.19 (a) Ay � 225 kN T, MA � 375 kN-m (CW), 

  By � 225 kN c
(b) vC � 23.4 mm T

11.21 (a) Ay � 52.8 kips c, By � 43.2 kips c,

  MB � 179.2 kip-ft (CW)

(b) v � 0.285 in. T

11.23 (a) Ay � 306 kN c, Cy � 495 kN c,

  Dy � 81.0 kN T
(b) vB � 6.48 mm T

11.25 (a) By � 65.9 kips c, Dy � 19.13 kips c,

  MD � 105.9 kip-ft (CW)

(b) vC � 0.211 in. T

11.27 (a) By � 245 kN c, Cy � 120.0 kN c,

  Dy � 5.00 kN T
(b) vA � 14.40 mm T

11.29 (a) P � 19.50 kips

(b) M � 135.0 kip-ft

11.31 (a) P � 12.50 kips

(b) M � 310 kip-ft

11.33 Ay � 2w0L�5 c, By � w0L�10 c,

MA � w0L2�15 (CCW)

11.35 Ay � 17wL�16 c, By � 7wL�16 c,

MB � wL2�16 (CW)

11.37 Ay � 9M0�16L T, Cy � 9M0�16L c,

MA � M0�8 (CW)

11.39 Ay � 3P�8 c, Cy � 7P�8 c, Dy � P�4 T

11.41 By � 3wL�2 c

11.43 By � 11P�8 � 1.375P c

11.45 (a) Ay � 160.0 kN T, By � 480 kN c,

  Cy � 220 kN c
(b) �max � 235 MPa

11.47 Ay � 1,284 lb c, Dy � 276 lb c,

MA � 17,600 lb-in. (CCW)

11.49 (a) Ay � 7,230 N c, Cy � 6,770 N c, 

  MA � 449,000 N-mm (CCW)

(b) vB � 15.83 mm T

11.51 (a) Ay � 2,750 lb T, By � 10,750 lb T,

  MA � 25,000 lb-in. (CW)

(b) �max � 12,670 psi

11.53 (a) Ay � 208 N c, Cy � 1,014 N c,

  Ey � 228 N c
(b) �max � 168.1 MPa

11.55 (a) By � 79.0 lb c, Cy � 157.5 lb c,

  Ey � 93.5 lb c
(b) �max � 14,290 psi

11.57 (a) Ay � 52.8 kN c, Cy � 97.2 kN c, 

  MA � 144 kN-m (CCW), MC � 216 kN-m (CW)

(b) �max � 103.9 MPa (at C)

(c) vB � 6.24 mm T
11.59 (a) F1 � 7,150 lb (T)

(b) �max � 1,160 psi

(c) vB � 0.233 in. T
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11.61 (a) F1 � 6.08 kips (T)

(b) �max � 17.66 ksi

(c) vC � 0.231 in. T

11.63 (a) Ay � 4.39 kips c, Cy � 5.61 kips c,

  MA � 27.7 kip-ft (CCW)

(b) �max � 17.47 ksi (at B)

(c) vC � 0.0281 in. T

11.65 (a) Ay � 134.5 kN c, By � 178.8 kN c,

  Cy � 13.31 kN T
(b) �max � 157.9 MPa

(c) vB � 3.73 mm T

11.67 (a) Ay � 193.7 kN c, By � 226 kN c,

  MA � 242 kN-m (CCW)

(b) �max � 181.2 MPa (at A)

11.69 (a) �max � 6.05 ksi

(b) �max � 1.142 ksi

(c) �max � 13.20 ksi

11.71 (a) Ay � 8.10 kN T, MA � 79.5 kN-m (CCW)

(b) Cy � 34.1 kN c

11.73 (a) Ay � 96.8 kN c, MA � 110.3 kN-m (CCW)

(b) Cy � 11.62 kN c

Chapter 12

12.1 �x � 26.5 MPa, �xy � �48.9 MPa

12.3 (a) �x � �3.96 ksi, �xy � �5.28 ksi

(b) �x � �8.91 ksi, �xy � 7.64 ksi

12.5 �x � �468 psi, �xy � �319 psi

12.7 (a) �x � 3,250 psi, �xy � 981 psi

(b) �x � �1,486 psi, �xy � 1,092 psi

12.9 �y � �57.7 MPa, �xy � 20.1 MPa

12.11 (a) �x � 26.7 MPa, �xy � �4.15 MPa

(b) �y � �10.89 MPa, �xy � �6.85 MPa

12.13 (a) �y � �24.8 MPa, �xy � 64.8 MPa

(b) �y � 81.3 MPa, �yz � �76.6 MPa

12.15 (a) �x � �5.66 MPa, �xz � 23.0 MPa

(b) �x � �109.4 MPa, �xy � �18.86 MPa

12.17 �n � 222 MPa, �nt � �49.8 MPa

12.19 �n � �42.8 MPa, �nt � 140.3 MPa

12.21 �n � 234 MPa, �nt � �25.1 MPa

12.23 �n � 63.0 MPa, �nt � �58.9 MPa

12.25 �n � 4,270 psi, �nt � �1,871 psi

12.27 �n � �4.77 ksi, �nt � �6.69 ksi

12.29 �n � 14.53 ksi, �nt � �6.62 ksi

12.31 �n � �30.3 MPa, �nt � �46.0 MPa

12.33 �n � �27.9 MPa, �nt � �87.2 MPa

12.35 �n � �16,500 psi, �nt � �8,740 psi

12.37 �n � 112.8 MPa, �t � �58.8 MPa,

�nt � 34.2 MPa

12.39 �x � �38.8 MPa, �y � 49.8 MPa,

�xy � �87.3 MPa

12.41 

12.43 

12.45 
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12.47 

12.49 (a) �p1 � 59.9 ksi, �p2 � 16.07 ksi,

  
p � �21.6
, �max � 21.9 ksi

(c) �abs max � 30.0 ksi

12.51 (a) �p1 � �60.1 MPa, �p2 � �153.7 MPa,

  
p � �38.5
, �max � 46.8 MPa

(c) �abs max � 76.9 MPa

12.53 (a) �p1 � 2.97 ksi, �p2 � �18.97 ksi,

  
p � �32.9
, �max � 10.97 ksi

(c) �abs max � 10.97 ksi

12.55 (a) �p1 � 32.9 ksi, �p2 � 5.13 ksi,

  
p � �42.1
, �max � 13.87 ksi

(c) �abs max � 16.44 ksi

12.57 �y � �117.5 psi

12.59 �xy � �19.98 ksi, �p1 � 27.0 ksi,

�p2 � �37.0 ksi, �p3 � 0

12.61 (a) max. �y � 55.0 ksi

(b) �p1 � 58.5 ksi, �p2 � 26.5 ksi

12.63 

 

12.65 

12.67 

 

12.69 
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12.71 

12.73 

12.75 

12.77 (b) �p1 � 178.7 MPa, �p2 � 43.3 MPa,

  �max � 67.7 MPa, 
p � �38.6
 (to �p2)

(d) �abs max � 89.3 MPa

12.79 (b) �p1 � �659 psi, �p2 � �2,540 psi,

  �max � 941 psi, 
p � �23.1
 (to �p1)

(d) �abs max � 1,270 psi

12.81 (b) �p1 � �12.39 MPa, �p2 � �122.0 MPa,

  �max � 54.8 MPa, 
p � �42.5
 (to �p2)

(c) �n � �17.53 MPa, �nt � 23.2 MPa

(d) �abs max � 61.0 MPa

12.83 (b) �p1 � 181.9 MPa, �p2 � 49.1 MPa,

  �max � 66.4 MPa, 
p � �35.8
 (to �p1)

(c) �n � 57.1 MPa, �nt � �31.6 MPa

(d) �abs max � 91.0 MPa

12.85 (b) �p1 � 111.7 MPa, �p2 � �68.7 MPa,

  �max � 90.2 MPa, 
p � 22.6
 (to �p2)

(c) �n � 45.2 MPa, �nt � �87.0 MPa

(d) �abs max � 90.2 MPa

12.87 (b) �p1 � 208 MPa, �p2 � �100.1 MPa,

  �max � 154.1 MPa, 
p � 41.6
 (to �p1)

(c) �n � �72.5 MPa, �nt � 87.9 MPa

(d) �abs max � 154.1 MPa

12.89 (a) � � �19.00 ksi, � � 11.18 ksi 

  (arrow points to the right)

(b) �x � �24.0 ksi, �y � �14.00 ksi, �xy � 10.00 ksi

(c) �abs max � 15.09 ksi

12.91 (a) �n � 71.9 MPa, �nt � 10.95 MPa

(b)  �p1 � 73.8 MPa, �p2 � 9.41 MPa,

�p3 � �43.2 MPa, �abs max � 58.5 MPa
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12.93 (a) �n � 217 MPa, �nt � 99.6 MPa

(b)  �p1 � 262 MPa, �p2 � �0.999 MPa,

�p3 � �51.5 MPa, �abs max � 157.0 MPa

12.95 (a) �n � 41.3 MPa, �nt � 53.0 MPa

(b)  �p1 � 81.3 MPa, �p2 � �4.75 MPa,

�p3 � �36.6 MPa, �abs max � 58.9 MPa

12.97 (a) �p1 � 91.3 MPa, �p2 � 3.97 MPa,

  �p3 � �55.2 MPa, �abs max � 73.3 MPa

(b) � � 33.2
, 	 � 71.2
, � � 63.7


12.99 (a) �p1 � 9.15 ksi, �p2 � �22.4 ksi,

  �p3 � �31.7 ksi, �abs max � 20.4 ksi

(b) � � 57.8
, 	 � 128.2
, � � 125.3


Chapter 13

13.1 (a) �OA � �243 �� 

(b) �OC � 349 ��

13.3 (a) �n � 352 ��
(b) �t � �1,092 ��
(c) �nt � 292 �rad

13.5 (a) �n � 1,200 ��
(b) �t � 370 ��
(c) �nt � 250 �rad

13.7 �n � 97.7 ��, �t � �748 ��, �nt � 1,799 �rad

13.9 �n � 954 ��, �t � 501 ��, �nt � �100.1 �rad

13.11 �n � �1,243 ��, �t � �1,957 ��, �nt � 338 �rad

13.13 �p1 � 70.8 ��, �p2 � �906 ��, �max � 977 �rad, 


p � �37.1
, �abs max � 977 �rad

13.15 �p1 � 815 ��, �p2 � �575 ��, 

�max � 1,390 �rad, 
p � �27.9
, 
�abs max � 1,390 �rad

13.17 �p1 � �59.2 ��, �p2 � �1,486 ��, �max � 1,427 �rad, 


p � 19.30
, �abs max � 1,486 �rad

13.19 �p1 � 665 ��, �p2 � �260 ��, �max � 926 �rad, 


p � 13.49
, �abs max � 926 �rad

13.21 �p1 � 974 ��, �p2 � �754 ��, �max � 1,728 �rad, 


p � �29.3
, �abs max � 926 �rad

13.23 �x � 1,250 ��, �y � �200 ��, �xy � �1,560 �rad

(b) �max � �abs max � 2,130 �rad

13.25 (a) �x � 715 ��, �y � 655 ��, 

  �xy � 180.0 �rad

(b) �max � 190.0 �rad, �abs max � 780 �rad

13.27 �p1 � 724 ��, �p2 � �254 ��, �max � 978 �rad, 


p � 15.38
, �abs max � 978 �rad

13.29 �p1 � 992 ��, �p2 � �972 ��, �max � 1,963 �rad, 


p � �40.6
, �abs max � 1,963 �rad

13.31 �p1 � 874 ��, �p2 � 476 ��, �max � 398 �rad, 


p � �32.4
, �abs max � 874 �rad

13.33 �p1 � 1,316 ��, �p2 � 729 ��, �max � 587 �rad, 


p � �34.8
, �abs max � 1,316 �rad

13.35 �p1 � 709 ��, �p2 � 451 ��, �max � 709 �rad, 


p � 17.77
, �abs max � 709 �rad

13.37 �p1 � 366 ��, �p2 � �46.2 ��, �max � 412 �rad, 


p � �19.55
, �abs max � 412 �rad

13.39 (a) �x � 410 ��, �y � �330 ��, �xy � �1,160 �rad

(b) �p1 � 728 ��, �p2 � �648 ��, �p3 � �34.3 ��, 

  �max � 1,376 �rad, 
p � �28.7
 (to �p2)

(d) �abs max � 1,376 �rad

13.41 (a) �x � 525 ��, �y � 415 ��, �xy � 80 �rad 

(b) �p1 � 538 ��, �p2 � 402 ��, �p3 � �463 ��,

  �max � 136.0 �rad, 
p � 18.01
 (to �p1)

(d) �abs max � 1,001 �rad

13.43 (a) �x � �360 ��, �y � 510 ��, �xy � 1,207 �rad

(b) �p1 � 819 ��, �p2 � �669 ��,

  �p3 � �26.5 ��, �max � 1,488 �rad,

  
p � �27.1
 (to �p2)

(d) �abs max � 1,488 �rad

13.45 (a) �x � �830 ��, �y � �460 ��,

  �xy � �890 �rad

(b) �p1 � �163.1 ��, �p2 � �1,127 ��, �p3 � 228 ��, 

  �max � 964 �rad, 
p � 33.7
 (to �p2)

(d) �abs max � 1,355 �rad

13.47 (a) �x � 625 ��, �y � 125.0 ��, �xy � �1,440 �rad

(b) �p1 � 1,137 ��, �p2 � �387 ��, �p3 � �102 ��, 

  �max � 1,524 �rad, 
p � �35.4
 (to �p1)

(d) �abs max � 1,524 �rad

13.49 (a) �AB � 0.669 mm, 

  �AD � 0.01181 mm

(b) �AC � 0.603 mm

(c) �thick � �0.00779 mm

13.51 �x � 741 MPa, �y � 630 MPa

13.53 �x � 13.73 ksi, �z � 17.84 ksi
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13.55 �n � 872 ��

13.57 �x � 120.4 MPa

13.59 (a) �x � 8.99 ksi

(b) �y � 10.57 ksi

(c) �xy � 1.617 ksi

13.61 �n � �54.0 MPa, �t � �0.0180 MPa, 

�nt � �32.0 MPa

13.63 �x � �56.7 MPa, �y � 20.2 MPa, 

�xy � 10.39 MPa

13.65 �x � �112.3 MPa, �y � �230 MPa,

�xy � �76.0 MPa

13.67 (a) �x � 0.721 ksi, �y � �1.670 ksi,

  �xy � �1.076 ksi

(b) �p1 � 1.134 ksi, �p2 � �2.08 ksi,

  �max � 1.608 ksi, 
p � �20.99
 (to �p1)

(c) �abs max � 1.608 ksi

13.69 (a) �x � 12.93 ksi, �y � 21.4 ksi, �xy � 11.63 ksi

(b) �p1 � 29.6 ksi, �p2 � 4.80 ksi, �max � 12.38 ksi, 

  
p � �35.0
 (to �p2)

(c) �abs max � 14.78 ksi

13.71 (a) �x � 2.73 ksi, �y � �3.79 ksi,

  �xy � 1.565 ksi

(b) �p1 � 3.09 ksi, �p2 � �4.15 ksi,

  �max � 3.62 ksi, 
p � 12.82
 (to �p1)

(c) �abs max � 3.62 ksi

13.73 (a) �x � 140 ��, �y � 590 ��, �xy � 470 �rad 

(b) �p1 � 690 ��, �p2 � 39.7 ��,

  �p3 � �231 ��, �max � 651 �rad

(c) �p1 � 6.68 ksi, �p2 � 1.961 ksi,

  �max � 2.36 ksi, 
p � �23.1
 (to �p2)

(d) �abs max � 3.34 ksi

13.75 (a) �x � 220 ��, �y � �580 ��, �xy � 693 �rad 

(b) �p1 � 349 ��, �p2 � �709 ��,

  �p3 � 79.0 ��, �max � 1,058 �rad

(c) �p1 � 3.89 ksi, �p2 � �11.36 ksi,

  �max � 7.62 ksi, 
p � 20.5
 (to �p1)

(d) �abs max � 7.62 ksi

13.77 (a) �n � 464 �� (b) P � 25.7 kN

Chapter 14

14.1 �a � 1.193 MPa

14.3 tmin � 31.8 mm

14.5 (a) �a � 7.69 ksi 

(b) p � 217 psi

14.7 (a) �hoop � 96.5 MPa 

(b) pallow � 3.24 MPa

14.9 (a) h � 7.12 m 

(b) �long � 0 MPa

14.11 (a) �n � 76.8 MPa 

(b) �nt � �23.8 MPa

14.13 pallow � 150.5 psi

14.15 p � 1.880 MPa

14.17  (a) p � 197.6 psi 

(b) �abs max � 9.48 ksi 

(c) �abs max � 9.58 ksi

14.19  (a) �n � 67.9 MPa 

(b) �nt � 32.8 MPa 

(c) �abs max � 59.5 MPa

14.21  (a) �x � 158.6 ��, �y � 782 ��, �xy � 0 �rad

(b) �a � 270 ��, �b � 671 ��
(c) �n � 38.7 MPa, �t � 59.8 MPa 

(d) �nt � 12.57 MPa 

Chapter 15

15.1 (a) �p1 � 2,810 psi, �p2 � �5,920 psi,

   �max � 4,360 psi, 
p � �55.4
 (to �p1) or 


p � 34.6
 (to �p2)

15.3 (a) �x � 134.0 ��, �y � �45.6 ��,

  �xy � �1,444 �rad

(b) �p1 � 772 ��, �p2 � �683 ��
(c) �max � 1,455 �rad

15.5 �p1 � 5,970 psi, �p2 � �4,950 psi, �max � 5,460 psi

15.7 Pmax � 32.2 kips

15.9 (a)  �p1 � 40.8 MPa, �p2 � �23.8 MPa,

�max � 32.3 MPa, 
p � 37.4
 (to �p1)

15.11  (a)  �p1 � 28.5 MPa, �p2 � �45.5 MPa,

�max � 37.0 MPa, 
p � 51.6
 (to �p1) or 


p � �38.4
 (to �p2)

15.13 (a) �p1 � 9.63 ksi, �p2 � �16.56 ksi,

   �max � 13.10 ksi, 
p � �52.7
 (to �p1) or 


p � 37.3
 (to �p2)

15.15 (a) �n � 69.3 MPa

(b) �nt � �20.4 MPa

(c) �abs max � 69.0 MPa
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15.17 (a) � � �252 ��
(b) T � 232 N-m

15.19 point H: �p1 � 128.2 MPa, �p2 � �11.83 MPa, 

�max � 70.0 MPa, 
p � 16.89
 (to �p1),

point K: �p1 � 27.6 MPa, �p2 � �72.7 MPa, 

�max � 50.2 MPa, 
p � 58.4
 (to �p1) or 


p � �31.6
 (to �p2)

15.21 �p1 � 12.68 MPa, �p2 � �46.4 MPa,

�max � 27.4 MPa, 
p � �62.4
 (to �p1) or 


p � 27.6
 (to �p2)

15.23 �p1 � 7.06 ksi, �p2 � �1.612 ksi,

�max � 2.84 ksi, 
p � �25.5
 (to �p1)

15.25 �p1 � 59.8 psi, �p2 � �110.4 psi,

�max � 85.1 psi, 
p � 53.7
 (to �p1) or


p � �36.3
 (to �p2)

15.27 point H: �p1 � 231 psi, �p2 � �42.2 psi,

�max � 136.6 psi, 
p � �66.8
 (to �p1) or 


p � 23.2
 (to �p2);

point K: �p1 � 10.93 psi, �p2 � �892 psi,

�max � 451 psi, 
p � �6.32
 (to �p1)

15.29 �p1 � 0.561 ksi, �p2 � �5.21 ksi,

�max � 2.89 ksi, 
p � 18.17
 (to �p1)

15.31 �p1 � 80.4 MPa, �p2 � �6.96 MPa,

�max � 43.7 MPa, 
p � �16.39
 (to �p1)

15.33 Pmax � 6,230 lb

15.35 �A � 0.570 MPa (C), �B � 3.99 MPa (C),

�C � 1.253 MPa (C), �D � 2.17 MPa (T)

15.37 (a) �x � 0 MPa, �y � 37.4 MPa,

  �xy � �5.08 MPa

(b)  �p1 � 38.1 MPa, �p2 � �0.677 MPa,

�max � 19.38 MPa, 
p � �82.4
 (to �p1) or 


p � 7.60
 (to �p2)

15.39 �x � 0 psi, �z � 2,280 psi, �xz � 1,295 psi

15.41 �x � 31.1 MPa, �z � 0 MPa, �xz � 2.10 MPa

15.43 (a) point H: �x � 5,340 psi, �z � 0 psi,

  �xz � 1,121 psi

(b) point K: �x � 293 psi, �y � 0 psi,

  �xy � �1,355 psi

15.45 (a) �x � 14,020 psi, �z � 0 psi, 

  �xz � �5,460 psi

(b)  �p1 � 15,890 psi, �p2 � �1,876 psi,

�max � 8,880 psi, 
p � 18.96
 
(CCW from x axis to �p1)

15.47 (a) �x � 0 MPa, �z � 88.3 MPa, �xz � �75.3 MPa

(b)  �p1 � 131.5 MPa, �p2 � �43.2 MPa,

�max � 87.3 MPa, 
p � �29.8
 
(CW from z axis to �p1)

15.49 �x � �63.6 MPa, �y � 0 MPa, �xy � 23.4 MPa

15.51 (a) point H: �x � 7,790 psi, �z � 0 psi,

  �xz � �1,680 psi

(b) point K: �x � 6,280 psi, �y � 0 psi,

  �xy � �2,130 psi

15.53 �x � 0 MPa, �y � �51.1 MPa, �xy � 16.70 MPa, 

�p1 � 4.97 MPa, �p2 � �56.0 MPa, 

�max � 30.5 MPa

15.55 (a) point H: �x � 0 psi, �z � 0 psi, 

  �xz � 1,032 psi

(b)  point K: �x � 7,040 psi, �y � 0 psi,

�xy � �978 psi

15.57 (a) �x � 0 MPa, �z � 18.08 MPa,

  �xz � �29.7 MPa

(b) �p1 � 40.1 MPa, �p2 � �22.0 MPa,

   �max � 31.1 MPa, 
p � �36.6
 
(CW from z axis to �p1)

15.59 �p1 � 26.2 MPa, �p2 � 9.50 MPa, 

�max � 8.33 MPa, 


p � 14.41
 (CCW from long. axis to �p2), 

�abs max � 10.54 MPa

15.61 (a) point H: �x � �94.7 MPa, 

  �z � 19.13 MPa, �xz � 27.8 MPa

(b)  point K: �x � �64.6 MPa, �y � 19.13 MPa, 

�xy � 24.7 MPa

15.63 �y � 42.0 MPa, �z � 102.2 MPa,

�yz � �41.2 MPa

15.65 (a) �x � �0.621 ksi, �y � 5.12 ksi,

  �xy � �5.30 ksi

(b) �p1 � 8.28 ksi, �p2 � �3.78 ksi,

  �max � 6.03 ksi, 
p � 30.8
 
  (CCW from x axis to �p2)

(c) �abs max � 6.03 ksi

15.67 (a) �x � 5.12 ksi, �y � 13.10 ksi,

      �xy � �8.14 ksi

(b) �p1 � 18.17 ksi, �p2 � 0.0434 ksi,

 �max � 9.07 ksi, 
p � 32.0
 (CCW from x axis to �p2)

(c) �abs max � 9.09 ksi

15.69 (a) FS � 0.884; the component fails.

(b) �M � 49.2 ksi

(c) FS � 1.015; the component does not fail.
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15.71 (a) FS � 0.973; the component fails.

(b) �M � 311 MPa

(c) FS � 1.109; the component does not fail.

15.73 (a) Tmax � 14.08 kN-m

(b) Tmax � 16.26 kN-m

15.75 (a) FSH � 0.935; FSK � 1.281

(b) point H: �M � 338 MPa, 

  point K: �M � 242 MPa

(c) FSH � 0.948, FSK � 1.325

15.77 (a) FSH � 2.59; FSK � 0.923

(b) point H: �M � 117.1 MPa,

  point K: �M � 373 MPa

(c) FSH � 2.99; FSK � 0.939

15.79 (a) FSH � 1.115, FSK � 1.104

(b) point H: �M � 197.8 MPa,

  point K: �M � 189.0 MPa

(c) FSH � 1.213; FSK � 1.270

15.81 (a) dmin � 47.2 mm

(b) dmin � 45.0 mm

15.83 safe; interaction equation � 0.833

15.85 point H: safe; interaction equation � 0.402; 

point K: not safe; interaction equation � 1.035

Chapter 16

16.1 (a) L�r � 250, Pcr � 318 N

(b) L�r � 160, Pcr � 1,892 N

16.3 (a) L�r � 150.9

(b) Pcr � 92.4 kips

(c) �cr � 12.54 ksi

16.5 Pallow � 19.95 kips

16.7 (a) Pcr � 14.44 kips

(b) Pcr � 336 kips

16.9 (a) Pcr � 307 kN

(b) Pcr � 320 kN

16.11 bmin � 4.67 in.

16.13 (a) FBD �225 kN (C)

(b) 123.7, 122.2

(c) FS � 1.204

16.15 Pmax � 2,070 lb

16.17 Pallow � 41.5 kN

16.19 FS � 1.334

16.21 FSmin � 1.425

16.23 FSmin � 1.738

16.25 Pmax � 23.5 kN, 2Pmax � 47.0 kN

16.27 (a) Pallow
 � 60.0 kips

(b) Pallow
 � 15.00 kips

(c) Pallow
 � 122.4 kips

(d) Pallow
 � 240 kips

16.29 Pallow � 135.5 kips

16.31 Pallow � 44.8 kips

16.33 Pallow � 33.9 kN

16.35 (a) Pcr � 6,220 N

(b) b�h � 0.5

16.37 Pallow � 2,510 lb

16.39 	T � 38.0
C

16.41 (a) vmax � 0.1403 in.

(b) �max � 9.07 ksi

16.43 (a) vmax � 24.2 mm

(b) �max � 45.6 MPa

16.45 (a) �max � 12.23 ksi

(b) vmax � 0.780 in.

16.47 (a) P � 93.2 kN

(b) �max � 161.2 MPa

16.49 (a) Pallow � 280 kips

(b) Pallow � 94.2 kips

16.51 (a) Pallow � 870 kN

(b) Pallow � 464 kN

16.53 (a) Pallow � 127.4 kips

(b) Pallow � 39.1 kips

16.55 (a) Pallow � 1,264 kN

(b) Pallow � 1,277 kN

16.57 Pallow � 370 kips

16.59 Pallow � 244 kN

16.61 Pallow � 80.0 kips

16.63 lightest is WT8�20; other acceptable shapes are 

WT9�20 and WT10.5�22.

16.65 (a) Pallow � 40.5 kips

(b) Pallow � 11.39 kips

16.67 (a) Pallow � 82.4 kips

(b) Pallow � 13.46 kips
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16.69 Pallow � 23.6 kN

16.71 Pallow � 18.45 kips

16.73 (a) Pallow � 19,830 lb

(b) Pallow � 8,700 lb

(c) Pallow � 4,610 lb

16.75 Pallow � 8,870 lb

16.77 (a) not given

(b) not given

(c)  ratio of Pallow �Pactual: chord members 

AF � 1.438, FG � 5.35, GH � 3.98, 

EH � 1.070; web members BG � 2.45, 

DG � 5.96

16.79 Pmax � 30.2 kN

16.81 (a) e � 168.2 mm

(b) e � 67.7 mm

16.83 (a) emax � 12.20 in.

(b) emax � 3.55 in.

16.85 (a) The column is not safe for P � 75 kips. 

  �x ��allow � 1.462

(b) Pmax � 51.3 kips

16.87 (a) max offset � 181.4 mm

  (corresponds to e � 308.4 mm)

(b) max offset � 40.2 mm

  (corresponds to e � 167.2 mm)

16.89 Pmax � 67.4 kN

16.91 dmin � 2.13 in.

16.93 Pmax � 4,030 lb

16.95 Pmax � 7.38 kN

Chapter 17

17.1 (a) ur � 1,764 kJ/m3

(b) ur � 257 kJ/m3

(c) ur � 421 kJ/m3

17.3 (a) U � 71.2 lb-in.

(b)  u1 � 13.53 lb-in./in.3, 

u2 � 1.442 lb-in./in.3

17.5 (a) u � 12.33 kJ/m3

(b) dmin � 23.2 mm

17.7 U � 526 lb-in.

17.9 TC � 121.4 N-m

17.11 U � 93.8 J

17.13 U � 947 lb-ft

17.15 U � 360 J

17.17 hmax � 27.1 mm

17.19 hmax � 5.08 in.

17.21 mmax � 13.97 kg

17.23 (a) �max � 7.83 MPa

(b) �max � 2.51 MPa

17.25 Wmax � 31.2 lb

17.27 (a) �max � 20,000 psi

(b) vmax � 0.795 in.

17.29 (a) Pequiv � 18.89 kN

(b) vmax � 54.4 mm

(c) hmax � 382 mm

17.31 (a) Pmax � 17.86 kN

(b) n � 16.55

(c) hmax � 398 mm

17.33 (a) vmax � 0.430 in.

(b) Pequiv � 2,380 lb

(c) �max � 1,169 psi

17.35 v0,max � 3.20 m/s

17.37 (a) Pmax � 50.3 kN

(b) �max � 260 MPa

(c) vmax � 22.4 mm

17.39 	 � 4.03 mm

17.41 	C � 12.44 mm T

17.43 	D � 6.46 mm T

17.45 	B � 0.314 in. T

17.47 	B � 0.227 in. T

17.49 	D � 79.5 mm T

17.51 	D � 0.688 in. T

17.53 	B � 30.1 mm T

17.55 	A � 6.84 mm S

17.57 (a) 	A � 87.4 mm T
(b) 	A � 93.1 mm T

17.59 (a) 	E � 34.5 mm d

(b) 	D � 12.91 mm d

17.61 (a) 	F � 46.7 mm d

(b) 	B � 26.7 mm d

17.63 	C � 1.271 in. T
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17.65 (a) 	A � 4.88 mm d

(b) 	A � 12.85 mm T

17.67 (a) 	D � 10.46 mm T
(b) 	D � 6.56 mm T

17.69 	B � 
2 2

3

Pa b
LEI

T

17.71 
A � 
3

03

128

w L
EI

 (CW)

17.73 
C � 
27

24

PL
EI

 (CW), 	C � 
3

8

PL
EI

T

17.75 
A � 0.0862 rad (CW)

17.77 	C � 30.6 mm T

17.79 (a) 
C � 0.00883 rad (CW)

(b) 	C � 31.9 mm T

17.81 	E � 0.722 in. c

17.83 	C � 0.660 in. T

17.85 Imin � 2,140 in.4

17.87 	B � 0.241 in. d

17.89 	B � 0.0863 in. d

17.91 	D � 14.84 mm d

17.93 	D � 0.450 in. S

17.95 	B � 16.15 mm S

17.97 	B � 32.3 mm T

17.99 (a) 	E � 23.0 mm d

(b) 	D � 14.79 mm d

17.101 	B � 10.10 mm d

17.103 	C � 2.03 in. T

17.105 (a) 	A � 3.30 mm d

(b) 	A � 7.08 mm T

17.107 	B � 
2 2

3

Pa b
LEI

T

17.109 
A � 
3

03

128

w L
EI

 (CW)

17.111 
C � 
27

24

PL
EI

 (CW), 	C � 
3

8

PL
EI

T

17.113 
A � 0.0290 rad (CW)

17.115 	C � 30.6 mm T

17.117 (a) 
C � 0.00883 rad (CW)

(b) 	C � 31.9 mm T

17.119 	E � 0.722 in. c

17.121 	C � 0.660 in. T

17.123 Imin � 2,140 in.4
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A
Absolute maximum shear strain, 576, 587

Allowable stress, defi ned, 72

Allowable stress design, 72–73, 715

Allowable stress method, 727

American standard channels (C-shapes), 

844–845

Angle sections (L-shapes), 850–851

Angle of twist  

in circular shafts, 149–150, 154–156

in noncircular sections, 205

Arbitrary cross section, defi ned 323

ASD, 72, 83, 715

Aspect ratio, 205, 293–294

Assumptions

for bending due to eccentric axial load, 

310–311

for unsymmetric bending, 323, 325

in centric loading formula, 92–94

in elastic curve equation, 413

in fl exure formula, 264–265, 269

in shearing stress formula, 346–347, 

358–359

in torsion formula, 148–149

Axial deformation, 90–145

Axial force, defi ned, 2

Axial loading, 2–7, 92–145, 310–315

Axially loaded members

Saint-Venant’s principle and, 91–92

statically determinate, 2–7, 92–109, 

310–316

statically indeterminate, 109–140

by superposition methods, 443–459 

using discontinuity functions, 

433–440

Bearing stress, 12–14, 73–74

Bending

nonuniform, defi ned, 263

pure, defi ned, 263

Bending-moment

diagrams, 215–259

equations, 215–224

relationship to load and shear force, 

227–232

sign conventions for, 216, 268

Bending strain, 298–299, 323

Bending stress (fl exure stress)

assumptions in fl exure formula, 

264–265, 269

economic sections

selecting, 293

standard structural steel shapes and, 

292–293

fl exure formula, 267–269

section modulus, 269, 281, 286, 

292–295

in beams of homogeneous materials, 

264–291

in beams of two materials, 297–310 

in unsymmetric sections, 322–329

Biaxial stress, 593, 595, 609, 612–613, 

668–669, 671, 674

Boundary conditions

for beams, 414, 430, 444

for columns, 685, 696–698, 708

Axial strain, 33, 59, 92–93, 670

Axial stress, 2, 33, 92, 310, 312–314, 

608–609, 613, 685, 727–728

B
Beam(s)

built-up, 369–375

composite, 297–307

defl ection of, 409–468

elastic curves for, 410–425

fl exural stresses in, 267–291, 297–310, 

629–643

fl exural stress formula for, 267–269

introductory design of, 292–297

neutral axis in, 263–266

normal stresses in, 267–291, 297–310, 

629–643

principal stresses in, 629–643

section modulus of, 268–269, 

292–295

shear fl ow in, 369–382

shear stresses in, 345–369

shear stress formula for, 348, 352

types of, 214–215, 469–470

Beam defl ection diagram, 412–413

Beam defl ections

statically indeterminate

by integration methods, 471–476

by superposition methods, 

486–495

statically determinate 

by integration methods, 414–431 
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Brittle materials, 24, 54–57, 143, 153, 

629, 673

maximum-normal-stress theory of 

failure, 673–674

Mohr’s Failure Criterion, 674–675

Buckling, defi ned, 681

Built-up beams, shear in, 369–375

C
Cantilever beam, defi ned, 215

Castigliano’s First Theorem, 800

Castigliano’s Second Theorem, 802

applied to beams, 807–813

applied to trusses, 802–806

development of, 800–802

Center of curvature, defi ned, 263–264

Centric loading

defi ned, 24

combined with bending, 310–322

combined with bending and torsion, 

643–667

combined with torsion, 623–628

stresses due to, 2–7

Centroids of areas, 819–823

Channel sections (C-shapes), 281–282, 

844–845

Circular hole, stress distribution near, 

140–143

Circular shafts

deformations in, 149–150, 154–155

elastic torsion formula for, 151

moment of inertia, 286, 358–359, 644, 

649, 653, 657

normal stresses in, 152–153

polar moment of inertia, 151

section modulus, 286

shear stresses in, 151–153

statically indeterminate, 182–201

strains in, 149–150

stress-concentration factors, 201–202

transverse shear stress in, 358–359

Circumferential stress (hoop stress), 

611–613

Clapeyron’s theorem, 670

Code calibration, 84

Coeffi cient of thermal expansion, 43

of selected materials, table, 858–859

Column(s)

centric loading of, 684–707

critical load for, 686, 699–701

defi ned, 681

eccentricity ratio for, 711

eccentric loading, 707–713, 726–736

effect of end conditions on, 696–707

Curvature, radius of, 263

Cylindrical pressure vessels, 610–613

D
Dead loads, 70

Defl ection, beams:

by integration method, 414–431

by superposition method, 443–459

formulas for cantilever beams, 855

formulas for simply supported beams, 

854

Deformation diagram, 34–35, 102–103, 

105–107, 117–120, 132, 135, 670

Deformation

axial, 90–145

defi ned, 32

fl exural, 263–264

torsional, 154–155

Degree of indeterminacy, 470

Design

allowable stress, 72–73

beam, 292–297

column

AISC specifi cations, 715

Aluminum Association specifi cations, 

716

formulas for, 714–717

NDS, 716–717

load and resistance factor, 83–88

Diagram  

axial-force, 6, 95

bending-moment, 215–259

deformation, 34–35, 102–103, 105–107, 

117–120, 132, 135, 670

internal torque, 161

load-defl ection, 710

rotation angle, 162

shear-force, 216–224, 227–242

stress–strain, 47, 49–58

Differential equation of the elastic curve

for beams, 410–412

for columns, 685, 696

Digits, signifi cant, 3

Discontinuity expressions, 252–257, 

434–440, 479–484

Discontinuity functions, 248–251

constants of integration, 250, 433–440, 

480, 483

integrals of, 249

shear-force and bending-moment 

diagrams, 248–257

table of, 251

Displacement vector, 571–572

Displacement, defi ned, 31

effective length, 699–704

effective length factors, 700

empirical formulas for, 714–726

Euler’s formula, 686

derivation of, 685–686

intermediate, 689, 714–716

local instability, 717

long, 689, 714–716

secant formula, 711

derivation of, 707–712

short, 689, 714–716

slenderness ratio, 687, 689, 701

Column-buckling model, 682

Column formulas

AF&PA, 716–717

AISC, 715

Aluminum Association, 716

Euler, 686–687

interaction, 727–733

NDS, 716–717

parabolic, 715

secant, 711

structural steel, 715

wood, 716–717

Combined loadings

axial and torsional, 623–628

centric, fl exural, and torsional, 512, 

643–667

centric and fl exural, 310–322

Compatibility equation

for axial members, 109, 112

for torsion members, 182, 185

for fl exural members, 487

Composite beams, 297

Compression, defi ned, 2

Compressive strain, 33

Compression stress, 153, 265, 310, 

710–711, 714, 726–727

Compressive stress, 154, 507, 630, 727

Concentrated load, 215

Concept of stress, 2–3, 7–8, 508–509

Conservation of energy

applied to axial deformation, 740

applied to impact load, 752

applied to torsional deformation, 744

defi ned, 737, 739, 769–770

Constitutive relationships, 109

Continuity conditions, 414–416, 423–424, 

474–475

Continuous beam, defi ned, 470–471

Coulomb’s theory, 668

Critical buckling load, 684, 686, 689

Critical buckling stress, 687

Cross section, defi ned, 2

Curvature, 264
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Distortion, defi ned, 32

Distributed load, defi ned, 215

Double shear, defi ned, 9

Double-integration method, 414–416, 471

Doubly symmetric sections, defi ned, 269

Ductile materials, 24, 48, 54–57, 143, 153, 

668–673

maximum-distortion-energy failure 

theory, 669–673

maximum-shear-stress failure theory, 

668–669

Ductility

defi ned, 48

of selected materials, table, 858–859

Dynamic force, 751–753

Dynamic load, 751

E
Eccentric loading, 310, 707

Eccentricity, 310–313, 636, 707, 710–712, 

726–729, 731–733 

Eccentricity ratio, 711–712

Effective column length, 700

Effective-slenderness ratio, defi ned, 701

Eigenvalues, 564

Eigenvectors, 564

Elastic behavior, defi ned, 52

Elastic curve, defi ned, 261, 410

using discontinuity functions, 435, 438, 

440, 481, 484

Elastic curve, differential equations

for beams, 410–412

for columns, 685, 696

Elastic fl exure formula, 267–269

Elastic limit, defi ned, 52–53

Elastic modulus, 

defi ned, 50

relationship to shear modulus, 

59, 593

Elastic recovery, defi ned, 52

Elastic strain energy

due to distortion, 672

due to hydrostatic stress, 672

due to volume change, 672

for axial deformation, 739, 

742–744

for axial loading, 670

for fl exural deformation, 745–749

for torsional deformation, 744–745

for triaxial loading, 671

Elastic strain, defi ned, 52

Elastic support, 493

Elastic torsion formula, defi ned, 151

Elasticity, defi ned, 49

Flexural strains, 263–264

Flexural stresses

in beams of homogeneous materials, 

264–291

in beams of two materials, 297–310

Flexure formula, 267–270

Force-deformation relationship, 95, 103, 

109–112, 115

Fracture stress, defi ned, 54, 57

Free-body diagram method

for fl exural stresses, beams, 265–267

for plane stress transformations, 

518–519

for shear stresses on oblique planes of 

shafts, 152–153

for shear stresses, beams, 337–339

for stresses on inclined planes, 22–24

for stresses in cylindrical pressure 

vessels, 610–611

for stresses in spherical pressure vessels, 

608–609

Frequency, shaft rotation, 176

G
Gage length, 48–49, 54, 57

Gear pitch, 169

Gear ratio, 169–172, 178

Gears, 168–170

General state of stress, 562–568

Generalized Hooke’s law for isotropic 

materials, 591–594

Geometry-of-deformation equation

for axial members, 96, 103–104, 109, 

111–115, 118–120, 131–132

for fl exural members, 486–487

for torsion members, 182–183, 185–186, 

188, 192–193

Groove, 3, 55, 92, 201, 333–334

Gyration, radius of, defi ned, 687

H
Hertz, defi ned, 176

High-velocity impact, 751

Hollow Structural Sections (HSS Shapes), 

281–282, 848–849

Homogeneous material, defi ned, 43

Hooke’s Law

for biaxial state of stress, 593–594

for general state of stress, 591–594

for plane state of stress, 593–594

for shear stress, 58

for triaxial state of stress, 591–593

for uniaxial state of stress, 58

Elasticity, modulus

defi ned, 50

of selected materials, table, 858–859

Elastoplastic material, 53

Electrical-resistance strain gages, 33, 

585–586

Elongation

axially loaded members, 92–140

Elongation, percent

defi ned, 57

of selected materials, table, 858–859

Empirical column formulas, 714–717

End conditions

for beams, 414

for columns, 700

Energy, units of, 739

Engineering stress, 54–55

Equation of elastic curve, 410

Equivalent static load, 753–754

Euler buckling load, 686

Euler buckling stress, 687

Euler’s formula, 686–687

Extensometer, 48

External work, 737, 739–740

F
Fabricated (built-up) beams, shear in, 

369–375

Factor of safety, defi ned, 72–73

Failure theories

maximum-distortion energy, 670–673

maximum-normal-stress, 673–674

maximum-shear-stress, 668–669

Mises equivalent stress, 673

Mohr’s Failure Criterion, 674–675

Failure, defi ned, 71–72

Fibers, longitudinal, 262

Fillets, 3, 55, 92, 141–142, 144, 201–203, 

282, 327, 333–335, 715

Fixed-end beam, defi ned, 470

Fixed-fi xed beam, defi ned, 470

Fixed support, defi ned, 213–214

First moment of area

in parallel-axis theorem, 824

locating beam neutral surface, 266

locating centroid of area, 819

Q section property, 347–351, 358, 370

Flange, defi ned, 281

Flexural deformation, 263–264

Flexural loading

combined with centric loading, 310–322

combined with torsional loading, 

643–667

Flexural rigidity of beams, 267
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Hoop stress (circumferential stress), 

611–613

Horsepower, defi ned, 176

HSS Shapes, 281–282, 848–849

Huber-von Mises-Hencky theory, 669

Hydrostatic stress, defi ned, 671

Hz, defi ned, 176

I
Ideal column, 684

Impact, defi ned, 71

Impact factor, 753

for freely falling weight, 753

for weight moving horizontally, 754

Impact Force

for freely falling weight, 752

for weight moving horizontally, 754

Impact load, 751

Inclination of the neutral axis, 325

Indeterminacy, degree of, 470

Inelastic strain, 52

Inelastic strain energy, 739

Inertia, moment, 267, 823–828

Infl ection point, 700–701

Integration method, 409, 414–416, 471

Interaction formula, 728

Interaction method, 727

Intermediate columns, 689, 714–716

Internal force, 1–3, 7, 92–93, 109, 112, 

128–129, 310

Internal work, 737, 739

Invariance, 522, 534, 573

Isotropic materials

defi ned, 43

generalized Hooke’s law, 591–594

K
Keys, shear, 10–11

L
Lateral bracing, 688, 702–703

Limit states, 87

Load and resistance factor design, 83–88

Load–deformation diagram, 738, 775

Load diagram, 229, 232–233

Load factor, 84, 86–87

Load functions, 429–430

using discontinuity functions, 252–257, 

434–440, 478–484

Load, defi ned

centric, 24, 310

concentrated, 215

critical buckling, 684, 686, 689

Modulus of elasticity

defi ned, 50

for selected materials, table, 858–860

Hooke’s Law and, 58

relationship to shear modulus, 59, 593

Modulus of resilience, 741

Modulus of rigidity, 

defi ned, 58

for selected materials, table, 858–859

relationship to elastic modulus, 59, 593

Modulus of toughness, 741

Mohr’s circle

for moments of inertia, 835–838

for strains, 582–584

for stresses, 543–557

Mohr’s Failure Criterion, 674–675

Moment–curvature equation, 267

Moment–curvature relationship, 266, 410

in beams of two materials, 299, 302

in differential equation for column 

buckling, 685, 697

Moment–rotation angle diagram, 746

Moment of inertia

circular cross sections, 286, 358–359, 

644, 649, 653, 657

defi ned, 267, 823–825

N
Necking, 54

Net area, 14, 79, 141

Net section, 140–141

Neutral axis, 263, 265–268, 300–302, 

310, 322–325, 346–347, 348–352, 

358, 370

inclination of, 325

Neutral equilibrium, 683–685, 697

Neutral surface, 263–269, 300, 324, 

409–410

Nominal stress, 140–141, 143, 201, 

332–333

Noncircular members

torsion of solid, 204–207

torsion of thin-walled hollow, 

207–208

Nonuniform bending, defi ned 263

Normal strain

Cartesian components, 570

defi ned, 32–33

fl exural, 263–264, 300, 303, 323

in pressure vessels, 613–614

maximum and minimum, 576

out-of-plane, 587, 594

principal, 576

sign convention, 33, 573–574

transformation, 571

dead, 70

distributed, 215

eccentric, 310

Euler buckling, 686

live, 70

punching shear, 12

shear, double, 9

shear, punching, 11–12

shear, single, 8

snow, 71

torsional, 153, 182, 201

transverse, 261

ultimate, 86–87

wind, 71

Local instability of columns, 717

Long columns, 689, 714–716

Low-velocity impact, 751

LRFD, 83–88

Lüder’s lines, 668

M
Macaulay brackets, 248

Macaulay functions, 248

cancelling, 249

constants of integration, 249, 433, 435, 

437–438, 440

graphs of, 248

integrals of, 249

step function, 248–249

ramp function, 249

Major diameter, 201

Minor diameter, 201–203

Materials

selected properties, table, 858–860

Maximum defl ection of beams: by 

integration method, 414–425

Maximum in-plane shear strain, 576

Maximum in-plane shear stress, 531–534

Maximum normal stress, 140, 152–153, 

507, 529, 607

Maximum-normal-stress theory of failure, 

673–674

Maximum-distortion-energy theory of 

failure, 669–673

Median line, thin-walled tubes, 208–209

Method of sections, defi ned, 2

Method of superposition

for combined stresses, 644

for defl ections of determinate beams, 

443–459

for indeterminate beam analysis, 

486–495

for unsymmetric bending, 325

Microstrain, defi ned, 33

Mises equivalent stress, 673
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Normal stress

axial, 2, 91–92

defi ned, 2–3, 508

eccentric axial load, 310

fl exural, 264–267, 301–303, 323–325, 

338–339

in pressure vessels, 608–613

maximum and minimum, 529–530

nominal, 140–141, 143, 332–333

on maximum in-plane shear stress 

surfaces, 533

Saint-Venant’s principle, 91–92

sign convention for, 3, 509, 522–523

transformation, 520–521

Notch, 10, 55, 92, 141, 332–334

Notional failure rate, 86

O 
Offset method for yield strength, 53

Overhang, beam with, 215

Overhanging beam, defi ned, 215

Overload, defi ned, 71

P
Parallel-axis theorem

defi ned, 718, 824–828

for products of inertia, 705–831

Percent elongation

defi ned, 57

of selected materials, table, 

858–859

Percent reduction in area, 57

Perfectly plastic, 53

Permanent set, 52–53

Pin-ended columns, 684–691

Pin support, defi ned, 213–214

Plane of bending, 262

Plane strain, 570–579

transformation of, 571–573

Plane stress, 511, 518–519, 593

transformation of, 520–525

Plastic behavior, 52

Plastic deformation, 52

Poisson’s ratio, 58–59

Polar moment of inertia

defi ned, 151, 824

parallel-axis theorems for, 824

Potential energy, 737

Power transmission shafts, 175–178

Pressure vessels, 607–617

Principal angles, 529

Principal moments of inertia

by Mohr’s circle, 835–836

defi ned, 831–832

Rigidity, Modulus of

defi ned, 58, 150

for selected materials, table, 858–859

relationship to elastic modulus, 59, 593

Roller supports, defi ned, 213–214

Rosette analysis, 585–587

Rpm, defi ned, 176

S
Safety, factor of, 72–73

in AISC column formulas, 715

Saint-Venant’s Principle, 91–92, 147, 

155, 312

Saint-Venant’s theory of torsion, 204

Secant formula, 707–712

Second moment of area, 151, 267, 

819, 823

Section modulus, 269, 281, 286, 292–295

Section plane, defi ned, 2

Service loads, defi ned, 72

Serviceability limit states, 84

Shear area, 8

Shear fl ow

in thin-walled tubes, 207–208

in built-up beams, 369–375

Shear force, 

defi ned, 7

diagrams, 216–224, 227–242

relationship to load and bending 

moment, 227–232

Shear key, 10–11

Shear modulus

defi ned, 58

for selected materials, table, 858–859

relationship to elastic modulus, 59, 593

Shear strain, 32, 39–40, 570–571

absolute maximum, 576–577 

maximum in-plane, 576

relationship to shear stress, 58, 592, 593

sign convention for, 40, 573–574

torsional

in circular sections, 149–150

in noncircular sections, 205

transformation equations, 572–573

Shear stress

absolute maximum, 533–534, 556–557, 

567

direct shear, 7–9

equality on perpendicular planes, 24–25, 

510–511

horizontal, 347–349, 351–352, 629

in circular sections, 358

in fl anged sections, 358–359

in rectangular sections, 351–352

maximum in-plane, 531–532

Principal planes

bending, 326

cross sections, 326

defi ned, 529–531, 563

Principal strains

by Mohr’s circle, 581–584

defi ned, 576

Principal stresses

by Mohr’s circle, 543–551

defi ned, 529

Principle of superposition, 326, 443, 

486–488, 591, 644, 710

Product of inertia

defi ned, 828–705

in unsymmetrical bending, 324–325

parallel-axis theorem for, 705

Projected area, 14, 74

Properties

angle shapes (L shapes), 850–851

channel sections, 844–845

hollow structural sections (HSS shapes), 

848–849

metals, 858–859

W-shapes (wide-fl ange sections), 

840–843 

wood, 860

WT-shapes, 846–847

Proportional limit, 49–53

Propped cantilever beam, 469–470

Punching shear, 11–12

Q
Q section property, 347–351, 358, 370

R
Radial stress, 142, 610, 613

Radius of curvature, defi ned, 263

Radius of gyration, defi ned, 687

Ramp function, 249

Rankine’s theory, 673

Recovery, elastic, 52

Redundant reactions, 470

Redundants, 470–471, 486–488

Released beam, 470–471, 486–490

Reliability analysis, 84

Residual strain, 52

Residual stress, 715

Resistance strain gage, 33, 585–586

Resistance, in LRFD, 83

Resultant stress, 563, 565

Rigid bar, defi ned, 34

Rigid element, defi ned, 3

Rigid-body displacement, defi ned, 31
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Shear stress (continued)

nominal, 201

relationship to shear strain, 

58, 592, 593

sign convention for, 522–523

torsional

in circular sections, 150–151

in noncircular sections, 204–209

transformation equations, 520–522

transverse, 348, 352, 629, 631

in circular sections, 358

in fl anged sections, 358–359

in rectangular sections, 351–352

Shear, direct

double, 9

punching, 11

single, 8

Shear center

for channel section, 394–399

defi ned, 393–394

for sections consisting of two rectangles, 

404–405

for semi-circular section, 403–404

Shear fl ow

in closed sections, 207–209, 388–389

in thin-walled sections, 385–388

due to torsion, 207–209

Shear-force diagram, 216–224, 227–242

using discontinuity functions, 248–257

Sign convention

for angle of twist, 156

for axial deformation, 92

for beam defl ections, 412

for bending moments, 216, 268

for curvature, 264

for fl exural strain, 264

for internal bending moment, 

216, 268

for internal shear force, 216

for internal shear force, 216

for internal torques, 155–156

for Mohr’s circle (strain), 582

for Mohr’s circle (stress), 544–545

for normal strains, 33, 571, 573–574

for normal stresses, 3, 509, 522–523

for shear strains, 40, 573–574, 582

for shear stress in beams, 349, 631

for shear stresses, 522–523, 545, 631

for shear-force and bending-moment 

diagrams, 216

for torsional rotation angles, 156

Signifi cant digits, 3

Similar triangles, 34–35, 103, 114, 118, 

132, 313

Simple beam, defi ned, 214–215

Simply supported beam, 

defi ned, 214–215

defl ection formulas, 854–855

Single shear, defi ned, 8

Singularity functions, 248

for concentrated forces, 249–250

for concentrated moments, 249–250

Slenderness ratio, defi ned, 687, 701

Spherical pressure vessels, 608–610

Stable beam, 470

Stable equilibrium, 681, 683–685

Statically indeterminate members

with axial loads, 109–121, 128–135

with fl exural loads, 469–476, 486–495

by integration methods, 471–476

by superposition methods, 486–497 

using discontinuity functions, 

478–484

with elastic supports, 493–497

with torsional loads, 182–195

Stem, defi ned, 281

Step function, 248

Strain element, defi ned, 569

Strain energy, 668–671, 737, 739–740

elastic, 670–671

for axial loadings, 669–670

Strain-energy density, 670–671, 740

for normal stress, 740

for shear stress, 741

units of, 741

Strain gages, 33, 585–586

Strain hardening, 49, 53–54, 57

Strain invariance, 573

Strain rosette, 586–587

Strain

absolute maximum shear, 576–577, 587

axial, 33, 58, 92–93, 670

compressive, 33

defi ned, 32

fl exural, 263–264

in-plane shear, 576–578

normal, 32–33

plane, 570–571, 576–578, 581–582

pressure vessels, 613–614

principal, 576

principal, by Mohr’s circle, 581–582

shear, 32, 39–40, 149–150, 154, 205, 

570–574, 576–578, 581–582

tensile, 33, 264

torsional shear, 149–150, 154, 205

Strength limit states, 87

Strength

ultimate, 49, 53–55, 57, 72

ultimate, of selected materials, table, 

858–859

yield, 49, 53–54, 57

yield, of selected materials, table, 

858–859

Stress-concentration factors

for circular shafts, 201–202, 334

for fl at bars, 141–143, 333

Stress concentration

under axial loadings, 140–144

under fl exural loadings, 332–335

under torsional loadings, 201–202

Stress distribution

normal stress, 3, 22, 74, 91–92, 94, 141, 

265, 303, 310–311, 323, 338 

shear stress, 351, 359

Stress element, defi ned, 509 

generating, 511–513

Stress invariance, 522, 534

Stress trajectory, 140–141, 629–630

Stress transformation, 518–519, 520–525, 

528–534, 543–547

Stress

allowable, 71–72

average normal, 140, 533

average shear, 8, 11, 207–208, 354, 371

axial, 2, 91–92, 609

bearing, 12–14, 73–74

biaxial, 593, 595, 609, 612–613, 

668–669, 671, 674

circumferential, 611–613

compression, 153, 265, 310, 710–711, 

714, 726–727

compressive, 12, 154, 507, 630, 727

defi ned, 2

fl exural, 267, 269, 279, 297

hoop, 611–613

maximum normal, 140, 152–153, 529, 

607, 673–674

maximum shear, 8, 23–24, 150–154, 

201–202, 204, 352, 528, 532, 535, 

544, 547, 565–567, 609, 629–631, 

643, 644

maximum shear, by Mohr’s circle, 547

nominal, 140–141, 143, 201, 

332–333 

normal

compression, 153, 265, 310, 710–711, 

714, 726–727

compressive, 12, 154, 507, 630, 727

defi ned, 2–3, 508

tensile, 143, 153–154

tension, 265, 280, 297, 310, 576

plane, 511–519

principal, 528–531

principal, by Mohr’s circle, 546

resultant, 563, 565
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shear, 7–8, 347–349, 351–352, 520–521, 

629, 631

tensile, 143, 153–154

thermal, 128

torsional shear, 149–151, 204–207

true, 49, 54–55

two-dimensional, 511

Stress–strain diagram, 47, 49–58

Stress–strain equations:  for isotropic 

materials, 591–594

Strong axis, 281

Structural shapes, standard, 281–282, 

840–851

Structural tees (T-shapes), 281–282, 

846–847

Superposition method

for combined loadings, 644

for defl ections of determinate beams, 

443–459  

for indeterminate beam analysis, 486–495

Superposition, principle, 325, 443, 

486–488, 591, 644, 710

T
Table

of defl ection and slopes of beams, 

854–855

of discontinuity functions, 251

of properties of materials, 858–860

of properties of plane fi gures, 820

of properties of rolled-steel shapes, 

840–851

of properties of wood construction 

 materials, 860

Tangential stress, 142–143

Temperature effects, 129

Tensile strain, 33, 264,

Tensile stress, 143, 153–154

Tension stress, 265, 280, 297, 310, 576

Tension test, 47–49

Tension, defi ned, 2

Theories of failure

maximum-distortion-energy, 669–673

maximum-normal-stress, 673–674

maximum-shear-stress, 668

Mises equivalent stress, 673

Mohr’s Failure Criterion, 674–675

Thermal expansion

coeffi cient, 43

coeffi cient, for selected materials, table, 

858–859

Thermal strain, 43, 61

Thermal stress, 128

Thin-walled pressure vessels

cylindrical, 610–613

spherical, 608–610

Thin-walled sections, torsion, 207–208

Torque, defi ned, 147

Torque–rotation diagram, 744

Torque-twist relationship, 182–183, 185, 

188, 193

Torsion

of circular shafts, 147–164

of noncircular solid sections, 

204–207

of rectangular bars, 204–207

of thin-walled hollow sections, 

207–209

Torsional deformations, 154–155

Torsional loading, 153, 182, 201

Torsional shear strain

in circular sections, 149–150

in noncircular solid sections, 205

Torsional shear stress

in circular sections, 150–151

in noncircular sections, 204–209

Transformation equations

for plane strain, 571–573

for plane stress, 520–521

for three-dimensional stress, 563

Transformed cross section, 300–303

Transformed-section method, 299–307

Tresca criterion, 668

True stress, 49, 54–55

Twist, angle of, 148–149, 154–156

0.2% offset method for yield strength, 53

U
Ultimate load, 86–87

Ultimate strength

defi ned, 49, 53

for selected materials, table, 858–859

Uniaxial, defi ned, 22, 58

Unstable equilibrium, 683–684

Unsymmetric bending, 322–329

inclination of the neutral axis, 325

symmetrical sections, 325

U-shaped

cross section, 340–341, 372, 376

groove, 201, 334

notch, 141, 333

V
Virtual work, 744

principle of, 776–779

Virtual-work method

applied to beams, 786–795

applied to trusses, 779–778

applied to two-bar assembly, 776–778

von Mises equivalent stress, 673

W
Warping of cross sections: in shaft due to 

torsion, 148

Watt, defi ned, 176

Weak axis, 281

Web, defi ned, 281

Wide-fl ange sections (W-shapes) 281, 

840–843

Wood, typical properties of, 860

Work

defi ned, 738

related to axial member, 738–739, 770, 

774–778

related to fl exural member, 770, 776, 

787

units of, 739

Work hardening, 49, 50, 52

Work–energy method, for single loads, 

769–772

Y
Yield point, defi ned, 53

Yield strength

defi ned, 49, 53–54

for selected materials, table, 858–859

Yield stress, 72

Yielding, defi ned, 53  

Young’s modulus, 50
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Fundamental Mechanics of Materials Equations

Basic defi nitions
Average normal stress in an axial member

�avg �
F

A
Average direct shear stress 

�avg �
V
AV

Average bearing stress

�b
b

F
A

�

Average normal strain in an axial member

�
�

avg �
L

Average normal strain caused by temperature change

� �T T� �

Hooke’s Law (one-dimensional)

� � � �� �E Gand
Poisson’s ratio

�
�

�� �
lat

long

Relationship between E, G, and ν

G
E

�
�2 1( )�

Defi nition of allowable stress

�
�

�
�

allow
failure

allow
failure

FS
or

FS
� �

Factor of safety

FS or FSfailure

actual

failure

actual
� �

�
�

�
�

Axial deformation
Deformation in axial members

� �� � ∑FL

AE

F L

A E
i i

i ii

or

Force-temperature-deformation relationship

�                 ��TL
FL

AE
� �

Torsion
Maximum torsion shear stress in a circular shaft

�max �
Tc

J
where the polar moment of inertia J is defi ned as

� � � �J R r D d[ ] [ ]
� �

2 32
4 4 4 4

Angle of twist in a circular shaft

	 	� � ∑TL

JG

T L

J G
i i

i ii

or

Power transmission in a shaft

P T� 


Six rules for constructing shear-force 
and bending-moment diagrams

Rule

Rule ( )

Rule

1

2

3

0

2 1
1

2

:

:

:

�

�

V P

V V V w x dx

dV

dx

x

x

�

� � � ∫
�

� � �

�

∫

w x

M M M V dx

dM

dx
V

x

x

( )

Rule

Rule

Rule

4

5

6

2 1
1

2
:

:

:

�

�M M� � 0

Flexure
Flexure formula

� �x
My

I

Mc

I

M

S
S

I

c
or wheremax� � � � �

Unsymmetric bending of arbitrary cross sections

�x
z yz

y z yz
y

y yz

y z y

I z I y

I I I
M

I y I z

I I I

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

zz
zM

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥�

�
�

�

�

�

�

Unsymmetric bending of symmetric cross sections

��x
y

y

z

z

y z

z y

M z

I

M y

I

M I

M I
tan� ��

Horizontal shear stress associated with bending 

�H
VQ

It
�

Shear fl ow formula

q
VQ

I
�

Shear fl ow, fastener spacing, and fastener shear relationship

qs n V n Af f f f f� � �

For circular cross sections,

Q d�
1

12
3 (solid sections)

Q R r D d� �� �[ ] [ ]
2

3

1

12
3 3 3 3 (hollow sections)

Beam defl ections
Elastic curve relations between w, V, M, θ, and v for 

constant EI

Deflection

Slope

Moment

Shear

�

� �

�

�

v
dv

dx

M EI
d v

dx

V

�

2

2

ddM

dx
EI

d v

dx

w
dV

dx
EI

d v

dx

�

� �

3

3

4

4
Load
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Plane stress transformations
Normal and shear stresses on an arbitrary plane

� � � � � � � �

� � � �

n x y xy

nt x y

� � �

� � � � �( )

cos sin sin cos

sin

2 2 2

ccos cos sin� � � �( )xy
2 2

or

�
� � � �

� � �

� �

n
x y x y

xy

nt

�
�

�
�

� �x y�

�

� � �

2 2
2 2

2
2

cos sin

sin τ� �xy cos2

Principal stress magnitudes

�
� � � �

�p p
x y x y

xy1 2

2

2

2 2
, �

�
�

�⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ �

Orientation of principal planes

tan 2
2

�
�

� �
p

xy

x y
�

�( )
Maximum in-plane shear stress magnitude

� � �
� � � �

max maxor� ���
�⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

�x y
xy

p p

2 2

2

2 1 2

�
� �

avg �
�x y

2

Absolute maximum shear stress magnitude

�
� �

abs max
max min�

�

2

Normal, stress invariance

� � � � � �x y n t p p1 2�� � � �

Plane strain transformations
Normal and shear strain in arbitrary directions
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Generalized Hooke’s Law
Normal stress/normal strain relationships
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Axial stress in spherical pressure vessel
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Failure theories
Mises equivalent stress for plane stress
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Average Properties of Selected Materials (U.S. Customary Units)

Materials

Specifi c 
weight 
(lb/ft3)

Yield
strength
(ksi)a b

Ultimate
strength

(ksi)a

Modulus 
of elasticity 
(1,000 ksi)

Shear
modulus

(1,000 
ksi)

Poisson’s
ratio

Percent 
elongation 
over 2-in. 

gage length

Coeffi cient 
of thermal 
expansion
(10–6/°F)

Aluminum Alloys
 Alloy 2014-T4 (A92014)

 Alloy 2014-T6 (A92014)

 Alloy 6061-T6 (A96061)

175

175

170

42

60

40

62

70

45

10.6

10.6

10

4

4

3.8

0.33

0.33

0.33

20

13

17

12.8

12.8

13.1

Brass
 Red Brass C23000

 Red Brass C83600

550

550

18

17

44

37

16.7

12

6.4

4.5

0.307

0.33

45

30

10.4

10.0

Bronze
 Bronze C86100

 Bronze C95400 TQ50

490

465

48

45

95

90

15.2

16

6.5

6

0.34

0.316

20

8

12.2

9.0

Cast Iron
 Gray, ASTM A48 Grade 20

 Ductile, ASTM A536 80-55-06

 Malleable, ASTM A220 45008

450

450

450

55

45

20

80

65

12.2

24.4

26

5

9.3

10.2

0.22

0.32

0.27

<1

6

8

5.0

6.0

6.7

Steel
 Structural, ASTM-A36

 Structural, ASTM-A992

 AISI 1020, Cold-rolled

 AISI 1040, Hot-rolled

 AISI 1040, Cold-rolled

 AISI 1040, WQT 900

 AISI 4140, OQT 1100

 AISI 5160, OQT 700

 SAE 4340, Heat-treated

 Stainless (18-8) annealed

 Stainless (18-8) cold-rolled

490

490

490

490

490

490

490

490

490

490

490

36

50

62

60

82

90

131

238

132

36

165

58

65

90

90

97

118

147

263

150

85

190

29

29

30

30

30

30

30

30

31

28

28

11.2

11.2

11.6

11.5

11.5

11.5

11.5

11.5

12

12.5

12.5

0.3

0.3

0.29

0.3

0.3

0.3

0.3

0.3

0.29

0.12

0.12

21

21

15

25

16

22

16

9

20

55

8

6.5

6.5

6.5

6.3

6.3

6.3

6.2

6.2

6.0

9.6

9.6

Titanium
 Alloy (6% Al, 4%V) 280 120 130 16.5 6.2 0.33 10 5.3

Plastics
 ABS

 Nylon 6/6

 Polycarbonate

 Polyethylene, Low-density

 Polyethylene, High-density

 Polypropylene

 Polystyrene

 Vinyl, rigid PVC

 66

 69

 90

 58

 60

 71

 73

 81

6

9

16

1.4

3.3

11

7.5

6.7

5.5

–

17

1.7

4.3

12

7.5

5.5

0.3

0.2

1.1

0.029

0.128

0.9

0.54

0.41

–

–

–

–

–

–

0.2

0.145

–

–

–

–

–

–

0.33

0.42

36

–

–

–

721

4

39

100

48.8

65.6

14.5

100

88

22.6

47.2

35

aFor ductile metals, it is customary to assume that the properties in compression have the same values as those in tension.
bFor most metals, this is the 0.2% offset value.
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Average Properties of Selected Materials (SI Units)

Materials

Specifi c 
weight 

(kN/m3)

Yield
strength
(MPa)a b

Ultimate
strength
(MPa)a

Modulus 
of elasticity 

(GPa)

Shear
modulus

(GPa)
Poisson’s

ratio

Percent 
elongation 
over 50-
mm gage 

length

Coeffi cient 
of thermal 
expansion
(10–6/°C)

Aluminum Alloys
 Alloy 2014-T4 (A92014)

 Alloy 2014-T6 (A92014)

 Alloy 6061-T6 (A96061)

27

27

27

290

414

276

427

483

310

73

73

69

28

28

26

0.33

0.33

0.33

20

13

17

23.0

23.0

23.6

Brass
 Red Brass C23000

 Red Brass C83600

86

86

124

117

303

255

115

83

44

31

0.307

0.33

45

30

18.7

18.0

Bronze
 Bronze C86100

 Bronze C95400 TQ50

77

73

331

310

655

621

105

110

45

41

0.34

0.316

20

8

22.0

16.2

Cast Iron
 Gray, ASTM A48 Grade 20

 Ductile, ASTM A536 80-55-06

 Malleable, ASTM A220 45008

71

71

71

379

310

138

552

448

84

168

179

34

64

70

0.22

0.32

0.27

<1

6

8

9.0

10.8

12.1

Steel
 Structural, ASTM-A36

 Structural, ASTM-A992

 AISI 1020, Cold-rolled

 AISI 1040, Hot-rolled

 AISI 1040, Cold-rolled

 AISI 1040, WQT 900

 AISI 4140, OQT 1100

 AISI 5160, OQT 700

 SAE 4340, Heat-treated

 Stainless (18-8) annealed

 Stainless (18-8) cold-rolled

77

77

77

77

77

77

77

77

77

77

77

250

345

427

414

565

621

903

1,641

910

248

1,138

400

450

621

621

669

814

1,014

1,813

1,034

586

1,310

200

200

207

207

207

207

207

207

214

193

193

77.2

77.2

80

80

80

80

80

80

83

86

86

0.3

0.3

0.29

0.3

0.3

0.3

0.3

0.3

0.29

0.12

0.12

21

21

15

25

16

22

16

9

20

55

8

11.7

11.7

11.7

11.3

11.3

11.3

11.2

11.2

10.8

17.3

17.3

Titanium
 Alloy (6% Al, 4%V) 44 827 896 114 43 0.33 10 9.5

Plastics
 ABS

 Nylon 6/6

 Polycarbonate

 Polyethylene, Low-density

 Polyethylene, High-density

 Polypropylene

 Polystyrene

 Vinyl, rigid PVC

1,060

1,105

1,440

930

960

1,140

1,170

1,300

41

62

110

9.7

22.8

75.8

52

46

38

–

117

11.7

29.6

82.7

52

38

2.1

1.4

7.6

0.2

0.9

6.2

3.7

2.8

–

–

–

–

–

–

1.4

1.0

–

–

–

–

–

–

0.33

0.42

36

–

–

–

721

4

39

100

88

118

26

180

158

40.7

85

63

aFor ductile metals, it is customary to assume that the properties in compression have the same values as those in tension.
bFor most metals, this is the 0.2% offset value.
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