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Preface

At the beginning of each semester, I always tell my students the story of my undergraduate
Mechanics of Materials experience. While I somehow managed to make an A in the course,
Mechanics of Materials was one of the most confusing courses in my undergraduate cur-
riculum. As I continued my studies, I found that I really didn’t understand the course concepts
well, and this weakness hindered my understanding of subsequent design courses. It wasn’t
until I began my career as an engineer that I began to relate the Mechanics of Materials
concepts to specific design situations. Once I made that real-world connection, I understood
the design procedures associated with my discipline more completely and I developed
confidence as a designer. My educational and work-related experiences convinced me of
the central importance of the Mechanics of Materials course as the foundation for advanced
design courses and engineering practice.

The Education of the Mind’s Eye

As I gained experience during my early teaching career, it occurred to me that I was able to
understand and explain the Mechanics of Materials concepts because I relied upon a set of
mental images that facilitated my understanding of the subject. Years later, during a forma-
tive assessment of the MecMovies software, Dr. Andrew Dillon, Dean of the School of
Information at the University of Texas at Austin, succinctly expressed the role of mental
imagery in the following way: “A defining characteristic of an expert is that an expert has
a strong mental image of his or her area of expertise while a novice does not.” Based on this
insight, it seemed logical that one of the instructor’s primary objectives should be to teach
to the mind’s eye—conveying and cultivating relevant mental images that inform and guide
students in the study of Mechanics of Materials. The illustrations as well as the MecMovies
software integrated in this book have been developed with this objective in mind.

MecMovies Instructional Software

Computer-based instruction often enhances the student’s understanding of Mechanics of
Materials. With three-dimensional modeling and rendering software, it is possible to create
photo-realistic images of various components and to show these components from various
viewpoints. In addition, animation software allows objects or processes to be shown in
motion. By combining these two capabilities, a fuller description of a physical object can
be presented, which can facilitate the mental visualization so integral to understanding and
solving engineering problems.
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Animation also offers a new generation of computer-based learning tools. The tradi-
tional instructional means used to teach Mechanics of Materials—example problems—can
be greatly enhanced through animation by emphasizing and illustrating desired problem-
solving processes in a more memorable and engaging way. Animation can be used to create
interactive tools that focus on specific skills students need to become proficient problem-
solvers. These computer-based tools can provide not only the correct solution, but also a
detailed visual and verbal explanation of the process needed to arrive at the solution. The
feedback provided by the software can lessen some of the anxiety typically associated with
traditional homework assignments, while also enabling learners to build their competence
and confidence at a pace that is right for them.

This book integrates computer-based instruction into the traditional textbook format
with the addition of the MecMovies instructional software. At present, MecMovies con-
sists of over 160 animated “movies” on topics spanning the breadth of the Mechanics of
Materials course. Most of these animations present detailed example problems, and
about 80 movies are interactive, providing learners with the opportunity to apply con-
cepts and receive immediate feedback that includes key considerations, calculation
details, and intermediate results. MecMovies was a winner of the 2004 Premier Award
for Excellence in Engineering Education Courseware presented by NEEDS (the National
Engineering Education Delivery System, a digital library of learning resources for
engineering education).

Hallmarks of the Textbook

In 26 years of teaching the fundamental topics of strength, deformation, and stability, I
have encountered successes and frustrations, and I have learned from both. This book has
grown out of a passion for clear communication between instructor and student and a drive
for documented effectiveness in conveying this foundational material to the differing learn-
ers in my classes. With this book and the MecMovies instructional software that is inte-
grated throughout, my desire is to present and develop the theory and practice of Mechanics
of Materials in a straightforward plain-speaking manner that addresses the needs of varied
learners. The text and software strive to be “student-friendly” without sacrificing rigor or
depth in the presentation of topics.

Communicating visually: Tinvite you to thumb through this book. My hope is that you
will find a refreshing clarity in both the text and the illustrations. As both the author and
the illustrator, I’ve tried to produce visual content that will help illuminate the subject
matter for the mind’s eye of the reader. The illustrations use color, shading, perspective,
texture, and dimension to convey concepts clearly, while aiming to place these concepts
in the context of real-world components and objects. These illustrations have been pre-
pared by an engineer to be used by engineers to train future engineers.

Problem-solving schema: Educational research suggests that transfer of learning is
more effective when students are able to develop problem-solving schema, which Webster’s
Dictionary defines as “a mental codification that includes an organized way of
responding to a complex situation.” In other words, understanding and proficiency are
enhanced if students are encouraged to build a structured framework for mentally or-
ganizing concepts and their method of application. This book and software include a
number of features aimed at helping students to organize and categorize the Mechanics
of Materials concepts and problem-solving procedures. For instance, experience has
shown that statically indeterminate axial and torsion structures are among the most



difficult topics for students. To help organize the solution process for these topics, a PREFACE
five-step method is utilized. This approach provides students with a problem-solving
method that systematically transforms a potentially confusing situation into an easily
understandable calculation procedure. Summary tables are also presented in these
topics to help students place common statically indeterminate structures into categories
based on the specific geometry of the structure. Another topic that students typically
find confusing is the use of the superposition method to determine beam deflections.
This topic is introduced in the text through enumeration of eight simple skills com-
monly used in solving problems of this type. This organizational scheme allows
students to develop proficiency incrementally before considering more complex
configurations.

Style and clarity of examples: To a great extent, the Mechanics of Materials course is
taught through examples, and consequently, this book places great emphasis on the
presentation and quality of example problems. The commentary and the illustrations
associated with example problems are particularly important to the learner. The com-
mentary explains why various steps are taken and describes the rationale for each step
in the solution process, while the illustrations help build the mental imagery needed to
transfer the concepts to differing situations. Students have found the step-by-step
approach used in MecMovies to be particularly helpful, and a similar style is used in the
text. Altogether, this book and the MecMovies software present more than 270 fully
illustrated example problems that provide both the breadth and the depth required to
develop competency and confidence in problem-solving skills.

Homework philosophy: Since Mechanics of Materials is a problem-solving course,
much deliberation has gone into the development of homework problems that elucidate
and reinforce the course concepts. This book includes 1200 homework problems in a
range of difficulty suitable for learners at various stages of development. These prob-
lems have been designed with the intent of building the technical foundation and skills
that will be necessary in subsequent engineering design courses. The problems are in-
tended to be challenging, and at the same time, practical and pertinent to traditional
engineering practice.

New in the Third Edition

® Two new sections have been added in Chapter 9 to discuss additional topics related to
shear stress in beams:
® 9.9 Shear Stress and Shear Flow in Thin-Walled Members
® 9.10 Shear Centers of Thin-Walled Open Sections

® Chapter 17, “Energy Methods,” has been developed to discuss the application of work
and strain energy principles, virtual work principles, and Castigliano’s Theorem to
solid mechanics problems.

® Design equations in Chapter 16 for the critical buckling stress of structural steel
columns have been updated to conform to the latest provisions of ANSI/AISC 360-10
Specification for Structural Steel Buildings.

® A number of changes have been made to the textbook problems: Of the problems that
appeared in the second edition, 190 have been revised (16 percent of all the problems
in the book), and 300 new problems have been added (25 percent). About half of the
added problems are associated with the new material in Chapters 9 and 17. The other
150 problems have been added to broaden the variety of problems available for many
topics.



Incorporating MecMovies into
Course Assignments

Some instructors may have had unsatisfying experiences with instructional software in the
past. Often, the results have not matched the expectations, and it is understandable that
instructors may be reluctant to incorporate computer-based instructional content into their
course. For those instructors, this book can stand completely on its own merits without the
need for the MecMovies software. Instructors will find that this book can be used to suc-
cessfully teach the time-honored Mechanics of Materials course without making use of the
MecMovies software in any way. However, the MecMovies software integrated into this
book is a new and valuable instructional medium that has proven to be both popular and
effective with Mechanics of Materials students. Naysayers may argue that for many years
instructional software has been included as supplemental material in textbooks, and it has
not produced significant changes in student performance. While I cannot disagree with this
assessment, let me try to persuade you to view MecMovies differently.

Experience has shown that the manner in which instructional software is integrated
into a course is just as important as the quality of the software itself. Students have
many demands on their study time, and in general, they will not invest their time and
effort in software that they perceive to be peripheral to the course requirements. In other
words, supplementary software is doomed to failure, regardless of its quality or merit.
To be effective, instructional software must be integrated into the course assignments
on a regular and frequent basis. Why would you as an instructor alter your traditional
teaching routine to integrate computer-based assignments into your course? The answer
is because the unique capabilities offered by MecMovies can (a) provide individualized
instruction to your students, (b) enable you to spend more time discussing advanced
rather than introductory aspects of many topics, and (c) make your teaching efforts
more effective.

The computer as an instructional medium is well suited for individualized interactive
learning exercises, particularly for those skills that require repetition to master. MecMovies
has many interactive exercises, and at a minimum, these features can be utilized by instruc-
tors to (a) ensure that students have the appropriate skills in prerequisite topics such as
centroids and moments of inertia, (b) develop necessary proficiency in specific problem-
solving skills, and (c) encourage students to stay up to date with lecture topics. Three types
of interactive features are included in MecMovies:

1. Concept Checkpoints — This feature is used for rudimentary problems requiring only
one or two calculations. It is also used to build proficiency and confidence in more com-
plicated problems by subdividing the solution process into a sequence of steps that can
be mastered sequentially.

2. Try One problems — This feature is appended to specific example problems. In a Try
One problem, the student is presented with a problem similar to the example so that he
or she has the opportunity to immediately apply the concepts and problem-solving pro-
cedures illustrated in the example.

3. Games — Games are used to develop proficiency in specific skills that require repetition
to master. For example, games are used to teach centroids, moments of inertia, shear-
force and bending-moment diagrams, and Mohr’s circle.

With each of these software features, numeric values in the problem statement are dynamically
generated for each student, the student’s answers are evaluated, and a summary report suitable
for printing is generated. This enables daily assignments to be collected without imposing
a grading burden on the instructor.



Many of the interactive MecMovies exercises assume no prior knowledge of the topic.
Consequently, an instructor can require a MecMovies feature to be completed before giving
a lecture on the topic. For example, Coach Mohr’s Circle of Stress guides students step by
step through the details of constructing Mohr’s circle for plane stress. If students complete
this exercise before attending the first Mohr’s circle lecture, then the instructor can be con-
fident that students will have at least a basic understanding of how to use Mohr’s circle to
determine principal stresses. The instructor is then free to build upon this basic level of
understanding to explain additional aspects of Mohr’s circle calculations.

Student response to MecMovies has been excellent. Many students report that they
prefer studying from MecMovies rather than from the text. Students quickly find that Mec-
Movies does indeed help them understand the course material better and thus score better
on exams. Furthermore, less quantifiable benefits have been observed when MecMovies is
integrated into the course. Students are able to ask better, more specific questions in class
concerning aspects of theory that they don’t yet fully understand, and students’ attitudes
about the course overall seem to improve.
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The three fundamental areas of engineering mechanics are statics, dynamics, and mechanics
of materials. Statics and dynamics are devoted primarily to the study of external forces and
motions associated with particles and rigid bodies (i.e., idealized objects in which any
change of size or shape due to forces can be neglected). Mechanics of materials is the study
of the internal effects caused by external loads acting on real bodies that deform (mean-
ing objects that can stretch, bend, or twist). Why are the internal effects in an object impor-
tant? Engineers are called upon to design and produce a variety of objects and structures
such as automobiles, airplanes, ships, pipelines, bridges, buildings, tunnels, retaining walls,
motors, and machines. Regardless of the application, however, a safe and successful design
must address the following three mechanical concerns:

1. Strength: TIs the object strong enough to withstand the loads that will be applied
to it? Will it break or fracture? Will it continue to perform properly under repeated
loadings?

2. Stiffness: Will the object deflect or deform so much that it cannot perform its
intended function?

3. Stability: Will the object suddenly bend or buckle out of shape at some elevated load
so that it can no longer continue to perform its function?




STRESS

FIGURE 1.1a Bar with axial
load P.

3

FIGURE 1.1b  Average stress.

Addressing these concerns requires both an assessment of the intensity of internal forces
and deformations acting within the body and an understanding of the mechanical charac-
teristics of the material used to make the object.

Mechanics of materials is a basic subject in many engineering fields. The course
focuses on several types of components: bars subjected to axial loads, shafts in torsion,
beams in bending, and columns in compression. Numerous formulas and rules for design
found in engineering codes and specifications are based on mechanics of materials funda-
mentals associated with these types of components. With a strong foundation in mechanics
of materials concepts and problem-solving skills, the student is well equipped to continue
into more advanced engineering design courses.

1.2 Normal Stress Under Axial Loading

In every subject area, there are certain fundamental concepts that assume paramount
importance for a satisfactory comprehension of the subject matter. In mechanics of
materials, such a concept is that of stress. In the simplest qualitative terms, stress is the
intensity of internal force. Force is a vector quantity and as such has both magnitude and
direction. Intensity implies an area over which the force is distributed. Therefore, stress
can be defined as

_ Force

Stress = (1.1)

Area

To introduce the concept of a normal stress, consider a rectangular bar subjected
to an axial force (Figure 1.1a). An axial force is a load that is directed along the lon-
gitudinal axis of the member. Axial forces that tend to elongate a member are termed
tension forces, and forces that tend to shorten a member are termed compression
forces. The axial force P in Figure 1.1a is a tension force. To investigate internal ef-
fects, the bar is cut by a transverse plane, such as plane a—a of Figure 1.1a, to expose
a free-body diagram of the bottom half of the bar (Figure 1.1b). Since this cutting
plane is perpendicular to the longitudinal axis of the bar, the exposed surface is called
a cross section.

The technique of cutting an object to expose the internal forces acting on a plane
surface is often referred to as the method of sections. The cutting plane is called the
section plane. To investigate internal effects, one might simply say something like
“Cut a section through the bar” to imply the use of the method of sections technique.
This technique will be used throughout the study of mechanics of materials to inves-
tigate the internal effects caused by external forces acting on a solid body.

Equilibrium of the lower portion of the bar is attained by a distribution of internal force that
develops on the exposed cross section. This distribution of internal force has a resultant '
that is normal to the exposed surface, is equal in magnitude to P, and has a line of action
that is collinear with the line of action of P. The intensity of distributed internal force acting
in the material is referred to as stress.

In this instance, the stress acts on a surface that is perpendicular to the direction of the
internal force. A stress of this type is called a normal stress, and it is denoted by the Greek



letter o (sigma). To determine the magnitude of the normal stress in the bar, the average
intensity of internal force on the cross section can be computed as

F
Tavg = X (1.2)

where A is the cross-sectional area of the bar.

The sign convention for normal stresses is defined as follows:

® A positive sign indicates a fension normal stress, and

® anegative sign denotes a compression normal stress.

Consider now a small area AA on the exposed cross section of the bar, as shown in
Figure 1.1¢, and let AF represent the resultant of the internal forces transmitted in this small
area. The average intensity of the internal force being transmitted in area AA is obtained by
dividing AF by AA. If the internal forces transmitted across the section are assumed to be
uniformly distributed, the area AA can be made smaller and smaller, and in the limit, it will
approach a point on the exposed surface. The corresponding force AF also becomes smaller
and smaller. The stress at the point on the cross section to which AA converges is defined as

AF

= 20 1.3)
AA%O AA ¢

(o

If the distribution of stress is to be uniform, as in Equation (1.2), the resultant force must
act through the centroid of the cross-sectional area. For long, slender, axially loaded mem-
bers, such as those found in trusses and similar structures, it is generally assumed that the
normal stress is uniformly distributed except near the points where external load is applied.
Stress distributions in axially loaded members are not uniform near holes, grooves, fillets,
and other features. These situations will be discussed in later sections on stress concentra-
tions. In this book, it is understood that axial forces are applied at the centroids of the cross
sections unless specifically stated otherwise.

Stress Units

Since the normal stress is computed by dividing the internal force by the cross-sectional
area, stress has the dimensions of force per unit area. When U.S. Customary units are used,
stress is commonly expressed in pounds per square inch (psi) or kips per square inch (ksi)
where 1 kip = 1,000 Ib. When the International System of Units, universally abbreviated
SI (from the French Le Systeme International d’Unités), is used, stress is expressed in pas-
cals (Pa) and computed as force in newtons (N) divided by area in square meters (m2). For
typical engineering applications, the pascal is a very small unit and, therefore, stress is
more commonly expressed in megapascals (MPa) where 1 MPa = 1,000,000 Pa. A conve-
nient alternative when calculating stress in MPa is to express force in newtons and area in
square millimeters (mm?). Therefore,

1 MPa = 1,000,000 N/m? = 1N/mm? (1.4)

Significant Digits

In this book, final numerical answers are usually presented with three significant digits
when a number begins with the digits 2 through 9, and with four significant digits when the

NORMAL STRESS UNDER AXIAL
LOADING

a \T/AA

FIGURE 1.1c Stress at a point.



STRESS number begins with the digit 1. Intermediate values are generally recorded with additional
digits to minimize the loss of numerical accuracy due to rounding.

In developing stress concepts through example problems and exercises, it is convenient
to use the notion of a rigid element. Depending on how it is supported, a rigid element
may move vertically or horizontally, or it may rotate about a support location. The rigid
element is assumed to be infinitely strong.

A solid 0.5-in.-diameter steel hanger rod is used to hold up one end of a walkway
support beam. The force carried by the rod is 5,000 Ib. Determine the normal stress
in the rod. (Disregard the weight of the rod.)

SOLUTION
o A free-body diagram of the rod is shown. The solid rod has a
Hanger TTTT circular cross section, and its area is computed as
rod

A= %tﬂ - %(0.5 in.)? = 0.19635 in.2

<—d
where d = rod diameter.
Since the force in the rod is 5,000 Ib, the normal stress in

the rod can be computed as

Walkway ¥ F 5000 .
= — =" — = 25464.73135 psi
S‘;PPO“ A 0.19635 in.2 P
cam
5,000 1b

Although this answer is numerically correct, it would not be
proper to report a stress of 25,464.73135 psi as the final answer.
A number with this many digits implies an accuracy that we
have no right to claim. In this instance, both the rod diameter and the force are given with
only one significant digit of accuracy; however, the stress value we have computed here
has 10 significant digits.

In engineering, it is customary to round the final answers to three significant digits
(if the first digit is not 1) or four significant digits (if the first digit is 1). Using this guide-
line, the normal stress in the rod would be reported as

o = 25,500 psi Ans.

Free-body diagram
of hanger rod.

In many instances, the illustrations in this book attempt to show objects in realistic
three-dimensional perspective. Wherever possible, an effort has been made to show
free-body diagrams within the actual context of the object or structure. In these illustra-
tions, the free-body diagram is shown in full color, while other portions of the object or
structure are faded out.



Rigid bar ABC is supported by a pin at A and axial member (1),
which has a cross-sectional area of 540 mm?. The weight of
rigid bar ABC can be neglected. (Note: 1 kN = 1,000 N.)

(a) Determine the normal stress in member (1) if a load of
P = 8 kN is applied at C.

(b) If the maximum normal stress in member (1) must be
limited to 50 MPa, what is the maximum load magnitude
P that may be applied to the rigid bar at C?

Plan the Solution
(Part a)

Before the normal stress in member (1) can be computed,
its axial force must be determined. To compute this force,
consider a free-body diagram of rigid bar ABC and write a
moment equilibrium equation about pin A.

1.6 m (D

SOLUTION

(Part a)

For rigid bar ABC, write the equilibrium equation for the sum
of moments about pin A. Let F; = internal force in member
(1) and assume that F, is a tension force. Positive moments in
the equilibrium equation are defined by the right-hand rule.

Free-body diagram of rigid bar ABC.

M, = —-@BkN)22m)+ (1.6 mF, =0
o F =11kN
The normal stress in member (1) can be computed as

_ A _ (11 kN)(1,000 NAN)

= = 20.370 N'mm? = 20.4 MPa Ans.
LT 540 mm? / e
(Note the use of the conversion factor 1 MPa = 1 N/mm?2.)
Plan the Solution
(Part b)

Using the stress given, compute the maximum force that member (1) may safely carry.
Once this force is computed, use the moment equilibrium equation to determine the load P.

SOLUTION
(Part b)
Determine the maximum force allowed for member (1):
F
g=—
A

~F, = oA, = (50 MPa) (540 mm?) = (50 N/mm?) (540 mm?) = 27,000 N = 27 kN
Compute the maximum allowable load P from the moment equilibrium equation:
M, = —-Q22m)P + (1.6m)Q27kN) =0
~.P =19.64 kN Ans.




A 50-mm-wide steel bar has axial loads
applied at points B, C, and D. If the normal
stress magnitude in the bar must not exceed
60 MPa, determine the minimum thickness
that can be used for the bar.

Plan the Solution
Draw free-body diagrams that expose the internal force in each of the three segments.
Determine the magnitude and direction of the internal axial force in each segment required
to satisfy equilibrium. Use the largest internal axial force magnitude and the allowable
normal stress to compute the minimum cross-sectional area required for the bar. Divide the
cross-sectional area by the 50-mm bar width to compute the minimum bar thickness.

SOLUTION

Begin by drawing a free-body diagram (FBD) that exposes the internal force in segment (3).
Since the reaction force at A has not been calculated, it will be easier to cut through the bar
in segment (3) and consider the portion of the bar starting at the cut surface and extending
to the free end of the bar at D. An unknown internal axial force F; exists in segment (3), and
it is helpful to establish a consistent convention for problems of this type.

Problem-Solving Tip: When cutting a FBD through an axial member, assume that
the internal force is tension and draw the force arrow directed away from the cut sur-
face. If the computed internal force value turns out to be a positive number, then the
assumption of tension is confirmed. If the computed value turns out to be a negative
number, then the internal force is actually compression.

(O] @

3
= (3), the equilibrium equation is
- 25kN
Fy .—-)\x XF, =—-F;, +25kN =0
) 3)
2
T x

Based on a FBD cut through axial segment

- F; = 25kN = 25kN (T)
m o

Repeat this procedure for a FBD exposing the
F;G—— __;m internal force in segment (2),
XF, = —F, —40kN +25kN =0

M @ ~.F, = —15kN = I5kN (C),

)
3)
e o 25 kN and for a FBD exposing the internal force in
' — segment (1),
) ) XF, = —F +80kN —40kN +25kN =0
3)
S =65kN (T)
25 kN
- It is always a good practice to construct a

simple plot that graphically summarizes the
65 kN internal axial forces along the bar. The axial-
25 kKN force diagram on the left shows internal tension
forces above the axis and internal compression

forces below the axis.
The required cross-sectional area will be
Axial-force diagram showing internal forces in each bar segment. computed on the basis of the largest internal force

Tension

Compression 15 kKN




magnitude (i.e., absolute value). The normal stress in the bar must be limited to 60 MPa.
To facilitate the calculation, the conversion 1 MPa = 1 N/mm? is used; therefore, 60 MPa =
60 N/mm?.

= = 1,083.333 mm?2
60 N/mm?
Since the flat steel bar is 50 mm wide, the minimum thickness that can be used for the bar is
1,083,333 mm?
> s
50 mm

Yy g A= F _ 65KN)1.000 NAN)
g

= 21.667 mm = 21.7 mm Ans.

min
In practice, the bar thickness would be rounded up to the next larger standard size.

Review

Recheck your calculations, paying particular attention to the units. Always show the units
in your calculations because this is an easy and fast way to discover mistakes. Are the an-
swers reasonable? If the bar thickness had been 0.0217 mm instead of 21.7 mm, would this
have been a reasonable solution based on your common sense and intuition?

ies Example M1.4

Two axial members are used to support a load P applied at joint B.

® Member (1) has a cross-sectional area of A; = 3,080 mm? and an allowable
normal stress of 180 MPa.

® Member (2) has a cross-sectional area of A, = 4,650 mm? and an
allowable normal stress of 75 MPa.

Determine the maximum load P that may be supported without exceeding either
allowable normal stress. 50m

1.3 Direct Shear Stress

Loads applied to a structure or a machine are generally transmitted to individual members
through connections that use rivets, bolts, pins, nails, or welds. In all of these connections,
one of the most significant stresses induced is a shear stress. In the previous section,
normal stress was defined as the intensity of internal force acting on a surface perpendicu-
lar to the direction of the internal force. Shear stress is also the intensity of internal force,
but shear stress acts on a surface that is parallel to the internal force.

To investigate shear stress, consider a simple connection in which the force carried by l
an axial member is transmitted to a support by means of a solid circular pin (Figure 1.2a). P
The load is transmitted from the axial member to the support by shear force (i.e., a force  FIGURE 1.2a  Single shear pin
that tends to cut) distributed on a transverse cross section of the pin. A free-body diagram  connection.
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FIGURE 1.2b Free-body
diagram showing shear force
transmitted by pin.

MecMovies 1.7 and 1.8
present animated illustrations of
single and double shear bolted
connections.

MecMovies 1.9 presents an
animated illustration of a shear
key connection between a gear
and a shaft.

of the axial member with the pin is shown in Figure 1.2b. In this diagram, a resultant shear
force V has replaced the distribution of shear force on the transverse cross section of the
pin. Equilibrium requires that the resultant shear force V equal the applied load P. Since
only one cross section of the pin transmits load between the axial member and the support,
the pin is said to be in single shear.

From the definition of stress given by Equation (1.1), an average shear stress on the
transverse cross section of the pin can be computed as

Vv
Tavg = E (1 5)

where Ay, = area transmitting shear stress. The Greek letter 7 (tau) is commonly used to denote
shear stress. A sign convention for shear stress will be presented in a later section of the book.

The stress at a point on the transverse cross section of the pin can be obtained by
using the same type of limit process that was used to obtain Equation (1.3) for the normal
stress at a point. Thus,

T = lim —AV (1.6)
AAV—>0 AAV

It will be shown later in this text that the shear stresses cannot be uniformly distributed over
the transverse cross section of a pin or bolt and that the maximum shear stress on the trans-
verse cross section may be much larger than the average shear stress obtained by using
Equation (1.5). The design of simple connections, however, is usually based on average
stress considerations, and this procedure will be followed in this book.

The key to determining shear stress in connections is to visualize the failure surface or
surfaces that will be created if the connectors (i.e., pins, bolts, nails, or welds) actually break
(i.e., fracture). The shear area Ay that transmits shear force is the area exposed when the con-
nector fractures. Two common types of shear failure surfaces for pinned or bolted connec-
tions are shown in Figures 1.3 and 1.4. Laboratory specimens that have failed on a single shear

Jeffery S. Thomas

FIGURE 1.3 Single shear failure in pin specimens.



Jeffery S. Thomas

FIGURE 1.4 Double shear failure in a pin specimen.

plane are shown in Figure 1.3. Similarly, a pin that has failed on two parallel shear planes is
shown in Figure 1.4.

DIRECT SHEAR STRESS

axial force in the chains is P = 28 kNN and the allowable shear stress
in the pin is 70, = 90 MPa, determine the minimum acceptable
diameter d for the pin. P=28kN

Chain members (1) and (2) are connected by a shackle and pin. If the Shackle
(1) \
& -

Plan the Solution

To solve the problem, first visualize the surfaces that would be revealed if the pin frac-
tured due to the applied load P. Shear stress will be developed in the pin on these sur-
faces, which will occur at the two interfaces (i.e., common boundaries) between the pin
and the shackle. The shear area needed to resist the shear force acting on each of these
surfaces must be found, and from this area the minimum pin diameter can be calculated.

SOLUTION

Draw a free-body diagram (FBD) of the pin, which connects chain (2) to the shackle.
Two shear forces V will resist the applied load of P = 28 kN. The shear force V acting
on each surface must equal one-half of the applied load P; therefore, V = 14 kN.

Next, the area of each surface is simply the cross-sectional area of the pin. The
average shear stress acting on each of the pin failure surfaces is, therefore, the shear
force V divided by the cross-sectional area of the pin. Since the average shear stress must
be limited to 90 MPa, the minimum cross-sectional area required to satisfy the allowable
shear stress requirement can be computed as

r=_7 4 =V _ A4KNA000 NKN) _ 55 556 2

A B 90 N/mm?

pin T allow

The minimum pin diameter required for use in the shackle can be determined from the
required cross-sectional area:

A =T =15mm Ans.

pin 4 pin

= 155.556 mm? Sdy, = 1407 mm - say, dpy,

In this connection, two cross sections of the pin are subjected to shear forces V; conse-
quently, the pin is said to be in double shear.

2 P=28kN

—

L Pin

Shear forces V act on
two surfaces of the pin.

P=28kN

—

Free-body diagram of pin.




ies Example M1.5

A pin at C and a round aluminum rod at B support the rigid bar BCD.
If the allowable pin shear stress is 50 MPa, what is the minimum
diameter required for the pin at C?

T ‘|‘ 50kN 15 kN

1,500 N

120 mm

Shear key

1,500 N =

If T'is too large,
the shear key will
break at the interface
between the shaft and
the pulley, as shown.

600 N ==

Visualize failure surface in shear key.

1,500 N
e

@ 15 mm
\%

D ——
600 N

120 mm

Free-body diagram of pulley.

A belt pulley used to drive a device is attached to a 30-mm-diameter shaft
with a square shear key. The belt tensions are 1,500 N and 600 N, as
shown. The shear key dimensions are 6 mm by 6 mm by 25 mm long.
Determine the shear stress produced in the shear key.

Plan the Solution

A shear key is a common component used to connect pulleys, chain
sprockets, and gears to solid circular shafts. A rectangular slot is cut in the
shaft, and a matching notch of the same width is cut in the pulley. After the
slot and the notch are aligned, a square metal piece is inserted in the open-
ing. This metal piece is called a shear keys; it forces the shaft and the pulley
to rotate together.

Before beginning the calculations, try to visualize the failure surface
in the shear key. Since the belt tensions are unequal, a moment is created
about the center of the shaft that causes the shaft and pulley to rotate. This
type of moment is called a torque. If the torque 7 created by the unequal
belt tensions is too large, the shear key will break at the interface between
the shaft and the pulley, allowing the pulley to spin freely on the shaft.
This failure surface is the plane at which shear stress is created in the
shear key.

From the belt tensions and the pulley diameter, determine the
torque 7 exerted on the shaft by the pulley. From a free-body diagram
(FBD) of the pulley, determine the force that must be supplied by the shear
key to satisfy equilibrium. Once the force in the shear key is known, the
shear stress in the key can be computed by using the shear key dimensions.

SOLUTION

Consider a FBD of the pulley. This FBD includes the belt tensions, but it
specifically excludes the shaft. The FBD cuts through the shear key at the
interface between the pulley and the shaft. We will assume that there could
be internal force acting on the exposed surface of the shear key. This force
will be denoted as shear force V. The distance from V to the center O of
the shaft is equal to the radius of the shaft. Since the shaft diameter is
30 mm, the distance from O to shear force Vis 15 mm. The magnitude of
shear force V can be found from a moment equilibrium equation about




point O, which is the center of rotation for both the pulley and the 25 mm

shaft. In this equation, positive moments are defined by the right- The shaft exerts a

hand rule: The pulley exerts 3,600 N reaction
a force of 3,600 N force on the key.
XM, = (1,500 N) (60 mm) — (600 N) (60 mm) — (15 mm)V =0 on the key.
-V =3,600 N
. . Shear stress is created on the
For the pulley to be in equilibrium, a shear force of V = 3,600 N must be ‘b\,‘ plane at the interface between
6 mm the pulley and the shaft.

supplied by the shear key.
An enlarged view of the shear key is shown on the right. The torque Enlarged view of shear key.

created by the belt tensions exerts a force of 3,600 N on the shear key. For

equilibrium, a force equal in magnitude, but opposite in direction, must be exerted on the

key by the shaft. This pair of forces tends to cut the key, producing a shear stress. The

shear stress acts on the plane highlighted in red.
An internal force of V = 3,600 N must exist on an internal plane of the shear key if the

pulley is to be in equilibrium. The area of this plane surface is the product of the shear key

width and length:

Ay = (6 mm)(25 mm) = 150 mm?
The shear stress produced in the shear key can now be computed:

T = v 3.600N = 24.0 N/'mm? = 24.0 MPa Ans.
Ay, 150 mm?

ies Example M1.6

A torque of 7 = 10 kN-m is transmitted between two flanged
shafts by means of four 22-mm-diameter bolts. Determine the
average shear stress in each bolt if the diameter of the bolt
circle is 250 mm. (Disregard friction between the flanges.)

View of flange

Another common type of shear loading is termed punching shear. Examples of this
type of loading include the action of a punch in forming rivet holes in a metal plate, the
tendency of building columns to punch through footings, and the tendency of a tensile
axial load on a bolt to pull the shank of the bolt through the head. Under a punching shear
load, the significant stress is the average shear stress on the surface described by the
perimeter of the punching member and the thickness of the punched member. Punching
shear is illustrated by the three composite wood specimens shown in Figure 1.5. The
central hole in each specimen is a pilot hole used to guide the punch. The specimen on
the left shows the surface initiated at the outset of the shear failure. The center specimen
reveals the failure surface after the punch is driven partially through the block. The spec-  MecMovies 1.10 presents an
imen on the right shows the block after the punch has been driven completely through  animated illustration of punching
the block. shear.
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Jeffery S. Thomas

FIGURE 1.5 Punching shear failure in composite wood block specimens.

A punch for making holes in steel plates is shown. A downward punching force of
32 kips is required to punch a 0.75-in.-diameter hole in a steel plate that is 0.25 in.
thick. Determine the average shear stress in the steel plate at the instant when the cir-
cular slug is torn away from the steel plate.

32 kips

Punch
Plan the Solution

Visualize the surface that is revealed when the slug is removed from the plate. Compute

Steel plate  the shear stress from the applied punching force and the area of the exposed surface.
0.25 in. thick

"-"—_. SOLUTION
The portion of the steel plate removed to create the hole is called a slug. The area sub-
jected to shear stress occurs around the perimeter of the slug. Use the slug diameter d and
w s the plate thickness ¢ to compute the shear area Ay:
Slug
0.75 in. A, = mdt = w(0.75 in.)(0.25 in.) = 0.58905 in2
The average shear stress 7is computed from the punching force P = 32 kips and the shear
_\L area:
0.25 in. .
S L. LR TR Ans.
A, 0.58905 in.2
Shear stress acts on the
surface of the perimeter.

1.4 Bearing Stress

A third type of stress, bearing stress, is actually a special category of normal stress. Bearing
stresses are compressive normal stresses that occur on the surface of contact between two sepa-
rate interacting members. This type of normal stress is defined in the same manner as normal and
shear stresses (i.e., force per unit area); therefore, the average bearing stress o, is expressed as

F (1.7)

g, = —
Ap

where A, = area of contact between the two components.



A steel pipe column (6.5-in. outside diameter; 0.25-in. wall thickness) 11 kips
supports a load of 11 kips. The steel pipe rests on a square steel base
plate, which in turn rests on a concrete slab.

Outside diameter = 6.5 in.
Wall thickness = 0.25 in.

(a) Determine the bearing stress between the steel pipe and the steel
plate.

(b) If the bearing stress of the steel plate on the concrete slab must
be limited to 90 psi, what is the minimum allowable plate
dimension a?

Square steel
base plate

Plan the Solution

To compute bearing stress, the area of contact between two objects Concroy

y
must be determined. slab
SOLUTION

(a) The cross-sectional area of the pipe is required to compute the compressive bearing
stress between the column post and the base plate. The cross-sectional area of a pipe
is given by

v
Apipe = Z(D2 - dZ)

where D = outside diameter and d = inside diameter. The inside diameter d is related to
the outside diameter D by

d=D -2t
where t = wall thickness. Therefore, with D = 6.5 in. and d = 6.0 in., the area of the
pipe is
Ajipe = (D2 — d?) = 7[(6.5 in.)? — (6.0 in.)?] = 4.9087 in.2
Pe 4 4

The bearing stress between the pipe and the base plate is

o, =§:$=2.Z4ksi
b . in.

(b) The minimum area required for the steel plate in order to limit the bearing stress to
90 psi is
F ) _ F (11 kips)(1,000 Ib/kip)
4, o, 90 psi

= 122222 in.?

Since the steel plate is square, its area of contact with the concrete slab is

A, = aXa =122.222 in.? c.a =+/122222 in2 = 11.06 in. say, 12 in.  Ans.

Bearing stresses also develop on the contact surface between a plate and the body of
a bolt or a pin. A bearing failure at a bolted connection in a thin steel component is shown in
Figure 1.6. A tension load was applied upward to the steel component, and a bearing failure
occurred below the bolt hole.
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EXAMPLE 1.8

1.8 kips

Y

Enlarged view of projected
contact area.

.,T the bearing stress in the steel plate.

2.51in.
Bearing stresses will develop on the surface where the steel plate contacts the pin,

Jeffery S. Thomas

FIGURE 1.6 Bearing stress failure at a bolted connection.

The distribution of these stresses on a semicircular contact surface is quite compli-
cated, and an average bearing stress is often used for design purposes. This average bearing
stress o, is computed by dividing the transmitted force by the projected area of contact
between a plate and the bolt or pin, instead of the actual contact area. This approach is
illustrated in the following example.

A 2.5-in.-wide by 0.125-in.-thick steel plate is connected to a support with a
0.75-in.-diameter pin. The steel plate carries an axial load of 1.8 kips. Determine

Plan the Solution

which is the right side of the hole in the illustration. To determine the average bear-
ing stress, the projected area of contact between the plate and the pin must be
calculated.

SOLUTION

The 1.8-kip load pulls the steel plate to the left, which brings the right side of the hole into
contact with the pin. Bearing stresses will occur on the right side of the hole (in the steel
plate) and on the right half of the pin.

Since the actual distribution of bearing stress on a semicircular surface is compli-
cated, an average bearing stress is typically used for design purposes. Instead of using the
actual contact area, the projected area of contact is used in the calculation.

The figure at the left shows an enlarged view of the projected contact area
between the steel plate and the pin. An average bearing stress oy, is exerted on the steel
plate by the pin. Not shown is the equal magnitude bearing stress exerted on the pin by
the steel plate.




The projected area A, is equal to the product of the pin (or bolt) diameter d and the
plate thickness z. For the pinned connection shown, the projected area A, between the
0.125-in.-thick steel plate and the 0.75-in.-diameter pin is calculated as

A, = dt = (0.75 in.)(0.125 in.) = 0.09375 in.?
The average bearing stress between the plate and the pin is

F 1.8 kips

= A_ = W = 19.20 ksi Ans.
b . 1n.

Tp

ies Example M1.1

A 60-mm-wide by 8-mm-thick steel plate is connected to a gusset plate by a
20-mm-diameter pin. If a load of P = 70 kN is applied, determine the normal,
shear, and bearing stresses in this connection.

pin diameter = 20 mm

70 kN

8-mm plate
thickness

ies Exercises

M1.1 For the pin connection shown, determine the normal stress M1.2  Use normal stress concepts for four introductory problems.
acting on the gross area, the normal stress acting on the net area, the
shear stress in the pin, and the bearing stress in the steel plate at the pin.

pin diameter = 16 mm

45 kN

8-mm plate (1)
thickness

FIGURE M1.1

1,000 mm 500 mm

FIGURE M1.2



M1.3  Use shear stress concepts for four introductory problems.

shear key
1!
radius P
shaft 1)

pk-d

e
L

FIGURE M1.3

M1.4 Given the areas and allowable normal stresses for mem-
bers (1) and (2), determine the maximum load P that may be sup-
ported by the structure without exceeding either allowable stress.

FIGURE M1.4

PROBLEMS

M1.5 For the pin at C, determine the resultant force, the shear
stress, or the minimum required pin diameter for six configuration

variations.

30 kN 20 kN
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3,400 mm
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FIGURE M1.5

M1.6 A torque T is transmitted between two flanged shafts by
means of six bolts. If the shear stress in the bolts must be limited to
a specified value, determine the minimum bolt diameter required
for the connection.

View of flange

FIGURE M1.6

P1.1 A stainless steel tube with an outside diameter of 60 mm
and a wall thickness of 5 mm is used as a compression member. If
the axial normal stress in the member must be limited to 200 MPa,
determine the maximum load P that the member can support.

P1.2 A 2024-T4 aluminum tube with an outside diameter of
2.50 in. will be used to support a 27-kip load. If the axial normal
stress in the member must be limited to 18 ksi, determine the wall
thickness required for the tube.

P1.3 Two solid cylindrical rods (1) and (2) are joined together at
flange B and loaded as shown in Figure P1.3/4. If the normal stress
in each rod must be limited to 40 ksi, determine the minimum di-
ameter required for each rod.

P1.4 Two solid cylindrical rods (1) and (2) are joined together
at flange B and loaded, as shown in Figure P1.3/4. The diameter of
rod (1) is 1.75 in. and the diameter of rod (2) is 2.50 in. Determine
the normal stresses in rods (1) and (2).



FIGURE P1.3/4

P1.5 Axial loads are applied with rigid bearing plates to the
solid cylindrical rods shown in Figure P1.5/6. The diameter of alu-
minum rod (1) is 2.00 in., the diameter of brass rod (2) is 1.50 in.,
and the diameter of steel rod (3) is 3.00 in. Determine the axial
normal stress in each of the three rods.

l8 kips

FIGURE P1.5/6

P1.6 Axial loads are applied with rigid bearing plates to the
solid cylindrical rods shown in Figure P1.5/6. The normal stress in
aluminum rod (1) must be limited to 18 ksi, the normal stress in
brass rod (2) must be limited to 25 ksi, and the normal stress in steel
rod (3) must be limited to 15 ksi. Determine the minimum diameter
required for each of the three rods.

P1.7 Two solid cylindrical rods support a load of P = 50 kN, as
shown in Figure P1.7/8. If the normal stress in each rod must be
limited to 130 MPa, determine the minimum diameter required for
each rod.

P1.8 Two solid cylindrical rods support a load of P = 27 kN, as
shown in Figure P1.7/8. Rod (1) has a diameter of 16 mm, and the diam-
eter of rod (2) is 12 mm. Determine the axial normal stress in each rod.
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P1.9 A simple pin-connected truss is loaded and supported as
shown in Figure P1.9. All members of the truss are aluminum pipes
that have an outside diameter of 4.00 in. and a wall thickness of
0.226 in. Determine the normal stress in each truss member.

2 kips

5 kips

FIGURE P1.9

P1.10 A simple pin-connected truss is loaded and supported as
shown in Figure P1.10. All members of the truss are aluminum
pipes that have an outside diameter of 60 mm and a wall thickness
of 4 mm. Determine the normal stress in each truss member.

33m ,

A (3)

FIGURE P1.10



P1.11 A simple pin-connected truss is loaded and supported as
shown in Figure P1.11. All members of the truss are aluminum
pipes that have an outside diameter of 42 mm and a wall thickness
of 3.5 mm. Determine the normal stress in each truss member.

FIGURE P1.11

P1.12 The rigid beam BC shown in Figure P1.12 is supported
by rods (1) and (2) that have cross-sectional areas of 175 mm?
and 300 mm?, respectively. For a uniformly distributed load of
w = 15 kN/m, determine the normal stress in each rod. Assume
L=3manda=18m.

A0 a’D
1) )
\ ¢¢¢¢¢¢1¢¢¢¢¢!
B | C
I L
FIGURE P1.12

P1.13 Bar (1) in Figure P1.13 has a cross-sectional area of
0.75 in.2. If the stress in bar (1) must be limited to 30 ksi, determine
the maximum load P that may be supported by the structure.

FIGURE P1.13

P1.14 The rectangular bar shown in Figure P1.14 is subjected to
a uniformly distributed axial loading of w = 13 kN/m and a con-
centrated force of P = 9 kN at B. Determine the magnitude of the
maximum normal stress in the bar and its location x. Assume a =
0.5m,b =0.7m, ¢c = 15 mm, and d = 40 mm.

FIGURE P1.14

P1.15 The solid 1.25-in.-diameter rod shown in Figure P1.15 is
subjected to a uniform axial distributed loading along its length of
w = 750 Ib/ft. Two concentrated loads also act on the rod: P =
2,000 Ib and Q = 1,000 Ib. Assume @ = 16 in. and b = 32 in. Deter-
mine the normal stress in the rod at the following locations:

(a) x=101n.
(b) x =30in.

FIGURE P1.15

P1.16 Two 6-in.-wide wooden boards are to be joined by
splice plates that will be fully glued onto the contact surfaces, as
shown in Figure P1.16. The glue to be used can safely provide a
shear strength of 120 psi. Determine the smallest allowable length
L that can be used for the splice plates for an applied load of P =
10,000 1b. Note that a gap of 0.5 in. is required between boards (1)
and (2).

0.5 in.

FIGURE P1.16

P1.17 For the clevis connection shown in Figure P1.17, deter-
mine the maximum applied load P that can be supported by the
10-mm-diameter pin if the average shear stress in the pin must not
exceed 95 MPa.



FIGURE P1.17

P1.18 For the connection shown in Figure P1.18, determine the
average shear stress produced in the 3/8-in. diameter bolts if the
applied load is P = 2,500 1b.

FIGURE P1.18

P1.19 The five-bolt connection shown in Figure P1.19 must
support an applied load of P = 265 kN. If the average shear stress in
the bolts must be limited to 120 MPa, determine the minimum bolt
diameter that may be used for this connection.

FIGURE P1.19

P1.20 A coupling is used to connect a 2-in.-diameter plastic
pipe (1) to a 1.5-in.-diameter pipe (2), as shown in Figure P1.20. If

Coupling
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Cutaway section of coupling

FIGURE P1.20

the average shear stress in the adhesive must be limited to 400 psi,
determine the minimum lengths L; and L, required for the joint if
the applied load P is 5,000 Ib.

P1.21 A hydraulic punch press is used to punch a slot in a
0.50-in.-thick plate, as illustrated in Figure P1.21. If the plate
shears at a stress of 30 ksi, determine the minimum force P required
to punch the slot.

Plan view of slug

Punch

FIGURE P1.21

P1.22 The handle shown in Figure P1.22 is attached to a
40-mm-diameter shaft with a square shear key. The forces applied
to the lever are P = 1,300 N. If the average shear stress in the key
must not exceed 150 MPa, determine the minimum dimension a
that must be used if the key is 25 mm long. The overall length of
the handle is L = 0.70 m.
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FIGURE P1.22

P1.23  An axial load P is supported by the short steel column
shown in Figure P1.23. The column has a cross-sectional area of
14,500 mm?2. If the average normal stress in the steel column must
not exceed 75 MPa, determine the minimum required dimension a
so that the bearing stress between the base plate and the concrete
slab does not exceed 8 MPa. Assume b = 420 mm.



FIGURE P1.23

P1.24 The two wooden boards shown in Figure P1.24 are
connected by a 0.5-in.-diameter bolt. Washers are installed under
the head of the bolt and under the nut. The washer dimensions are
D = 2 in. and d = 5/8 in. The nut is tightened to cause a tensile
stress of 9,000 psi in the bolt. Determine the bearing stress be-
tween the washer and the wood.

Bolt

Washer

FIGURE P1.24

P1.25 For the beam shown in Figure P1.25, the allowable bear-

ing stress for the material under the supports at A and B is o}, =
800 psi. Assume w = 2,100 Ib/tt, P = 4,600 1b, a = 20 ft, and b =
8 ft. Determine the size of square bearing plates required to sup-
port the loading shown. Dimension the plates to the nearest 1/2 in.
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FIGURE P1.25

P1.26 The d = 15-mm-diameter solid rod shown in Figure
P1.26 passes through a D = 20-mm-diameter hole in the support
plate. When a load P is applied to the rod, the rod head rests on
the support plate. The support plate has a thickness of » = 12 mm.
The rod head has a diameter of ¢ = 30 mm, and the head has a

thickness of + = 10 mm. If the normal stress produced in the rod
by load P is 225 MPa, determine

(a) the bearing stress acting between the support plate and the
rod head.

(b) the average shear stress produced in the rod head.

(c) the punching shear stress produced in the support plate by the
rod head.

Support
plate

Hole diameter D

FIGURE P1.26

P1.27 The rectangular bar is connected to the support bracket
with a circular pin, as shown in Figure P1.27. The bar width is
w = 1.75 in. and the bar thickness is 0.375 in. For an applied load
of P = 5,600 Ib, determine the average bearing stress produced in
the bar by the 0.625-in.-diameter pin.

FIGURE P1.27

P1.28 The steel pipe column shown in Figure P1.28 has an
outside diameter of 8.625 in. and a wall thickness of 0.25 in. The
timber beam is 10.75 in. wide, and the upper plate has the same
width. The load imposed on the column by the timber beam is
80 kips. Determine the following:

(a) the average bearing stress at the surfaces between the pipe
column and the upper and lower steel bearing plates



(b) the length L of the rectangular upper bearing plate if its width
is 10.75 in. and the average bearing stress between the steel
plate and the wood beam is not to exceed 500 psi

(c) the dimension a of the square lower bearing plate if the
average bearing stress between the lower bearing plate and
the concrete slab is not to exceed 900 psi

i
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bearing
plate

Timber
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Steel
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bearing
Concrete plate
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FIGURE P1.28

P1.29 A clevis-type pipe hanger supports an 8-in.-diameter pipe,
as shown in Figure P1.29. The hanger rod has a diameter of 1/2 in.
The bolt connecting the top yoke and the bottom strap has a diameter
of 5/8 in. The bottom strap is 3/16 in. thick by 1.75 in. wide by 36 in.
long. The weight of the pipe is 2,000 1b. Determine the following:

(a) the normal stress in the hanger rod
(b) the shear stress in the bolt
(c) the bearing stress in the bottom strap

Hanger rod ——>|

Top yoke —>

<— Bottom strap

FIGURE P1.29

P1.30 Rigid bar ABC shown in Figure P1.30 is supported by
a pin at bracket A and by tie rod (1). Tie rod (1) has a diameter
of 5 mm, and it is supported by double-shear pin connections at
B and D. The pin at bracket A is a single-shear connection. All
pins are 7 mm in diameter. Assume a = 600 mm, b = 300 mm,
h =450 mm, P = 900 N, and 6 = 55°. Determine the following:

(a) the normal stress in rod (1)
(b) the shear stress in pin B
(c) the shear stress in pin A

(1)

FIGURE P1.30

P1.31 The bell crank shown in Figure P1.31 is in equilibrium
for the forces acting in rods (1) and (2). The bell crank is supported
by a 10-mm-diameter pin at B that acts in single shear. The thick-
ness of the bell crank is 5 mm. Assume ¢ = 65 mm, b = 150 mm,
F; = 1,100 N, and # = 50°. Determine the following:

(a) the shear stress in pin B
(b) the bearing stress in the bell crank at B
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FIGURE P1.31

P1.32 The beam shown in Figure P1.32 is supported by a pin at
C and by a short link AB. If w = 30 kN/m, determine the average
shear stress in the pins at A and C. Each pin has a diameter of 25 mm.
Assume L = 1.8 m and 0 = 35°.



(a) The shear stress in the pin may not exceed 40 MPa.
(b) The bearing stress in the bell crank may not exceed 100 MPa.
(c) The bearing stress in the support bracket may not exceed

C
oo _E' I | 165 MPa.
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FIGURE P1.32

P1.33 The bell-crank mechanism shown in Figure P1.33 is
in equilibrium for an applied load of P = 7 kN applied at A.
Assume ¢ = 200 mm, b = 150 mm, and 6 = 65°. Determine the
minimum diameter d required for pin B for each of the following Support bracket

conditions:

MecMovies 1.11 is an
animated presentation of the
theory of stresses on an inclined
plane.

In referencing planes, the
orientation of the plane is
specified by the normal to the
plane. The inclined plane shown
in Figure 1.7d is termed the n
face because the n axis is the
normal to this surface.

FIGURE P1.33

1.5 Stresses on Inclined Sections

In previous sections, normal, shear, and bearing stresses on planes parallel and perpendicu-
lar to the axes of centrically loaded members were introduced. Stresses on planes inclined
to the axes of axially loaded bars will now be considered.

Consider a prismatic bar subjected to an axial force P applied to the centroid of the bar
(Figure 1.7a). Loading of this type is termed uniaxial since the force applied to the bar acts in
one direction (i.e., either tension or compression). The cross-sectional area of the bar is A. To
investigate the stresses that are acting internally in the material, we will cut through the bar at
section a—a. The free-body diagram (Figure 1.7b) exposes the normal stress o that is distrib-
uted over the cut section of the bar. The normal stress magnitude may be calculated from
o = P/A, provided that the stress is uniformly distributed. In this case, the stress will be uni-
form because the bar is prismatic and the force P is applied at the centroid of the cross section.
The resultant of this normal stress distribution is equal in magnitude to the applied load P and
has a line of action that is coincident with the axes of the bar, as shown. Note that there will be
no shear stress 7 since the cut surface is perpendicular to the direction of the resultant force.

Section a—a is unique, however, because it is the only surface that is perpendicular to
the direction of force P. A more general case would consider a section cut through the bar at
an arbitrary angle. Consider a free-body diagram along section b—b (Figure 1.7¢). Because
the stresses are the same throughout the entire bar, the stresses on the inclined surface must
be uniformly distributed. Since the bar is in equilibrium, the resultant of the uniformly
distributed stress must equal P even though the stress acts on a surface that is inclined.

The orientation of the inclined surface can be defined by the angle 6 between the
x axis and an axis normal to the plane, which is the n axis, as shown in Figure 1.7d. A posi-
tive angle 6 is defined as a counterclockwise rotation from the x axis to the n axis. The ¢ axis
is tangential to the cut surface, and the n—t axes form a right-handed coordinate system.

To investigate the stresses acting on the inclined plane (Figure 1.7d), the components
of resultant force P acting perpendicular and parallel to the plane must be computed. Using
0 as defined previously, the perpendicular force component (i.e., normal force) is N = P cos
0, and the parallel force component (i.e., shear force) is V = —P sin 6. (The negative sign
indicates that the shear force acts in the —¢ direction, as shown in Figure 1.7d.) The area of
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the inclined plane A,, = A/cos 0, where A is the cross-sectional area of the axially loaded
member. The normal and shear stresses acting on the inclined plane (Figures 1.7¢ and 1.7f)
can now be determined by dividing the force component by the area of the inclined plane:

o = N _ Pcosh _ ECOSZ() = i(1 + c0s20) (1.8)
A, Alcos6 A 2A

T, = A = 7 i = —£sin(9 cosf = —LsinZB (1.9)
A,  Alcos6 A 2A

Since both the area of the inclined surface A, and the values for the normal and shear forces
N and V on the surface depend on the angle of inclination 6, the normal and shear stresses
o, and 7, also depend on the angle of inclination 6 of the plane. This dependence of stress
on both force and area means that stress is not a vector quantity; therefore, the laws of the
vector addition do not apply to stresses.

A graph showing the values of ¢, and 7,, as a function of 6 is given in Figure 1.8.
These plots indicate that o, is largest when 6 is 0° or 180°, that 7,, is largest when 0 is
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FIGURE 1.7 (a) Prismatic

bar subjected to axial force P.

(b) Normal stresses on

section a—a. (c¢) Stresses on
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acting on inclined plane.

FIGURE 1.8 Variation of
normal and shear stress as a
function of inclined plane
orientation 6.



STRESS

FIGURE 1.9 Shear stresses
acting on a small volume
element of material.

45° or 135°, and also that 7,,,, = Op.c/2. Therefore, the maximum normal and shear
stresses in an axial member that is subjected to an uniaxial tension or compression force
applied through the centroid of the member (termed a centric loading) are

P P

Tmax =~ and Ty = 0 (1.10)

Note that the normal stress is either maximum or minimum on planes for which the shear
stress is zero. It can be shown that the shear stress is always zero on the planes of maximum
or minimum normal stress. The concepts of maximum and minimum normal stress and
maximum shear stress for more general cases will be treated in later sections of this book.

The plot of normal and shear stresses for axial loading, shown in Figure 1.8, indicates
that the sign of the shear stress changes when 0 is greater than 90°. The magnitude of the
shear stress for any angle 6, however, is the same as that for 90° + 6. The sign change
merely indicates that the shear force V changes direction.

Significance

Although one might think that there is only a single stress in a material (particularly in a simple
axial member), this discussion has demonstrated that there are many different combinations of
normal and shear stress in a solid object. The magnitude and direction of the normal and shear
stresses at any point depend on the orientation of the plane being considered.

Why Is This Important? In designing a component, an engineer must be mindful of
all possible combinations of normal stress o, and shear stress 7,, that exist on internal sur-
faces of the object, not just the most obvious ones. Further, different materials are sensitive
to different types of stress. For example, laboratory tests on specimens loaded in uniaxial
tension reveal that brittle materials tend to fail in response to the magnitude of normal
stress. These materials fracture on a transverse plane (i.e., a plane such as section a—a in
Figure 1.7a). Ductile materials, on the other hand, are sensitive to the shear stress magni-
tude. A ductile material loaded in uniaxial tension will fracture on a 45° plane since the
maximum shear stress occurs on this surface.

1.6 Equality of Shear Stresses
on Perpendicular Planes

If an object is in equilibrium, then any portion of the object that one chooses to examine
must also be in equilibrium, no matter how small that portion may be. Therefore, let us
consider a small-volume element of material that is subjected to shear stress, as shown in
Figure 1.9. The front and rear faces of this small element are free of stress.

Equilibrium involves forces, not stresses. For us to consider the equilibrium of this ele-
ment, we must find the forces produced by the stresses that act on each face, by multiplying
the stress acting on each face by the area of the face. For example, the horizontal force acting
on the top face of this element is given by 7,,,AxAz, and the vertical force acting on the right
face of this element is given by 7,,AyAz. Equilibrium in the horizontal direction gives

EF, = 1, AxAz— 1) AxAz = 0 STy, =T

X »x yX

and equilibrium in the vertical direction gives

IF, = 7,AyAz— T;y AyAz =0 STy = Tx/y



Finally, taking moments about the z axis gives
= (TxyAyAz) Ax — (TyxAxAz) Ay =0 ST =T
Therefore, equilibrium requires that

Ty = Ty = Ty = Ty = T

In other words, if a shear stress acts on one plane in the object, then equal-magnitude shear
stresses act on three other planes. The shear stresses must be oriented either as shown in
Figure 1.9 or in the opposite directions on each face.

Shear stress arrows on adjacent
faces act either toward each other
or away from each other. In other
words, the arrows are arranged
head-to-head or tail-to-tail—never
head-to-tail—on intersecting
perpendicular planes.

A 120-mm-wide steel bar with a butt-welded joint, as shown, will be used to carry an
axial tension load of P = 180 kN. If the normal and shear stresses on the plane of the butt
weld must be limited to 80 MPa and 45 MPa, respectively, determine the minimum thick-
ness required for the bar.

Plan the Solution

Either the normal stress limit or the shear stress limit
will dictate the area required for the bar. There is no
way to know beforehand which stress will control;
therefore, both possibilities must be checked. The
minimum cross-sectional area required for each limit
must be determined. Using the larger of these two results, the minimum bar thickness
will be determined. For illustration, this example will be worked in two ways:

(a) by directly using the normal and shear components of force P,
(b) by using Equations (1.8) and (1.9).

SOLUTION

(a) Solution Using Normal and Shear Force Components

Consider a free-body diagram (FBD) of the left half of the member. Resolve the axial
force P = 180 kN into a force component N perpendicular to the weld and a force com-
ponent V parallel to the weld.

V (180 kN) sin 33° = 98.035 kN
=180 kN =180 kN
33°
N= (180 KkN) cos 33° = 150.961 kN
A,=L, t
The minimum cross-sectional area of the weld A, needed to limit the normal stress on the
weld to 80 MPa can be computed from
N - (150.961 kN) (1,000 N/KN)

g, = — SA, =
A 80 N/mm?

= 1,887.013 mm?

Similarly, the minimum cross-sectional area of the weld A, needed to limit the shear
stress on the weld to 45 MPa can be computed from

\% (98.035 kN) (1,000 N/kN)
T, = LA =

— LA = = 2,178.556 mm?
A, " 45 N/mn? o




To satisfy both normal and shear stress limits, the minimum cross-sectional area A,
needed for the weld is A, = 2,178.556 mm?. Next, we can determine the length of the
weld L, along the inclined surface. From the geometry of the surface,

120 mm L= 120 mm
L o cos 33°

n

cos33° = = 143.084 mm

Therefore, to provide the necessary weld area, the minimum thickness is computed as

2
= 2,178.556 mm” 15.23 mm Ans.
143.084 mm
(b) Solution Using Equations (1.8) and (1.9)
Determine the angle 6 needed for Equations (1.8) and (1.9). The angle 6 is defined as the
angle between the transverse cross section (i.e., the section perpendicular to the applied
load) and the inclined surface, with positive angles defined in a counterclockwise direc-
tion. Although the butt weld angle is labeled 57° in the problem sketch, this is not the
value needed for 6. For use in the equations, § = —33°.
The normal and shear stresses on the inclined plane can be computed from

o, = £00520 and 71, = —fsinﬁcosﬁ
A A

n nt

According to the 80-MPa normal stress limit, the minimum cross-sectional area required
for the bar is

(180 kN) (1,000 N/KN)

P
= —cos20 =
Anin 80 N/mm?

n

cos2(—33°) = 1,582.58 mm?

Similarly, the minimum area required for the bar, based on the 45-MPa shear stress
limit, is
(180 kN) (1,000 N/kN) .

A= —isinO cos = sin(—33°) cos(—33°) = 1,827.09 mm?

m Tt 45 N/mm?

Note: Here we are concerned with force and area magnitudes. If the area calculations had
produced a negative value, we would have considered only the absolute value.

To satisfy both stress limits, the larger of the two areas must be used. Since the steel
bar is 120 mm wide, the minimum bar thickness must be

1,827.09 mm?
P —

L= = 15.23 mm Ans.
i 120 mm

les Example M1.12

The steel bar shown has a 100-mm by 25-mm rectangular cross section. If an axial
soxy force of P = 40 kN is applied to the bar, determine the normal and shear stresses
—>  acting on the inclined surface a—a.




ies Example M1.13

The steel bar shown has a 50-mm by 10-mm rectangular cross section. The allowable
normal and shear stresses on the inclined surface must be limited to 40 MPa and
25 MPa, respectively. Determine the magnitude of the maximum axial force of P that can
be applied to the bar.

ies Exercises

M1.12 The bar has a rectangular cross section. For a given load M1.13  The bar has a rectangular cross section. The allowable

P, determine the force components perpendicular and parallel to  normal and shear stresses on inclined surface a—a are given. Deter-

section a—a, the inclined surface area, and the normal and shear —mine the magnitude of the maximum axial force P that can be ap-

stress magnitudes acting on surface a—a. plied to the bar and determine the actual normal and shear stresses
acting on inclined plane a—a.

a
P P
< — —_—
a

FIGURE M1.13

FIGURE M1.12

PROBILEMS

P1.34 A structural steel bar with a 25 mm X 75 mm rectangular  P1.35 A steel rod of circular cross section will be used to carry

cross section is subjected to an axial load of 150 kN. Determine the  an axial load of 92 kips. The maximum stresses in the rod must be
limited to 30 ksi in tension and 12 ksi in shear. Determine the re-

quired diameter for the rod.

maximum normal and shear stresses in the bar.



P1.36 An axial load P is applied to the rectangular bar shown in
Figure P1.36. The cross-sectional area of the bar is 400 mm?2. De-
termine the normal stress perpendicular to plane AB and the shear
stress parallel to plane AB if the bar is subjected to an axial load of
P =70 kN.

P

=

P

b

FIGURE P1.36 /

P1.37 An axial load P is applied to the 1.75-in.-by-0.75-in. rec-

tangular bar shown in Figure P1.37. Determine the normal stress FIGURE P1.39

perpendicular to plane AB and the shear stress parallel to plane AB

if the bar is subjected to an axial load of P = 18 kips. P1.40 Specifications for the 6 in. X 6 in. square post shown in
Figure P1.40 require that the normal and shear stresses on plane
AB not exceed 800 psi and 400 psi, respectively. Determine
the maximum load P that can be applied without exceeding the

specifications.

FIGURE P1.37

P1.38 A compression load of P = 80 kips is applied to a

4-in.-by-4-in. square post, as shown in Figure P1.38. Determine the

normal stress perpendicular to plane AB and the shear stress paral-

lel to plane AB.

P
FIGURE P1.40
A P1.41 A 90-mm-wide bar will be used to carry an axial ten-
sion load of 280 kN, as shown in Figure P1.41. The normal and
shear stresses on plane AB must be limited to 150 MPa and 100 MPa,
respectively. Determine the minimum thickness ¢ required for
the bar.
y
FIGURE P1.38

P1.39 Specifications for the 50 mm X 50 mm square bar shown
in Figure P1.39 require that the normal and shear stresses on plane
AB not exceed 120 MPa and 90 MPa, respectively. Determine the
maximum load P that can be applied without exceeding the
specifications. FIGURE P1.41




P1.42 A rectangular bar having width w = 6.00 in. and thick-
ness ¢+ = 1.50 in. is subjected to a tension load P, as shown in
Figure P1.42/43. The normal and shear stresses on plane AB must
not exceed 16 ksi and 8 ksi, respectively. Determine the maximum
load P that can be applied without exceeding either stress limit.

P1.43 In Figure P1.42/43, a rectangular bar having width
w = 1.25 in. and thickness 7 is subjected to a tension load of
P = 30 kips. The normal and shear stresses on plane AB must not
exceed 12 ksi and 8 ksi, respectively. Determine the minimum thick-
ness ¢ required for the bar.

=

FIGURE P1.42/43

P1.44 The rectangular bar has a width of w = 3.00 in. and a
thickness of #+ = 2.00 in. The normal stress on plane AB of the
rectangular block shown in Figure P1.44/45 is 6 ksi (C) when the
load P is applied. Determine

(a) the magnitude of load P.

(b) the shear stress on plane AB.

(c) the maximum normal and shear stresses in the block at any
possible orientation.

P1.45 The rectangular bar has a width of w = 100 mm and a
thickness of + = 75 mm. The shear stress on plane AB of the
rectangular block shown in Figure P1.44/45 is 12 MPa when the
load P is applied. Determine

(a) the magnitude of load P.

(b) the normal stress on plane AB.

(c) the maximum normal and shear stresses in the block at any
possible orientation.

A
P
w

|

FIGURE P1.44/45
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Strain

2.1 Displacement, Deformation, and

In the design of structural elements or machine components, the deformations experienced
by the body because of applied loads often represent a design consideration equally as
important as stress. For this reason, the nature of the deformations experienced by a real
deformable body as a result of internal stress will be studied, and methods to measure or

compute deformations will be established.

Displacement

When a system of loads is applied to a machine component or structural element,
individual points of the body generally move. This movement of a point with re-
spect to some convenient reference system of axes is a vector quantity known as a
displacement. In some instances, displacements are associated with a translation
and/or rotation of the body as a whole. The size and shape of the body are not
changed by this type of displacement, which is termed a rigid-body displacement.
In Figure 2.1a, consider points H and K on a solid body. If the body is
displaced (both translated and rotated), points H and K will move to new locations
H' and K'. The position vector between H' and K', however, has the same length

y

Position after
translation
and rotation

Original position

FIGURE 2.1a Rigid-body displacement.



STRAIN

Before
deformation

as the position vector between H and K. In other words, the orientation of H and K relative to
each other does not change when a body undergoes a displacement.

Deformation

When displacements are caused by an applied load or a change in temperature, indi-
vidual points of the body move relative to each other. The change in any dimension
associated with these load- or temperature-induced displacements is known
as deformation. Figure 2.15 shows a body both before and after a deforma-
tion. For simplicity, the deformation shown in the figure is such that point H
does not change location; however, point K on the undeformed body moves to
location K after the deformation. Because of the deformation, the position

After deformation vector between H and K’ is much longer than the HK vector in the unde-

formed body. Also, notice that the grid squares shown on the body before
deformation (Figure 2.1a) are no longer squares after the deformation. Con-
sequently, both the size and the shape of the body have been altered by the
deformation.

Under general conditions of loading, deformations will not be uniform

¥ throughout the body. Some line segments will experience extensions, while

FIGURE 2.1b  Deformation of a body. others will experience contractions. Different segments (of the same length)

11

—>
—>

FIGURE 2.2 Normal strain.

along the same line may experience different amounts of extension or contrac-
tion. Similarly, angle changes between line segments may vary with position and orientation
in the body. This nonuniform nature of load-induced deformations will be investigated in
more detail in Chapter 13.

Strain

Strain is a quantity used to provide a measure of the intensity of a deformation (deforma-
tion per unit length) just as stress is used to provide a measure of the intensity of an internal
force (force per unit area). In Sections 1.2 and 1.3, two types of stresses were defined: nor-
mal stresses and shear stresses. The same classification is used for strains. Normal strain,
designated by the Greek letter £ (epsilon), is used to provide a measure of the elongation
or contraction of an arbitrary line segment in a body during deformation. Shear strain,
designated by the Greek letter y (gamma), is used to provide a measure of angular distor-
tion (change in angle between two lines that are orthogonal in the undeformed state). The
deformation, or strain, may be the result of a change in temperature, of a stress, or of some
other physical phenomenon such as grain growth or shrinkage. In this book, only strains
resulting from changes in temperature or stress are considered.

2.2 Normal Strain

Average Normal Strain

The deformation (change in length and width) of a simple bar under an axial load (see
Figure 2.2) can be used to illustrate the idea of a normal strain. The average normal strain
€avg OVer the length of the bar is obtained by dividing the axial deformation & of the bar by
its initial length L; thus,

£
L

2.1)

Savg

The symbol 6 is used to denote the deformation in the axial member.



Accordingly, a positive value of 6 indicates that the axial member gets longer, and a
negative value of § indicates that the axial member gets shorter (termed contraction).

Normal Strain at a Point

In those cases in which the deformation is nonuniform along the length of the bar (e.g., a
long bar hanging under its own weight), the average normal strain given by Equation (2.1)
may be significantly different from the normal strain at an arbitrary point O along the bar.
The normal strain at a point can be determined by decreasing the length over which the
actual deformation is measured. In the limit, a quantity defined as the normal strain at the
point &(0) is obtained. This limit process is indicated by the expression

Strain Units

Equations (2.1) and (2.2) indicate that normal strain is a dimensionless quantity; however,
normal strains are frequently expressed in units of in./in., mm/mm, m/m, pin./in., pm/m,
or pe. The symbol  in the context of strain is spoken as “micro,” and it denotes a factor of
107°. The conversion from dimensionless quantities such as in./in. or m/m to units of
“microstrain” (such as pin./in., wm/m, or pe) is

1pe =1x10"%in/in. =1 x 107° m/m

Since normal strains are small, dimensionless numbers, it is also convenient to express
strains in terms of percent. For most engineered objects made from metals and alloys,
normal strains seldom exceed values of 0.2%, which is equivalent to 0.002 m/m.

Measuring Normal Strains Experimentally

Normal strains can be measured with a simple component called a strain gage. The
common strain gage (Figure 2.3) consists of a thin metal-foil grid that is bonded to the
surface of a machine part or a structural element. When loads (and also temperature
changes) are applied, the object being tested elongates or contracts, creating normal strains.
Since the strain gage is bonded to the object, it undergoes the same strain as the object. As
the strain gage elongates or contracts, the electrical resistance of the metal-foil grid changes
proportionately. The relationship between strain in the gage and its corresponding resis-
tance change is predetermined by the strain gage manufacturer through a calibration pro-
cedure for each type of gage. Consequently, precise measurement of resistance change in
the gage serves as an indirect measure of strain. Strain gages are accurate and extremely
sensitive, enabling normal strains as small as 1 pe to be measured. Applications involving
strain gages will be discussed in more detail in Chapter 13.

Sign Conventions for Normal Strains

From the definitions given by Equation (2.1) and Equation (2.2), normal strain is positive
when the object elongates and negative when the object contracts. In general, elongation
will occur if the axial stress in the object is tension. Therefore, positive normal strains are
referred to as tensile strains. The opposite will be true for compressive axial stresses; there-
fore, negative normal strains are referred to as compressive strains.

NORMAL STRAIN

A normal strain in an axial
member is also termed an

axial strain.

Plastic
backing

Metal-foil
sensing
grid

FIGURE 2.3

Alignment
marks

Solder
tabs
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2.0 m

In developing the concept of normal strain through example problems and exercises, it
is convenient to use the notion of a rigid bar. A rigid bar is meant to represent an object
that undergoes no deformation of any kind. Depending on how it is supported, the rigid
bar may translate (i.e., move up/down or left/right) or rotate about a support location
(see Example 2.1), but it does not bend or deform in any way regardless of the loads
acting on it. If a rigid bar is straight before loads are applied, then it will be straight after
loads are applied. The bar may translate or rotate, but it will remain straight.

A rigid bar ABCD is pinned at A and supported by two
steel rods connected at B and C, as shown. There is no
strain in the vertical rods before load P is applied.
After load P is applied, the normal strain in rod (2) is
800 pe. Determine

(a) the axial normal strain in rod (1).

(b) the axial normal strain in rod (1) if there is a
1-mm gap in the connection between the rigid
bar and rod (2) before the load is applied.

Rigid bar

Plan the Solution
p  For this problem, the definition of normal strain will
be used to relate strain and elongation for each rod.

c

2.5m

; Since the rigid bar is pinned at A, it will rotate about

05 m_) W p  the support; however, it will remain straight. The

deflections at points B, C, and D along the rigid bar

can be determined by similar triangles. In part (b), the 1-mm gap will cause an increased
rigid bar deflection at C, and this will in turn lead to increased strain in rod (1).

SOLUTION
(a) The normal strain is given for rod (2); therefore, the deformation in the rod can be
computed as follows:

1 mm/mm

=2 L5 =)L, = (800 pe)| —m/mm_
© 2 = &2l = 800 KE) 1000000 pe

(2,700 mm) = 2.16 mm

To compute the deformation, note that the given strain value &, must be converted from units
of e into dimensionless units (i.e., mm/mm). Since the strain is positive, rod (2) elongates.

Since rod (2) is connected to the rigid bar and since rod (2) elongates, the rigid bar
must deflect 2.16 mm downward at joint C. However, rigid bar ABCD is supported by a
pin at joint A, and deflection is prevented at its left end. Therefore, rigid bar ABCD rotates
about pin A. Sketch the configuration of the rotated rigid bar, showing the deflection that
takes place at C. Sketches of this type are known as deformation diagrams.

Although the deflections are very small, they have been greatly exaggerated here for
clarity in the sketch. For problems of this type, a small-deflection approximation is used:

sinf =~ tanf = 6

where 6 is the rotation angle of the rigid bar in radians.




To clearly distinguish between elongations
that occur in the rods and deflections at locations
along the rigid bar, rigid bar transverse deflections
(i.e., deflections up or down in this case) will be
denoted by the symbol v. Therefore, the rigid bar
deflection at joint C is designated v.

We will assume that there is a perfect fit in the
pin connection at joint C; therefore, the rigid bar
deflection at C is equal to the elongation that occurs
inrod (2) (ve = 85).

From the deformation diagram of the rigid bar geometry, the rigid bar deflection at
joint B (vp) can be determined from similar triangles:

Vg _ Ve ., _20m

= Vg (2.16 mm) = 0.96 mm
20m 45m 45m

If there is a perfect fit in the connection between rod (1) and the rigid bar at joint B, rod
(1) elongates by an amount equal to the rigid bar deflection at B; hence,  ; = vz. Knowing
the deformation produced in rod (1), we can now compute its strain:

g = — = ———— = 0.000640 mm/mm = 640 pe Ans.

(b) As in part (a), the deformation in the rod can be computed from

1 mm/mm
1,000,000 pe

(2,700 mm) = 2.16 mm

& = i—z =0, = &L, = (800 pe)
2

Sketch the configuration of the rotated
rigid bar for case (b). In this case, there is
a 1-mm gap between rod (2) and the rigid
bar at C. This means that the rigid bar
deflects 1 mm downward at C before it
begins to stretch rod (2). The total deflec-
tion of C is made up of the 1-mm gap plus
the elongation that occurs in rod (2); hence,
ve = 2.16 mm + 1 mm = 3.16 mm.

As before, the rigid bar deflection at
joint B (vp) can be determined from similar
triangles:

Ve vy = 20M 36 mm) = 1.404 mm
B 45m

Ve _
2.0m 45m

Since there is a perfect fit in the connection between rod (1) and the rigid bar at joint B,
8| = vg, and the strain in rod (1) can be computed:

g = — = ——— = 0.000936 mm/mm = 936 pe Ans.

Compare the rod (1) strains for cases (a) and (b). Notice that a very small gap at C caused
the strain in rod (1) to increase markedly.




ies Example M2.1

MOVIES

A rigid steel bar ABC is supported by three rods. There is no strain in the
rods before load P is applied. After load P is applied, the axial strain in rod
(1) is 1,200 pe.

(a) Determine the axial strain in rods (2).
(b) Determine the axial strain in rods (2) if there is a 0.5-mm gap in the
connections between rods (2) and the rigid bar before the load is

200 applied.

ies Example M2.2

A rigid steel bar ABC is pinned at B and supported by two rods at A and C.
There is no strain in the rods before load P is applied. After load P is applied,
the axial strain in rod (1) is +910 pe. Determine the axial strain in rod (2).

520 mm

400 mm

ies Example M2.4

00 mm i The load P produces an axial strain of —1,800 we in post (2).
pr— Al Determine the axial strain in rod (1).
480 mm

300 mm 300 mm

600 mm

(2)
L g,




ies Exercises

M2.1 A rigid horizontal bar ABC is supported by three vertical
rods. There is no strain in the rods before load P is applied. After
load P is applied, the axial strain is a specified value. Determine the
deflection of the rigid bar at B and the normal strain in rods (2) if
there is a specified gap between rod (1) and the rigid bar before the
load is applied.

FIGURE M2.1

M2.2 A rigid steel bar AB is pinned at A and supported by two
rods. There is no strain in the rods before load P is applied. After
load P is applied, the axial strain in rod (1) is a specified value.
Determine the axial strain in rod (2) and the downward deflection
of the rigid bar at B.

(2)

(1)
2,700 mm

|A

‘ 0.95m

| | Ve

FIGURE M2.2

0.90 m 1.05m

M2.3 Use normal strain concepts for four introductory problems
using these two structural configurations.

FIGURE M2.3



_PROBIEMS

P2.1 When an axial load is applied to the ends of the bar shown
in Figure P2.1, the total elongation of the bar between joints A and
C is 0.15 in. In segment (2), the normal strain is measured as
1,300 win./in. Determine

(a) the elongation of segment (2).

(b) the normal strain in segment (1) of the bar.

P (1) 2 P
4= ﬁ =)
. 40 in. | 90 in. !
FIGURE P2.1

P2.2 The two bars shown in Figure P2.2 are used to support a
load P. When unloaded, joint B has coordinates (0, 0). After load
P is applied, joint B moves to the coordinate position (0.35 in.,
—0.60 in.). Assume a = 11 ft, b = 6 ft, and 1 = 8 ft. Determine
the normal strain in each bar.

FIGURE P2.2

P2.3 A rigid steel bar is supported by three rods, as shown in
Figure P2.3. There is no strain in the rods before the load P is
applied. After load P is applied, the normal strain in rods
(1) is 860 wm/m. Assume initial rod lengths of L; = 2,400 mm and
L, = 1,800 mm. Determine

(a) the normal strain in rod (2).

(b) the normal strain in rod (2) if there is a 2-mm gap in the
connections between the rigid bar and rods (1) at joints A and
C before the load is applied.

(c) the normal strain in rod (2) if there is a 2-mm gap in the
connection between the rigid bar and rod (2) at joint B before
the load is applied.

(@)

FIGURE P2.3

P2.4  Arigid bar ABCD is supported by two bars, as shown in Fig-
ure P2.4. There is no strain in the vertical bars before load P is applied.
After load P is applied, the normal strain in rod (1) is =570 pm/m.
Determine

(a) the normal strain in rod (2).

(b) the normal strain in rod (2) if there is a 1-mm gap in the
connection at pin C before the load is applied.

(c) the normal strain in rod (2) if there is a 1-mm gap in the
connection at pin B before the load is applied.

1,500 mm

, 240 mm . 360 mm 140 mm_,

Rigid bar

FIGURE P2.4

P2.5 1In Figure P2.5, rigid bar ABC is supported by a pin con-
nection at B and two axial members. A slot in member (1) allows
the pin at A to slide 0.25 in. before it contacts the axial member.
If the load P produces a compression normal strain in member (1)
of —1,300 pin./in., determine the normal strain in member (2).



(@)

160 in.

| 32 in. ‘

T 1 I

FIGURE P2.5

P2.6 The sanding-drum mandrel shown in Figure P2.6 is
made for use with a hand drill. The mandrel is made from a
rubber-like material that expands when the nut is tightened to
secure the sanding sleeve placed over the outside surface. If the
diameter D of the mandrel increases from 2.00 in. to 2.15 in. as
the nut is tightened, determine

(a) the average normal strain along a diameter of the mandrel.
(b) the circumferential strain at the outside surface of
the mandrel.

2.3 Shear Strain

A deformation involving a change in shape (distortion) can be used to illustrate a shear
strain. An average shear strain y,,, associated with two reference lines that are orthogonal
in the undeformed state (two edges of the element shown in Figure 2.4) can be obtained by
dividing the shear deformation 6 , (displacement of the top edge of the element with respect
to the bottom edge) by the perpendicular distance L between these two edges. If the defor-
mation is small, meaning that siny = tany = vy and cosy = 1, then shear strain can be

defined as

6)(?

Yavg = f

Sanding sleeve /,

FIGURE P2.6

P2.7 The normal strain in a suspended bar of material of vary-
ing cross section due to its own weight is given by the expression
vy/3E, where v is the specific weight of the material, y is the dis-
tance from the free (i.e., bottom) end of the bar, and E is a material
constant. Determine, in terms of vy, L, and E the following:

(a) the change in length of the bar due to its own weight

(b) the average normal strain over the length L of the bar

(c) the maximum normal strain in the bar

P2.8 A steel cable is used to support an elevator cage at the
bottom of a 2,000-ft-deep mineshaft. A uniform normal strain of
250 pin./in. is produced in the cable by the weight of the cage. At
each point, the weight of the cable produces an additional normal
strain that is proportional to the length of the cable below the point.
If the total normal strain in the cable at the cable drum (upper end
of the cable) is 700 win./in., determine

(a) the strain in the cable at a depth of 500 ft.

(b) the total elongation of the cable.

2.3)
FIGURE 2.4 Shear strain.

For those cases in which the deformation is nonuniform, the shear strain at a point, 'yxy(O),
associated with two orthogonal reference lines x and y is obtained by measuring the shear
deformation as the size of the element is made smaller and smaller. In the limit,

. A6,  db,
lim =
AL—0 AT, dL

¥, (0) =

(2.4)
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FIGURE 2.5a A positive value
for the shear strain 7y, means that
the angle 6’ between the x and y
axes decreases in the deformed
object.

T
2

FIGURE 2.5b The angle
between the x and y axes
increases when the shear
strain 'y, has a negative value.

1 8in.
R N
\\\\\
12 in. 1%
P 0 X
<l 0.0625 in.

Since shear strain is defined as the tangent of the angle of distortion, which is equal to the
angle in radians for small angles, an equivalent expression for shear strain that is sometimes
useful for calculations is

Yy (0) = g -0 2.5)

In this expression, 6’ is the angle in the deformed state between two initially orthogonal
reference lines.

Strain Units

Equations (2.3) through (2.5) indicate that shear strains are dimensionless angular quanti-
ties, expressed in radians (rad) or microradians (prad). The conversion from radians, a
dimensionless quantity, to microradians is 1 prad = 1 x 107% rad.

Measuring Shear Strains Experimentally

Shear strain is an angular measure, and it is not possible to directly measure the extremely
small angular changes typical of engineered structures. However, shear strain can be deter-
mined experimentally by using an array of three strain gages called a strain rosette. Strain
rosettes will be discussed in more detail in Chapter 13.

Sign Conventions for Shear Strains

Equation (2.5) shows that shear strains will be positive if the angle 6" between the x and y
axes decreases. If the angle 6 increases, the shear strain is negative. To state this another
way, Equation (2.5) can be rearranged to give the angle 6’ in the deformed state between
two reference lines that are initially 90° apart:

p_ T
0 = 5 Yy
If the value of v,, is positive, then the angle 6’ in the deformed state will be less than 90°
(i.e., /2 rad) (Figure 2.5a). If the value of Y.y is negative, then the angle 6’ in the de-
formed state will be greater than 90° (Figure 2.5b). Positive and negative shear strains are

not given special or distinctive names.

The shear force V shown causes side QS of the thin rectangular plate to displace
downward 0.0625 in. Determine the shear strain vy, at P.

Plan the Solution
Shear strain is an angular measure. Determine the angle between the x axis and side PQ
of the deformed plate.

SOLUTION
Determine the angles created by the 0.0625-in. deformation. Note: The small angle
approximation will be used here; therefore, siny = tany = 7.

_ 0.0625 in.
8 in.

= 0.0078125 rad




In the undeformed plate, the angle at P is 7r/2 rad. After the plate is deformed, the angle
at P increases. Since the angle after deformation is equal to (77/2) — vy, the shear strain
at P must be a negative value. Therefore, the shear strain at P is

vy = —0.00781 rad Ans.

:

12 in.

[

Q x

A thin rectangular plate is uniformly deformed as shown. Determine the shear strain y,,, at P.

Plan the Solution

Shear strain is an angular measure. Determine the two angles created by the 0.25-mm
deflection and the 0.50-mm deflection. Add these two angles to determine the shear
strain at P.

SOLUTION
Determine the angles created by each deformation. Note: The small angle approxima-
tion will be used here; therefore, siny = tany = y.

y, = 220MM 6 600694 rad
720 mm

y, = U2 MM _ 6000521 rad
480 mm

The shear strain at P is simply the sum of these two angles:

=y +7v, = 0.000694 rad + 0.000521 rad = 0.001215 rad
1,215prad

Note: The angle at P in the deformed plate is less than 7/2, as it should be for a posi-
tive shear strain. Although not asked for in the problem, the shear strain at corners Q
and R will be negative, having the same magnitude as the shear strain at corner P.

Y
Ans.

y 0.50 mm
——— N
I'r |
! |
! ]
! |
720 mm | | |
II I 0.25 mm
|
| 0
5 X
P
480 mm
y 0.50 mm
——— N
i /
|
720 mm || I’
! g—y Y, /0.25mm
\J o
x X
P
480 mm

ies Example M2.5

Plate PQRS before deformation
300 mm,

A thin triangular plate is uniformly deformed. Determine
900 mm

Plate PQRS after deformation

, 300 mm

the shearing strain at P after point P has been displaced
1 mm downward.




PROBLEMS

P2.9 The 16-mm by 22-mm by 25-mm rubber blocks shown in
Figure P2.9 are used in a double-U shear mount to isolate the vibra-  is displaced downward 1.0 mm to new position Q' as shown in
tion of a machine from its supports. An applied load of P = 690 N Figure P2.11. Determine the shear strain at Q' associated with the
causes the upper frame to be deflected downward by 7 mm. Deter-  two edges (PQ and OR).

mine the average shear strain and the shear stress in the rubber
blocks.

P2.11 A thin polymer plate POR is deformed so that corner Q

y
Double U
anti-vibration
shear mount _ 120 mm 750 mm

Rubber block FIGURE P2.11

dimensions

Shear deformation
of blocks

FIGURE P2.9

P2.12 A thin square plate is uniformly deformed as
shown in Figure P2.12. Determine the shear strain v,, after

deformations
P2.10 A thin polymer plate POR is deformed such that corner Q

is displaced downward 1/16-in. to new position Q' as shown in (8) atcomer P, and
Figure P2.10. Determine the shear strain at Q' associated with the ~ (b) atcorner Q.
two edges (PQ and QR).

) 25 in. 4in.

110 mm | \ | 100 mm

FIGURE P2.10 FIGURE P2.12



P2.13 A thin square plate is uniformly deformed as shown in
Figure P2.13. Determine the shear strain v,, after deformations

(a) at corner R, and formed plate, determine

(b) at corner S.

P2.14 A thin square plate PORS is symmetrically deformed into
the shape shown by the dashed lines in Figure P2.14. For the de-

(a) the normal strain of diagonal QOS.

(a) the shear strain y,, at corner P.

y
y| Undeformed
120 mm S RN
e Deformed
—i P ¥ ~ R
| T 249.7 mm x
N
I 75 mm N 7
100 mm | S y
| y
_—— | ¢ 0
= X
P k—250 mm
100 mm f——251.2 mm ———>
FIGURE P2.13 FIGURE P2.14

2.4 Thermal Strain

When unrestrained, most engineering materials expand when heated and contract when
cooled. The thermal strain caused by a one-degree (1°) change in temperature is designated
by the Greek letter @ (alpha) and is known as the coefficient of thermal expansion. The
strain due to a temperature change of AT is

The coefficient of thermal expansion is approximately constant for a considerable range of
temperatures. (In general, the coefficient increases with an increase of temperature.) For a
uniform material (termed a homogeneous material) that has the same mechanical
properties in every direction (termed an isotropic material), the coefficient applies to all
dimensions (i.e., all directions). Values of the coefficient of expansion for common materi-
als are included in Appendix D.

2.6)

Total Strains

Strains caused by temperature changes and strains caused by applied loads are essentially
independent. The total normal strain in a body acted on by both temperature changes and
applied load is given by

@7
Since homogeneous, isotropic materials, when unrestrained, expand uniformly in all direc-
tions when heated (and contract uniformly when cooled), neither the shape of the body nor
the shear stresses and shear strains are affected by temperature changes.

A material of uniform
composition is called a
homogeneous material. In
materials of this type, local
variations in composition
can be considered negligible
for engineering purposes.
Furthermore, homogeneous
materials cannot be
mechanically separated

into different materials

(e.g., carbon fibers in a
polymer matrix). Common
homogeneous materials are
metals, alloys, ceramics,
glass, and some types

of plastics.

An isotropic material has the
same mechanical properties in
all directions.



" Abutment | A steel bridge beam has a total length of 150 m. Over the course
of a year, the bridge is subjected to temperatures from —40°C to
+40°C, and these temperature changes cause the beam to expand
and contract. Expansion joints between the bridge beam and the
supports at the ends of the bridge (called abutments) are installed to
allow this length change to take place without restraint. Determine
the change in length that must be accommodated by the expan-
sion joints. Assume the coefficient of thermal expansion for steel
is 11.9 X 107¢/°C.

Plan the Solution

Expansion permitted

Determine the thermal strain from Equation (2.6) for the total tem-

Typical “finger-type” expansion joint for bridges.  perature variation. The change in length is the product of the ther-

mal strain and the beam length.

SOLUTION
The thermal strain for a temperature variation of 80°C is

gr = aAT = (11.9 X1076/°C)(80°C) = 0.000952 m/m
The total change in the beam length is, therefore,
oy = eL = (0.000952 m/m) (150 m) = 0.1428 m = 142.8 mm Ans.

The expansion joint must accommodate at least 142.8 mm of horizontal movement.

Cutting
tool

Shrink-fit
tool holder

Cutting tools such as mills and drills are connected to machining equipment by means of
tool holders. The cutting tool must be firmly clamped by the tool holder to achieve pre-
cise machining, and shrink-fit tool holders take advantage of thermal expansion proper-
ties to achieve this strong, concentric clamping force. To insert a cutting tool, the shrink-
fit holder is rapidly heated while the cutting tool remains at room temperature. When the
holder has expanded sufficiently, the cutting tool drops into the holder. The holder is
then cooled, clamping the cutting tool with a very large force directly on the tool shank.

At 20°C, the cutting tool shank has an outside diameter of 18.000 £ 0.005 mm, and
the tool holder has an inside diameter of 17.950 = 0.005 mm. If the tool shank is held at
20°C, what is the minimum temperature to which the tool holder must be heated in order to
insert the cutting tool shank? Assume the coefficient of thermal expansion for the tool
holderis 11.9 X 10-6/°C.

Plan the Solution

Use the diameters and tolerances to compute the maximum outside diameter of the
shank and the minimum inside diameter of the holder. The difference between these
two diameters is the amount of expansion that must occur in the holder. For the tool
shank to drop into the holder, the inside diameter of the holder must equal or exceed the
shank diameter.




SOLUTION

The maximum shank outside diameter is 18.000 + 0.005 mm = 18.005 mm. The mini-
mum holder inside diameter is 17.950 — 0.005 mm = 17.945 mm. Therefore, the inside
diameter of the holder must be increased by 18.005 — 17.945 mm = 0.060 mm. To
expand the holder by this amount requires a temperature increase:

8 = aATd = 0.060 mm  ..AT = 0.060 mm = 281°C
(11.9 X1076/°C) (17.945 mm)
Therefore, the tool holder must attain a minimum temperature of
20°C + 281°C = 301°C Ans.

PROBLEMS

P2.15 An airplane has a half-wingspan of 33 m. Determine the
change in length of the aluminum alloy [a, = 22.5 X 107¢/°C]
wing spar if the plane leaves the ground at a temperature of 15°C
and climbs to an altitude where the temperature is —55°C.

P2.16 A square 2014-T4 aluminum alloy plate 400 mm on a side
has a 75-mm-diameter circular hole at its center. The plate is heated
from 20°C to 45°C. Determine the final diameter of the hole.

P2.17 A cast iron pipe has an inside diameter of d = 208 mm
and an outside diameter of D = 236 mm. The length of the pipe
is L = 3.0 m. The coefficient of thermal expansion for cast iron
is ay = 12.1 X 107%/°C. Determine the dimension changes
caused by an increase in temperature of 70°C.

P2.18 At a temperature of 40°F, a 0.08-in. gap exists between
the ends of the two bars shown in Figure P2.18. Bar (1) is an alumi-
num alloy [ = 12.5 X 107%/°F], and bar (2) is stainless steel
[a = 9.6 X 107%/°F]. The supports at A and C are rigid. Determine
the lowest temperature at which the two bars contact each other.

(1) @)

40 in. 55 in.
k 0.08-in. gap

FIGURE P2.18

P2.19 Atatemperature of 5°C, a 3-mm gap exists between two poly-
mer bars and a rigid support, as shown in Figure P2.19. Bars (1) and (2)
have coefficients of thermal expansion of ; = 140 X 1076/°C and
a, = 67 X 1076/°C, respectively. The supports at A and C are rigid.
Determine the lowest temperature at which the 3-mm gap is closed.

FIGURE P2.19

P2.20 An aluminum pipe has a length of 60 m at a temperature of
10°C. An adjacent steel pipe at the same temperature is 5 mm lon-
ger. At what temperature will the aluminum pipe be 15 mm longer
than the steel pipe? Assume that the coefficient of thermal expan-
sion for the aluminum is 22.5 X 107¢/°C and that the coefficient of
thermal expansion for the steel is 12.5 X 107¢/°C.

P2.21 Determine the movement of the pointer of Figure P2.21
with respect to the scale zero in response to a temperature increase
of 60°F. The coefficients of thermal expansion are 6.6 X 1076/°F
for the steel and 12.5 X 107%/°F for the aluminum.

7.0 in. 1.51n,

Smooth pins

12 in.

Steel Aluminum Steel

FIGURE P2.21



P2.22 Determine the horizontal movement of point A of Figure
P2.22 due to a temperature increase of 75°C. Assume that member
AE has a negligible coefficient of thermal expansion. The coeffi-
cients of thermal expansion are 11.9 X 1076/°C for the steel and
22.5 X 107%/°C for the aluminum alloy.

A
250 mm
B Steel C
25 mm
[ 3
D Aluminum E
300 mm
I 1
FIGURE P2.22

P2.23 At a temperature of 25°C, a cold-rolled red brass
[ap = 17.6 X 1076/°C] sleeve has an inside diameter of

dp = 299.75 mm and an outside diameter of Dy = 310 mm. The
sleeve is to be placed on a steel [ag = 11.9 X 1076/°C] shaft with
an outside diameter of Dy = 300 mm. If the temperatures of the
sleeve and the shaft remain the same, determine the temperature at
which the sleeve will slip over the shaft with a gap of 0.05 mm.

P2.24 For the assembly shown in Figure P2.24, bars (1) and
(2) each have cross-sectional areas of A = 1.6 in.2, elastic moduli
of E = 15.2 X 10° psi, and coefficients of thermal expansion of
a = 12.2 X 107%/°F. If the temperature of the assembly is in-
creased by 80°F from its initial temperature, determine the result-
ing displacement of pin B. Assume 4 = 54 in. and 6 = 55°.

FIGURE P2.24



To properly design a structural or mechanical component, the engineer must understand
the characteristics and work within the limitations of the material used in the component.
Materials such as steel, aluminum, plastics, and wood each respond uniquely to applied
loads and stresses. To determine the strength and characteristics of materials such as these
requires laboratory testing. One of the simplest and most effective laboratory tests for ob-
taining engineering design information about a material is called the tension test.

The tension test is very simple. A specimen of the material, usually a round rod or a
flat bar, is pulled with a controlled tension force. As the force is increased, the elongation
of the specimen is measured and recorded. The relationship between applied load and re-
sulting deformation can be observed from a plot of the data. This load-deformation plot has
limited direct usefulness, however, because it applies only to the specific specimen (mean-
ing the specific diameter or cross-sectional dimensions) used in the test procedure.

A more useful diagram than the load-deformation plot is one showing the relationship
between stress and strain, called the stress—strain diagram. The stress—strain diagram is
more useful because it applies to the material in general rather than to the particular speci-
men used in the test. The information obtained from the stress—strain diagram can be
applied to all components, regardless of their dimensions. The load and elongation data
obtained in the tension test can be readily converted to stress and strain data.




MECHANICAL PROPERTIES
OF MATERIALS

Gage
length

FIGURE 3.1 Tension test
setup.

Upset
threads

FIGURE 3.2 Tension test
specimen with upset threads.

MecMovies 3.1 shows an
animated tension test.

Tension Test Setup

To conduct the tension test, the test specimen is inserted into grips that hold the specimen
securely while tension force is applied by the testing machine (Figure 3.1). Generally, the
lower grip remains stationary while the upper grip moves upward, thus creating tension in
the specimen.

Several types of grips are commonly used, depending on the specimen being tested.
For plain round or flat specimens, wedge-type grips are often used. The wedges are used in
pairs that ride in a V-shaped holder. The wedges have teeth that bite into the specimen.
The tension force applied to the specimen drives the wedges closer together, increasing the
clamping force on the specimen. More sophisticated grips use fluid pressure to actuate
the wedges and increase their holding power.

Some tension specimens are machined by cutting threads on the rod ends and reduc-
ing the diameter between the threaded ends (Figure 3.2). Threads of this sort are called
upset threads. Since the rod diameter at the ends is larger than the specimen diameter, the
presence of the threads does not reduce the strength of the specimen. Tension specimens
with upset threads are attached to the testing machine with threaded specimen holders,
which eliminate any possibility that the specimen will slip or pull out of the grips during
the test.

An instrument called an extensometer is used to measure the elongation in the ten-
sion test specimen. The extensometer has two knife-edges, which are clipped to the test
specimen (clips not shown in Figure 3.1). The initial distance between knife-edges is
called the gage length. As tension is applied, the extensometer measures the elongation
that occurs in the specimen within the gage length. Extensometers are capable of very
precise measurements—elongations as small as 0.0001 in. or 0.002 mm. They are avail-
able in a range of gage lengths, with the most common models ranging from 0.3 in. to
2 in. (in U.S. units) and from 8 mm to 100 mm (in ST units).

Tension Test Measurements

Several measurements are made before, during, and after the test. Before the test, the
cross-sectional area of the specimen must be determined. The specimen area will be used
with the force data to compute the normal stress. The gage length of the extensometer
should also be noted. Normal strain will be computed from the specimen deformation
(i.e., its axial elongation) and the gage length. During the test, the force applied to the
specimen is recorded, and the elongation in the specimen between the extensometer knife-
edges is measured. After the specimen has broken, the two halves of the specimen are
fitted together so that the final gage length, and the diameter of the cross section at the
fracture location can be measured. The average engineering strain determined from the
final and initial gage lengths provides one measure of ductility. The reduction in area (be-
tween the area of the fracture surface and the original cross-sectional area) divided by the
original cross-sectional area provides a second measure of the ductility of the material.
The term ductility describes that the amount of strain that the material can withstand before
fracturing.

Tension Test Results. The typical results from a tension test of a ductile metal are shown
in Figure 3.3. Several characteristic features are commonly found on the load-deformation
plot. As the load is applied, there is a range in which the deformation is linearly related to
the load (1). At some load, the load-deformation plot will begin to curve and there will be
noticeably larger deformations in response to relatively small load increases (2). As load is
continually increased, stretching in the specimen will be obvious (3). At some point, a



“) )

6)

Fracture

Load

Deformation

FIGURE 3.3 Load-deformation plot from tension test.

maximum load intensity will be reached (4). Immediately following this peak, the speci-
men will begin to narrow and elongate markedly at one specific location, which causes the
load acting in the specimen to decrease (5). Shortly thereafter, the specimen will fracture
(6), breaking into two pieces at the narrowest cross section.

Another interesting characteristic of materials, particularly metals, can be observed if
the test is interrupted at a point beyond the linear region. For the test depicted in Figure 3.3,
the specimen was loaded into region (3) and then the load was removed. The specimen
does not unload along the original loading curve. Rather, it unloads along a path that is
parallel to the initial linear plot (1). When the load is completely removed, the deforma-
tion of the specimen is not zero as it was at the outset of the test. In other words, the
specimen has been permanently and irreversibly deformed. When the test resumes and the
load is increased, the reloading path exactly follows the unloading path. As it approaches
the original load-deformation plot, the reloading plot begins to curve (7) in a fashion
similar to region (2) on the original plot. However, the load at which the reloading plot
markedly turns (7) is larger than it was in the original loading (2). The process of unload-
ing and reloading has strengthened the material so that it can withstand a larger load
before it becomes distinctly nonlinear. The unload/reload behavior seen here is a very
useful characteristic, particularly for metals. One technique for increasing the strength of
a material is a process of stretching and relaxing called work hardening.

Preparing the Stress—Strain Diagram. The load-deformation data that are obtained
in the tension test provide information about only one specific size of specimen. The test
results are more useful if they are generalized into a stress—strain diagram. To construct a
stress—strain diagram from tension test results,

(a) divide the specimen elongation data by the extensometer gage length to obtain normal
strain,

(b) divide the load data by the initial specimen cross-sectional area to obtain normal
stress, and

(c) plot strain on the horizontal axis and stress on the vertical axis.

THE TENSION TEST



MOVIES

MecMovies 3.1 shows an
animated discussion of stress—
strain diagrams.

Most engineered components are
designed to function elastically
to avoid permanent deformations
that occur after the proportional
limit is exceeded. Additionally,
the size and shape of an object
are not significantly changed if
strains and deformations are kept
small. This can be a particularly
important consideration for
mechanisms and machines,
which consist of many parts that
must fit together to operate

properly.

3.2 The Stress-Strain Diagram

Typical stress—strain diagrams for an aluminum alloy and a low-carbon steel are shown in
Figure 3.4. Material properties essential for engineering design are obtained from the
stress—strain diagram. These stress—strain diagrams will be examined to determine several
important properties, including the proportional limit, the elastic modulus, the yield
strength, and the ultimate strength. The difference between engineering stress and true
stress will be discussed, and the concept of ductility in metals will be introduced.

Proportional Limit

The proportional limit is the stress at which the stress—strain plot is no longer linear.
Strains in the linear portion of the stress—strain diagram typically represent only a small
fraction of the total strain at fracture. Consequently, it is necessary to enlarge the scale to
clearly observe the linear portion of the curve. The linear region of the aluminum alloy
stress—strain diagram is enlarged in Figure 3.5. A best-fit line is plotted through the stress—
strain data points. The stress at which the stress—strain data begins to curve away from this
line is called the proportional limit. The proportional limit for this material is approxi-
mately 43.5 ksi.

Recall the unload/reload behavior shown in Figure 3.3. As long as the stress in the
material remains below the proportional limit, no permanent damage will be caused during
loading and unloading. In an engineering context, this means that a component can be
loaded and unloaded many, many times and it will still behave “just like new.” This property
is called elasticity, and it means that a material returns to its original dimensions during
unloading. The material itself is said to be elastic in this region.

Elastic Modulus

Most components are designed to function elastically. Consequently, the relationship
between stress and strain in the initial linear region of the stress—strain diagram is of

80 .
Aluminum allo (C)]
Y &)
70
60
~ 507 Low-carbon steel
é
§ 401
n
30 4 Legend
1 Elastic behavior
20 1 2 Yielding
3 Strain hardening
4 Ultimate strength
107 5 Necking
6 Fracture
0
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FIGURE 3.4 Typical stress—strain diagrams for two common metals.
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FIGURE 3.5 Proportional limit.

particular interest for engineering materials. In 1807, Thomas Young proposed character-
izing the material’s behavior in the elastic region by the ratio between normal stress and
normal strain. This ratio is the slope of the initial straight-line portion of the stress—strain
diagram. It is called Young’s modulus, the elastic modulus, or the modulus of elasticity,
and it is denoted by the symbol E:

_ Ao

E - =Y
Ae

(3.1)

The elastic modulus E is a measure of the material’s stiffness. In contrast to strength
measures that predict how much load a component can withstand, a stiffness measure
such as the elastic modulus E is important because it defines how much stretching, com-
pressing, bending, or deflecting will occur in a component in response to the loads acting
on it.

In any experimental procedure, there is some amount of error associated with making
a measurement. To minimize the effect of this measurement error on the computed elastic
modulus value, it is better to use widely separated data points to calculate E. In the linear
portion of the stress—strain diagram, the two most widely spaced data points are the propor-
tional limit point and the origin. Using the proportional limit and the origin, the elastic
modulus E would be computed as

43.5 ksi

=~ —10,610ksi (3.2
0.0041 in./in.

In practice, the best value for the elastic modulus E is obtained from a least-squares fit of a
line to the data between the origin and the proportional limit. Using a least-squares analysis,
the elastic modulus for this material is £ = 10,750 ksi.

THE STRESS-STRAIN DIAGRAM
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FIGURE 3.6 Work hardening.

Work Hardening

The effect of unloading and reloading on the load-deformation plot was shown in
Figure 3.3. The effect of unloading and reloading on the stress—strain diagram is shown
in Figure 3.6. Suppose that the stress acting on a material is increased above the propor-
tional limit stress to point B. The strain between origin O and the proportional limit A is
termed elastic strain. This strain will be fully recovered after the stress is removed from
the material. The strain between the points A and B is termed inelastic strain. When the
stress is removed (i.e., unloaded), only a portion of the inelastic strain will be recovered. As
stress is removed from the material, it unloads on a path parallel to the elastic modulus
line—that is, parallel to path OA. A portion of the strain at B is recovered elastically. How-
ever, a portion of the strain remains in the material permanently. This strain is referred to
as residual strain or permanent set or plastic deformation. As stress is reapplied, the
material reloads along path CB. Upon reaching point B, the material will resume following
the original stress—strain curve. The proportional limit after reloading becomes the stress at
point B, which is greater than the proportional limit for the original loading (i.e., point A).
This phenomenon is called work hardening because it has the effect of increasing the
proportional limit for the material.

In general, a material acting in the linear portion of the stress—strain curve is said
to exhibit elastic behavior. Strains in the material are temporary, meaning that all strain
is recovered when the stress on the material is removed. Beyond the elastic region, a
material is said to exhibit plastic behavior. Although some strain in the plastic region is
temporary and can be recovered upon removal of the stress, a portion of the strain in the
material is permanent. The permanent strain is termed plastic deformation.

Elastic Limit

Most engineered components are designed to act elastically, meaning that when loads are
released, the component will return to its original, undeformed configuration. For proper



design, therefore, it is important to define the stress at which the material will no longer
behave elastically. With most materials, there is a gradual transition from elastic to
plastic behavior, and the point at which plastic deformation begins is difficult to define
with precision. One measure that has been used to establish this threshold is termed the
elastic limit.

The elastic limit is the largest stress that a material can withstand without any
measurable permanent strain remaining after complete release of the stress. The proce-
dure required to determine the elastic limit involves cycles of loading and unloading,
each time incrementally increasing the applied stress (Figure 3.7). For instance, stress is
increased to point A and then removed, with the strain returning to the origin O. This
process is repeated for points B, C, D, and E. In each instance, the strain returns to the
origin O upon unloading. Eventually, a stress will be reached (point F) such that not all
of the strain will be recovered during unloading (point G). The elastic limit is the stress
at point F.

How does the elastic limit differ from the proportional limit? Although such materials
are not common in engineered applications, a material can be elastic even though the
stress—strain relationship is nonlinear. For a nonlinear elastic material, the elastic limit
could be substantially greater than the proportional limit stress. Nevertheless, the propor-
tional limit is generally favored in practice since the procedure required to establish the
elastic limit is tedious.

Yielding

For many common materials (such as the low-carbon steel shown in Figure 3.4 and enlarged
in Figure 3.8), the elastic limit is indistinguishable from the proportional limit. Past the
elastic limit, relatively large deformations will occur for small or almost negligible in-
creases in stress. This behavior is termed yielding.

A material that behaves in the manner depicted in Figure 3.8 is said to have a yield
point. The yield point is the stress at which there is an appreciable increase in strain with
no increase in stress. Low-carbon steel, in fact, has two yield points. Upon reaching the
upper yield point, the stress drops abruptly to a sustained lower yield point. When a ma-
terial yields without an increase in stress, it is often referred to as being perfectly plastic.
Materials having a stress—strain diagram similar to Figure 3.8 are termed elastoplastic.

Not every material has a yield point. Materials such as the aluminum alloy shown in
Figure 3.4 do not have a clearly defined yield point. While the proportional limit marks the
uppermost end of the linear portion of the stress—strain curve, it is sometimes difficult in
practice to determine the proportional limit stress, particularly for materials with a gradual
transition from a straight line to a curve. For such materials, a yield strength is defined. The
yield strength is the stress that will induce a specified permanent set (i.e., plastic deforma-
tion) in the material, usually 0.05% or 0.2%. (Note: A permanent set of 0.2% is another
way of expressing a strain value of 0.002 in./in., or 0.002 mm/mm.) To determine the yield
strength from the stress—strain diagram, mark a point on the strain axis at the specified
permanent set (Figure 3.9). Through this point, draw a line that is parallel to the initial
elastic modulus line. The stress at which the offset line intersects the stress—strain diagram
is termed the yield strength.

Strain Hardening and Ultimate Strength

After yielding has taken place, most materials can withstand additional stress before
fracturing. The stress—strain curve rises continuously toward a peak stress value, which is
termed the ultimate strength. The ultimate strength may also be called the tensile strength

THE STRESS-STRAIN DIAGRAM
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FIGURE 3.9 Yield strength using offset method.

or the ultimate tensile strength (UTS). The rise in the curve is called strain hardening. The
strain hardening regions and the ultimate strength points for a low-carbon steel and an
aluminum alloy are indicated on the stress—strain diagrams in Figure 3.4.

Necking

In the yield and strain hardening regions, the cross-sectional area of the specimen
decreases uniformly and permanently. Once the specimen reaches the ultimate strength,
however, the change in specimen cross-sectional area is no longer uniform through-
out the gage length. The cross-sectional area begins to decrease in a localized region
of the specimen, forming a contraction, or “neck.” This behavior is referred to as
necking (Figure 3.10 and Figure 3.11). Necking occurs in ductile materials, but not in
brittle materials. (See ductility on the next page.)

Fracture

Many ductile materials break in what is termed a cup-and-cone fracture (Figure 3.12). In
the region of maximum necking, a circular fracture surface forms at an angle of roughly 45°
with respect to the tensile axis. This failure surface appears as a cup on one portion of the
broken specimen and as a cone on the other portion. In contrast, brittle materials often
fracture on a flat surface that is oriented perpendicular to the tensile axis. The stress at
which the specimen breaks into two pieces is called the fracture stress. Examine the re-
lationship between the ultimate strength and the fracture stress in Figure 3.4. Does it
seem odd that the fracture stress is less than the ultimate strength? If the specimen did not
break at the ultimate strength, why would it break at a lower stress? Recall that the normal
stress in the specimen was computed by dividing the specimen load by the original cross-
sectional area. This method of calculating stresses is known as engineering stress. Engi-
neering stress does not take into account any changes in the specimen’s cross-sectional area
during application of the load. After the ultimate strength is reached, the specimen starts to
neck. As contraction within the localized neck region grows more pronounced, the cross-
sectional area continually decreases. The engineering stress calculations, however, are
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ductile metal specimen.

based on the original specimen cross-sectional area. Consequently, the engineering stress
computed at fracture and shown on the stress—strain diagram is not an accurate reflection
of the true stress in the material. If one were to measure the specimen diameter during the
tension test and compute the true stress according to the reduced diameter, one would find
that the true stress continues to increase above the ultimate strength (Figure 3.13).

Ductility

Strength and stiffness are not the only properties of interest to a design engineer. Another
important property is ductility. Ductility describes the material’s capacity for plastic

deformation.
A material that can withstand large strains before fracture is called a ductile material.

Materials that exhibit little or no yielding before fracture are called brittle materials.
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FIGURE 3.13 True stress versus engineering stress.
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Ductility is not necessarily related to strength. Two materials could have exactly the same
strength, but very different strains at fracture (Figure 3.14).

Often, increased material strength is achieved at the cost of reduced ductility. In
Figure 3.15, stress—strain curves for four different types of steel are compared. All four curves
branch from the same elastic modulus line; therefore, each of the steels has the same stiffness.
The steels range from a brittle steel (1) to a ductile steel (4). Steel (1) represents a hard tool
steel, which exhibits no plastic deformation before fracture. Steel (4) is typical of low-carbon
steel, which exhibits extensive plastic deformation before fracture. Of these steels, steel (1) is
the strongest, but also the least ductile. Steel (4) is the weakest, but also the most ductile.

For the engineer, ductility is important in that it indicates the extent to which a metal can
be deformed without fracture in metalworking operations such as bending, rolling, forming,
drawing, and extruding. In fabricated structures and machine components, ductility also gives
an indication of the material’s ability to deform at holes, notches, fillets, grooves, and other
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FIGURE 3.15 Trade-off between strength and ductility for steels.



discontinuities that cause stresses to intensify locally. Plastic deformation in a ductile material =~ THE STRESS-STRAIN DIAGRAM

allows stress to flow to a larger region around discontinuities. This redistribution of stress
minimizes peak stress magnitudes and helps to prevent fracture in the component. Since
ductile materials stretch greatly before fracturing, excessive component deformations in
buildings, bridges, and other structures can warn of impending failure, providing opportuni-
ties for safe exit from the structure and allowing for repairs. Brittle materials exhibit sudden
failure with little or no warning. Ductile materials also give the structure some capacity to
absorb and redistribute the effects of extreme load events such as earthquakes.

Ductility Measures. Two measures of ductility are obtained from the tension test. The
first is the engineering strain at fracture. To determine this measure, the two halves of the
broken specimen are fitted together, the final gage length is measured, and then the average
strain is calculated from the initial and final gage lengths. This value is usually expressed
as a percentage, and it is referred to as the percent elongation.

Strain hardening

¢ As the material stretches,
it can withstand increas-

Ultimate strength

* According to the engineering definition of stress, the ultimate strength is the largest
stress that the material can withstand.

ing amounts of stress.

Yield

* A slight increase in stress
causes a marked increase

. . Ultimate
1n strain.

strength

* Beginning at yield, the
material is permanently
altered. Only a portion
of the strain will be Yield
recovered after the stress
has been removed.

Strain Necking

hardening

Fracture
stress

Stress

e Strains are termed
inelastic since only a
portion of the strain
will be recovered upon
removal of the stress.

Elastic
behavior

 The yield strength is

an important design
parameter for the
material.

Strain

Necking

* The cross-sectional
area begins to decrease
markedly in a localized
region of the specimen.

* The tension force
required to produce
additional stretch in the
specimen decreases as
the area is reduced.

* Necking occurs in
ductile materials, but not
in brittle materials.

Elastic behavior
* In general, the initial relationship between stress and strain is linear.

¢ Elastic strain is temporary, meaning that all strain is fully recovered upon removal of
the stress.

* The slope of this line is called the elastic modulus or the modulus of elasticity.

Fracture stress

* The fracture stress is
the engineering stress
at which the specimen
breaks into two pieces.

FIGURE 3.16 Review of significant features on the stress—strain diagram.
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The second measure is the reduction in area at the fracture surface. This value is also
expressed as a percentage and is referred to as the percent reduction of area. It is calcu-
lated as

A, — A
Percent reduction of area = % (100%) (3.3)
0

where A, = original specimen cross-sectional area and A; = specimen cross-sectional area
on the fracture surface.

Review of Significant Features

The stress—strain diagram provides essential engineering design information that is
applicable to components of any shape or size. While each material has its particular char-
acteristics, several important features are found on stress—strain diagrams for materials
commonly used in engineering applications. These features are summarized in Figure 3.16.

3.3 Hooke's Law

As discussed previously, the initial portion of the stress—strain diagram for most materials
used in engineering structures is a straight line. The stress—strain diagrams for some mate-
rials, such as gray cast iron and concrete, show a slight curve even at very small stresses,
but it is common practice to neglect the curvature and draw a straight line in order to aver-
age the data for the first part of the diagram. The proportionality of load to deflection was
first recorded by Robert Hooke, who observed in 1678, Ut tension sic vis (“As the stretch,
so the force”). This relationship is referred to as Hooke’s Law. For normal stress o and
normal strain & acting in one direction (termed uniaxial stress and strain), Hooke’s Law is
written as

(3.4)

where E is the elastic modulus.
Hooke’s Law also applies to shear stress 7 and shear strain vy,

(3

where G is called the shear modulus or the modulus of rigidity.

3.4 Poisson’s Ratio

A material loaded in one direction will undergo strains perpendicular to the direction of the
load as well as parallel to it. In other words,

® [f asolid body is subjected to an axial tension, it contracts in the lateral directions.
® [f a solid body is compressed, it expands in the lateral directions.



This phenomenon is illustrated in Figure 3.17, where the deformations are grearly exagger- POISSON'S RATIO
ated. Experiments have shown that the relationship between lateral and longitudinal strains

caused by an axial force remains constant, provided that the material remains elastic and is Final shape
homogeneous and isotropic (as defined in Section 2.4). This constant is a property of the

material, just like other properties such as the elastic modulus E. The ratio of the lateral or

transverse strain (g, Or &) to the longitudinal or axial strain (g;4y, OT &,) for a uniaxial state -—-;...
of stress is called Poisson’s ratio, after Simeon D. Poisson, who identified the constant in

1811. Poisson’s ratio is denoted by the Greek symbol v (nu) and is defined as follows:
Imtlal shape

~ e G (3.6) Initial sh
- . nitial s| ape
Slong €a
The ratio v = —¢,/¢, is valid only for a uniaxial state of stress (i.e., simple tension or
compression). The negative sign appears in Equation (3.6) because the lateral and longitu- 1
dinal strains are always of opposite signs for uniaxial stress (i.e., if one strain is elongation,

the other strain is contraction).
Values vary for different materials, but for most metals, Poisson’s ratio has a value L

between 1/4 and 1/3. Because the volume of material must remain constant, the largest Final shape

possible value for Poisson’s ratio is 0.5. Values approaching this upper limit are found only =~ FIGURE 3.17 Lateral

for materials such as rubber. contraction and lateral expansion
of a solid body subjected to
axial forces.

Relationship Between E, G, and v

The Poisson effect exhibited by

Poisson’s ratio is related to the elastic modulus E and the shear modulus G by the formula - .00 O ditional

stresses in the lateral direction
— E (3.7) unless the transverse deformation
21+ v) is inhibited or prevented in some

manner.

A tension test was conducted on a 1.975-in.-wide by 0.375-in.-thick specimen of a Nylon
plastic. A 4.000-in. gage length was marked on the specimen before load application. In
the elastic portion of the stress—strain curve at an applied load of P = 6,000 Ib, the elonga-
tion in the gage length was measured as 0.023 in., and the contraction in the bar width was
measured as 0.004 in. Determine

(a) the elastic modulus E.
(b) Poisson’s ratio v.
(c) the shear modulus G.

Plan the Solution
(a) From the load and the initial measured dimensions of the bar, the normal stress can
be computed. The normal strain in the longitudinal (i.e., axial) direction &, can be
computed from the elongation in the gage length and the initial gage length. With
these two quantities, the elastic modulus E can be calculated from Equation (3.4).
(b) From the contraction in the width and the initial bar width, the strain in the
lateral (i.e., transverse) direction g, can be computed. Poisson’s ratio can then be
computed from Equation (3.6).
(c) The shear modulus can be calculated from Equation (3.7).




SOLUTION
(a) The normal stress in the plastic specimen is

6,000 1b

o= - — = §8,101.27 psi
(1.975 in.)(0.375 in.)
The longitudinal strain is
o, = 202310 005750 in./in.
£ 4.000 in.
Therefore, the elastic modulus E is
_ o _BIOL27Tpsi 408 916 psi = 1,409,000 psi Ans.
e 0.005750 in./in.
(b) The lateral strain is
oy = —2004IN: ) 502025 infin.
1.975 in.

From Equation (3.6), Poisson’s ratio can be computed as

. " —0.002025. 1n../1n. — 0352 Ans.
Elong 0.005750 in./in.

(c) The shear modulus G is computed from Equation (3.7) as

G-t LABIIOPSE 51 149 psi — 521,000 psi Ans.
20+ v)  2(1+0.352)

_ﬁ Rigid bar ABC is supported by a pin at A and a 100-mm-wide
7 i by 6-mm-thick aluminum [E = 70 GPa; a = 22.5 X 10-9/°C;
(M v = (.33] alloy bar at B. A strain gage affixed to the surface of
100 mm the aluminum bar is used to measure its longitudinal strain.

Before load P is applied to the rigid bar at C, the strain gage
Strain P measures zero longitudinal strain at an ambient temperature
f gage l of 20°C. After load P is applied to the rigid bar at C and the
temperature drops to —10°C, a longitudinal strain of +2,400 e
is measured in the aluminum bar. Determine

| C  (a) the stress in member (1).
(b) the magnitude of load P.

(c) the change in the width of the aluminum bar (i.e., the
100-mm dimension).

1.5m 1.0 m

Plan the Solution
This problem illustrates some misconceptions common in applying Hooke’s Law and
Poisson’s ratio, particularly when temperature change is a factor in the analysis.




SOLUTION

(a) Since the elastic modulus E and the longitudinal strain & are given in the problem,
one might be tempted to compute the normal stress in aluminum bar (1) from
Hooke’s Law [Equation (3.4)]:

1,000 MPa
1 GPa

1 mm/mm
1,000,000 p.e

o, = Eg; = (70 GPa) (2,400 e) = 168 MPa

This calculation is not correct for the normal stress in member (1). Why is it incorrect?

From Equation (2.7), the total strain g, in an object includes a portion due to stress
&, and a portion due to temperature change 7. The strain gage affixed to member (1)
has measured the total strain in the aluminum bar as g, = +2,400 pe =
+0.002400 mm/mm. In this problem, however, the temperature of member (1) has
dropped 30°C before the strain measurement. From Equation (2.6), the strain caused
by the temperature change in the aluminum bar is

er = a AT = (22.5%107/°C)(=30°C) = —0.000675 mm/mm
Therefore, the strain caused by normal stress in member (1) is
Eotal = & + €1

.8 = & — &7 = 0.002400 mm/mm — (—0.000675 mm/mm)
= +0.003075 mm/mm

Using this strain value, the normal stress in member (1) can now be computed from
Hooke’s Law:

oy = Eg = (70 GPa) (0.003075 mm/mm) = 215.25 MPa = 215 MPa Ans.
(b) The axial force in member (1) is computed from the normal stress and the bar area:
F, = 0yA; = (215.25 N/mm?)(100 mm) (6 mm) = 129,150 N

Write an equilibrium equation for the sum of moments about joint A and solve for
load P:

SM, = (1.5 m)(129,150 N) — 2.5 m)P = 0
P =77490 N = 77.5 kN Ans.

(c) The change in the bar width is computed by multiplying the lateral (i.e., transverse)
strain gy, by the 100-mm initial width. To determine &,,;, the definition of Poisson’s
ratio [Equation (3.6)] is used:

Elat . —
- R L)

slong

Using the given value of Poisson’s ratio and the measured strain, &,, could be calcu-
lated as

El = —Veione = —(0.33)(2,400pe) = ~792pe

This calculation is not correct for the lateral strain in member (1). Why is it
incorrect?




The Poisson effect applies only to strains caused by stresses (i.e., mechanical effects).
When unrestrained, homogeneous, isotropic materials expand uniformly in all direc-
tions as they are heated (and contract uniformly as they cool). Consequently, thermal
strains should not be included in the Poisson’s ratio calculation. For this problem, the
lateral strain should be calculated as

g = —(0.33)(0.003075 mm/mm) + (—0.000675 m/m) = —0.0016898 mm/mm
The change in the width of the aluminum bar is, therefore,

Sy = (—0.0016898 mm/mm)(100 mm) = —0.1690 mm Ans.

Two blocks of rubber, each 80 mm long by 40 mm wide by
20 mm thick, are bonded to a rigid support mount and to a
movable plate (1). When a force of P = 2,800 N is applied to
the assembly, plate (1) deflects 8 mm horizontally. Determine
the shear modulus G of the rubber used for the blocks.

Plan the Solution

Hooke’s Law expresses the relationship between shear stress and
shear strain [Equation (3.5)]. The shear stress can be determined
from the applied load P and the area of the rubber blocks that
contact the movable plate (1). Shear strain is an angular measure,
which can be determined from the horizontal deflection of plate
(1) and the thickness of the rubber blocks. Shear modulus G is
computed from the shear stress divided by the shear strain.

SOLUTION
= Consider a free-body diagram of movable plate (1). Each
. < P rubber block prov-iQe,s. a shear force that opposes the gpplied
7} 1) load P. From equilibrium, the sum of forces in the horizontal
"‘ — direction is
| YE, =2V-P=0
-V =P[2 = (2,800 N)/2 = 1,400 N
8 mm Next, consider a free-body diagram of the upper rubber block in
1 its deflected position. The shear force V acts on a surface that is
80 mm long and 40 mm wide. Therefore, the shear stress 7 in
—— — the rubber block is
—1Y
N2
mm r= LAON 4375 Mpa
l ) (80 mm) (40 mm)

The 8-mm horizontal deflection causes the block to skew as
shown. The angle vy (measured in radians) is the shear strain:

tany = 8 mm sy = 0.3805rad




Hooke’s Law:

T=Gy

T 04375 MPa

The shear stress 7, the shear modulus G, and the shear strain 7y are related by

Therefore, the shear modulus G of the rubber used for the blocks is

G=—= = 1.150 MPa Ans.
Y 0.3805 rad
les Exercises
M3.1 Three basic problems requiring the use of Hooke’s Law. Pi
5.50m
60 kN 60 kN
- —
60 mm
FIGURE M3.1

PROBILEMS

P3.1 At the proportional limit, a 2-in. gage length of a 0.375-in.-
diameter alloy rod has elongated 0.0083 in. and the diameter has been
reduced 0.0005 in. The total tension force on the rod was 4.75 kips.
Determine the following properties of the material:

(a) the modulus of elasticity
(b) Poisson’s ratio
(c) the proportional limit

P3.2 A solid circular rod with a diameter of d = 16 mm is shown
in Figure P3.2. The bar is made of an aluminum alloy that has an
elastic modulus of E = 72 GPa and Poisson’s of v = 0.33. When
subjected to the axial load P, the diameter of the rod decreases by
0.024 mm. Determine the magnitude of load P.

’ 1
=

f

P
>

FIGURE P3.2

P3.3 At an axial load of 22 kN, a 45-mm-wide by 15-mm-
thick polyimide polymer bar elongates 3.0 mm while the bar
width contracts 0.25 mm. The bar is 200 mm long. At the 22-kN
load, the stress in the polymer bar is less than its proportional
limit. Determine

(a) the modulus of elasticity.
(b) Poisson’s ratio.
(c) the change in the bar thickness.

P3.4 A 0.75-in.-thick rectangular alloy bar is subjected to a ten-
sile load P by pins at A and B as shown in Figure P3.4/5. The width
of the bar is w = 3.0 in. Strain gages bonded to the specimen mea-
sure the following strains in the longitudinal (x) and transverse (y)
directions: &, = 840 pe and &, = —250 pe.

(a) Determine Poisson’s ratio for this specimen.

(b) If the measured strains were produced by an axial load of
P = 32 kips, what is the modulus of elasticity for this
specimen?



a -XLE

FIGURE P3.4/5

P3.5 A 6-mm-thick rectangular alloy bar is subjected to a tensile
load P by pins at A and B, as shown in Figure P3.4/5. The width of
the bar is w = 30 mm. Strain gages bonded to the specimen mea-
sure the following strains in the longitudinal (x) and transverse (y)
directions: &, = 900 pe and &, = —275 pe.

(a) Determine Poisson’s ratio for this specimen.
(b) If the measured strains were produced by an axial load of P =
19 kN, what is the modulus of elasticity for this specimen?

P3.6 A nylon [E = 2,500 MPa; v = 0.4] bar is subjected to an
axial load that produces a normal stress of o. Before the load is ap-
plied, a line having a slope of 3:2 (i.e., 1.5) is marked on the bar as
shown in Figure P3.6. Determine the slope of the line when o =
105 MPa.

-— D —
-— D —
o 3 o
-— D —
-— D —
-— 2 —
FIGURE P3.6

P3.7 A nylon [E = 360 ksi; v = 0.4] rod (1) having a diameter
of d; = 2.50 in. is placed inside a steel [E = 29,000 ksi; » = 0.29]
tube (2) as shown in Figure P3.7. The inside diameter of the steel
tube is d, = 2.52 in. An external load P is applied to the nylon rod,
compressing it. At what value of P will the space between the nylon
rod and the steel tube be closed?

Nylon rod (1)
P
d, d,
P
Steel tube (2)
FIGURE P3.7

P3.8 A metal specimen with an original diameter of 0.500 in.
and a gage length of 2.000 in. is tested in tension until fracture
occurs. At the point of fracture, the diameter of the specimen is
0.260 in. and the fractured gage length is 3.08 in. Calculate the duc-
tility in terms of percent elongation and percent reduction in area.

P3.9 A portion of the stress—strain curve for a stainless steel
alloy is shown in Figure P3.9. A 350-mm-long bar is loaded in ten-
sion until it elongates 2.0 mm, and then the load is removed.

(a) What is the permanent set in the bar?
(b) What is the length of the unloaded bar?
(c) If the bar is reloaded, what will be the proportional limit?

640
480
/

—_ N / |
§ /
< 320 /
&
=
w R I

160

0
0 0.002 0.004 0.006 0.008 0.010
Strain (mm/mm)
FIGURE P3.9

P3.10 The 16 by 22 by 25-mm rubber blocks shown in
Figure P3.10 are used in a double U shear mount to isolate the
vibration of a machine from its supports. An applied load of
P = 285 N causes the upper frame to be deflected downward by
5 mm. Determine the shear modulus G of the rubber blocks.

Double U
anti-vibration
shear mount

Rubber block
dimensions

Shear deformation
of blocks

FIGURE P3.10

P3.11 Two hard rubber blocks are used in an anti-vibration
mount to support a small machine as shown in Figure P3.11. An
applied load of P = 150 Ib causes a downward deflection of



0.25 in. Determine the shear modulus of the rubber blocks. Assume
a=0.5in.,b=1.0in.,and ¢ = 2.5 in.

FIGURE P3.11

P3.12 Two hard rubber blocks [G = 350 kPa] are used in an
anti-vibration mount to support a small machine as shown in
Figure P3.12. Determine the downward deflection that will occur
for an applied load of P = 900 N. Assume a = 20 mm,
b = 50 mm, and ¢ = 80 mm.

FIGURE P3.12

P3.13 A load test on a 6-mm-diameter by 225-mm-long alumi-
num alloy rod found that a tension load of 4,800 N caused an elastic
elongation of 0.52 mm in the rod. Using this result, determine the
elastic elongation that would be expected for a 24-mm-diameter
rod of the same material if the rod were 1.2 m long and subjected to
a tension force of 37 kN.

P3.14 The stress—strain diagram for a particular stainless steel
alloy is shown in Figure P3.14. A rod made from this material is
initially 800 mm long at a temperature of 20°C. After a tension
force is applied to the rod and the temperature is increased by
200°C, the length of the rod is 804 mm. Determine the stress in the
rod and state whether the elongation in the rod is elastic or inelas-
tic. Assume the coefficient of thermal expansion for this material
is 18 X 107¢/°C.

1,200
_ S L
1,000 = Upper scale AN
800
& 1 L
= ]
% 600 L Lower scale |~
f] E -
7
400
200 /
0 T T T T T T
0.0 0.020  0.040 0.060 0.080 0.100 0.120
0.0 0.002 0.004 0.006 0.008 0.010 0.012
Strain (m/m)
FIGURE P3.14
P3.15 In Figure P3.15, rigid bar ABC is supported by axial

member (1), which has a cross-sectional area of 400 mm?, an elas-
tic modulus of £ = 70 GPa, and a coefficient of thermal expansion
of a = 22.5 X 1079/°C. After load P is applied to the rigid bar and
the temperature rises 40°C, a strain gage affixed to member (1)
measures a strain increase of 2,150 pe. Determine

(a) the normal stress in member (1).
(b) the magnitude of applied load P.
(c) the deflection of the rigid bar at C.

FIGURE P3.15

P3.16 A tensile test specimen of 1045 hot-rolled steel having a
diameter of 0.505 in. and a gage length of 2.00 in. was tested to
fracture. Stress and strain data obtained during the test are shown in
Figure P3.16. Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.20% offset).

(e) the fracture stress.

(f) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 0.392 in.
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P3.17 A tensile test specimen of stainless steel alloy having a
diameter of 0.495 in. and a gage length of 2.00 in. was tested to
fracture. Stress and strain data obtained during the test are shown
in Figure P3.17. Determine.

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.20% offset).

(e) the fracture stress.

(f) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 0.350 in.
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FIGURE P3.17

P3.18 A bronze alloy specimen having a diameter of 12.8 mm
and a gage length of 50 mm was tested to fracture. Stress and strain
data obtained during the test are shown in Figure P3.18. Determine

(a) the modulus of elasticity.
(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.20% offset).

(e) the fracture stress.

(f) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 10.5 mm.
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FIGURE P3.18

P3.19 An alloy specimen having a diameter of 12.8 mm and a
gage length of 50 mm was tested to fracture. Load and deformation
data obtained during the test are given. Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 11.3 mm.

Change in Change in
Load (kN) Length (mm) Load (kN) | Length (mm)

0 0

7.6 0.02 43.8 1.50
14.9 0.04 45.8 2.00
22.2 0.06 48.3 3.00
28.5 0.08 49.7 4.00
29.9 0.10 50.4 5.00
30.6 0.12 50.7 6.00
32.0 0.16 50.4 7.00
33.0 0.20 50.0 8.00
333 0.24 49.7 9.00
36.8 0.50 479 10.00
41.0 1.00 45.1 fracture




P3.20 A 1035 hot-rolled steel specimen with a diameter of
0.500 in. and a 2.0-in. gage length was tested to fracture. Load
and deformation data obtained during the test are given.
Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 0.387 in.

Change in Change in

Load (Ib) Length (in.) Load (Ib) Length (in.)
0 0 12,540 0.0209
2,690 0.0009 12,540 0.0255
5,670 0.0018 14,930 0.0487
8,360 0.0028 17,020 0.0835
11,050 0.0037 18,220 0.1252
12,540 0.0042 18,820 0.1809
13,150 0.0046 19,110 0.2551
13,140 0.0060 19,110 0.2968
12,530 0.0079 18,520 0.3107
12,540 0.0098 17,620 0.3246
12,840 0.0121 16,730 0.3339
12,840 0.0139 16,130 0.3385
15,900 fracture

P3.21 A 2024-T4 aluminum test specimen with a diameter
of 0.505 in. and a 2.0-in. gage length was tested to fracture.
Load and deformation data obtained during the test are given.
Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 0.452 in.

Change in Change in
Load (Ib) Length (in.) Load (Ib) Length (in.)
0 0.0000 11,060 0.0139
1,300 0.0014 11,500 0.0162
2,390 0.0023 12,360 0.0278
3,470 0.0032 12,580 0.0394

4,560 0.0042 12,800 0.0603
5,640 0.0051 13,020 0.0788
6,720 0.0060 13,230 0.0974
7,380 0.0070 13,450 0.1159
8,240 0.0079 13,670 0.1391
8,890 0.0088 13,880 0.1623
9,330 0.0097 14,100 0.1994
9,980 0.0107 14,100 0.2551
10,200 0.0116 14,100 0.3200
10,630 0.0125 14,100 0.3246
14,100 fracture

P3.22 A 1045 hot-rolled steel tension test specimen has a diam-
eter of 6.00 mm and a gage length of 25 mm. In a test to fracture,
the stress and strain data below were obtained. Determine

(a) the modulus of elasticity.

(b) the proportional limit.

(c) the ultimate strength.

(d) the yield strength (0.05% offset).

(e) the yield strength (0.20% offset).

(f) the fracture stress.

(g) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 4.65 mm.

Change in Change in
Load (kN) | Length (mm) | Load (kN) | Length (mm)
0.00 0.00 13.22 0.29
2.94 0.01 16.15 0.61
5.58 0.02 18.50 1.04
8.52 0.03 20.27 1.80
11.16 0.04 20.56 2.26
12.63 0.05 20.67 2.78
13.02 0.06 20.72 3.36
13.16 0.08 20.61 3.83
13.22 0.08 20.27 3.94
13.22 0.10 19.97 4.00
13.25 0.14 19.68 4.06
13.22 0.17 19.09 4.12
18.72 fracture

P3.23 A concentrated load P is supported by two bars as
shown in Figure P3.23. Bar (1) is made of cold-rolled red brass
[E = 16,700 ksi; o = 10.4 X 107° /°F] and has a cross-
sectional area of 0.225 in.2. Bar (2) is made of 6061-T6 aluminum
[E = 10,000 ksi; & = 13.1 X 10 ¢ /°F] and has a cross-sectional
area of 0.375 in.2. After load P has been applied and the temperature
of the entire assembly has increased by 50°F, the total strain in bar
(1) is measured as 1,400 pe (elongation). Determine

(a) the magnitude of load P.
(b) the total strain in bar (2).



FIGURE P3.23

P3.24 The rigid bar AC in Figure P3.24 is supported by two
axial bars (1) and (2). Both axial bars are made of bronze
[E = 100 GPa; & = 18 X 1079 /°C]. The cross-sectional area of
bar (1) is A; = 240 mm? and the cross-sectional area of bar (2) is
A, = 360 mm?. After load P has been applied and the temperature
of the entire assembly has increased by 30°C, the total strain in bar
(2) is measured as 1,220 pe (elongation). Determine

(a) the magnitude of load P.
(b) the vertical displacement of pin A.

2,000 mm
(1
1,300 mm

‘ 500 mm I 900 mm
I * 1
P

FIGURE P3.24

P3.25 The rigid bar in Figure P3.25/26 is supported by axial bar
(1) and by a pin connection at C. Axial bar (1) has a cross-sectional
area of A} = 275 mm?, an elastic modulus of E = 200 GPa, and a
coefficient of thermal expansion of & = 11.9 X 106 /°C. The pin at
C has a diameter of 25 mm. After load P has been applied and the
temperature of the entire assembly has been increased by 20°C, the
total strain in bar (1) is measured as 925 e (elongation). Determine

(a) the magnitude of load P.
(b) the shear stress in pin C.

275 mm 540 mm

Connection
detail

FIGURE P3.25/26

P3.26 The rigid bar in Figure P3.25/26 is supported by axial bar
(1) and by a pin connection at C. Axial bar (1) has a cross-sectional
area of A; = 275 mm?, an elastic modulus of £ = 200 GPa, and a
coefficient of thermal expansion of @ = 11.9 X 10~/°C. The pin at
C has a diameter of 25 mm. After load P has been applied and the
temperature of the entire assembly has been decreased by 30°C, the
total strain in bar (1) is measured as 925 pe (elongation). Determine

(a) the magnitude of load P.
(b) the shear stress in pin C.



Design Concepts

The design problems faced by engineers involve many considerations, such as function,
safety, initial cost, life-cycle cost, environmental impacts, efficiency, and aesthetics. In
mechanics of materials, however, our interest focuses on three mechanical considerations:
strength, stiffness, and stability. In addressing these concerns, a number of uncertainties
must be considered and accounted for in a successful design.

The loads that act on structures or machines are generally estimated, and there may be
substantial variation in these loads, such as the following:

® The rate of loading may differ from design assumptions.

® There is uncertainty associated with the material used in a structure or machine.
Since testing usually damages the material, the mechanical properties of the
material cannot be evaluated directly, but rather are determined by testing
specimens of a similar material. For a material such as wood, there may be
substantial variation in the strength and stiffness of individual boards and
timbers.

® Material strengths over time may change due to corrosion and other effects.

Environmental conditions such as temperature, humidity, and exposure to rain and
snow may differ from design assumptions.




DESIGN CONCEPTS

® Although their chemical composition may be the same, the materials used in prototypes
or test components may differ from those used in production components due to such
factors as microstructure, size, rolling or forming effects, and surface finish.

® Stresses may be created in a component during the fabrication process, and it is
possible that poor workmanship could diminish the strength of a design.

® Models and methods used in analysis may oversimplify or incorrectly idealize a
structure and thereby inadequately represent its true behavior.

Textbook problems may convey the impression that analysis and design are a process of
applying rigorous calculation procedures to perfectly defined structures and machines in
order to obtain definitive results. In practice, however, design procedures must make
allowances for many factors that cannot be quantified with great certainty.

4.2 Types of Loads

The forces that act on a structure or machine are called loads. The specific types of load
that act on a structure or machine depend on the particular application. Several types of
load that act on building structures are discussed next.

Dead Loads

Dead loads consist of the weight of various structural members and the weights of objects
that are permanently attached to a structure. For a building, the self-weight of the structure
includes items such as beams, columns, floor slabs, walls, plumbing, electrical fixtures,
permanent mechanical equipment, and the roof. The magnitude and location of these loads
are unchanging throughout the lifetime of the structure.

In designing a structure, the size of each individual beam, floor, column, and other
component is unknown at the outset. An analysis of the structure must be performed before
final member sizes can be determined; however, the analysis must include the weight of the
members. Consequently, it is often necessary to perform design calculations iteratively—
estimating the weight of various components; performing an analysis; selecting appropri-
ate member sizes; and, if significant differences are present, repeating the analysis with
improved estimates for the member weights.

Although the self-weight of a structure is generally well defined, the dead load may be
underestimated due to uncertainty of other dead load components such as the weight of
permanent equipment, room partitions, roofing materials, floor coverings, fixed service
equipment, and other immovable fixtures. Future modifications to the structure may also
need to be considered. For instance, additional highway paving materials may be added at
a future time to the deck of a bridge structure.

Live Loads

Live loads are loads in which the magnitude, duration, and location of the loading vary
throughout the lifetime of the structure. They may be caused by the weight of objects tem-
porarily placed on the structure, moving vehicles or people, or natural forces. The live load
on floors and decks is typically modeled as a uniformly distributed area loading that ac-
counts for items normally associated with the intended use of the space. For typical office
and residential structures, these items include occupants, furnishings, and storage.

For structures such as bridges and parking garages, a concentrated live load (or loads)
representing the weight of vehicles or other heavy items must be considered in addition to



the distributed uniform area loading. In the analysis, the effects of such concentrated loads
at various potentially critical locations must be investigated.

A load suddenly applied to a structure is termed impact. A crate dropped on the floor
of a warehouse or a truck bouncing on uneven pavement creates a greater force in a struc-
ture than would normally occur if the load were applied slowly and gradually. Specified
live loads generally include an appropriate allowance for impact effects of normal use and
traffic. Special impact consideration may be necessary for structures supporting elevator
machinery, large reciprocating or rotating machinery, and cranes.

By their nature, live loads are known with much less certainty than dead loads. Live
loads vary in intensity and location throughout the lifetime of the structure. In a building,
for example, unanticipated crowding of people in a space may occur on occasion, or per-
haps a space may be subjected to unusually large loads during renovation as furnishings or
other materials are temporarily relocated.

Snow Load

In colder climates, snow load may be a significant design consideration for roof elements.
The magnitude and duration of snow loads cannot be known with great certainty. Further,
the distribution of snow generally will not be uniform on a roof structure due to wind-blown
drifting of snow. Large accumulations of snow often will occur near locations where a roof
changes height, creating additional loading effects.

Wind Loads

Wind exerts pressure on a building in proportion to the square of its velocity. At any given
moment, wind velocities consist of an average velocity plus a superimposed turbulence
known as a wind gust. Wind pressures are distributed over a building’s exterior surfaces,
both as positive pressures that push on walls or roof surfaces and as negative pressures (or
suction) that uplift roofs and pull walls outward. Wind load magnitudes acting on structures
vary with geographic location, heights above ground, surrounding terrain characteristics,
building shape and features, and other factors. Wind is capable of striking a structure from
any direction. Altogether, these characteristics make it very difficult to accurately predict
the magnitude and distribution of wind loading.

4.3 Safety

Engineers seek to produce objects that are sufficiently strong to perform their intended
function safely. To achieve safety in design with respect to strength, structures and ma-
chines are always designed to withstand loads above what would be expected under ordi-
nary conditions (termed overload). While this reserve capacity is needed to ensure safety
in response to an extreme load event, it also allows the structure or machine to be used in
ways not originally anticipated during design.

The crucial question, however, is “How safe is safe enough?” If a structure or machine
does not have enough extra capacity, there is a significant probability that an overload could
cause failure, where failure is defined as breakage, rupture, or collapse. If too much reserve
capacity is incorporated into the design of a component, the potential for failure may be slight,
but the object may be unnecessarily bulky, heavy, or expensive to build. The best designs strike
a balance between economy and a conservative, but reasonable, margin of safety against failure.

Two philosophies for addressing safety are commonly used in current engineering
design practice for structures and machines. These two approaches are called allowable
stress design and load and resistance factor design.

SAFETY



4.4 Allowable Stress Design

The allowable stress design (ASD) method focuses on loads that exist at normal or typical
conditions. These loads are termed service loads, and they consist of dead, live, wind, and
other loads that are expected to occur while the structure is in service. In the ASD method,
a structural element is designed so that elastic stresses produced by service loads do not
exceed some fraction of the specified minimum yield stress of the material—a stress
limit that is termed the allowable stress (Figure 4.1). If stresses under ordinary condi-
tions are maintained at or below the allowable stress, a reserve capacity of strength will
be available should an unanticipated overload occur, thus providing a margin of safety for
the design.

The allowable stress used in design computations is computed by dividing the failure
stress by a factor of safety (FS):

(075 T
— " failure — ! failure
Tallow — ES or Tallow — FS (41)

Failure may be defined in several ways. It may be that “failure” refers to an actual fracture
of the component, in which case the ultimate strength of the material (as determined from
the stress—strain curve) is used as the failure stress in Equation (4.1). Alternatively, failure
may refer to an excessive deformation in the material associated with yielding that renders
the component unsuitable for its intended function. In this situation, the failure stress in
Equation (4.1) is the yield stress.

Factors of safety are established by groups of experienced engineers who write the
codes and specifications used by other designers. The provisions of codes and specifica-
tions are intended to provide reasonable levels of safety without unreasonable cost. The
type of failure anticipated as well as the history of similar components, the consequences
of failure, and other uncertainties are considered in deciding on appropriate factors of
safety for various situations. Typical factors of safety range from 1.5 to 3, although larger
values may be found in specific applications.
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FIGURE 4.1 Allowable stress on the stress—strain curve.



In some instances, engineers may need to assess the level of safety in an existing or a
proposed design. For this purpose, the factor of safety may be computed as the ratio of the
anticipated failure stress to the estimated actual stress:

T¢..:
ES = failure or

T actual

FS = T failure
T actual

4.2)

Factor-of-safety calculations need not be limited to stresses. The factor of safety may also
be defined as the ratio between a failure-producing force and the estimated actual force—
for instance,

FS = Pfailure Vfailure

or FS= 4.3)

P, actual Vactual

ALLOWABLE STRESS DESIGN

A load of 8.9 kN is applied to a 6-mm-thick steel plate,
as shown. The steel plate is supported by a 10-mm-
diameter steel pin in a single shear connection at A and a
10-mm-diameter steel pin in a double shear connection
at B. The ultimate shear strength of the steel pins is
280 MPa, and the ultimate bearing strength of the steel
plate is 530 MPa. Determine

(a) the factor of safety for pins A and B with respect to
the ultimate shear strength.

(b) the factor of safety with respect to the ultimate
bearing strength for the steel plate at pin B.

Plan the Solution

From equilibrium, the reaction forces at pins A and B will be computed. In particular, the
resultant force at B must be computed from the horizontal and vertical reactions at B. Once
the pin forces have been determined, the pin shear stresses will be computed, taking into
account whether the pin is used in a single or a double shear connection. The bearing stress
in the plate at B is found from the resultant pin force at B and the product of the plate thick-
ness and the pin diameter. After these three stresses have been determined, the factors of
safety with respect to the ultimate strengths will be computed for each consideration.

SOLUTION

From equilibrium, the reaction forces at pins A and B can be 160 mm

60 mm_

determined. Note: The pin at A rides in a slotted hole; therefore,
it exerts only vertical force on the steel plate.

c  6293kN

The reaction forces are shown on the sketch along with
pertinent dimensions.

The resultant force exerted by pin B on the plate is 103.923 mm

N -

Ry =V (6.293kN)2 + (12.741kN)2 = 14.210kN

Note: The resultant force should always be used in computing
the shear stress in a pin or bolt.

6.448 kN

6.293 kKN

6.293 kN 8.9 kN

4 y

12.741 kN



(a) The cross-sectional area of a 10-mm-diameter pin is Ay, = 78.540 mm?. Since pin
A is a single shear connection, its shear area Ay is equal to the pin cross-sectional
area A, The shear stress in pin A is found from the shear force Vj that acts on the

pin (i.e., the 6.448-kN reaction force) and Ay:

Va4 _ (6448 kN) (1,000 N/KN)

= §82.1 MPa
Ay 78.540 mm?

TA:

Pin B is a double shear connection; therefore, the pin area subjected to shear stress Ay
is equal to twice the pin cross-sectional area A;,. The shear force Vi that acts on the
pin equals the resultant force at B:

Vs (14210 kN) (1,000 N/N)
A, 2(78.540 mm?)

Ty = = 90.5 MPa
By Equation (4.2), the pin factors of safety with respect to the 280 MPa ultimate shear
strength are

280 MPa 280 MPa

FS, = e _ =341  FS, = e _ =3.09 Ans.
T actual 82.1 MPa T actual 90.5 MPa

(b) The bearing stress at B occurs on the contact surface between the 10-mm-diameter
pin and the 6-mm-thick steel plate. Although the actual stress distribution in the
steel plate at this contact point is quite complex, the average bearing stress is
customarily computed from the contact force and a projected area equal to the
product of the pin diameter and the plate thickness. Therefore, the average bearing
stress in the steel plate at pin B is computed as

_ Ry _ (14210 KN)(1,000 N/KN)

oy, = = 236.8 MPa
dpt (10 mm) (6 mm)

The factor of safety of the plate with respect to the 530 MPa ultimate bearing
strength is

Fsbearing =———"=224 Ans.

A truss joint is shown in the sketch. Member (1) has a cross-sectional area of
7.22 in.2 and member (2) has a cross-sectional area of 3.88 in.2. Both mem-
bers are A36 steel with a yield strength of 36 ksi. If a factor of safety of 1.5
is required, determine the maximum load P that may be applied to the joint.

Plan the Solution

Since truss members are two-force members, two equilibrium equations
can be written for the concurrent force system. From these equations, the
unknown load P can be expressed in terms of member forces F| and F,.
An allowable stress can be determined from the yield strength of the steel
and the specified factor of safety. With the allowable stress and the cross-sectional
area, the maximum allowable member force can be determined. However, it is not likely




that both members will be stressed to their allowable limit. It is more probable that one
member will control the design. Using the equilibrium results and the allowable member
forces, the controlling member will be determined, and, in turn, the maximum load P can
be computed.

SOLUTION

Equilibrium

The free-body diagram (FBD) for the truss joint is shown. From the FBD, two equilibrium
equations in terms of three unknowns—F, F,, and P—can be written. Note: We will
assume that internal member forces F; and F, are tension forces (even though we may
expect member (2) to be in compression).

‘ZFX = —F, cos45° + F, cos60° + P = 0 ‘ (a)

ZF, = —F, sin45° — F, sin60° = 0 (b)

From these two equations, expressions for the unknown load P can be derived in terms of
member forces F| and F»:

P =|cos45°+ % cos60°}F1 (©)
sin 60°
= — 5@60 cos45° + cos60"]F2 (d)
sin45°

Allowable stress: The allowable normal stress in the steel members can be computed from
Equation (4.1):

oy 36ksi
Tallow — F_S = 15

= 24 ksi (e

Allowable member force: The allowable stress can be used to calculate the allowable force
in each member:

Fiaiow = TuiowA; = Q4 ksi)(7.22in.2) = 173.28 kips )

Py atow = TaowAy = (4ksi)(3.88in.2) = 93.12 kips (€9)

Problem-Solving Tip: A common mistake at this point in the solution would be to
compute P by substituting the two allowable forces into Equation (a). This approach,
however, does not work because equilibrium will not be satisfied in Equation (b).
Equilibrium must always be satisfied.

Compute maximum P: Next, two possibilities must be investigated: Either member (1) con-
trols, or member (2) controls. First, assume that the allowable force in member (1) controls




the design. Substitute the allowable force for member (1) into Equation (c) to compute the
maximum load P that would be permitted:

sin45°
sin 60°
= (1.11536)(173.28 kips)

~.P =193.27 Kips

P =|cos45° +

c0s60°|F; = 1.11536F, 00
(h)

Next, use Equation (d) to compute the maximum load P that would be permitted if mem-
ber (2) controls:

p = —|S00° 6450 4 cos60°|F, = —1.36603F) .,
sin45° ’
= —(1.36603)(93.12 kips)
P = —127.20 kips

®

Why is P negative in Equation (i), and, more important, how do we interpret this negative
value? The allowable stress computed in Equation (e¢) made no distinction between
tension or compression stress. Accordingly, the allowable member forces computed in
Equations (f) and (g) were magnitudes only. These member forces could be tension (i.e.,
positive values) or compression (i.e., negative values). In Equation (i), a maximum load
was computed as P = —127.20 kips. This implies that the load P acts in the —x direction,
and this clearly is not what the problem intends. Therefore, we must conclude that allow-
able force in member (2) is actually a compression force:

P = —(1.36603)(— 93.12 kips) = 127.20 kips G)

Compare the results from Equations (h) and (j) to conclude that the maximum load that
may be applied to this truss joint is

P = 127.20 kips Ans.

Member forces at maximum load P: Member (2) has been shown to control the design; in other
words, the strength of member (2) is the limiting factor or the most critical consideration. At
the maximum load P, use Equations (c) and (d) to compute the actual member forces:
F, = 114.05 kips(T)
and
F, = —93.12 kips = 93.12 kips (C)
The actual normal stresses in the members are

_ K _ 114.05 kips

= T o2 = 15.80 ksi (T)
1 . .

gy

and

oy = L2 2 ZBZHS oy 046 ()
A, 3.881n.

Note: The normal stress magnitudes in both members are less than or equal to the 24-ksi
allowable stress.




ies Example M4.1

The structure shown is used to support a distributed load of w = 15 kN/m. Each bolt at A,
B, and C has a diameter of 16 mm, and each bolt is used in a double shear connection. The
cross-sectional area of axial member (1) is 3,080 mm?.

The limiting stress in axial member (1) is 50 MPa, and the limiting stress in the bolts
is 280 MPa. Determine the factors of safety with respect to the specified limiting stresses
for axial member (1) and bolt C.

ies Example M4.2

Two steel plates are connected by a pair of splice plates with eight bolts, as shown. The p p
ultimate strength of the bolts is 270 MPa. An axial tension load of P = 480 kN is trans- _“-.
mitted by the steel plates.

If a factor of safety of 1.6 with respect to failure by fracture is specified, determine
the minimum acceptable diameter of the bolts.

ies Example M4.3

The structure shown supports a distributed load of w kN/m. The 16-mm-diameter bolts at
A, B, and C are each used in double shear connections. The cross-sectional area of axial
member (1) is 3,080 mm?2.

The limiting normal stress in axial member (1) is 50 MPa, and the limiting stress
in the bolts is 280 MPa. If a minimum factor of safety of 2.0 is required for all compo-
nents, determine the maximum allowable distributed load w that may be supported by
the structure.




iles Exercises

MA4.1 The structure shown supports a specified distributed load.
The limiting stresses for rod (1) and pins A, B, and C are given.
Determine the axial force in rod (1), the resultant force in pin C, and
the factors of safety with respect to the specified limiting stresses for
rod (1) and pins B and C.

FIGURE M4.1

M4.2  The single shear connection consists of a number of bolts,
as shown. Given the bolt diameter and the ultimate strength of the
bolts, determine the factor of safety for the connection for a speci-
fied tension load P.

=

FIGURE V4.2

M4.3 The structure shown supports an unspecified load w. Lim-
iting stresses are given for rod (1) and the pins. For a specified
minimum factor of safety, determine the maximum load magnitude
w that may be applied to the structure, as well as the stresses in the
rod and pins at the maximum load w.

FIGURE M4.3



PROBLEMS

P4.1 A stainless steel alloy bar 25-mm-wide by 16-mm-thick is
subjected to an axial load of P = 145 kN. Using the stress—strain
diagram given in Figure P4.1, determine

(a) the factor of safety with respect to the yield strength defined
by the 0.20% offset method.
(b) the factor of safety with respect to the ultimate strength.

1,200

Upper scale

Lower scale

Stress (MPa)

0 ——
0.0  0.020
00 0002

— T
0.060  0.080
0.006  0.008

I T I
0.100  0.120
0.010 0.012

T
0.040
0.004

Strain (mm/mm)

FIGURE P4.1

P4.2 Three bolts are used in the connection shown in Figure P4.2.
The thickness of plate (1) is 18 mm. The ultimate shear strength
of the bolts is 320 MPa, and the ultimate bearing strength of
plate (1) is 350 MPa. Determine the minimum bolt diameter
required to support an applied load of P = 180 kN if a minimum
factor of safety of 2.5 is required with respect to both bolt shear
and plate bearing failure.

P
pay “% ' (1)

2

FIGURE P4.2

P4.3 A 14-kip load is supported by two bars, as shown in
Figure P4.3. Bar (1) is made of cold-rolled red brass (oy = 60 ksi)
and has a cross-sectional area of 0.225 in.2. Bar (2) is made of
6061-T6 aluminum (oy = 40 ksi) and has a cross-sectional area of
0.375 in.2. Determine the factor of safety with respect to yielding
for each of the bars.

FIGURE P4.3

P4.4 A steel bar is attached to a wood support beam with four
22 mm diameter lag screws, as shown in Figure P4.4. The steel bar
is 70-mm-wide by 6-mm-thick. For the steel bar, the yield strength
is 250 MPa and the ultimate bearing strength is 350 MPa. The
ultimate shear strength of the lag screws is 165 MPa. Factors of
safety of 1.67 with respect to yield strength and 3.0 with respect to
bearing strength are required for the bar. A factor of safety of 3.0
with respect to the ultimate shear strength is required for the lag
screws. Determine the allowable load P that can be supported by
this connection. (Note: Consider only the gross cross-sectional area
of the bar—not the net area.)

Support beam

Steel bar

FIGURE P4.4

P4.5 1In Figure P4.5, member (1) is a steel bar with a cross-
sectional area of 1.35 in.? and a yield strength of 50 ksi. Member
(2) is a pair of 6061-T6 aluminum bars having a combined cross-
sectional area of 3.50 in.% and a yield strength of 40 ksi. A factor of
safety of 1.6 with respect to yield is required for both members.
Determine the maximum allowable load P that may be applied to
the structure. Report the factors of safety for both members at the
allowable load.



FIGURE P4.5

P4.6 The rigid structure ABD in Figure P4.6 is supported at B
by a 35-mm-diameter tie rod (1) and at A by a 30-mm-diameter
pin used in a single shear connection. The tie rod is connected at
B and C by 24-mm-diameter pins used in double shear connec-
tions. Tie rod (1) has a yield strength of 250 MPa, and each of the
pins has an ultimate shear strength of 330 MPa. A concentrated
load of P = 50 kN acts as shown at D. Determine

(a) the normal stress in rod (1).

(b) the shearing stress in the pins at A and B.

(c) the factor of safety with respect to the yield strength for tie rod (1).

(d) the factor of safety with respect to the ultimate strength for the
pins at A and B.

5.3 m 7.5m

a L

FIGURE P4.6

P4.7 The bell-crank mechanism shown in Figure P4.7 is in equi-
librium for an applied load of F; = 10 kN applied at A. Assume
a = 300 mm, b = 150 mm, ¢ = 100 mm, and 6 = 65°. The pin at
B has a diameter of d = 12 mm and an ultimate shear strength of
400 MPa. The bell crank and the support bracket each have an ulti-
mate bearing strength of 550 MPa. Determine

(a) the factor of safety in pin B with respect to the ultimate shear
strength.

(b) the factor of safety of the bell crank at pin B with respect to the
ultimate bearing strength.

(c) the factor of safety in the support bracket with respect to the
ultimate bearing strength.

Connection
detail
FIGURE P4.7
P4.8 1In Figure P4.8, davit ABD is supported at A by a single

shear pin connection and at B by a tie rod (1). The pin at A has a
diameter of 1.25 in., and the pins at B and C are each 0.75-in.-
diameter pins. Tie rod (1) has an area of 1.50 in.2. The ultimate
shear strength in each pin is 80 ksi, and the yield strength of the
tie rod is 36 ksi. A concentrated load of 25 kips is applied as
shown to the davit structure at D. Determine

(a) the normal stress in rod (1).

(b) the shearing stress in the pins at A and B.

(c) the factor of safety with respect to the yield strength for tie
rod (1).

(d) the factor of safety with respect to the ultimate strength for the
pins at A and B

60°

25 kips
Connection P

details

12 ft 7 ft

FIGURE P4.8




P4.9 The pin-connected structure is subjected to aload P, as shown
in Figure P4.9. Inclined member (1) has a cross-sectional area of
250 mm? and a yield strength of 255 MPa. It is connected to rigid mem-
ber ABC with a 16-mm-diameter pin in a double shear connection at B.
The ultimate shear strength of the pin material is 300 MPa. For inclined
member (1), the minimum factor of safety with respect to the yield
strength is FS,;, = 1.5. For the pin connections, the minimum factor of
safety with respect to the ultimate strength is FS,;, = 3.0.

(a) On the basis of the capacity of member (1) and pin B, determine
the maximum allowable load P that may be applied to the
structure.

(b) Rigid member ABC is supported by a double shear pin
connection at A. Using FS,;, = 3.0, determine the minimum
pin diameter that may be used at support A.

P €—— o ||C

FIGURE P4.9

P4.10 Rigid beam ABC is supported as shown in Figure P4.10.
The pin connections at B, C, and D are each double shear connec-
tions, and the ultimate shear strength of the pin material is 620 MPa.

=

Connection detail

~

1111111113

FIGURE P4.10

Tie rod (1) has a yield strength of 340 MPa. A uniformly distributed
load of w = 15 kN/m is applied to the beam as shown. A factor of
safety of 3.0 is required for all components. Assume ¢ = 700 mm,
b = 900 mm, ¢ = 300 mm, and d = 650 mm. Determine

(a) the minimum diameter required for tie rod (1).

(b) the minimum diameter required for the double shear pins at B
and D.

(c) the minimum diameter required for the double shear pin at C.

P4.11 1In Figure P4.11, rigid bar ABC is supported at A by a

single shear pin connection and at B by a strut, which consists of
two 2-in.-wide by 0.25-in.-thick steel bars. The pins at A, B, and D
each have a diameter of 0.5 in. The yield strength of the steel bars
in strut (1) is 36 ksi, and the ultimate shear strength of each pin is
72 ksi. Determine the allowable load P that may be applied to the
rigid bar at C if an overall factor of safety of 3.0 is required. Use
L, = 36in.and L, = 24 in.

FIGURE P4.11

P4.12 1In Figure P4.12, rigid beam ABD is supported at A by a
20-mm-diameter pin in a double shear connection and at B by a solid
38-mm-diameter rod. Rod (1) is supported at B and C by 16-mm-
diameter pins in double shear connections. The yield strength of rod
(1) is 340 MPa. The ultimate shear strength of each pin is 620 MPa.
Assumea = 1.8m,b =09 m,c = 1.2m, and d = 1.4 m. Determine
the allowable distributed load w that may be applied to the rigid beam
if an overall factor of safety of 2.5 is required.

FIGURE P4.12



P4.13 Beam AB is supported as shown in Figure P4.13. Tie rod
(1) is attached at B and C with double shear pin connections, while
the pin at A is attached with a single shear connection. The pins at
A, B, and C each have an ultimate shear strength of 54 ksi, and tie
rod (1) has a yield strength of 36 ksi. A concentrated load of P =
16 kips is applied to the beam as shown. A factor of safety of 3.0
is required for all components. Determine

(a) the minimum required diameter for tie rod (1).

(b) the minimum required diameter for the double shear pins at B
and C.

(c) the minimum required diameter for the single shear pin at A.

8.5 ft

FIGURE P4.13

P4.14 1In Figure P4.14, the rigid member ABDE is supported at
A by a single shear pin connection and at B by a tie rod (1). The tie
rod is attached at B and C with double shear pin connections. The
pins at A, B, and C each have an ultimate shear strength of 80 ksi,
and tie rod (1) has a yield strength of 60 ksi. A concentrated load of
P = 24 kips is applied perpendicular to DE, as shown. A factor of
safety of 2.0 is required for all components. Determine

FIGURE P4.14

(a) the minimum required diameter for the tie rod.
(b) the minimum required diameter for the pin at B.
(c) the minimum required diameter for the pin at A.

P4.15 Rigid bar ABC is subjected to a concentrated load P, as
shown in Figure P4.15. Inclined member (1) has a cross-sectional
areaof A; = 2.250in.2 and is connected at ends B and D by 1.00-in.-
diameter pins in double shear connections. The rigid bar is sup-
ported at C by a 1.00-in.-diameter pin in a single shear connection.
The yield strength of inclined member (1) is 36 ksi, and the ultimate
strength of each pin is 60 ksi. For inclined member (1), the mini-
mum factor of safety with respect to the yield strength is FS;, =
1.5. For the pin connections, the minimum factor of safety with
respect to the ultimate strength is FS,;, = 2.0. Determine the max-
imum load P that can be supported by the structure.

30 in. 50 in.

Double
shear

Double
shear D

FIGURE P4.15

P4.16 Rigid bar ABC is supported by pin-connected axial
member (1) and by a pin connection at C, as shown in Figure P4.16.
A 6,300-1b concentrated load is applied to the rigid bar at A.
Member (1) is a 2.75-in.-wide by 1.25-in.-thick rectangular bar
made of steel with a yield strength of oy = 36,000 psi. The pin at C
has an ultimate shear strength of 7, = 60,000 psi.

(a) Determine the axial force in member (1).

(b) Determine the factor of safety in member (1) with respect to
its yield strength.

(c) Determine the magnitude of the resultant reaction force acting
at pin C.

(d) If a minimum factor of safety of FS = 3.0 with respect to the
ultimate shear strength is required, determine the minimum
diameter that may be used for the pin at C.

6,300 1b
A _
30 in.
- C
|-
24 in. 40 in. 16 in. Side viev'v
< T of connection
FIGURE P4.16



4.5 Load and Resistance Factor Design

A second common design philosophy is termed load and resistance factor design
(LRFD). This approach is most widely used in the design of reinforced concrete, steel,
and wood structures.

To illustrate the differences between the ASD and LRFD philosophies, consider the
following example: Suppose that an engineer using ASD calculates that a certain member
of a steel bridge truss will be subjected to a load of 100 kN. Using an appropriate factor
of safety for this type of member—say, 1.6—the engineer properly designs the truss mem-
ber so that it can support a load of 160 kN. Since the member strength is greater than the
load acting on it, the truss member successfully performs its intended function. However,
we know that the load on the truss member will change throughout the lifetime of the
structure. There will be many times when no vehicles are crossing the bridge, and conse-
quently, the member load will be much less than 100 kN. There may also be instances in
which the bridge is completely filled with vehicles and the member load will be greater
than 100 kN. The engineer has properly designed the truss member to support a load of
160 kN, but suppose that the steel material was not quite as strong as expected or that
stresses were created in the member during the construction process. It is possible, there-
fore, that the actual strength of the member could be, say, 150 kN rather than the expected
strength of 160 kN. If the actual load on our hypothetical truss member exceeds 150 kN,
the member will fail. The question is “How likely is it that this situation would occur?”
The ASD approach cannot answer this question in any quantitative manner.

Design provisions in LRFD are based on probability concepts. Strength design proce-
dures in LRFD recognize that the actual loads acting on structures and the true strength of
structural components (termed resistance in LRFD) are in fact random variables that cannot
be known with complete certainty. With the use of statistics to characterize both the load and
resistance variables, design procedures are developed so that properly designed components
have an acceptably small, but quantifiable, probability of failure, and this probability of
failure is consistent among structural elements (e.g., beams, columns, connections, etc.) of
different materials (e.g., steel vs. wood vs. concrete) used for similar purposes.

Probability Concepts

To illustrate the concepts inherent in LRFD (without delving too deeply into probability
theory), consider the aforementioned truss member example. Suppose that 1,000 truss bridges
were investigated and that, in each of those bridges, a typical tension member was singled
out. For that tension member, two load magnitudes were recorded. First, the service load
effect used in the design calculations (i.e., the design tension force in this case) for a truss
member was noted. For purposes of this illustration, this service load effect will be denoted
as O*. Second, the maximum tension load effect that acted on the truss member at any time
throughout the entire lifetime of the structure was identified. For each case, the maximum
tension load effect is compared to the service load effect O*, and the results are displayed
on a histogram showing the frequency of occurrence of differing load levels (Figure 4.2).
For example, in 128 out of 1,000 cases, the maximum tension load in the truss member was
20 percent larger than the tension used in the design calculations.

For the same tension members, suppose that two strength magnitudes were recorded.
First, the calculated member strength was noted. For purposes of this illustration, this de-
sign strength will be denoted as resistance R *. Second, the maximum tension strength actu-
ally available in the member was determined. This value represents the tension load that
would cause the member to fail if it were tested to destruction. The maximum tension
strength can be compared with the design resistance R*, and the results can be displayed on
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a histogram showing the frequency of occurrence of differing resistance levels (Figure 4.3).
For example, in 210 out of 1,000 cases, the maximum tension strength in the truss member
was 10 percent less than the nominal strength predicted by the design calculations.

A structural component will not fail as long as the strength provided by the component
is greater than the effect caused by the loads. In LRFD, the general format for a strength
design provision is expressed as

OR, = 27,0, 4.4)

where ¢ = resistance factor corresponding to the type of component (i.e., beam, column,
connection, etc.), R, = nominal component resistance (i.e., strength), y; = load factors
corresponding to each type of load (i.e., dead load, live load, etc.), and Q,; = nominal ser-
vice load effects (such as axial force, shear force, and bending moments) for each type of
load. In general, the resistance factors ¢ are less than 1 and the load factors vy; are greater
than 1. In nontechnical language, the resistance of the structural component is underrated
(to account for the possibility that the actual member strength may be less than predicted),
while the load effect on the member is overrated (to account for extreme load events pos-
sible because of the inherent variability in the loads).

Regardless of the design philosophy, a properly designed component must be stronger
than the load effects acting on it. In LRFD, however, the process of establishing appropriate
design factors considers member resistance R and load effect Q as random variables rather
than quantities that are known exactly. Suitable factors for use in LRFD design equations,
as typified by Equation (4.4), are determined through a process that considers the relative
positions of the member resistance distribution R (Figure 4.3) and the load effects distribu-
tion Q (Figure 4.2). Appropriate values of the ¢ and vy, factors are determined through a
procedure known as code calibration using a reliability analysis in which the ¢ and vy,
factors are chosen so that a specific target probability of failure is achieved. The design
strength of members is based on the load effects; therefore, the design factors “shift” the
resistance distribution to the right of the load distribution so that the strength is greater than
the load effect (Figure 4.4).

To illustrate this concept, consider the data obtained from the 1,000-bridge example.
The use of very small ¢ factors and very large +y; factors would ensure that all truss members
are strong enough to withstand all load effects (Figure 4.4). This situation, however, would
be overly conservative and might produce structures that are unnecessarily expensive.

The use of relatively large ¢ factors and relatively small y; factors would create a re-
gion in which the resistance distribution R and the load distribution Q overlap (Figure 4.5),
or, in other words, the member strength will be less than or equal to the load effect. From
Figure 4.5, one would predict that 22 out of 1,000 truss members will fail. (Note: The truss
members are properly designed. The failure discussed here is due to random variation rather
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than error or incompetence.) A probability of failure Pr = 0.022 represents too much risk to
be acceptable, particularly where public safety is directly concerned.

An appropriate combination of ¢ and vy, factors creates a small region of overlap
between R and Q (Figure 4.6). From Figure 4.6, the probability of failure is 1 out of 1,000
truss members, or Pr = 0.001. This rate might represent an acceptable trade-off between
risk and cost. (The value Pr = 0.001 is known as a notional failure rate. The true failure
rate is always much less, as engineering experience has shown over years of successful
practice. In reliability analyses, often only the means and standard deviations of many
variables can be estimated, and the true shape of the random variable distributions is generally
not known. These and other considerations lead to higher predicted failure rates than actu-

ally occur in practice.)
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Load Combinations

Loads that act on structures are inherently variable. Although the designer may make a
reasonable estimate of the service loads that are expected to act on a structure, it is likely
that the actual loads will differ from the service loads. Further, the range of variation
expected for each type of load is different. For example, live loads could be expected to
vary more widely than dead loads. To account for load variability, LRFD multiplies each
load type by specific load factors y; and sums the load components to obtain an ultimate
load at which failure (i.e., rupture or collapse) is considered imminent. The structure or
structural component is then proportioned so that the nominal strength ¢R,, of the compo-
nent is equal to or greater than the ultimate load U.

For example, the ultimate load U due to a combination of dead load D and live load L
acting simultaneously on a structural steel component would be computed with the follow-
ing load factors:

U= 3y0Q, =12D+16L (4.5)

The larger load factor y; = 1.6 associated with the live load L reflects the greater uncer-
tainty inherent in this type of load compared with the dead load D, which is known with
much greater certainty and, accordingly, has a smaller load factor of y, = 1.2.

Various possible load combinations must be checked, and each combination has a
unique set of load factors. For example, the ultimate load U acting on a structural steel
member due to a combination of dead load D, live load L, wind load W, and snow load S
would be calculated as

U= Sy0, =12D+13W +05L + 0.55 (4.6)

While load factors are generally greater than 1, lesser load factors are appropriate for some
types of loads when combinations of multiple load types are considered. This reflects the
low probability that extreme events in multiple load types would occur simultaneously. For
example, it is not likely that the largest snow load would occur at the same moment as the
extreme wind load and the extreme live load.



Limit States

LRFD is based on a limit states philosophy. In this context, the term limit state is used to
describe a condition under which a structure or some portion of the structure ceases to
perform its intended function. Two general kinds of limit states apply to structures:
strength limit states and serviceability limit states. Strength limit states define safety
with regard to extreme load events during which the overriding concern is the protection
of human life from sudden or catastrophic structural failure. Serviceability limit states
pertain to the satisfactory performance of structures under ordinary load conditions. These
limit states include considerations such as excessive deflections, vibrations, cracking, and
other concerns that may have functional or economic consequences, but do not threaten
public safety.

LOAD AND RESISTANCE
FACTOR DESIGN

A rectangular steel plate is subjected to an axial dead load of 30 kips and a live load of
48 kips. The yield strength of the steel is 36 ksi.

(a) ASD Method: If a factor of safety of 1.5 with respect to yielding is required,
determine the required plate cross-sectional area according to the ASD method.

(b) LRFD Method: Determine the required plate cross-sectional area based on yielding
of the gross section, using the LRFD method. Use a resistance factor of ¢, = 0.9
and load factors of 1.2 and 1.6 for the dead and live loads, respectively.

Plan the Solution
A simple design problem illustrates how the two methods are used.

SOLUTION

(a) ASD Method

Determine the allowable normal stress from the specified yield stress and the factor of
safety:

The service load acting on the tension member is the sum of the dead and live components:
P = D+ L = 30kips + 48 kips = 78 kips
The cross-sectional area required to support the service load is computed as

A=— =—" =325in? Ans.

(b) LRFD Method
The factored load acting on the tension member is computed as

P, = 12D + 1.6L = 1.2(30 kips) + 1.6(48 kips) = 112.8 kips

The nominal strength of the tension member is the product of the yield stress and the
cross-sectional area:




The design strength is the product of the nominal strength and the resistance factor for this
type of component (i.e., a tension member). The design strength must equal or exceed the
factored load acting on the member:

Therefore, the cross-sectional area required to support the given loading is

SA

¢oP, =P

n u

bk, = oyA=F,
B, _ 112.8 kips

" %o, 09(6ks)

=3.48in.2 Ans.

PROBILEMS

P4.17 A rectangular steel plate is used as an axial member to
support a dead load of 70 kips and a live load of 110 kips. The yield
strength of the steel is 50 ksi.

(a) Use the ASD method to determine the minimum cross-sectional
area required for the axial member if a factor of safety of 1.67
with respect to yielding is required.

(b) Use the LRFD method to determine the minimum cross-sectional
area required for the axial member based on yielding of the gross
section. Use a resistance factor of ¢, = 0.9 and load factors of
1.2 and 1.6 for the dead and live loads, respectively.

P4.18 A 20-mm-thick steel plate will be used as an axial mem-
ber to support a dead load of 150 kN and a live load of 220 kN. The
yield strength of the steel is 250 MPa.

(a) Use the ASD method to determine the minimum plate width b
required for the axial member if a factor of safety of 1.67 with
respect to yielding is required.

(b) Use the LRFD method to determine the minimum plate width
b required for the axial member based on yielding of the gross
section. Use a resistance factor of ¢, = 0.9 and load factors
of 1.2 and 1.6 for the dead and live loads, respectively.

P4.19 A round steel tie rod is used as a tension member to sup-
port a dead load of 30 kips and a live load of 15 kips. The yield
strength of the steel is 46 ksi.

(a) Use the ASD method to determine the minimum diameter
required for the tie rod if a factor of safety of 2.0 with respect
to yielding is required.

(b) Use the LRFD method to determine the minimum diameter
required for the tie rod based on yielding of the gross section.
Use a resistance factor of ¢, = 0.9 and load factors of 1.2 and
1.6 for the dead and live loads, respectively.

P4.20 A round steel tie rod is used as a tension member to sup-
port a dead load of 190 kN and a live load of 220 kN. The yield
strength of the steel is 320 MPa.

(a) Use the ASD method to determine the minimum diameter
required for the tie rod if a factor of safety of 2.0 with respect
to yielding is required.

(b) Use the LRFD method to determine the minimum diameter
required for the tie rod based on yielding of the gross section.
Use a resistance factor of ¢, = 0.9 and load factors of 1.2 and
1.6 for the dead and live loads, respectively.



Axial Deformation
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- 5.1Introduction

In Chapter 1, the concept of stress was developed as a means of measuring the force distribu-
tion within a body. In Chapter 2, the concept of strain was introduced to describe the deforma-
tion produced in a body. Chapter 3 discussed the behavior of typical engineering materials
and how this behavior can be idealized by equations that relate stress and strain. Of particu-
lar interest are materials that behave in a linear-elastic manner. For these materials, there is
a proportional relationship between stress and strain, which can be idealized by Hooke’s
Law. Chapter 4 discussed two general approaches to designing components and structures
that perform their intended function while maintaining an appropriate margin of safety. In
the remaining chapters of the book, these concepts will be employed to investigate a wide
variety of structural members subjected to axial, torsional, and flexural loadings.

The problem of determining forces and deformations at all points within a body sub-
jected to external forces is extremely difficult when the loading or geometry of the body is
complicated. Therefore, practical solutions to most design problems employ what has
become known as the mechanics of materials approach. With this approach, real structural
elements are analyzed as idealized models subjected to simplified loadings and restraints. The
resulting solutions are approximate, since they consider only the effects that significantly
affect the magnitudes of stresses, strains, and deformations.
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More powerful computational methods derived from the theory of elasticity are
available to analyze objects that involve complicated loading and geometry. Of these
methods, the finite element method is the most widely used. Although the mechanics of
materials approach presented here is somewhat less rigorous than the theory of elasticity
approach, experience indicates that the results obtained from the mechanics of materials
approach are quite satisfactory for a wide variety of important engineering problems.
One of the primary reasons for this is Saint-Venant’s Principle.

5.2 Saint-Venant’s Principle

Consider a rectangular bar subjected to an axial compression force P (Figure 5.1). The bar is
fixed at its base, and the total force P is applied to the top of the bar in three equal portions
distributed as shown over a narrow region equal to one-fourth of the bar’s width. The magnitude
of force P is such that the material behaves elastically; therefore, Hooke’s Law applies. The
deformations of the bar are indicated by the grid lines shown. In particular, notice that the grid
lines are distorted in the regions near force P and near the fixed base. Away from these two
regions, however, the grid lines are not distorted, remaining orthogonal and uniformly
compressed in the direction of the applied force P.

Since Hooke’s Law applies, stress is proportional to strain (and, in turn, deforma-

Lines are tion). Therefore, stress will become more uniformly distributed throughout the bar as

d“‘t?)rltfg If;eaf the distance from the load P increases. To illustrate the variation of stress with dis-

' tance from P, the normal stresses acting in the vertical direction on Sections a—a, b-b,

c—c, and d—d (see Figure 5.1) are shown in Figure 5.2. On Section a—a (Figure 5.2a),

normal stresses directly under P are quite large, while stresses on the remainder of the

cross section are very small. On Section b—b (Figure 5.2b), stresses in the middle of

1] the bar are still pronounced, but stresses away from the middle are significantly larger

_d than those on Section a—a. Stresses are more uniform on Section c—c (Figure 5.2¢). On

——p~ Lines away from Section d—d (Figure 5.2d), which is located below P at a distance equal to the bar
the ends remain . . . .

orthogonal. width w, stresses are essentially constant across the width of the rectangular bar. This

comparison shows that localized effects caused by a load tend to vanish as the distance
from the load increases. In general, the stress distribution becomes nearly uniform at
a distance equal to the bar width w from the end of the bar, where w is the largest lat-

maximum stress at this distance is only a few percent larger than the average stress.
In Figure 5.1, the grid lines are also distorted near the base of the axial bar because of
the Poisson effect. The bar ordinarily would expand in width in response to the compres-
sion normal strain caused by P. The fixity of the base prevents this expansion, and conse-
quently, additional stresses are created. Using an argument similar to that just given, we
could show that this increase in stress becomes negligible at a distance of w above the base.
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FIGURE 5.2 Normal stress distributions on sections.



The increased normal stress magnitudes near P and near the fixed base are examples
of stress concentrations. Stress concentrations occur where loads are applied, and they
also occur in the vicinity of holes, grooves, notches, fillets, and other changes in shape that
interrupt the smooth flow of stress through a solid body. Stress concentrations associated
with axial loads will be discussed in more detail in Section 5.7, and stress concentrations
associated with other types of loading will be discussed in subsequent chapters.

The behavior of strain near points of load application was discussed in 1855 by
Barré de Saint-Venant (1797-1886), a French mathematician. Saint-Venant observed that
localized effects disappeared at some distance from points of load application. Further-
more, he observed that the phenomenon was independent of the distribution of applied load
as long as the resultant forces were “equipollent” (i.e., statically equivalent). This idea is
known as Saint-Venant’s Principle and is widely used in engineering design.

Saint-Venant’s Principle is independent of the distribution of the applied load, pro-
vided that the resultant forces are equivalent. To illustrate this independence, consider the
same axial bar as discussed before; however, in this instance, the force P is split into four
equal portions and applied to the upper end of the bar, as shown in Figure 5.3. As in the
previous case, the grid lines are distorted near the applied loads, but they become uniform
at a moderate distance away from the point of load application. Normal stress distributions
on Sections a—a, b—b, c—c, and d—d are shown in Figure 5.4. On Section a—a (Figure 5.4a),
normal stresses directly under the applied loads are quite large, while stresses in the middle
of the cross section are very small. As the distance from the load increases, the peak stresses
diminish (Figure 5.4b; Figure 5.4¢) until stresses become essentially uniform at Section d—d
(Figure 5.4d), which is located below P at a distance equal to the bar width w.

To summarize, peak stresses (Figure 5.2a; Figure 5.4a) may be several times the average
stress (Figure 5.2d; Figure 5.4d); however, the maximum stress diminishes rapidly as the dis-
tance from the point of load application increases. This observation is also generally true for
most stress concentrations (such as holes, grooves, and fillets). Thus, the complex localized
stress distribution that occurs near loads, supports, or other stress concentrations will not sig-
nificantly affect stresses in a body at sections sufficiently distant from them. In other words,
localized stresses and deformations have little effect on the overall behavior of a body.

Expressions will be developed throughout the study of mechanics of materials for
stresses and deformations in various members under various types of loadings. Ac-
cording to Saint-Venant’s Principle, we can assert that these expressions are valid for
entire members, with the exception of those regions very near load application points,
supports, or abrupt changes in member cross section.
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A member that is subjected to no
moments and has forces applied
at only two points is called a
two-force member. For
equilibrium, the line of action of
both forces must pass through
the two points where forces

are applied.

A material of uniform
composition is called a homo-
geneous material. The term
prismatic describes a structural
member that has a straight
longitudinal axis and

a constant cross section.
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FIGURE 5.6 Positive sign
convention for internal force F’
and deformation &.

5.3 Deformations in Axially Loaded Bars

When a bar of uniform cross section is axially loaded by forces applied at the ends (two-
force member), the axial strain along the length of the bar is assumed to have a constant
value. By definition, the deformation é (Figure 5.5) of the bar resulting from the axial force
F may be expressed as 6 = eL. The stress in the bar is given by o = F/A, where A is the
cross-sectional area. If the axial stress o does not exceed the proportional limit of the mate-
rial, Hooke’s Law may be applied to relate stress and strain: o = Ee. Thus, the axial defor-
mation 6 may be expressed in terms of stress or load as follows:

oL
E

0=¢lL= (5.1

or

s_ FL

T AE (5.2)

The first form [Equation (5.1)] frequently will prove to be convenient in elastic problems
in which limiting axial stress and axial deformation are both specified. The stress corre-
sponding to the specified deformation can be obtained from Equation (5.1) and compared
with the specified allowable stress, the smaller of the two values then being used to com-
pute the unknown load or cross-sectional area. In general, Equation (5.1) is the preferred
form when the problem involves a determination or comparison of stresses.

Equations (5.1) and (5.2) may be used only if the axial member

® is homogeneous (i.e., constant E),
® s prismatic (uniform cross-sectional area A), and
® has a constant internal force (i.e., loaded only by forces at its ends).

If the member is subjected to axial loads at intermediate points (i.e., points other than
the ends) or if it consists of various cross-sectional areas or materials, the axial member
must be divided into segments that satisfy the three requirements just listed. For compound
axial members comprising of two or more segments, the overall deformation of the axial
member can be determined by algebraically adding the segment deformations:

F.L.
6 = 11
Z AiEi

(5.3)

i

Here, F;, L;, A;, and E; are the internal force, length, cross-sectional area, and elastic mod-
ulus, respectively, for individual segments i of the compound axial member.

In Equation (5.3), a consistent sign convention is necessary to calculate the deformation
6 produced by an internal force F. The sign convention (Figure 5.6) for deformation is
defined as follows:

® A positive value of 6 indicates that the axial member gets longer; accordingly,
a positive internal force F produces tension.

® A negative value of d indicates that the axial member gets shorter (termed
contraction). A negative internal force F produces compression.

A three-segment compound axial member is shown in Figure 5.7a. To determine the
overall deformation of this axial member, the deformations for each of the three segments
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FIGURE 5.7 Compound axial member and associated free-body diagrams.

are first calculated individually. Then, the three deformation values are added together to
give the overall deformation. The internal force F; in each segment is determined from the
free-body diagrams shown in Figure 5.7b—d.

For those cases in which the axial force or the cross-sectional area varies continu-
ously along the length of the bar (Figure 5.8a), Equations (5.1), (5.2), and (5.3) are not
valid. In Section 2.2, the axial strain at a point for the case of nonuniform deformation
was defined as € = d8/dL. Thus, the increment of deformation associated with a dif-
ferential element of length dL = dx may be expressed as dé6 = edx. If Hooke’s Law
applies, the strain may again be expressed as ¢ = o/E, where o = F(x)/A(x) and both
the internal force F and the cross-sectional area A may be functions of position x along
the bar (Figure 5.8b). Thus,

F(x)
= dx
AG)E 5.4)
Integrating Equation (5.4) yields the following expression for the total deformation of
the bar:
L L F(x)
o= [ dé= 5.5
j(.) 0 A(x)E 6
X 4 dx B
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FIGURE 5.8 Axial member with varying internal force and cross-sectional area.

DEFORMATIONS IN AXIALLY
LOADED BARS



AXIAL DEFORMATION Equation (5.5) applies only to linear-elastic material (since Hooke’s Law was assumed).
Equation (5.5) was derived under the assumption that the stress distribution was uniformly
distributed over every cross section [i.e., o = F(x)/A(x)]. While this is true for prismatic bars,
it is not true for tapered bars. However, Equation (5.5) gives acceptable results if the angle
between the sides of the bar is small. For example, if the angle between the sides of the bar
does not exceed 20°, there is less than a 3 percent difference between the results obtained
from Equation (5.5) and the results obtained from more advanced elasticity methods.

rrrrss
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MOVIES

ies Example M5.3

A load of P = 50 kN is applied to a compound axial member.
Segment (1) is a 20-mm-diameter solid brass [E = 100 GPa] rod. Seg-
ment (2) is a solid aluminum [E = 70 GPa] rod. Determine the mini-
mum diameter of the aluminum segment if the axial displacement of
C relative to support A must not exceed 5 mm.

The compound axial member shown consists of a
20-mm-diameter solid aluminum [E = 70 GPa] seg-
ment (1), a 24-mm-diameter solid aluminum segment
(2), and a 16-mm-diameter solid steel [E = 200 GPa]
segment (3). Determine the displacements of points
B, C, and D relative to end A.

2.0m 2.5m 3.0m

Plan the Solution

Free-body diagrams (FBD) will be drawn to expose the internal axial forces in each seg-
ment. With the use of the internal force and the cross-sectional area, the normal stress can
be computed. The deformation of each segment can be computed from Equation (5.2),
and Equation (5.3) will be used to compute the displacements of points B, C, and D rela-
tive to end A.

Nomenclature

Before we begin the solution, we will define the terms used to discuss problems of this
type. Segments (1), (2), and (3) will be referred to as axial members or simply members.
Members are deformable. They either elongate or contract in response to their internal
axial force. As a rule, the internal axial force in a member will be assumed to be tension.
While this convention is not essential, it is often helpful to establish a repetitive solution
procedure that can be applied as a matter of course in a variety of situations. Members are
labeled by a number in parentheses, such as member (1), and deformations in a member
are denoted as 6,

Points A, B, C, and D refer to joints. A joint is the connection point between compo-
nents (adjacent members in this example), or a joint may simply denote a specific location
(such as joints A and D). Joints do not elongate or contract—they move, either in transla-
tion or in rotation. Therefore, a joint may be said to undergo displacement. (In other




contexts, a joint might also rotate or deflect.) Joints

are denoted by a capital letter. A joint displacement .

in the longitudinal direction is denoted by u and a ﬂ' ) i,_ ) 1
A

subscript identifying the joint (e.g., uy).

SOLUTION

Equilibrium

Draw a FBD that exposes the internal axial force in

member (1). Assume tension in member (1). 10 kN

The equilibrium equation for this FBD is 4kN - F, |
< — (1) (2) e (3)
SF,=F —4kN=0 o —

10kN | B
S F =+4kN =4kN ()
Draw a FBD for member (2) and assume tension in
member (2).
The equilibrium equation for this FBD is ,
F, 8 kN
XF,.=F +2(10kN)—4kN =0 —— >
|
- . - D

~F, = —16 kN = 16 kN (C)

Similarly, draw a FBD for member (3) and assume
tension in the member. Although two different free-
body diagrams are possible, the simpler FBD is
shown.

The equilibrium equation for this FBD is

SF, = —F, +8kN = 0

Tension

~F; = +8 kN = 8 kN (T)

Before proceeding, plot the internal forces F, F,,  Compression
and Fj3 acting in the compound member. It is the

internal forces, not the external forces applied at

joints A, B, C, and D, that create deformations in

the axial members.

-16 kN
Axial force diagram for compound member.

Problem-Solving Tip: When cutting a FBD through an axial member, assume that
the internal force is tension and draw the force arrow directed away from the cut
surface. If the computed internal force value turns out to be a positive number, then the
assumption of tension is confirmed. If the computed value turns out to be a negative
number, then the internal force is actually compression.

Force-Deformation Relationships
The relationship between the deformation of an axial member and its internal force is
expressed by Equation (5.2):

5o IL
AE

Since the internal force is assumed to be a tension force, the axial deformation is assumed

to be an elongation. If the internal force is compression, use of a negative value for the

internal force F in the preceding equation will produce a negative deformation, or in other

words, a contraction.




Compute the deformations in each of the three members. Member (1) is a 20-mm-
diameter solid aluminum rod; therefore, its cross-sectional area is A; = 314.159 mm?2.

_FL, (4 kN)(1,000 N/KN)(2.0 m)(1,000 mm/m)

= = = 0.364 mm
AE, (314.159 mm?) (70 GPa) (1,000 MPa/GPa)

0
Member (2) has a diameter of 24 mm; therefore, its cross-sectional area is
A, = 452.389 mm?.

_ KL, _ (=16 kN)(1,000 N/N) (2.5 m) (1,000 mm/m) _
AE, (452.389 mm?)(70 GPa)(1,000 MPa/GPa)

0, —1.263 mm

The negative value of 8, indicates that member (2) contracts.

Member (3) is a 16-mm-diameter solid steel rod. Its cross-sectional area is
Az =201.062 mm?2.

_ FL; (8 kN)(1,000 NAN)(3.0 m)(1,000 mm/m)
AE; (201.062 mm?2) (200 GPa) (1,000 MPa/GPa)

03 = 0.597 mm
Geometry of Deformations

Since the joint displacements of B, C, and D relative to joint A are desired, joint A will be
taken as the origin of the coordinate system. How are the joint displacements related to
the member deformations in the compound axial member? The deformation of an axial
member can be expressed as the difference between the displacements of the member end
joints. For example, the deformation of member (1) can be expressed as the difference
between the displacement of joint A (i.e., the —x end of the member) and the displacement
of joint B (i.e., the +x end of the member):

&) = ug—uy

Similarly, for members (2) and (3),
62:MC_MB 83:uD_uC
Since the displacements are measured relative to joint A, define the displacement of joint

A as uy = 0. The preceding equations can be solved for the joint displacements in terms
of the member elongations:

Using these expressions, we can now compute the joint displacements:

ug =8, = 0.364 mm = 0.364 mm —
ue =96, + 6 = 0.364 mm + (—1.263 mm) = —0.899 mm = 0.899 mm «—

up =6, + 6, + 6; = 0.364 mm + (—1.263 mm) + 0.597 mm = —0.302 mm
= 0.302 mm <« Ans.

A positive value for u indicates a displacement in the +x direction, and a negative « indi-
cates a displacement in the —x direction. Joint D moves to the left even though tension
exists in member (3).

The nomenclature and sign conventions introduced in this example may seem
unnecessary for such a simple problem. However, the calculation procedure established
here will prove quite powerful as problems that are more complex are introduced, particu-
larly those problems that cannot be solved with statics alone.




ies Example M5.2

The roof and second floor of a building are supported by the column shown. The structural
steel [E = 200 GPa] column has a constant cross-sectional area of 7,500 mm?. Determine
the deflection of joint C relative to foundation A.

A steel [E = 30,000 ksi] bar of rectangular cross section consists of a uniform-width
segment (1) and a tapered segment (2), as shown. The width of the tapered segment
varies linearly from 2 in. at the bottom to 5 in. at the top. The bar has a constant thick-
ness of 0.50 in. Determine the elongation of the bar resulting from application of the
30-kip load. Neglect the weight of the bar.

Plan the Solution

The elongation of uniform-width segment (1) may be determined from Equation (5.2).
The tapered segment (2) requires the use of Equation (5.5). An expression for the
varying cross-sectional area of segment (2) must be derived and used in the integral
for the 75-in. length of the tapered segment.

SOLUTION

For the uniform-width segment (1), the deformation from Equation (5.2) is

_ FL, S 30 k1ps)(25 in.) _ — 00250 in.
AE,  (2in.)(0.51n.)(30,000 ksi)

1

For tapered section (2), the width w of the bar varies linearly with position y. The cross-
sectional area in the tapered section can be expressed as

Ay(y) = wt =

2in. + 0™ (5 in)|(0.5 in) = 1+ 0.02y in2
75 in.

Since the weight of the bar is neglected, the force in the tapered segment is constant and
simply equal to the 30-kip applied load. Integrate Equation (5.5) to obtain

0 F F, 0 1 30 kips 0 1
—2 _dy=2[ ——ay=
-_["7 \/;

6, = y ly = : dy
75 Ay (Y)E, E, /75 Ay (y) 30,000 ksi ¥ 75 (1 + 0.02y)

= (0.001 in.2)

oE ][ln(l +0.02y))° = 0.0458 in.
. m.




The total elongation of the bar is the sum of the segment elongations:

uy = 8 + 8 = 0.0250 in. + 0.0458 in. = 0.0708 in. | Ans.

Note: If the weight of the bar had not been neglected, the internal force F in both uniform-
width segment (1) and tapered segment (2) would not have been constant, and Equation (5.5)
would be required for both segments. To include the weight of the bar in the analysis, a function
should be derived for each segment, expressing the change in internal force as a function of the
vertical position y. The internal force F at any position y is the sum of a constant force equal to
P and a varying force equal to the self-weight of the axial member below position y. The force
due to self-weight will be a function that expresses the volume of the bar below any position
¥, multiplied by the specific weight of the material that the bar is made of. Since the internal
force F varies with y, it must be included inside the integral in Equation (5.5).

ies Exercises

M5.1  Use the axial deformation equation for three introductory

problems.

M5.2  Apply the axial deformation concept to compound axial
members.

5,000 N
42,000 N i
d=11
li 20kN 30 kN J
6.5m 500 mm 300 mm 300 mm

g L ‘ FIGURE M5.2

“<“— Commmsmm————
FIGURE M5.1

PROBILEMS

P5.1 A steel [E = 200 GPa] rod with a circular cross section is
7.5-m long. Determine the minimum diameter required if the rod
must transmit a tensile force of 50 kN without exceeding an allow-

in the rod is 2,200 1b. If the maximum allowable normal stress in
the rod is 12 ksi, determine

(a) the smallest diameter that can be used for the rod.

able stress of 180 MPa or stretching more than 5 mm.

P5.2 An aluminum [E = 10,000 ksi] control rod with a circular
cross section must not stretch more than 0.25 in. when the tension

(b) the corresponding maximum length of the rod.

P5.3 A 12-mm-diameter steel [E = 200 GPa] rod (2) is con-
nected to a 30-mm-wide by 8-mm-thick rectangular aluminum



[E = 70 GPa] bar (1), as shown in Figure P5.3. Determine the force
P required to stretch the assembly 10.0 mm.

2 P
] | Y——
C
1.30 m

FIGURE P5.3

P5.4 A rectangular bar of length L has a slot in the central half
of its length, as shown in Figure P5.4. The bar has width b, thick-
ness t, and elastic modulus E. The slot has width b/3. If L =
400 mm, b = 45 mm, ¢t = 8 mm, and E = 72 GPa, determine the
overall elongation of the bar for an axial force of P = 18 kN.

P P
< 5 fLﬁ —_—
E
L L L
e— — 1 = — —
4 2 4
FIGURE P5.4

P5.5 An axial member consisting of two polymer bars is sup-
ported at C, as shown in Figure P5.5. Bar (1) has a cross-sectional
area of 540 mm? and an elastic modulus of 28 GPa. Bar (2) has
a cross-sectional area of 880 mm? and an elastic modulus of
16.5 GPa. Determine the deflection of point A relative to support C.

50 kN

@

50 kN

0.85m 1.15m

FIGURE P5.5

P5.6 The roof and second floor of a building are supported by
the column shown in Figure P5.6. The column is a structural steel
W10 X 60 wide-flange section [E = 29,000 ksi; A = 17.6 in.2].
The roof and floor subject the column to the axial forces shown.
Determine

(a) the amount that the first floor will deflect.
(b) the amount that the roof will deflect.

115 kips

FIGURE P5.6

P5.7 Aluminum [E = 70 GPa] member ABC supports a load of
28 kN, as shown in Figure P5.7. Determine

(a) the value of load P such that the deflection of joint C is zero.
(b) the corresponding deflection of joint B.

32-mm

1.0m diameter

50-mm
diameter

A

FIGURE P5.8

FIGURE P5.7

P5.8 A solid brass [E = 100 GPa] axial member is loaded and
supported as shown in Figure P5.8. Segments (1) and (2) each have
a diameter of 25 mm, and segment (3) has a diameter of 14 mm.
Determine

(a) the deformation of segment (2).
(b) the deflection of joint D with respect to the fixed support at A.
(c) the maximum normal stress in the entire axial member.



P5.9 A hollow steel [E = 30,000 ksi] tube (1) with an outside
diameter of 2.75 in. and a wall thickness of 0.25 in. is fastened to a
solid aluminum [E = 10,000 ksi] rod (2) that has a 2-in.-diameter
and a solid 1.375-in.-diameter aluminum rod (3). The bar is loaded
as shown in Figure P5.9. Determine

(a) the change in length of steel tube (1).
(b) the deflection of joint D with respect to the fixed support at A.
(c) the maximum normal stress in the entire axial assembly.

| 60 in.
I
FIGURE P5.9

P5.10 A solid 5/8-in. steel [E = 29,000 ksi] rod (1) supports
beam AB as shown in Figure P5.10. If the stress in the rod must
not exceed 30 ksi and the maximum deformation in the rod must
not exceed 0.25 in., determine the maximum load P that may be
supported.

FIGURE P5.10

P5.11 A l-in.-diameter by 16-ft-long cold-rolled bronze
[E = 15,000 ksi and y = 0.320 1b/in.] bar hangs vertically while
suspended from one end. Determine the change in length of the bar
due to its own weight.

P5.12 A homogeneous rod of length L and elastic modulus E is
a truncated cone with a diameter that varies linearly from d, at one
end to 2d, at the other end. A concentrated axial load P is applied
to the ends of the rod as shown in Figure P5.12. Assume that the

taper of the cone is slight enough for the assumption of a uniform
axial stress distribution over a cross section to be valid.

(a) Determine an expression for the stress distribution on an
arbitrary cross section at x.
(b) Determine an expression for the elongation of the rod.

L

FIGURE P5.12

P5.13 Determine the extension, due to its own weight, of the
conical bar shown in Figure P5.13. The bar is made of aluminum
alloy [E = 10,600 ksi and y = 0.100 1b/in.’]. The bar has a 2-in.
radius at its upper end and a length of L = 20 ft. Assume that the
taper of the bar is slight enough for the assumption of a uniform
axial stress distribution over a cross section to be valid.

FIGURE P5.13 FIGURE P5.14

P5.14 The wooden pile shown in Figure P5.14 has a diame-
ter of 100 mm and is subjected to a load of P = 75 kN. Along
the length of the pile and around its perimeter, soil supplies a
constant frictional resistance of w = 3.70 kN/m. The length of
the pile is L = 5.0 m and its elastic modulus is E = 8.3 GPa.
Calculate

(a) the force Fg needed at base of the pile for equilibrium.
(b) the magnitude of the downward displacement at A relative to B.



5.4 Deformations in a System of Axially Loaded Bars

Many structures consist of more than one axially loaded member, and for these structures, A homogeneous, prismatic
axial deformations and stresses for a system of pin-connected deformable bars must be =~ member (a) is straight, (b) has
determined. The problem is approached through a study of the geometry of the deformed @ constant cross-sectional area,
system, from which the axial deformations of the various bars in the system are obtained. ~ &nd (¢) consists of a single

In this section, the analysis of statically determinate structures consisting of homoge- material (i.e., one value of £).
neous, prismatic axial members will be considered. In analyzing these types of structures,
begin with a free-body diagram showing all forces acting on the key elements of the struc-
ture. Then, investigate how the structure as a whole deflects in response to the deformations
that occur in the axial members.

The assembly shown consists of rigid Y 24m 18m
bar ABC, two fiber-reinforced plastic
(FRP) rods (1) and (3), and FRP post
(2). The modulus of elasticity for the
FRP is E = 18 GPa. Determine the ver-
tical deflection of joint D relative to its

Rigidbar | B c

1 2 3
initial position after the 30-kN load is M @ © 3.0m

applied.

3.6m A, =500 mm? Ay =500 mm?

Plan the Solution
The deflection of joint D relative to its lD

initial position must be computed. The A,= 1,500 mm*
deflection of D relative to joint C is
simply the elongation in member (3). F E
The challenge in this problem, how-

ever, lies in computing the deflection

at C. The rigid bar will deflect and The three axial members are connected to the rigid beam by pins. Assume that
member (1) is pinned to the foundation at F and member (2) is fixed in the
foundation at E.

P =30kN

rotate due to the elongation and con-
traction in members (1) and (2). To de-
termine the final position of the rigid bar, we must first compute the forces in the three
axial members, using equilibrium equations. Then, Equation (5.2) can be used to compute
the deformation in each member. A deformation diagram can be drawn to define the re-
lationships between the rigid bar deflections at A, B, and C. Then, the member deforma-
tions will be related to the rigid bar deflections. Finally, the deflection of joint D can be
computed from the sum of the rigid bar deflection at C and the elongation in member (3).

SOLUTION y
Equilibrium
Draw a free-body diagram (FBD) of the rigid

Rigid bar B C

bar and write two equilibrium equations: ~?~ x
XF,=-F—-F —-F, =0 A

y
SMy = 24 mF — (1.8 m)F, = 0

2.4 m 1.8 m

By inspection, F3; = P = 30 kN. Using this re- vF1 \J F, VF3
sult, we can simultaneously solve the two equa-
tions to give F; = 22.5 kN and F, = -52.5 kN.




Force-Deformation Relationships
Compute the deformations in each of the three members.

FL, _ (22,5 kN)(1,000 NAN) (3.6 m)(1,000 mm/m)

o, = = 9.00 mm
AE, (500 mm?) (18 GPa) (1,000 MPa/GPa)
5. — F,L,  (—=52.5kN)(1,000 N/kN) (3.6 m) (1,000 mm/m) 7,00 mm
2 AE, (1,500 mm?) (18 GPa) (1,000 MPa/GPa) ’
The negative value of 8, indicates that member (2) contracts.
_ FL; (30 kN)(1,000 N/&N) (3.0 m) (1,000 mm/m) 10.00 mm

P AE, (500 mm2) (18 GPa) (1,000 MPa/GPa)

24m , 1.8m

Geometry of Deformations
Sketch the final deflected shape of

the rigid bar. Member (1) elon-
gates, so A will deflect upward.
Member (2) contracts, so B will
deflect downward. The deflection
of C must be determined.

(Note: Joint deflections trans-
Ly=vg verse to the rigid bar are denoted
by v.)

The rigid bar deflections at
E joints A, B, and C can be related

by similar triangles:

Vot vg Ve — Vg . 1.8 m

SVe =
2.4 m 1.8 m 2.4 m

(va +vg)+vg =075(v + vg) + vg

How are the rigid bar deflections v, and vg shown on the sketch related to the member
deformations &, and 8,7 By definition, deformation is the difference between the initial
and final lengths of an axial member. Using the deflected rigid bar sketch, we can define
the deformation in member (1) in terms of its initial and final lengths:

8, = Lgpu — Linita = (Ly +v4) — L, = vy vy =06, = 9.00 mm
Similarly, for member (2),
8y = Lgna — Liniia = (Ly, —vp) — Ly, = —vy v = =6, = —(—=7.00 mm) = 7.00 mm
With these results, the magnitude of the rigid bar deflection at C can now be computed:

ve = 0.75(v, + vg) + vg = 0.75(9.00 mm + 7.00 mm) + 7.00 mm = 19.00 mm

The direction of the deflection is shown on the deformation diagram; that is, joint C
deflects 19.00 mm downward.

Deflection of D
The downward deflection of joint D is the sum of the rigid bar deflection at C and the
elongation in member (3):

vp = Ve + 63 =19.00 mm + 10.00 mm = 29.0 mm Ans.




ies Example M5.4

An assembly consists of three rods attached to rigid bar AB. Rod (1) is steel, and
rods (2) and (3) are aluminum. The area and elastic modulus of each rod is noted
on the sketch. A force of 80 kN is applied at D. Determine the vertical deflections

of points A, B, C, and D.

A,= 150 mm?
E, = 200 GPa

A,= 400 mm?
E,= 70 GPa
1.8m

The preceding examples considered structures consisting of parallel axial bars,
making the geometry of deformation for the structure relatively straightforward to analyze.
Suppose, for example, that one is interested in a structure in which the axial members are
not parallel. The structure shown in Figure 5.9 consists of three axial members (AB, BC,
and BD), which are connected to a common joint at B. In the figure, the solid lines represent
the unstrained (i.e., unloaded) configuration of the system and the dashed lines represent
the configurations due to a force applied at joint B. From the Pythagorean theorem, the

actual deformation in bar AB is

Sup = V(L +y)? +x* — L
Transposing the last term and squaring both sides gives
83p + 2L8,p + 2 = [* 4+ 2Ly + y? + x?

If the displacements are small (the usual case for stiff materials and
elastic action), the terms involving the squares of the displacements
may be neglected; hence, the deformation in bar AB is

Oup = Y
In a similar manner, the deformation in bar BD is
Opp ~ X

The axial deformation of bar BC is

Spc = V(Rcos® + x)? + (Rsinf + v)? — R
Transposing the last term and squaring both sides gives
83c + 2Réy- + R?

= R2c0s26 + 2Rxcosf + x2 + R%sin%6 + 2Rysin6 + y?

! ' 1.8m
A;= 400 mm?||(3)
E, = 70 GPa
o 2
80 kN
X
B,
-—
y
L

FIGURE 5.9 Axial structure with intersecting
members.



AXIAL DEFORMATION

The second-degree displacement terms can be neglected since the displacements are small.
Using the trigonometric identity sin? § + cos? § = 1, the deformation in member BC can be
stated as

5 Ogc ~ xcos@ + ysinf

or, in terms of the deformations of the other two bars,
Opc = Opp cosO + 8,5 sin6

The geometric interpretation of this equation is indicated by the shaded
right triangles in Figure 5.10.

The general conclusion that may be drawn from the preceding discus-
sion is that, for small displacements, the axial deformation in any bar may
be assumed equal to the component of the displacement of one end of the
bar (relative to the other end) taken in the direction of the unstrained orien-
tation of the bar. Rigid members of the system may change orientation or
position, but they will not be deformed in any manner. For example, if bar
BD of Figure 5.9 were rigid and subjected to a small upward rotation, point
B could be assumed to be displaced vertically through a distance of y, and

FIGURE 5.10 Geometric interpretation of 8 g would be equal to y siné.

member deformations.

A tie rod (1) and a pipe strut (2) are used to support a 50-kN load,

as shown. The cross-sectional areas are A; = 650 mm? for tie rod
(1) and A, = 925 mm? for pipe strut (2). Both members are made

of structural steel that has an elastic modulus of £ = 200 GPa.

(a) Determine the axial normal stresses in tie rod (1) and
pipe strut (2).
(b) Determine the elongation or contraction of each member.
(c) Sketch a deformation diagram that shows the displaced
position of joint B.
(d) Compute the horizontal and vertical displacements of joint B.

Plan the Solution
From a free-body diagram of joint B, the internal axial forces
in members (1) and (2) can be calculated. The elongation

(or contraction) of each member can then be computed from
Equation (5.2). To determine the displaced position of joint B,
the following approach will be used: We will imagine that the pin at joint B is temporar-
ily removed, allowing members (1) and (2) to deform either in elongation or contraction.
Then, member (1) will be rotated about joint A, member (2) will be rotated about joint C,
and the intersection point of these two members will be located. We will imagine that the
pin at B is now reinserted in the joint at this location. The deformation diagram describ-
ing the preceding movements will be used to compute the horizontal and vertical dis-
placements of joint B.

SOLUTION

(a) Member Stresses

The internal axial forces in members (1) and (2) can be determined from equilibrium
equations based on a free-body diagram of joint B. The sum of forces in the horizontal




(x) direction can be written as F B

IF, = —F — F,c0s42.61° = 0 "E /

and the sum of forces in the vertical (y) direction can be expressed as 42.61° /
3F, = —F,sin42.61° — 50 kN = 0 >/ )
~F, = —73.85 kN Fy
Backsubstituting this result into the previous equation gives 50 kN
F, = 5436 kN

The axial normal stress in tie rod (1) is

R (54.36 kN)(1,000 N/AN)

- — 83.63 N/mm? (T) = 83.6 MPa Ans.
S 650 mm? D D

and the axial normal stress in pipe strut (2) is

F, (7385 KN)(1,000 NAN)
A, 925 mm?

o, = = 79.84 N/mm? (C) = 79.8 MPa (C) Ans.

(b) Member Deformations
The deformations in the members are determined from either Equation (5.1) or (5.2). The
elongation in tie rod (1) is

oL, (83.63 N/'mm?)(1.25 m)(1,000 mm/m)
E, 200,000 N/mm?

o = = 0.5227mm Ans.

The length of inclined pipe strut (2) is

L, =J125m)? + (1.15m)? = 1.70 m
and its deformation is

o,L,  (—79.84 N/mm?)(1.70 m)(1,000 mm/m)
E, 200,000 N/mm?

0, = —0.6786 mm  Ans.

The negative sign indicates that member (2) contracts (i.e., gets shorter).

(c) Deformation Diagram B 6,=0.5227 mm
Step 1: To determine the displaced position of joint B, let us first imagine that
the pin at joint B is temporarily removed, allowing members (1) and (2) to deform K
freely by the amounts computed in part (b). Since joint A of the tie rod is fixed to ~ 42.61°
a support, it remains stationary. Thus, when tie rod (1) elongates by 0.5227 mm, \:0
joint B moves to the right, away from joint A to the displaced position B;. 1)
Similarly, joint C of the pipe strut remains stationary. When member (2)
contracts by 0.6782 mm, joint B of the pipe strut moves foward joint C, ending up in
displaced position B,. These deformations are shown in the figure at the right.

B,

Step 2: In the previous step, we imagined removing the pin at B and allowing each mem-
ber to deform freely, either elongating or contracting, as dictated by the internal forces
acting in each member. In actuality, however, the two members are connected by pin B. The
second step of this process requires finding the displaced position B" of the pin connecting
tie rod (1) and pipe strut (2) that is consistent with member elongations 8 ; and J ,.
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Due to the axial deformations, both tie rod (1) and pipe strut (2) must
rotate slightly if they are to remain connected at pin B. Tie rod (1) will pivot
about stationary end A, and pipe strut (2) will pivot about stationary end C.
If the rotation angles are small, the circular arcs that describe possible dis-
placed positions of joint B can be replaced by straight lines that are perpen-
dicular to the unloaded orientations of the members.

Consider the figure shown. As tie rod (1) rotates clockwise about station-
ary end A, joint B; moves downward. If the rotation angle is small, the circular
arc describing the possible displaced positions of joint B; can be approxi-
mated by a line that is perpendicular to the original orientation of tie rod (1).

Similarly, as pipe strut (2) rotates clockwise about stationary end C,
the circular arc describing the possible displaced positions of joint B, can
be approximated by a line that is perpendicular to the original orientation
of member (2).

The intersection of these two perpendiculars at B' marks the final
displaced position of joint B.

Step 3: For the two-member structure considered here, the deformation dia-
gram forms a quadrilateral shape. The angle between member (2) and the x axis
is 42.61°; therefore, the obtuse angle at B must equal 180° — 42.61° = 137.39°.

Since the sum of the four interior angles in a quadrilateral shape must
equal 360° and since the angles at B, and B, are each 90°, the acute angle
at B' must equal 360° — 90° — 90° — 137.39° = 42.61°.

Using this deformation diagram, the horizontal and vertical distances be-
tween initial joint position B and displaced joint position B’ can be determined.

(d) Joint Displacement

The deformation diagram can now be analyzed to determine the location of
B', which is the final position of joint B. By inspection, the horizontal
translation Ax of joint B is

Ax = 8§, = 0.5227 mm = 0.523 mm Ans.

Computation of the vertical translation Ay requires several intermediate
steps. From the deformation diagram, the distance labeled b is simply equal
to the magnitude of deformation §,; therefore, b = [8,| = 0.6782 mm. The
distance a is found from

a

cos42.61° = ——
0.5227 mm

c.a = (0.5227 mm)cos42.61° = 0.3847 mm
The vertical translation Ay can now be computed as
(a +b)
Ay

(a +b) _ (0.3847 mm + 0.6782 mm)
sin42.61° sin42.61°

sin42.61° =

= 1.570 mm Ans.

By inspection, joint B displaces downward to the right.
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P5.15 Rigid bar ABCD is loaded and supported as shown in
Figure P5.15. Bars (1) and (2) are unstressed before the load P is
applied. Bar (1) is made of bronze [E = 100 GPa] and has a cross-
sectional area of 520 mm?2. Bar (2) is made of aluminum [E =
70 GPa] and has a cross-sectional area of 960 mm?. After the load
P is applied, the force in bar (2) is found to be 25 kN (in tension).
Determine

(a) the stresses in bars (1) and (2).

(b) the vertical deflection of point A.
(c) the load P.

FIGURE P5.15

P5.16 In Figure P5.16, aluminum [E = 70 GPa] links (1) and
(2) support rigid beam ABC. Link (1) has a cross-sectional area of
300 mm?, and link (2) has a cross-sectional area of 450 mm?. For
an applied load of P = 55 kN, determine the rigid beam deflection
at point B.

- 4,000 mm

L 1,400 mm BI 800 mm >||

P
FIGURE P5.16

P5.17 Rigid bar ABC is supported by bronze rod (1) and alumi-
num rod (2), as shown in Figure P5.17. A concentrated load P is
applied to the free end of aluminum rod (3). Bronze rod (1) has an
elastic modulus of £, = 15,000 ksi and a diameter of d; = 0.50 in.
Aluminum rod (2) has an elastic modulus of E, = 10,000 ksi and

a diameter of d, = 0.75 in. Aluminum rod (3) has a diameter of
d; = 1.0 in. The yield strength of the bronze is 48 ksi, and the yield
strength of the aluminum is 40 ksi.

(a) Determine the magnitude of load P that can safely be applied to
the structure if a minimum factor of safety of 1.67 is required.

(b) Determine the deflection of point D for the load determined
in part (a).

(c) The pin used at B has an ultimate shear strength of 54 ksi. If a
factor of safety of 3.0 is required for this double shear pin
connection, determine the minimum pin diameter that can be

used at B.
Aluminum
)
Bronze

6 ft

—1.5 ft—

A B ’| C
Aluminum
3 ft
(3)
ol L
lP

P5.18 The truss shown in Figure P5.18 is constructed from three
aluminum alloy members, each having a cross-sectional area of
A = 850 mm? and an elastic modulus of E = 70 GPa. Assume that
a=4.0m,b = 10.5m, and ¢ = 6.0 m. Calculate the horizontal dis-
placement of roller B when the truss supports a load of P = 12 kN.

FIGURE P5.17

FIGURE P5.18



P5.19 The rigid beam in Figure P5.19 is supported by links (1)
and (2), which are made from a polymer material [E = 16 GPa].
Link (1) has a cross-sectional area of 400 mm?2, and link (2) has a
cross-sectional area of 800 mm?2. Determine the maximum load P
that may by applied if the deflection of the rigid beam is not to
exceed 20 mm at point C.

1,250 mm

Rigid beam

1,000 mm

R

FIGURE P5.19

P5.20 The pin-connected assembly shown in Figure P5.20
consists of solid aluminum [E = 70 GPa] rods (1) and (2) and solid
steel [E = 200 GPa] rod (3). Each rod has a diameter of 16 mm.
Assume that a = 2.5 m, b = 1.6 m, and ¢ = 0.8 m. If the normal
stress in any rod may not exceed 150 MPa, determine

(a) the maximum load P that may be applied at A.
(b) the magnitude of the resulting deflection at A.

A G)
4

FIGURE P5.20

P5.21 A tie rod (1) and a pipe strut (2) are used to support
a load of P = 25 kips, as shown in Figure P5.21. Pipe strut (2)
has an outside diameter of 6.625 in. and a wall thickness of
0.280 in. Both the tie rod and the pipe strut are made of structural

steel with a modulus of elasticity of £ = 29,000 ksi and a yield
strength of oy = 36 ksi. For the tie rod, the minimum factor of
safety with respect to yield is 1.5 and the maximum allowable
axial elongation is 0.30 in. Assume that a = 21 ft, b = 9 ft, and
c =27 ft.

(a) Determine the minimum diameter required to satisfy both
constraints for tie rod (1).
(b) Draw a deformation diagram showing the final position of

joint B.
FA

(M .

Q

FIGURE P5.21

P5.22 Two axial members are used to support a load of
P = 72 kips, as shown in Figure P5.22. Member (1) is 12-ft long, it
has a cross-sectional area of A; = 1.75 in.2, and it is made of struc-
tural steel [E = 29,000 ksi]. Member (2) is 16-ft long, it has a
cross-sectional area of A, = 4.50 in.2, and it is made of an aluminum
alloy [E = 10,000 ksi].

(a) Compute the normal stress in each axial member.

(b) Compute the deformation of each axial member.

(c) Draw a deformation diagram showing the final position of
joint B.

(d) Compute the horizontal and vertical displacements of
joint B.

FIGURE P5.22



5.5 Statically Indeterminate Axially Loaded Members

In many simple structures and mechanical systems constructed with axially loaded mem-
bers, it is possible to determine the reactions at supports and the internal forces in the indi-
vidual members by drawing free-body diagrams and solving equilibrium equations. Such
structures and systems are classified as statically determinate.

For other structures and mechanical systems, the equations of equilibrium alone are not
sufficient for the determination of axial forces in the members and reactions at supports. In
other words, there are not enough equilibrium equations to solve for all of the unknowns in
the system. These structures and systems are termed statically indeterminate. Structures of
this type can be analyzed by supplementing the equilibrium equations with additional equa-
tions involving the geometry of the deformations in the members of the structure or system.
The general solution process can be organized into a five-step procedure:

Step 1 — Equilibrium Equations: Equations expressed in terms of the unknown axial
forces are derived for the structure on the basis of equilibrium considerations.

Step 2 — Geometry of Deformation: The geometry of the specific structure is evalu-
ated to determine how the deformations of the axial members are related.

Step 3 — Force-Deformation Relationships: The relationship between the internal
force in an axial member and its corresponding elongation is expressed by Equation (5.2).

Step 4 — Compatibility Equation: The force—deformation relationships are substi-
tuted into the geometry-of-deformation equation to obtain an equation that is based on
the structure’s geometry, but expressed in terms of the unknown axial forces.

Step 5 — Solve the Equations: The equilibrium equations and the compatibility equa-
tion are solved simultaneously to compute the unknown axial forces.

The use of this procedure to analyze a statically indeterminate axial structure is illustrated
in the next example.

As discussed in Chapters 1 and 2, it is convenient to use the notion of a rigid element to
develop axial deformation concepts. A rigid element (such as a bar, a beam, or a plate)
represents an object that is infinitely strong and does not deform in any way. While it
may translate or rotate, a rigid element does not stretch, compress, skew, or bend.

In engineering literature,
force—deformation
relationships are also called
constitutive relationships
since these relationships
idealize the physical properties
of the material—in other words,
the constitution of the material.

A 1.5-m-long rigid beam ABC is supported by three axial members, as shown in the figure
that follows. A concentrated load of 220 kN is applied to the rigid beam directly under B.
The axial members (1) connected at A and at C are identical aluminum alloy
[E = 70 GPa] bars each having a cross-sectional area of A; = 550 mm? and a length of
L, = 2 m. Member (2) is a steel [E = 200 GPa] bar with a cross-sectional area of
A, = 900 mm? and a length of L, = 2 m. All members are connected with simple pins.
If all three bars are initially unstressed, determine

(a) the normal stresses in the aluminum and steel bars, and
(b) the deflection of the rigid beam after application of the 220-kN load.

Plan the Solution
A free-body diagram (FBD) of rigid beam ABC will be drawn, and from this sketch, equi-
librium equations will be derived in terms of the unknown member forces F; and F>.




Since the axial members and the 220-kN load are
arranged symmetrically relative to midpoint B of the
rigid beam, the forces in the two aluminum bars (1)
must be identical. The internal forces in the axial
members are related to their deformations by Equation
(5.2). Because members (1) and (2) are connected to
rigid beam ABC, they are not free to deform indepen-
dently of each other. Based on this observation and
considering the symmetry of the structure, we can as-
sert that the deformations in members (1) and (2) must
be equal. This fact can be combined with the relation-
ship between member force and deformation [Equa-
tion (5.2)] to derive another equation, which is ex-
pressed in terms of the unknown member forces F
and F,. This equation is called a compatibility equa-
tion. The equilibrium and compatibility equations can
be solved simultaneously to calculate the member
f f 1 forces. After F; and F, have been determined, the
normal stresses in each bar and the deflection of rigid
beam ABC can be calculated.

F, F, F A SOLUTION
(1) )

0.75 m | 0.75 m

(e Step 1— Equilibrium Equations: A FBD of
C rigid beam ABC is shown. From the overall sym-
_ metry of the structure and the loads, we know that
the forces in members AD and CF must be iden-

220 kN l tical; therefore, we will denote the internal forces

in each of these members as F;. The internal force

075 m | 075 m in member BE will be denoted F,.
f ' From this FBD, equilibrium equations can

be written for (a) the sum of forces in the vertical
direction (i.e., the y direction) and (b) the sum of moments about joint A:

ZF, = 2F, + F, — 220 kN = 0| (a)

M, = (1.5 m)F, + (0.75 m)F, — (0.75 m)(220 kN) = 0 | (b)

Two unknowns appear in these equations (F; and F»), and at first glance it seems as
though we should be able to solve them simultaneously for F; and F,. However, if
Equation (b) is divided by 0.75 m, then Equations (a) and (b) are identical. Conse-
quently, a second equation that is independent of the equilibrium equation must be
derived in order to solve for F| and F,.

Step 2 — Geometry of Deformation: By symmetry, we know that rigid beam ABC
must remain horizontal after the 220-kN load is applied. Consequently, joints A, B, and
C must all displace downward by the same amount: v, = vg = v. How are these rigid
beam joint displacements related to member deformations 8, and 6,? Since the mem-
bers are connected directly to the rigid beam (and there are no other considerations
such as gaps or clearances in the pin connections),

vy = Ve =06 and vB=82| (©




Step 3 — Force-Deformation Relationships: We know that the elongations in
an axial member can be expressed by Equation (5.2). Therefore, the relationship
between internal axial force and member deformation can be expressed for each
member as

b= amd 8 = 22 (d)
AlEl A2E2

Step 4 — Compatibility Equation: The force—deformation relationships [Equation
(d)] can be substituted into the geometry-of-deformation equation [Equation (c)] to
obtain a new equation, which is based on deformations, but expressed in terms of the
unknown member forces F; and F,:

KL F,L
V= vy = Ve ...A1E1 _ AzEz (e)
i) D=

Step 5 — Solve the Equations: From compatibility equation (e), derive an
expression for F:

Ly A B _ o (2m)(550 mm?) (70 GPa) _

F =F = 0.2139F.
! % (2 m) (900 mm2) (200 GPa) 2 ®

’ Ll AZ EZ

Substitute Equation (f) into Equation (a) and solve for F| and F5:

IF, = 2F, + F, = 2(02139F,) + F, = 220kN

o F, =154.083 kN and F, = 32.958 kN

The normal stress in aluminum bars (1) is

o = ﬂ = w = 59.9 MPa (T) Ans.
A, 550 mm?
and the normal stress in steel bar (2) is
—i— M =171.2 MPa (T) Ans.

g, = =
> A, 900 mm?

From Equation (c), the deflection of the rigid beam is equal to the deformation of the
axial members. Since both members (1) and (2) elongate the same amount, either term
in Equation (d) can be used.

8 = AL, _ (32,958 N)(2,000 mm) 1712 mm
AE, (550 mm?)(70,000 N/mm?)
Therefore, the rigid beam deflection is v4 = vg = ve = §; = 1.712 mm. Ans.

By inspection, the rigid beam deflects downward.




AXIAL DEFORMATION The five-step procedure demonstrated in the previous example provides a versatile
method for the analysis of statically indeterminate structures. Additional problem-
solving considerations and suggestions for each step of the process are discussed in the
table that follows.

Solution Method for Statically Indeterminate Axial Structures

Step 1 Equilibrium Equations

Draw one or more free-body diagrams (FBDs) for the structure, focusing on the
joints that connect the members. Joints are located wherever (a) an external force
is applied, (b) the cross-sectional properties (such as area or diameter) change,
(c) the material properties (i.e., E) change, or (d) a member connects to a rigid
element (such as a rigid bar, beam, plate, or flange). Generally, FBDs of reaction
joints are not useful.

Write equilibrium equations for the FBDs. Note the number of unknowns
involved and the number of independent equilibrium equations. If the number of
unknowns exceeds the number of equilibrium equations, a deformation equation
must be written for each extra unknown.

Comments:

® [.abel the joints with capital letters and label the members with numbers. This
simple scheme can help you to clearly recognize effects that occur in members
(such as deformations) and effects that pertain to joints (such as deflections of
rigid elements).

® As arule, when cutting a FBD through an axial member, assume that the
internal member force is tension. The consistent use of tension internal forces
along with positive deformations (in Step 2) proves quite effective for many
situations, particularly those where temperature change is a consideration.
Temperature change will be discussed in Section 5.6.

Step 2 Geometry of Deformation

This step is distinctive to statically indeterminate problems. The structure or
system should be studied to assess how the deformations of the axial members
are related to each other. Most of the statically indeterminate axial structures fall
into one of three general configurations:

1. Coaxial or parallel axial members.

2. Axial members connected end-to-end in series.

3. Axial members connected to a rotating rigid element.

Characteristics of these three categories are discussed in more detail shortly.

Step 3 Force—Deformation Relationships

The relationship between internal force and deformation in axial member i is
expressed by

5 — Liki
L AE

As a practical matter, writing down force—deformation relationships for the axial
members at this stage of the solution is a helpful routine. These relationships will
be used to construct the compatibility equation(s) in Step 4.

Step 4 Compatibility Equation

The force—deformation relationships (from Step 3) are incorporated into the
geometric relationship of member deformations (from Step 2) to derive a new
equation, which is expressed in terms of the unknown member forces. Together,
the compatibility and equilibrium equations provide sufficient information to
solve for the unknown variables.

Step 5 Solve the Equations

The compatibility equation and the equilibrium equation(s) are solved
simultaneously. While conceptually straightforward, this step requires careful
attention to calculation details such as sign conventions and unit consistency.




Successful application of the five-step solution method depends in no small part on
the ability to understand how axial deformations are related in a structure. The table that

STATICALLY INDETERMINATE
AXIALLY LOADED MEMBERS

follows highlights three common categories of statically indeterminate structures, which
comprise axial members. For each general category, possible geometry-of-deformation

equations are discussed.

Geometry of Deformations for Typical Statically Indeterminate Axial Structures

Equation Form

Comments

Typical Problems

1. Coaxial or

parallel axial members.

6, + gap = o,
8 =6, + gap

Problems in this category include
side-by-side plates, a tube with a
filled core, a concrete column with
embedded reinforcing steel, and
three parallel rods symmetrically
connected to a rigid bar.

The deformation of each axial
member must be the same unless
there is a gap or clearance in the
connections.

If there is a gap, then the
deformation of one member
equals the deformation of the
other member plus the gap
distance.

l360 kN

6in

—

(2) Ceramic core

Brass shell (1)

i

2. Axial members connected end-to-end in series.

5, +8 =0

6, + 8, = constant

Problems in this category include
two or more members connected
end-to-end.

If there are no gaps or clearances
in the configuration, the member
deformations must sum to zero; or
in other words, an elongation in
member (1) is accompanied by an
equal contraction in member (2).

If there is a gap or clearance
between the two members or if
the supports move as the load is
applied, then the sum of the
member deformations equals the
specified distance.

3R2in.

T

44 in.

0.

04-in. gap




Equation Form

Comments

Typical Problems

3. Axial members connected to a rotating rigid element.

Problems in this category feature
arigid bar or a rigid plate to
which the axial members are
attached.

The rigid element is pinned

so that it rotates about a fixed
point. Since the axial members
are attached to the rotating
element, their deformations are
constrained by the geometry of
the deflected rigid bar position.
The relationship between member
deformations can be found from
the principle of similar triangles.

If both members elongate or both
members contract as the rigid bar
rotates, the first equation form is
obtained.

If one member elongates while
the other member contracts as the
rigid bar rotates, the geometry-of-
deformation equation takes the
second form.

If there is a gap or clearance in a
joint, then the geometry-of-
deformation equation takes the
third form.

< ><

Ag i @P

36in. | 48 in. 14 in.

A steel pipe (1) is attached to an aluminum pipe (2) at flange B. Both steel pipe (1) and
aluminum pipe (2) are attached to rigid supports at A and C, respectively.

Member (1) has a cross-sectional area
of A; = 3,600 mm?, an elastic modulus of
E; = 200 GPa, and an allowable normal
stress of 160 MPa. Member (2) has a cross-

sectional area of A, = 2,000 mm?, an elastic
modulus of E, = 70 GPa, and an allowable
normal stress of 120 MPa. Determine the
maximum load P that can be applied to flange

B without exceeding either allowable stress.




Plan the Solution

Consider a free-body diagram (FBD) of flange B, and write the equilibrium equation
for the sum of forces in the x direction. This equation will have three unknowns: Fy, F5,
and P.

Determine the geometry-of-deformation equation and write the force—deformation
relationships for members (1) and (2). Substitute the force—deformation relationships into
the geometry-of-deformation equation to obtain the compatibility equation. Then, use the
allowable stress and area of member (1) to compute a value for P. Repeat this procedure,
using the allowable stress and area of member (2), to compute a second value for P. Choose
the smaller of these two values as the maxi-
mum force P that can be applied to flange B.

P
2
SOLUTION ﬁ B = -
Step 1 — Equilibrium Equations: The b s S
free-body diagram for joint B is shown. B >
2

Notice that tension internal forces are
assumed in both member (1) and mem-
ber (2) [even though one would expect to find that member (1) would actually be in
compression].
The equilibrium equation for joint B is simply

SF =F,—F—P=0 (a)

Step 2 — Geometry of Deformation: Since the compound axial member is attached
to rigid supports at A and C, the overall deformation of the structure must be zero. In

other words,
®)

Step 3 — Force-Deformation Relationships: Write generic force-deformation
relationships for the members:

F|L F,L
==L and 8, 249

AlEl - A2E2 (©

Step 4 — Compatibility Equation: Substitute Equations (c) into Equation (b) to ob-
tain the compatibility equation:

FlLl + F2L2

=0
AE AE, @

Step 5 — Solve the Equations: First, we will substitute for F, in Equation (a). To
accomplish this, solve Equation (d) for F»:

_rLAE

F, =
? 1LZAIEI

(e)

Substitute Equation (e) into Equation (a) to obtain

pLAE

LAE
' L2 Al El

L, A E,

-1 = 1

r|=p

%
L




There are still two unknowns in this equation; consequently, another equation is necessary
to obtain a solution. Let F| equal the force corresponding to the allowable stress in mem-
ber (1) oyow,1 and solve for the applied load P. (Note: The negative sign attached to F
can be omitted here since we are interested only in the magnitude of load P.)

L, A E,
L, A E

N 1] = (160 N/mm?)(3,600 mmz)[[%][

)

3,600\ 200

Tallow, 1431
= (576,000 N)[1.25] = 720,000 N = 720 kN = P

Repeat this process for member (2). Rearrange Equation (e) to obtain an expression
for F:

_pLAE

F =
1 2 L, A E, )

Substitute Equation (f) into Equation (a) to obtain

B+ ME gl

Ly Ay E,

L AE
Ll A2 E2

Let F, equal the allowable force, and solve for the corresponding applied force P:
1+ L—Ziﬂ] = (120 N/mm?)(2,000 mmz)ll + [ﬁ][@][@]l
L A E, 1.8)12,000)( 70

= (240,000 N)[5.0] =1,200,000 N = 1,200 kN = P

Taow2 A2

Therefore, the maximum load P that can be applied to the flange at B is P = 720 kN.
Ans.

ies Example M5.5

A steel rod (1) is attached to a steel post (2) at flange B. A downward load of 110 kN is ap-
plied to flange B. Both rod (1) and post (2) are attached to rigid supports at A and C, respec-
tively. Rod (1) has a cross-sectional area of 800 mm? and an elastic modulus of 200 GPa.

Post (2) has a cross-sectional area of 1,600 mm? and an elastic modulus of 200 GPa.
1,500 mm

(a) Compute the normal stress in rod (1) and post (2).
(b) Compute the deflection of flange B.




ies Example M5.6

An aluminum tube (1) encases a brass core (2). The two components are bonded together P =30 kN
to form an axial member that is subjected to a downward force of 30 kN. Tube (1) has an
outer diameter of D = 30 mm and an inner diameter of d = 22 mm. The elastic modulus of
the aluminum is 70 GPa. The brass core (2) has a diameter of 4 = 22 mm and an elastic
modulus of 105 GPa. Compute the normal stresses in tube (1) and core (2).

Structures with a Rotating Rigid Bar

Problems involving a rotating rigid element can be particularly difficult. For these struc-
tures, a deformation diagram should be drawn at the outset. This diagram is essential to
obtaining the correct geometry-of-deformation equation. In general, draw the deformation
diagram, assuming tension in the internal members. MecMovies Example M5.7 illustrates
problems of this type.

ies Example M5.7

Rigid bar AD is pinned at A and supported by bars (1) and (2) at B and

C, respectively. Bar (1) is aluminum and bar (2) is brass. A concen- E; =70 GPa
trated load P = 36 kN is applied to the rigid bar at D. Compute the Lj; =500 mm
normal stress in each bar and the downward deflection of the rigid bar A = 420 mm?

at D.
A, =320 mm?
S @, =700 mm
rigid bar E, = 105 GPa

Some structures with rotating rigid bars have opposing members; that is, one member
is elongated, while the other member is compressed. Figure 5.11 illustrates the subtle dif-
ference between these two types of configuration.



AXIAL DEFORMATION

For the structure with two tension members (Figure 5.11a), the geometry of deforma-
tions in terms of joint deflections vy and v is found by similar triangles (Figure 5.11b):
Yp _Yc
Y Xc
From Figure 5.11¢, the member deformations 6 ; and 8, are related to the joint deflections
vg and v¢ by

‘51 = Ling = Liniias = (Ly tvp) =Ly =vp  Svp=§ ‘

and

X P
B |
}_)A B C lD
|Q O]

e

FIGURE 5.11a Configuration with two tension members.

FIGURE 5.11c Showing member deformations.



Therefore, the geometry-of-deformation equation can be written in terms of member
deformations as

4 _3%

i (5.7)

For the structure with two opposing axial members (Figure 5.11d), the geometry-of-deforma-
tion equation in terms of joint deflections vz and v is the same as previously (Figure 5.11¢):

Y _ Ve

Xp Xc

From Figure 5.11f, the member deformations 6 ; and 6 , are related to the joint deflections
vg and v¢ by

‘51 = Lgna — Liniga = (Ly T vg) —L; = vg <V = 51‘

and

‘52 = Lina — Liniga = (Ly —ve) = Ly = —v¢ Ve T _32‘ (5-8)

Note the subtle difference between Equations (5.6) and Equations (5.8). The geometry-of-
deformation equation for the opposing members configuration in terms of member defor-
mations is, therefore, as shown:

1O NG

Py —; (5.9)

e

FIGURE 5.11d Configuration with opposing members.

FIGURE 5.11e Deformation diagram.

STATICALLY INDETERMINATE
AXIALLY LOADED MEMBERS



AXIAL DEFORMATION

FIGURE 5.11f Showing member deformations.

An equilibrium equation and the corresponding deformation equation must be
compatible; that is, when a tensile force is assumed for a member in a free-body dia-
gram, a tensile deformation must be indicated for the same member in the deformation
diagram. In the configurations shown here, internal tension forces have been assumed
for all axial members. For the structure shown in Figure 5.11d, the displacement of the
rigid bar at C (Figure 5.11e), however, corresponds to contraction of axial member (2).
As shown in Equations (5.8), this condition produces a negative sign for §,, and as a
result, the geometry-of-deformation equation in Equation (5.9) is slightly different
from the geometry-of-deformation equation found for the structure with two tension
members [Equation (5.7)].

Rigid bar structures with opposing axial members are analyzed in MecMovies
Examples M5.8 and M5.9.

ies Example M5.8

A pin-connected structure is loaded and supported as shown. Member ABCD is
arigid bar that is horizontal before the load P is applied. Members (1) and (2) are
aluminum [E = 70 GPa], with cross-sectional areas of A; = A, = 160 mmZ.
Member (1) is 900 mm in length, and member (2) is 1,250 mm. A load of P = 35 kN
is applied to the structure at D.

(a) Calculate the axial forces in members (1) and (2).
(b) Compute the normal stress in members (1) and (2).
(c) Compute the downward deflection of the rigid bar at D.




ies Example M5.9

Rigid bar ABCD is pinned at C and supported by bars (1) and (2) at
A and D, respectively. Bar (1) is aluminum and bar (2) is bronze.
A concentrated load P = 80 kN is applied to the rigid bar at B. Compute
the normal stress in each bar and the downward deflection of the
rigid bar at A.

d

A, =70 mm?

An aluminum bar (2) is to be connected to a brass post (1). When the two
it was discovered that

axial members were installed, however,

there was a 1/16-in. gap between flange B and the brass post. The brass B
post (1) has a cross-sectional area of A; = 0.60 in.2 and an elastic
modulus of E; = 16,000 ksi. The aluminum bar (2) has properties of
A, = 0.20 in.2 and E, = 10,000 ksi.

If bolts are inserted through the flange at B and tightened until the
gap is closed, how much stress will be induced in each of the axial
members?

les Exercises

300 mm L, = 600 mm
E, = 200 GPa
A; =625 mm?’
150 mm L, =150 mm
E, = 100 GPa
ies Example M5.10
1/16-inch

note:
1/16~inch = 0.0625 in

—>|

M5.5 A composite axial structure consists of two rods joined
at flange B. Rods (1) and (2) are attached to rigid supports at A
and C, respectively. A concentrated load P is applied to flange B
in the direction shown. Determine the internal forces and normal
stresses in each rod. Also, determine the deflection of flange B in
the x direction.

2200 mm
r 11 1

FIGURE M5.5

1700 mm

M5.6 A composite axial structure consists of a tubular shell (1)
bonded to length AB of a continuous solid rod that extends from A
to C, which is labeled (2) and (3). A concentrated load P is applied
to the free end C of the rod in the direction shown. Determine
the internal forces and normal stresses in shell (1) and core (2)
(i.e., between A and B). Also, determine the deflection in the x
direction of end C relative to support A.

Y

FIGURE M5.6



M5.7 Determine the internal forces and normal stresses in bars
(1) and (2). Also, determine the deflection of the rigid bar in the x
direction at C.

510 mm

FIGURE M5.7

PROBLEMS

M5.8 Determine the internal forces and normal stresses in bars
(1) and (2). Also, determine the deflection of the rigid bar in the x
direction at C.

FIGURE M5.8

P5.23  The 200 X 200 X 1,200-mm oak [E = 12 GPa] block (2)
shown in Figure P5.23 is reinforced by bolting two 6 X 200 X
1,200 mm steel [E = 200 GPa] plates (1) to opposite sides of
the block. A concentrated load of 360 kN is applied to a rigid cap.
Determine

(a) the normal stresses in the steel plates (1) and the oak block (2).
(b) the shortening of the block when the load is applied.

FIGURE P5.23

P5.24 Two identical steel [E = 200 GPa] pipes, each with a
cross-sectional area of 1,475 mm?2, are attached to unyielding
supports at the top and bottom, as shown in Figure P5.24/25. At
flange B, a concentrated downward load of 120 kN is applied.
Determine

(a) the normal stresses in the upper and lower pipes.
(b) the deflection of flange B.

P5.25 Solve Problem 5.24 if the lower support in Figure P5.24/25
yields and displaces downward 1.0 mm as the load P is applied.

e

3.0m

L B

120 kN
3.7m

2)
C

FIGURE P5.24/25



P5.26 A composite bar is fabricated by brazing aluminum alloy
[E = 10,000 ksi] bars (1) to a center brass [E = 17,000 ksi] bar (2),
as shown in Figure P5.26. Assume that w = 1.25 in., a = 0.25 in.,
and L = 40 in. If the total axial force carried by the two aluminum
bars must equal the axial force carried by the brass bar, calculate
the thickness b required for brass bar (2).

Aluminum (1)

Brass (2)

FIGURE P5.26

P5.27 An aluminum alloy [E = 10,000 ksi] pipe with a cross-
sectional area of A} = 4.50 in.? is connected at flange B to a steel
[E = 30,000 ksi] pipe with a cross-sectional area of A, = 3.20 in.2.
The assembly (shown in Figure P5.27) is connected to rigid sup-
ports at A and C. For the loading shown, determine

(a) the normal stresses in aluminum pipe (1) and steel pipe (2).
(b) the deflection of flange B.

FIGURE P5.27

P5.28 The concrete [E = 29 GPa] pier shown in Figure P5.28/29
is reinforced by four steel [E = 200 GPa] reinforcing rods, each
having a diameter of 19 mm. If the pier is subjected to an axial load
of 670 kN, determine

(a) the normal stress in the concrete and in the steel reinforcing rods.
(b) the shortening of the pier.

P5.29 The concrete [E = 29 GPa] pier shown in Figure P5.28/29
is reinforced by four steel [E = 200 GPa] reinforcing rods. If the
pier is subjected to an axial force of 670 kN, determine the required
diameter D of each rod so that 20% of the total load is carried by
the steel.

FIGURE P5.28/29

P5.30 Aload of P = 100 kN is supported by a structure consist-
ing of rigid bar ABC, two identical solid bronze [E = 100 GPa]
rods, and a solid steel [E = 200 GPa] rod as shown in Figure P5.30.
Each of the bronze rods (1) has a diameter of 20 mm and is
symmetrically positioned relative to the center rod (2) and the
applied load P. Steel rod (2) has a diameter of 24 mm. All bars are
unstressed before the load P is applied; however, there is a 3-mm
clearance in the bolted connection at B. Determine

(a) the normal stresses in the bronze and steel rods.
(b) the downward deflection of rigid bar ABC.

()] 3.0m
1.5m

FIGURE P5.30



P5.31 Two steel [E = 30,000 ksi] pipes (1) and (2) are connected
at flange B, as shown in Figure P5.31. Pipe (1) has an outside dia-
meter of 6.625 in. and a wall thickness of 0.28 in. Pipe (2) has an
outside diameter of 4.00 in. and a wall thickness of 0.226 in. If the
normal stress in each steel pipe must be limited to 18 ksi, determine

(a) the maximum downward load P that may be applied at flange B.
(b) the deflection of flange B at the load that you determined in
part (a).

(@)

16 ft

FIGURE P5.31

P5.32 A solid aluminum [E = 70 GPa] rod (1) is connected to a
solid bronze [E = 100 GPa] rod at flange B as shown in Figure P5.32.
Aluminum rod (1) has an outside diameter of 35 mm, and bronze

(@)

340 mm

175

FIGURE P5.32

rod (2) has an outside diameter of 20 mm. The normal stress in the
aluminum rod must be limited to 160 MPa, and the normal stress in
the bronze rod must be limited to 110 MPa. Determine

(a) the maximum downward load P that may be applied at
flange B.

(b) the deflection of flange B at the load that you determined in
part (a).

P5.33 A pin-connected structure is supported as shown in
Figure P5.33/34. Member ABCD is rigid and horizontal before
load P is applied. Bar (1) is made of brass [E = 17 X 106 psi], and
it has a length of L; = 3.5 ft. Bar (2) is made of an aluminum alloy
[E = 10 X 10° psi]. Bars (1) and (2) each have cross-sectional
areas of 0.40 in.2. Assume thata = 3.0 ft, b = 4.0 ft, c = 1.0 ft,
and P = 4,000 lb. Determine the maximum length L, that can be
used for bar (2) if the normal stress developed in bar (1) must not
exceed ¥2 of the normal stress in bar (2); that is, o) = 0.50,.

P5.34 A pin-connected structure is supported as shown in
Figure P5.33/34. Member ABCD is rigid and horizontal before
load P is applied. Bar (1) is made of brass [oy = 18,000 psi; E =
17 X 100 psi], and it has a length of L, = 8.0 ft. Bar (2) is made
of an aluminum alloy [y = 40,000 psi; E = 10 x 10° psi] , and it
has a length of L, = 5.5 ft. Bars (1) and (2) each have cross-
sectional areas of 0.75 in.2. Assume that a = 4.0 ft, b = 6.0 ft, and
¢ = 1.5 ft. If the minimum factor of safety required for bars (1)
and (2) is 2.50, calculate the maximum load P that can be applied
to the rigid bar at D.

FIGURE P5.33/34

P5.35 The pin-connected structure shown in Figure P5.35/36
consists of a rigid beam ABCD and two supporting bars. Bar (1) is a
bronze alloy [E = 105 GPa] with a cross-sectional area of A; =
290 mm2. Bar (2) is an aluminum alloy [E = 70 GPa] with a cross-
sectional area of A, = 650 mm?. If a load of P = 30 kN is applied at
B, determine

(a) the normal stresses in both bars (1) and (2).
(b) the downward deflection of point A on the rigid bar.



P5.36 The pin-connected structure shown in Figure P5.35/36
consists of a rigid beam ABCD and two supporting bars. Bar (1) is
a bronze alloy [E = 105 GPa] with a cross-sectional area of A; =
290 mm?2. Bar (2) is an aluminum alloy [E = 70 GPa] with a cross-
sectional area of A, = 650 mm2. All bars are unstressed before the
load P is applied; however, there is a 3-mm clearance in the pin
connection at A. If a load of P = 85 kN is applied at B, determine

(a) the normal stresses in both bars (1) and (2).
(b) the downward deflection of point A on the rigid bar.

-[(1)

2,250 mm

1,150 mm 5 650 mm

e 1)

y B| -
480 mm
P

FIGURE P5.35/36

1,600 mm

@ J

P5.37 A pin-connected structure is supported as shown in
Figure P5.37/38. Bar (1) is made of brass [oy = 330 MPa; E =
105 GPa]. Bar (2) is made of an aluminum alloy [0y = 275 MPa;
E = 70 GPa]. Bars (1) and (2) each have cross-sectional areas of
225 mm?. Member ABCD is rigid. If the minimum factor of safety
required for bars (1) and (2) is 2.50, calculate the maximum load P
that can be applied to the rigid bar at A.

P5.38 A pin-connected structure is supported as shown in
Figure P5.37/38. Bar (1) is made of brass [E = 105 GPa], and bar (2)
is made of an aluminum alloy [E = 70 GPa]. Bars (1) and (2) each
have cross-sectional areas of 375 mm?. Rigid bar ABCD is supported
by a pin in a double-shear connection at B. If the allowable shear
stress for pin B is 130 MPa, calculate the minimum allowable dia-
meter for the pin at B when P = 42 kN.

880 mm

v

FIGURE P5.37/38

P5.39 A load P is supported by a structure consisting of
rigid bar BDF and three identical 15-mm-diameter steel [E =
200 GPa] rods, as shown in Figure P5.39. Use a = 2.5 m,
b =1.5m, and L = 3 m. For a load of P = 75 kN, determine

(a) the tension force produced in each rod.
(b) the vertical deflection of the rigid bar at B.

e a Sle a N
ig co EQ—-
(1 2 (3)
L
B D F
b
P
FIGURE P5.39

P5.40 A uniformly-distributed load w is supported by a struc-
ture consisting of rigid bar BDF and three rods, as shown in
Figure P5.40. Rods (1) and (2) are 15-mm diameter stainless steel
rods, each with an elastic modulus of £ = 193 GPa and a yield
strength of oy = 250 MPa. Rod (3) is a 20-mm-diameter bronze
rod that has an elastic modulus of E = 105 GPa and a yield strength
of oy = 330 MPa. Use ¢ = 1.5 m and L = 3 m. If a minimum fac-
tor of safety of 2.5 is specified for the normal stress in each rod,
calculate the maximum distributed load magnitude w that may be
supported.

FIGURE P5.40



P5.41 The pin-connected structure shown in Figure P5.41 con-
sists of two cold-rolled steel [E = 30,000 ksi] bars (1) and a bronze
[E = 15,000 ksi] bar (2) that are connected at pin D. All three
bars have cross-sectional areas of 0.375 in.2. A load of P = 11 kips
is applied to the structure at pin D. Using a = 3 ft and b = 5 ft,
calculate

(a) the normal stresses in bars (1) and (2).
(b) the downward displacement of pin D.

FIGURE P5.41

P5.42 The pin-connected structure shown in Figure P5.42
consists of a rigid bar ABC, a steel bar (1), and a steel rod (2). The
cross-sectional area of bar (1) is A; = 0.5 in.2, and its length is
L; = 24 in. The diameter of rod (2) is d, = 0.375 in., and its length
is L, = 70 in. Assume that £ = 30,000 ksi for both axial members.
Using a = 18in., b = 32 in., ¢ = 20 in., and P = 7 Kips, determine

(a) the normal stresses in bar (1) and rod (2).
(b) the deflection of pin C from its original position.

1) |
iy
—

FIGURE P5.42

P5.43 Links (1) and (2) support rigid bar ABCD shown in
Figure P5.43. Link (1) is bronze [oy = 330 MPa; E = 105 GPa],

with a cross-sectional area of A; = 300 mm? and a length of
L, = 720 mm. Link (2) is cold-rolled steel [oy = 430 MPa; E =
210 GPa], with a cross-sectional area of A, = 200 mm? and a length
of L, = 940 mm. A factor of safety of 2.5 with respect to yield is
specified for the normal stresses in links (1) and (2). Furthermore,
the maximum horizontal displacement of the rigid bar at end D may
not exceed 2.0 mm. Calculate the magnitude of the maximum load
P that can be applied to the rigid bar at D. Use @ = 420 mm, b =
420 mm, and ¢ = 510 mm.

FIGURE P5.43

P5.44 A 4.5-m-long aluminum tube (1) is to be connected to a
2.4-m-long bronze pipe (2) at B. When put in place, however, a gap
of 8 mm exists between the two members as shown in Figure P5.44.
Aluminum tube (1) has an elastic modulus of 70 GPa and a cross-
sectional area of 2,000 mm?2. Bronze pipe (2) has an elastic modulus
of 100 GPa and a cross-sectional area of 3,600 mm?. If bolts are
inserted in the flanges and tightened so that the gap at B is closed,
determine

(a) the normal stresses produced in each of the members.
(b) the final position of flange B with respect to support A.

FIGURE P5.44



P5.45 The assembly shown in Figure P5.45 consists of a steel
[E; = 30,000 ksi; A; = 1.25 in.2] rod (1), a rigid bearing plate B
that is securely fastened to rod (1), and a bronze [E, = 15,000 ksi;
A, = 3.75in.2] post (2). The yield strengths of the steel and bronze
are 62 ksi and 75 ksi, respectively. A clearance of 0.125 in. exists
between the bearing plate B and bronze post (2) before the assem-
bly is loaded. After a load of P = 65 kips is applied to the bearing
plate, determine

(a) the normal stresses in bars (1) and (2).

(b) the factors of safety with respect to yield for each of the
members.

(c) the vertical displacement of bearing plate B.

C
(€))]
14t
P P
712
_’I‘ B n‘—* 0.125in.
s @)

FIGURE P5.45

P5.46 In Figure P5.46, the cutaway view shows a solid alumi-
num alloy [L, = 600 mm; A, = 707 mm?2; E, = 70 GPa] rod (2)
within a closed-end bronze [L; = 610 mm; A; = 1,206 mm?; E, =
100 GPa] tube (1). Before the load P is applied, there is a clearance

Support

15 mm 35 mm

610 29 mm

M

Cross section

FIGURE P5.46

of 2 mm between the rod flange at B and the tube closure at A. After
load P is applied, rod (2) stretches enough so that flange B contacts
the closed end of the tube at A. If the load applied to the lower end
of the aluminum rod is P = 230 kN, calculate

(a) the normal stress in tube (1).
(b) the elongation of tube (1).

P5.47 A 0.5-in.-diameter steel [E = 30,000 ksi] bolt (1) is
placed in a copper tube (2), as shown in Figure P5.47. The copper
[E = 16,000 ksi] tube has an outside diameter of 1.00 in., a wall
thickness of 0.125 in., and a length of L = 8.0 in. Rigid washers,
each with a thickness of = 0.125 in., cap the ends of the copper
tube. The bolt has 20 threads per inch. This means that each time
the nut is turned one complete revolution, the nut advances 0.05 in.
(i.e., 1/20 in.). The nut is hand-tightened on the bolt until the
bolt, nut, washers, and tube are just snug, meaning that all slack
has been removed from the assembly, but no stress has yet been
induced. What stresses are produced in the bolt and in the tube if
the nut is tightened an additional quarter turn past the snug-tight
condition?

Rigid washer Rigid washer
|
[
Tube (2)
J
FIGURE P5.47

P5.48 A hollow steel [E = 30,000 ksi] tube (1) with an outside
diameter of 3.50 in. and a wall thickness of 0.216 in. is fastened to
a solid 2-in.-diameter aluminum [E = 10,000 ksi] rod. The assem-
bly is attached to unyielding supports at the left and right ends and
is loaded as shown in Figure P5.48. Determine

(a) the stresses in all parts of the axial structure.
(b) the deflections of joints B and C.

B 17 kips 13 kips
D CR—— D
) R —
D _—
17 kips 13 kips
4 ft 5 ft 5 ft
I L) 1T 1
FIGURE P5.48



5.6 Thermal Effects on Axial Deformation

As discussed in Section 2.4, a temperature change AT creates normal strains in a material:

(5.10)

Over the length L of an axial member, the deformation resulting from a temperature
change is

8, = e;L = aATL (5.11)

If an axial member is allowed to freely elongate or contract, temperature change by itself
does not create stress in a material. However, substantial stresses can result in an axial
member if elongation or contraction is inhibited.

Force-Temperature-Deformation Relationship

The relationship between internal force and axial deformation developed in Equation (5.2)
can be enhanced to include the effects of temperature change:

FL
5= "= 4 gATL 5.12
AE (-12)

The deformation of a statically determinate axial member can be computed from Equation
(5.12) since the member is free to elongate or contract in response to a change in tem-
perature. In a statically indeterminate axial structure, however, the deformation due to
temperature changes may be constrained by supports or other components in the structure.
Restrictions of this sort inhibit the elongation or contraction of a member, causing normal
stresses to develop. These stresses are often referred to as thermal stresses, even though
temperature change by itself causes no stress.

ies Example M5.11

A 20-mm-diameter steel [E = 200 GPa; a = 12.0 X 107%/°C] rod
is held snugly between rigid walls, as shown. Calculate the
temperature drop AT at which the shear stress in the 15-mm-
diameter bolt becomes 70 MPa.

20-mm diameter steel rod
A = 314.16 mm?
E = 200 GPa
o =12.0 x 10°/°C



ies Example M5.12

A rigid bar ABC is pinned at A and supported by a steel wire at B.
Before weight W is attached to the rigid bar at C, the rigid bar is
horizontal. After weight W is attached and the temperature of the
assembly has been increased by 50°C, careful measurements
reveal that the rigid bar has deflected downward 2.52 mm at point

A, = 2.0 mm?
E, = 200 GPa
oy = 12x10°%/°C

C. Determine

(a) the normal strain in wire (1).

(b) the normal stress in wire (1).
(c) the magnitude of weight W.

Incorporating Temperature Effects in Statically
Indeterminate Structures

In Section 5.5, a five-step procedure for analyzing statically indeterminate axial structures
was outlined. Temperature effects can be easily incorporated into this procedure by using
Equation (5.12) to define the force—temperature—deformation relationships for the axial
members, instead of Equation (5.2). With the five-step procedure, analysis of indeterminate
structures involving temperature change is no more difficult conceptually than those prob-
lems without thermal effects. The addition of the @ ATL term in Equation (5.12) does in-
crease the computational difficulty, but the overall procedure is the same. In fact, it is the
more challenging problems, such as those involving temperature change, in which the
advantages and potential of the five-step procedure are most evident.

It is essential that Equation (5.12) be consistent, meaning that a positive internal force
F (i.e., tension force) and a positive AT should produce a positive member deformation
(i.e., an elongation). The need for consistency explains the emphasis on assuming an inter-
nal tension force in all axial members, even if, intuitively, one might anticipate that an axial
member should act in compression.

ies Example M5.13

An aluminum bar (1) is attached to steel post (2) at rigid flange B. Bar (1) and post (2) are
initially stress free when they are connected to the flange at a temperature of 20°C. The
aluminum bar (1) has a cross-sectional area of A; = 200 mm?2, a modulus of elasticity of
E; = 70 GPa, and a coefficient of thermal expansion of a; = 23.6 X 107/°C. The steel
post (2) has properties of A, = 450 mm?, E, = 200 GPa, and o, = 12.0 X 107%°C. Deter-
mine the normal stresses in members (1) and (2) and the deflection at flange B after the
temperature increases to 75°C.

400

(1)




An aluminum rod (1) [E = 70 GPa; a =
22.5 X 107/°C] and a brass rod (2) [E =
105 GPa; o = 18.0 X 107¢/°C] are con-
nected to rigid supports, as shown. The cross-
sectional areas of rods (1) and (2) are 2,000
mm? and 3,000 mm?, respectively. The tem-
perature of the structure will increase.

(a) Determine the temperature increase
that will close the initial 1-mm gap
between the two axial members.

(b) Compute the normal stress in each rod if
the total temperature increase is +60°C.

Plan the Solution

First, we must determine whether the temperature increase will cause sufficient elongation
to close the 1-mm gap. If the two axial members come into contact, the problem becomes
statically indeterminate and the solution will proceed with the five-step procedure outlined
in Section 5.5. To maintain consistency in the force—temperature—deformation relationships,
tension will be assumed in both members (1) and (2) even though it is apparent that both
members will be compressed because of the temperature increase. Accordingly, the values
obtained for the internal axial forces F; and F, should be negative.

SOLUTION
(a) The axial elongation in the two rods due solely to a temperature increase can be
expressed as

O r = ATL, and &,; = a,ATL,

If the two rods are to touch at B, the sum of the elongations in the rods must equal
1 mm:

87+ 8 = ATL + ayATL, = 1 mm

Solve this equation for AT:

(22.5X10-6/°C) AT (900 mm) + (18.0 X 10-6/°C)AT (600 mm) = 1 mm
~AT =322°C Ans.

(b) Given that a temperature increase of 32.2°C closes the 1-mm gap, a larger
temperature increase (i.e., 60°C in this instance) will cause the aluminum and brass
rods to compress each other since the rods are prevented from expanding freely by
the supports at A and C.

Step 1 — Equilibrium Equations: Con
sider a free-body diagram (FBD) of joint
B after the aluminum and brass rods have
come into contact. The sum of forces in
the horizontal direction consists exclu-
sively of the internal member forces.

SF,=F,—-F =0 .F=F,




Step 2 — Geometry of Deformation: Since the compound axial member is attached
to rigid supports at A and C, the overall elongation of the structure can be no more than
1 mm. In other words,

6, + 6, = lmm (a)

Step 3 — Force-Temperature-Deformation Relationships: Write the force—
temperature—deformation relationships for the two members:

8 = AL, @ ATL, and §, = % + a,ATL, (b)

AIEI 272

Step 4 — Compatibility Equation: Substitute Equations (b) into Equation (a) to
obtain the compatibility equation:

FL F,L
2L o ATL, + A2E2

11 22

+ a,ATL, =1 mm ©)

Step 5 — Solve the Equations: Substitute F, = F; (from the equilibrium equation)
into Equation (c) and solve for the internal force F;:

Fl [i + L
AIEI A2E2

= l mm — o ATL, — a,ATL, (d)

In computing the value for F, pay close attention to the units, making sure that they
are consistent:

P [ 900 mm N 600 mm
(2,000 mm2)(70,000 N/mm2) ~ (3,000 mm2)(105,000 N/mm?2)
=1 mm —(22.5 X1076/°C) (60°C) (900 mm) — (18.0 X 10~6/°C) (60°C) (600 mm)

(e)
Therefore,

F, = —103,560 N = —103.6 kN
The normal stress in rod (1) is

o = i = M = —51.8 MPa = 51.8 MPa (C) Ans.
A 2,000 mm?2

and the normal stress in rod (2) is

_ 5 _ZIBSON a5 Mpy = 345 MPa ©) Ans.
A, 3,000 mm?

o)




ies Example M5.14

pin pin A rectangular bar 30 mm wide and 24 mm thick made of aluminum
1) Co| bar 30 12

[E = 120 GPa; a = 16.0 X 1076/°C] bars 30 mm wide and 12 mm

(2) Aluminum bar 30 mm x 24 mm thick are connected by two smooth 11-mm-diameter pins. When the

— pins are initially inserted into the bars, both the copper and aluminum
(1) Copper bar 30 mm x 12 mm bars are stress free. After the temperature of the assembly has in-
creased by 65°C, determine
(a) the internal axial force in the aluminum bar.

(b) the normal strain in the copper bars.
(c) the shear stress in the 11-mm-diameter pins.

EXAMPLE 5.8

500 mm . 350 mm A pin-connected structure is loaded and supported as shown.
M | Member BCDF is arigid plate. Member (1) is a steel [E = 200 GPa;
m FEp A = 310 mm?% o = 11.9 X 107%°C] bar, and member (2) is an
A aluminum [E = 70 GPa; A, = 620 mm?; o = 22.5 X 107%/°C] bar.

y A load of 6 kN is applied to the plate at F. If the temperature

increases by 20°C, compute the normal stresses in members (1)
and (2).

The five-step procedure for solving indeterminate problems will
be used. Since the rigid plate is pinned at C, it will rotate about C.

400 mm A deformation diagram will be sketched to show the relationship
between the rigid plate deflections at joints B and D, based on the

assumption that the plate rotates clockwise about C. The joint
deflections will be related to the deformations & ; and 6 ,, which

‘L Plan the Solution

| 350 mm . will lead to a compatibility equation expressed in terms of the
_ F ) ‘ | member forces F| and F,.
1 -
O A soLUTION
. 100 mm N - Step 1 — Equilibrium Equations:
‘ZMC = F,(100 mm) — F, (300 mm) — (6 kN) (350mm) = 0 | (a)
300 mm
: G Step 2 — Geometry of Deformation: Sketch the deflected
| L - =——" 6 kNl position of the rigid plate. Since the plate is pinned at C, the
Fy @ plate will rotate about C. The relationship between the deflec-

tions of joints B and D can be expressed by similar triangles:

E_ _ D (b)
100 mm 300 mm

How are the deformations in members (1) and (2) related to
the joint deflections at B and D?




By definition, the deformation in a member is the differ-
ence between its final length (i.e., after the load is applied
and the temperature is increased) and its initial length. For
member (1), therefore,

8 = Lgna = Linias = (Ly +vp) — L) = vg

SV = 6 ©
Similarly, for member (2),
8 = Lgna — Linigas = (Ly —vp) — L, = —vp
s (@
2oV 2

Substitute the results from Equations (c) and (d) into Equa-
tion (b) to obtain

o o
S ©
100 mm 300 mm

Step 3 — Force-Temperature-Deformation Relationships: Write the general
force-temperature—deformation relationships for the two axial members:

— FiLl F2L2

5,

+ o ATL, and 6, =
151 )

+

a, ATL,

®

Step 4 — Compatibility Equation: Substitute the force-temperature—deformation
relationships from Equation (f) into Equation (e) to obtain the compatibility equation:

1
300 mm

5L,
AE,

1 [F1L1

+ o ATLII =
100 mm [ A E;

+ a,ATL,

(@

This equation is derived from information about the deflected position of the structure
and expressed in terms of the two unknown member forces F; and F5.

Step 5 — Solve the Equations: Rearrange the compatibility equation [Equation (g)],
grouping the terms that include F; and F), on the left-hand side of the equation:

i s ol = ! oy ATL,
(100 mm)AE;, (300 mm)A,E, 100 mm

]
b A
300mm 2 2

Equilibrium equation (a) can be rearranged in the same manner:

F,(100 mm) — F,(300 mm) = (6 kN)(350 mm)

(h)

(Note: Deflections shown
greatly exaggerated.)




Equations (h) and (i) can be solved simultaneously in several ways. The hand solution
here will use the substitution method. Solve Equation (i) for F5:

_ F(100 mm) — (6 kN)(350 mm)

. .
2 300 mm )

Substitute this expression into Equation (h) and collect terms with F; on the left-hand
side of the equation:

FL, [(100 mm/300 mm)F,]L,
(100 mm)A, E, (300 mm)A,E,
-1 a1 aam, 6 kN)l350mm] Ly
100 mm 300 mm 300 mm | (300 mm)A,E,

Simplifying and solving for F| gives

F 500 mm N (1/3) (400 mm)
(100 mm)(310 mm?2)(200,000 N/mm?2) = (300 mm) (620 mm?)(70,000 N/mm?)

= - ! (11.9 x 10—6/°C)(20°C) (500 mm)
100 mm

— ;(22.5 X 10—6/°C) (20°C) (400 mm)
300 mm

350 mm] 400 mm
300 mm | (300 mm)(620 mm?)(70,000 N/mm?)

+ (6,000 N)l

Therefore,

F =—-17,3288 N = —17.33 kN = 17.33 kN (C)
Backsubstitution into Equation (j) gives

F, = —12,776.3 N = —12.78 kN = 12.78 kN (C)
The normal stresses in members (1) and (2) can now be determined:

o, = h _ Z173288N 559 Mpa = 55.9 MPa ©)
A 310 mm? A
ns.

F, —12,776 3 N
0’2 e —

= = s = 206 MPa = 206 MPa (©)
5 mm

Note: The deformation of member (1) can be computed as

_ AL, o ATL (—17,328.8 N) (500 mm)

) =
' AE, "7 (310 mm?)(200,000 N/mm?)

+ (11.9 x 10—6/°C)(20°C) (500 mm)
—0.1397 mm + 0.1190 mm = —0.0207 mm




and the deformation of member (2) is

Bl sy, - (£127763 N)@00 mm)

5
> AE, (620 mm?)(70,000 N/mm?)

+ (22.5 x 10-6/°C) (20°C) (400 mm)
= —0.1178 mm + 0.1800 mm = 0.0622 mm
Contrary to our initial assumption in the deformation diagram, member (1) actually contracts

and member (2) elongates. This outcome is explained by the elongation caused by the
temperature increase. The rigid plate actually rotates counterclockwise about C.

A brass link and a steel rod have the dimensions shown at material propertiea

a temperature of 20°C. The steel rod is cooled until it fits
freely into the link. The temperature of the entire link-
and-rod assembly is then warmed to 40°C. Determine

brass link
E = 105 GPa
a =209 x 10%/°C

steel rod
i E = 200 GPa
|P'| 10mm @ = 11.7 x 10°/°C

(a) the final normal stress in the steel rod.

X |0.2 mm L

(b) the deformation of the steel rod. | LN =
J— e an Bertion
30-mm diameter view of link

ies Exercises

M5.13 A composite axial structure consists of two rods joined at ~ After the load P is applied, the temperature of all three rods is
flange B. Rods (1) and (2) are attached to rigid supports at A and C, raised by the indicated AT. Determine

respectively. A concentrated load P is applied to flange B in the di-
rection shown. Determine the internal forces an.d n.c)rmal stresses in (b) the normal stress in rod (2).

each rod after the temperature changes by the indicated AT. Also, (¢) the normal strain in rod (1)

determine the deflection of flange B in the x direction. (d) the downward deflection of the rigid bar at B.

(a) the internal force in rod (1).

ABSRS AT = 110°C

FIGURE M5.13

M5.14 A rigid horizontal bar ABC is supported by three vertical l P=45 kN
rods as shown. The system is stress free before the load is applied. = FIGURE M5.14



PROBLEMS

P5.49 A 22-mm-diameter steel [E = 200 GPa; o = 11.9 X
107%/°C] bolt is used to connect two rigid parts of an assembly, as
shown in Figure P5.49. The bolt length is a = 150 mm. The nut is
hand-tightened until it is just snug (meaning that there is no slack
in the assembly, but there is no axial force in the bolt) at a tem-
perature of 7 = 40°C. When the temperature drops to T = —10°C,
determine

(a) the clamping force that the bolt exerts on the rigid parts.
(b) the normal stress in the bolt.
(c) the normal strain in the bolt.

FIGURE P5.49

P5.50 A 25-mm-diameter by 3.5-m-long steel rod (1) is
stress free after being attached to rigid supports as shown in
Figure P5.50/51. At A, a 16-mm-diameter bolt is used to connect
the rod to the support. Determine the normal stress in steel rod (1)
and the shear stress in bolt A after the temperature drops 60°C. Use
E =200GPaand a = 11.9 X 1079/°C.

P5.51 A 0.875-in.-diameter by 15-ft-long steel rod (1) is
stress free after being attached to rigid supports. A clevis-and-
bolt connection as shown in Figure P5.50/51 connects the rod
with the support at A. The normal stress in the steel rod must be
limited to 18 ksi, and the shear stress in the bolt must be limited
to 42 ksi. Assume that £ = 29,000 ksi and o = 6.6 X 1079/°F,
and determine

(a) the temperature decrease that can be safely accommodated by
rod (1) on the basis of the allowable normal stress.

(b) the minimum required diameter for the bolt at A, using the
temperature decrease found in part (a).

1

FIGURE P5.50/51

P5.52 A steel [E = 29,000 ksi and & = 6.6 X 107%/°F] rod
containing a turnbuckle has its ends attached to rigid walls. During
the summer when the temperature is 82°F, the turnbuckle is tight-
ened to produce a stress in the rod of 5 ksi. Determine the stress in
the rod in the winter when the temperature is 10°F.

P5.53 A high-density polyethylene [E = 120 ksi and & = 78 X
10~%°F] block (1) is positioned in a fixture, as shown in Figure P5.53.
The block is 2-in. by 2-in. square by 32-in.-long. At room temperature,
a gap of 0.10 in. exists between the block and the rigid support at B.
Determine

(a) the normal stress in the block caused by a temperature
increase of 100°F.
(b) the normal strain in block (1) at the increased temperature.

FIGURE P5.53

P5.54 The assembly shown in Figure P5.54 consists of a brass
shell (1) fully bonded to a ceramic core (2). The brass shell
[E = 115 GPa; o = 18.7 X 107%°C] has an outside diameter of
50 mm and an inside diameter of 35 mm. The ceramic core [E =
290 GPa; a = 3.1 X 107%/°C] has a diameter of 35 mm. At a tem-
perature of 15°C, the assembly is unstressed. Determine the largest
temperature increase that is acceptable for the assembly if the
normal stress in the longitudinal direction of the brass shell must
not exceed 80 MPa.

rm&)‘

P

Brass shell (1)
FIGURE P5.54

(2) Ceramic core



P5.55 At a temperature of 60°F, a 0.04-in. gap exists between
the ends of the two bars shown in Figure P5.55. Bar (1) is an alumi-
num alloy [E = 10,000 ksi; » = 0.32; @ = 12.5 X 10~%/°F] bar with
a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel
[E = 28,000 ksi; v = 0.12; « = 9.6 X 10~%°F] bar with a width of
2 in. and a thickness of 0.75 in. The supports at A and C are rigid.
Determine

(a) the lowest temperature at which the two bars contact each
other.

(b) the normal stress in the two bars at a temperature of
250°F.

(c) the normal strain in the two bars at 250°F.

(d) the change in width of the aluminum bar at a temperature
of 250°F.

32in. ‘

‘ 44 in.
I T 1
k 0.04-in. gap

FIGURE P5.55

P5.56 An aluminum alloy cylinder (2) is clamped between rigid
heads by two steel bolts (1), as shown in Figure P5.56. The steel
[E = 200 GPa; = 11.7 X 1079/°C] bolts have a diameter of 16 mm.
The aluminum alloy [E = 70 GPa; a« = 23.6 X 1079/°C] cylinder
has an outside diameter of 150 mm and a wall thickness of 5 mm.
Assume that @ = 600 mm and b = 700 mm. If the temperature of this
assembly changes by AT = 50°C, determine

(a) the normal stress in the aluminum cylinder.
(b) the normal strain in the aluminum cylinder.
(c) the normal strain in the steel bolts.

FIGURE P5.56

P5.57 Rigid bar BCD is supported by a single steel [oy =
430 MPa; E = 200 GPa; a = 11.7 X 107%/°C] rod and two identi-
cal aluminum [y = 275 MPa; E = 70 GPa; a = 23.6 X 107¢/°C]
rods, as shown in Figure P5.57. Steel rod (1) has a diameter of
18 mm and a length of @ = 3.0 m. Each aluminum rod (2) has a
diameter of d, = 25 mm and a length of » = 1.5 m. If a factor of
safety of 2.5 is specified for the normal stress in each rod, deter-
mine the maximum temperature decrease that is allowable for this

assembly.
D 2)
F
250 mm
4 O
U C
250 mm
| 2 £
b - om0
a b

FIGURE P5.57

P5.58 The pin-connected structure shown in Figure P5.58
consists of a rigid bar ABC, a solid bronze [E = 100 GPa; a =
16.9 X 1076/°C] rod (1), and a solid aluminum alloy [E = 70 GPa;
a = 22.5 X 107%°C] rod (2). Bronze rod (1) has a diameter of
24 mm, and aluminum rod (2) has a diameter of 16 mm. The bars
are unstressed when the structure is assembled at 25°C. After
assembly, the temperature of rod (2) is decreased by 40°C, while the
temperature of rod (1) remains constant at 25°C. Determine the
normal stresses in both rods for this condition.

350 mm

FIGURE P5.58

P5.59 Rigid bar ABC is supported by two identical solid bronze
[E = 100 GPa; @ = 16.9 X 1079/°C] rods, and a solid steel
[E = 200 GPa; a = 11.9 X 107%/°C] rod as shown in Figure P5.59.
The bronze rods (1) each have a diameter of 16 mm, and they are
symmetrically positioned relative to the center rod (2) and the



applied load P. Steel rod (2) has a diameter of 20 mm. The bars
are unstressed when the structure is assembled at 30°C. When the
temperature decreases to —20°C, determine

(a) the normal stresses in the bronze and steel rods.
(b) the normal strains in the bronze and steel rods.

(1 j
0.35m

|

(€] ()]

FIGURE P5.59

P5.60 A steel [E = 30,000 ksi; « = 6.6 X 107%/°F] pipe col-

umn (1) with a cross-sectional area of A; = 5.60 in.2 is connected

at flange B to an aluminum alloy [E = 10,000 ksi; & = 12.5 X

107%/°F] pipe (2) with a cross-sectional area of A, = 4.40 in.2

The assembly (shown in Figure P5.60) is connected to rigid

supports at A and C. It is initially unstressed at a temperature of

90°F.

(a) At what temperature will the normal stress in steel pipe (1) be
reduced to zero?

(b) Determine the normal stresses in steel pipe (1) and aluminum
pipe (2) when the temperature reaches —10°F.

FIGURE P5.60

P5.61 A load P will be supported by a structure consisting of
arigid bar ABCD, a polymer [E = 2,300 ksi; « = 2.9 X 1079/°F]
bar (1), and an aluminum alloy [E = 10,000 ksi; a = 12.5 X
107%/°F] bar (2) as shown in Figure P5.61. Each bar has a cross-
sectional area of 2.00 in.2. The bars are unstressed when the
structure is assembled at 30°F. After a concentrated load of

P = 26 kips is applied and the temperature is increased to 100°F,
determine

(a) the normal stresses in bars (1) and (2).
(b) the vertical deflection of joint D.

FIGURE P5.61

P5.62 A cylindrical bronze sleeve (2) is held in compression
against a rigid machine wall by a high-strength steel bolt (1), as
shown in Figure P5.62. The steel [E = 200 GPa; « = 11.7 X
1076/°C] bolt has a diameter of 25 mm. The bronze [E = 105 GPa;
a = 22.0 X 107%/°C] sleeve has an outside diameter of 75 mm, a
wall thickness of 8 mm, and a length of L = 350 mm. The end of
the sleeve is capped by a rigid washer with a thickness of # = 5 mm.
At an initial temperature of 77 = 8°C, the nut is hand-tightened on
the bolt until the bolt, washers, and sleeve are just snug, meaning
that all slack has been removed from the assembly, but no stress has
yet been induced. If the assembly is heated to 7, = 80°C, calculate

(a) the normal stress in the bronze sleeve.
(b) the normal strain in the bronze sleeve.

Rigid machine wall

Sleeve (2)

<k

FIGURE P5.62

P5.63 The pin-connected structure shown in Figure P5.63
consists of a rigid bar ABCD and two axial members. Bar (1) is



steel [E = 200 GPa; o = 11.7 X 10-9/°C], with a cross-sectional
area of A; = 400 mm2. Bar (2) is an aluminum alloy [E = 70 GPa;
a = 22.5 X 10~%/°C], with a cross-sectional area of A, = 400 mm?.
The bars are unstressed when the structure is assembled. After a
concentrated load of P = 36 kN is applied and the temperature is
increased by 25°C, determine

(a) the normal stresses in bars (1) and (2).
(b) the deflection of point D on the rigid bar.

) 900 mm ,

F £
(2)

36 kN
600 mm [
] R T
720 mm
FIGURE P5.63

P5.64 The pin-connected structure shown in Figure P5.64 con-
sists of two cold-rolled steel [E = 30,000 ksi; & = 6.5 X 107¢/°F]
bars (1) and a bronze [E = 15,000 ksi; « = 12.2 X 107%°F] bar
(2) that are connected at pin D. All three bars have cross-sectional
areas of 1.250 in.2. Assume an initial geometry of @ = 10 ft and
b = 18 ft. A load of P = 34 kips is applied to the structure at pin D,
and the temperature increases by 60°F. Calculate

(a) the normal stresses in bars (1) and (2).
(b) the downward displacement of pin D.

FIGURE P5.64

P5.65 Rigid bar ABCD is loaded and supported as shown in
Figure P5.65. Bar (1) is made of bronze [E = 100 GPa; o = 16.9 X
10-9/°C] and has a cross-sectional area of 400 mm?2. Bar (2) is
made of aluminum [E = 70 GPa; a = 22.5 X 10-9/°C] and has a
cross-sectional area of 600 mm?. Bars (1) and (2) are initially un-
stressed. After the temperature has increased by 40°C, determine

(a) the stresses in bars (1) and (2).
(b) the vertical deflection of point A.

0.84 m

FIGURE P5.65

P5.66 Three rods of different materials are connected and
placed between rigid supports at A and D, as shown in Figure
P5.66/67. Properties for each of the three rods are given in the ac-
companying table. The bars are initially unstressed when the struc-
ture is assembled at 70°F. After the temperature has been increased
to 250°F, determine

(a) the normal stresses in the three rods.
(b) the force exerted on the rigid supports.
(c) the deflections of joints B and C relative to rigid support A.

Aluminum (1) Cast Iron (2) Bronze (3)
L; =10 in. L, = 5in. Ly =7 in.
A, =0.8in.? Ay = 1.81in.2 Az = 0.6in.?
E; = 10,000 ksi E, = 22,500 ksi E; = 15,000 ksi
a; = 125X 10°5/°F |ay = 7.5 X 10-5°F | a3 = 9.4 X 10-6/°F

P5.67 Three rods of different materials are connected and placed
between rigid supports at A and D, as shown in Figure P5.66/67.



Properties for each of the three rods are given in the accompanying  (a) the normal stresses in the three rods.
table. The bars are initially unstressed when the structure is assem-  (b) the force exerted on the rigid supports.
bled at 20°C. After the temperature has been increased to 100°C, (c) the deflections of joints B and C relative to rigid support A.

determine

Aluminum

(1)

FIGURE P5.66/67

Cast iron Aluminum (1) Cast Iron (2) Bronze (3)
2 e L, = 440 mm L, = 200 mm L, = 320 mm
- A =1200mm?  |A, =2800mm? | As = 800 mm>
E, =70 GPa E, = 155GPa E; = 100 GPa
| , | @ =25%X10°°C |a, =135 X 10°5°C | a; = 17.0 X 10-5°C

A stress trajectory is a line that

is parallel to the maximum
normal stress everywhere.

5.7 Stress Concentrations

In the preceding sections, it was assumed that the average stress, as determined by the
expression o = P/A, is the significant or critical stress. While this is true for many prob-
lems, the maximum normal stress on a given section may be considerably greater than the
average normal stress, and for certain combinations of loading and material, the maximum
rather than the average normal stress is the more important consideration. If there exists in
the structure or machine element a discontinuity that interrupts the stress path (called a
stress trajectory), the stress at the discontinuity may be considerably greater than the aver-
age stress on the section (termed the nominal stress). This is termed a stress concentration
at the discontinuity. The effect of stress concentration is illustrated in Figure 5.12, in which
a type of discontinuity is shown in the upper figure and the approximate distribution of
normal stress on a transverse plane is shown in the accompanying lower figure. The
ratio of the maximum stress to the nominal stress on the section is known as the stress-
concentration factor K. Thus, the expression for the maximum normal stress in an axially
loaded member becomes

Omax = Ko (5.13)

max nom

Curves, similar to those shown in Figures 5.13, 5.14, and 5.15,! can be found in nu-
merous design handbooks. It is important that the user of such curves (or tables of
factors) ascertain whether the factors are based on the gross or net section. In this book,
the stress-concentration factors K are to be used in conjunction with the nominal stresses
produced at the minimum or net cross-sectional area, as shown in Figure 5.12.
The K factors shown in Figures 5.13, 5.14, and 5.15 are based on the stresses at the net
section.

! Adapted from Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed. (New York: John Wiley &
Sons, Inc., 1997).



STRESS CONCENTRATIONS
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FIGURE 5.12 Typical stress trajectories and normal stress distributions for flat bars with
(a) notches, (b) a centrally located hole, and (c¢) shoulder fillets.
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FIGURE 5.13  Stress-concentration factors K for a flat bar with opposite U-shaped notches.
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FIGURE 5.14 Stress-concentration factors K for a flat bar with a centrally located circular hole.
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FIGURE 5.15 Stress-concentration factors K for a flat bar with shoulder fillets.

The case of a small circular hole in a wide plate under uniform unidirectional tension
(Figure 5.16) offers an excellent illustration of localized stress redistribution. The theory of
elasticity solution is expressed in terms of a radial stress o,, a tangential stress o, and a
shearing stress 7,4, as shown in Figure 5.16. The equations are

2 2 4
o, = g[1 - a_] - E[1 _da” + 3%]00520

T2 r2) 2 r? r
2 4
oy = %[1 + a_z] + %[1 + 314]cos20
r r

2 4
T = %[1 + % - :%]sin%



Uniform tension stress o

AR ARRRNNAN A RRRARARN
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Uniform tension stress o

FIGURE 5.16 Circular hole in a wide plate subjected to uniform unidirectional tension.

On the boundary of the hole (at r = a) these equations reduce to

og.=0
oy = o(l + 2cos20)
Trog = 0

At 0 = 0°, the tangential stress oy = 30, where o is the uniform tensile stress in the plate
in regions far removed from the hole. Thus, the stress-concentration factor associated with
this type of discontinuity is 3.

The localized nature of a stress-concentration can be evaluated by considering the
distribution of the tangential stress o, along the x axis (6 = 0°). Here,

00=%2+—+—

a? 3a4]
2 4

At a distance r = 3a (i.e., one hole diameter from the hole boundary), this equation yields
gy = 1.0740. Thus, the stress that began as three times the nominal stress at the boundary
of the hole has decayed to a value only 7 percent greater than the nominal at a distance of
one diameter from the hole. This rapid decay is typical of the redistribution of stress in the
neighborhood of discontinuity.

For a ductile material, stress concentration associated with static loading does not
cause concern, because the material will yield in the region of high stress. With the redis-
tribution of stress that accompanies this local yielding, equilibrium will be attained and no
harm done. However, if the load is an impact or repeated load, instead of a static load, the
material may fracture. Also, if the material is brittle, even a static load may cause fracture.
Therefore, in the case of impact or repeated load on any material, or static loading on a
brittle material, the presence of stress concentration must not be ignored.

In addition to geometric considerations, specific stress-concentration factors also
depend on the type of loading. In this section, stress-concentration factors pertaining to

STRESS CONCENTRATIONS



AXIAL DEFORMATION axial loading have been discussed. Stress-concentration factors for torsion and bending
will be discussed in subsequent chapters.

¢ 27-mm-diameter hole The machine part shown is 20-mm thick and is made of C86100
bronze. (See Appendix D for properties.) Determine the maximum
P \ T f P safe load P if a factor of safety of 2.5 with respect to failure by
- —— L+ ,—90mm ——— 60 mm — # yield is specified.
l l SOLUTION
\ i The yield strength of C86100 bronze is 331 MPa. (See Appendix D
15-mm radius

for properties.) The allowable stress, based on a factor of safety of

2.5,18 331/2.5 = 132.4 MPa. The maximum stress in the machine
part will occur either in the fillet between the two sections or on the boundary of the
circular hole.

At the Fillet

= =15 and — =
60 mm d 60 mm

2 90 mm r 15 mm
d

From Figure 5.15, K = 1.73. Thus,
TaiowAmin (1324 N/mm?) (60 mm) (20 mm)

P = = 91,838 N = 91.8 kN
K 1.73
At the Hole d 7
4 _2mm_ g3
D 90 mm

From Figure 5.14, K = 2.36. Thus,

TaiowAnet _ (132.4 N/mm?)(90 mm — 27 mm) (20 mm)
K 2.36
Therefore,

P = = 70,688 N = 70.7 kN

P .. = 70.7 kN Ans.

PROBLEMS

P5.68 The machine part shown in Figure P5.68 is 3/8-in.-thick P5.69 The machine part shown in Figure P5.69 is 12-mm thick

and is made of cold-rolled 18-8 stainless steel. (See Appendix D  and is made of SAE 4340 heat-treated steel. (See Appendix D for

for properties.) Determine the maximum safe load P if a factor of  properties.) The holes are centered in the bar. Determine the maxi-

safety of 2.5 with respect to failure by yield is specified. mum safe load P if a factor of safety of 3.0 with respect to failure
by yield is specified.

1.25-in.-diameter hole
(_ 10-mm-diameter

| G =g
a|m — (- —40n——20n— HEp = 10jmm &.‘. \J Hmm =)

l ‘\ O.S—Ji,n, radius l _T

FIGURE P5.68 FIGURE P5.69



P5.70 A 100-mm-wide by 8-mm-thick steel bar is transmitting
an axial tensile load of 3,000 N. After the load is applied, a 4-mm-
diameter hole is drilled through the bar, as shown in Figure P5.70.
The hole is centered in the bar.

(a) Determine the stress at point A (on the edge of the hole) in the
bar before and after the hole is drilled.

(b) Does the axial stress at point B on the edge of the bar increase
or decrease as the hole is drilled? Explain.

B

P P
m  0mnm . =
4 mm

FIGURE P5.70

P5.71 The machine part shown in Figure P5.71 is 90-mm-wide by
12-mm-thick and is made of 2014-T4 aluminum. (See Appendix D
for properties.) The hole is centered in the bar. Determine the maxi-
mum safe load P if a factor of safety of 1.50 with respect to failure by
yield is specified.

om D1

radius 20 mm

(typical)
FIGURE P5.71

P5.72  The machine part shown in Figure P5.72 is 8-mm-thick and
is made of AISI 1020 cold-rolled steel. (See Appendix D for proper-
ties.) Determine the maximum safe load P if a factor of safety of
3 with respect to failure by yield is specified.

15-mm-diameter hole

10 mm
|
N
P =—F P
= 60 mm =)
l

10-mm 10 mm (

radius 16-mm radius

(typical) (typical)

FIGURE P5.72

P5.73 The machine part shown in Figure P5.73 is 10-mm thick,
is made of AISI 1020 cold-rolled steel (see Appendix D for proper-
ties), and is subjected to a tensile load of P = 45 kN. Determine the
minimum radius r that can be used between the two sections if a
factor of safety of 2 with respect to failure by yield is specified.
Round the minimum fillet radius up to the nearest 1-mm multiple.

FIGURE P5.73

P5.74 The 0.25-in.-thick bar shown in Figure P5.74 is made of
2014-T4 aluminum (see Appendix D for properties) and will be
subjected to an axial tensile load of P = 1,500 lbs. A 0.5625-in.-
diameter hole is located on the centerline of the bar. Determine the
minimum safe width D for the bar if a factor of safety of 2.5 with
respect to failure by yield must be maintained.

= @
0.5625 in.
T—

] ,
b
FIGURE P5.74

P5.75 The stepped bar with a circular hole, shown in Figure
P5.75, is made of annealed 18-8 stainless steel. The bar is 12-mm
thick and will be subjected to an axial tensile load of P = 70 kN.
The normal stress in the bar is not to exceed 150 MPa. To the near-
est millimeter, determine

(a) the maximum allowable hole diameter d.
(b) the minimum allowable fillet radius r.

Maximum hole
( diameter d

\ Minimum fillet

radius r

FIGURE P5.75
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Torsion

Torque is a moment that tends to twist a member about its longitudinal axis. In the design of
machinery (and some structures), the problem of transmitting a torque from one plane to a
parallel plane is frequently encountered. The simplest device for accomplishing this function
is called a shaft. Shafts are commonly used to connect an engine or a motor to a pump, com-
pressor, axle, or similar device. Shafts connecting gears and pulleys are a common application
involving torsion members. Most shafts have circular cross sections, either solid or tubular. A
modified free-body diagram of a typical device is shown in Figure 6.1. The weight and bear-
ing reactions are not shown on this modified diagram, since they do not contribute useful in-
formation to the torsion problem. The resultant of the electromagnetic forces applied to the
armature A of the motor is a moment that is resisted by the resultant of the bolt forces (another
moment) acting on the flange coupling B. The circular shaft (1) transmits the torque from the
armature to the coupling. The torsion problem is concerned with the determination of stresses
in shaft (1) and the deformation of the shaft. For the elementary analysis developed in this
book, shaft segments such as the segment between transverse planes a—a and b—b in Figure 6.1
will be considered. By limiting the analysis to shaft segments such as this, the complicated
states of stress that occur at the locations of the torque-applying components (i.e., armature
and flange coupling) can be avoided. Recall that Saint-Venant’s Principle states that the
effects introduced by attaching the armature and coupling to the shaft will cease to be evident
in the shaft at a distance of approximately one shaft diameter from these components.
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TORSION

Torsion of noncircular shapes
produces warping, in which
planar cross sections before
application of the loading
become nonplanar, or warped,
after a torque is applied.

Electromagnetic
forces \

~ Armature
oy —— , Flange
coupling
G

Bolt
forces

FIGURE 6.1 Modified free-body diagram of a typical electric motor shaft.

In 1784, C. A. Coulomb, a French engineer, experimentally developed the relationship
between the applied torque and the angle of twist for circular bars.! A. Duleau, another
French engineer, in a paper published in 1820, analytically derived the same relationship
by making the assumptions that a plane section before twisting remains plane after twist-
ing and that a radial line on the cross section remains plane after twisting. Visual exami-
nation of twisted models indicates that these assumptions are apparently correct for either
solid or hollow circular sections (provided that the hollow section is circular and sym-
metrical with respect to the axis of shaft), but incorrect for any other shape. For example,
compare the distortions evident in the two prismatic rubber shaft models shown in
Figure 6.2. Figures 6.2a and 6.2b show a circular rubber shaft before and after an external
torque 7 is applied to its ends. When torque 7 is applied to the end of the round shaft, the
circular cross sections and longitudinal grid lines marked on the shaft deform into the pat-
tern shown in Figure 6.2b. Each longitudinal grid line is twisted into a helix that intersects
the circular cross sections at equal angles. The length of the shaft and its radius remain
unchanged. Each cross section remains plane and undistorted as it rotates with respect to

(a)
()
()

FIGURE 6.2 Torsional deformations illustrated by rubber models with circular (g, b) and square
(¢, d) cross sections.

I'From S.P. Timoshenko, History of Strength of Materials (New York: McGraw-Hill, 1953).



an adjacent cross section. Figures 6.2¢ and 6.2d show a square rubber shaft before and
after an external torque 7 is applied to its ends. Plane cross sections in Figure 6.2¢ before
the torque is applied do not remain plane after T is applied (Figure 6.2d). The behavior
exhibited by the square shaft is characteristic of all but circular sections; therefore, the
analysis that follows is valid only for solid or hollow circular shafts.

6.2 Torsional Shear Strain

Consider a long, slender shaft of length L and radius c that is fixed at one end, as shown
in Figure 6.3a. When an external torque 7 is applied to the free end of the shaft at B, the
shaft deforms as shown in Figure 6.3b. All cross sections of the shaft are subjected to the
same internal torque 77 therefore, the shaft is said to be in pure forsion. Longitudinal
lines in Figure 6.3a are twisted into helixes as the free end of the shaft rotates through an
angle ¢. This angle of rotation is known as the angle of twist. The angle of twist changes
along the length L of the shaft. For a prismatic shaft, the angle of twist will vary linearly
between the ends of the shaft. The twisting deformation does not distort cross sections
of the shaft in any way, and the overall shaft length remains constant. As discussed in
Section 6.1, the following assumptions can be applied to torsion of shafts that have
circular—either solid or hollow—cross sections:

® A plane section before twisting remains plane after twisting. In other words, circular
cross sections do not warp as they twist.

® (Cross sections rotate about and remain perpendicular to the longitudinal axis of
the shaft.

® Each cross section remains undistorted as it rotates relative to neighboring cross
sections. In other words, the cross section remains circular and there is no strain in
the plane of the cross section. Radial lines remain straight and radial as the cross
section rotates.

® The distances between cross sections remains constant during the twisting
deformation. In other words, no axial strain occurs in a round shaft as it twists.

To help us investigate the deformations that occur during twisting, a short segment Ax of
the shaft shown in Figure 6.3 is isolated in Figure 6.4a. The shaft radius is c; however, for
more generality, an interior cylindrical portion at the core of the shaft will be examined
(Figure 6.4b). The radius of this core portion is denoted by p, where 0 < p = c. As the shaft
twists, the two cross sections of the segment rotate about the x axis, and line element CD
on the undeformed shaft is twisted into helix C’D’. The angular difference between the
rotations of the two cross sections is equal to A¢. This angular difference creates a shear
strain y in the shaft. The shear strain y is equal to the angle between line elements C'D’
and C'D", as shown in Figure 6.4b. The value of the angle vy is given by

! ”

Y TR

The distance D' D" can also be expressed by the arc length pAcp, which gives

_ pad

tan
Y Ax

TORSIONAL SHEAR STRAIN

(b) Deformed shaft in response to
torque T

FIGURE 6.3 Prismatic shaft
subjected to pure torsion.

Ax

l(\>|

FIGURE 6.4a Shaft segment
of length Ax.

FIGURE 6.4b Torsional
deformation of shaft segment.



TORSION

FIGURE 6.5 Linear variation
of shear stress intensity as a
function of radial coordinate p.

FIGURE 6.6 Shear stresses
act on both cross-sectional and
longitudinal planes.

If the strain is small, tan y = v ; therefore,

A¢
Y=pr Ax
As the length Ax of the shaft segment decreases to zero, the shear strain becomes
do
=p— 6.1
V=P (6.1)

The quantity d¢/dx is the angle of twist per unit length. Note that Equation (6.1) is
linear with respect to the radial coordinate p; therefore, the shear strain at the shaft cen-
terline (i.e., p = 0) is zero, while the largest shear strain occurs for the largest value of
p (i.e., p = ¢), which occurs on the outermost surface of the shaft.

d¢o

Ymax = CE (6.2)

Equations (6.1) and (6.2) can be combined to express the shear strain at any radial coordi-
nate p in terms of the maximum shear strain.

Yo = 2 Yo (©3)

Further, note that these equations are valid for elastic or inelastic action and for homogeneous
or heterogeneous materials, provided that the strains are not too large (i.e., tan y = y).
Problems and examples in this book will be assumed to satisfy this requirement.

6.3 Torsional Shear Stress

If the assumption is now made that Hooke’s Law applies, then the shear strain yy can be related
to the shear stress 7 by the relationship 7 = Gy [Equation (3.5)], where G is the shear modulus
(also called the modulus of rigidity). This assumption is valid if the shear stresses remain
below the proportional limit for the shaft material. Using Hooke’s Law, Equation (6.3) can be
expressed in terms of 7 to give the relationship between the shear stress 7, at any radial coordi-
nate p and the maximum shear stress 7,,,,, which occurs on the outermost surface of the shaft
(e, p=0)%

7, =2 (6.4)

p ¢ "max

As with the shear strain, shear stress in a circular shaft increases linearly in intensity as the
radial distance p from the centerline of the shaft increases. The maximum shear stress in-
tensity occurs on the outermost surface of the shaft. The variation in shear stress magnitude
is illustrated in Figure 6.5. Furthermore, shear stress never acts solely on a single sur-
face. Shear stress on a cross-sectional surface is always accompanied by an equal
magnitude shear stress acting on a longitudinal surface, as depicted in Figure 6.6.
The relationship between the torque 7 transmitted by a shaft and the shear stress 7,
developed internally in the shaft must be developed. Consider a very small portion dA of a
cross-sectional surface (Figure 6.7). In response to torque T, shear stresses 7, are developed
on the surface of the cross section on area dA, which is located at a radial distance of p from

2 In keeping with the notation presented in Section 1.5, the shear stress 7, should actually be designated 7,y to
indicate that it acts on the x face in the direction of increasing §. However, for the elementary theory of torsion of
circular sections discussed in this book, the shear stress on any transverse plane always acts perpendicular to the
radial direction at any point. Consequently, the formal double-subscript notation for shear stress is not needed for
accuracy and can be omitted here.



the longitudinal axis of the shaft. The resultant shear force dF acting on the small element is
given by the product of the shear stress 7, and the area dA. The force dF produces a moment
dM about the shaft centerline O, which can be expressed as dM = p dF' = p(7, dA). The
resultant moment produced by the shear stress about the shaft centerline is found by inte-
grating dM over the cross-sectional area:

Jam = [ pr,

If Equation (6.4) is substituted into this equation, the result is

fdM:Lp%TﬂpdA=L%T“p2dA

Since 7, and ¢ do not vary with dA, these terms can be moved outside of the integral.
Furthermore, the sum of all elemental moments dM must equal the torque 7 to satisfy equi-
librium; therefore,

T:fdM:TmT‘”‘Lpsz (@)

The integral in Equation (a) is called the polar moment of inertia, J:

J :fA p? dA (b)

Substituting Equation (b) into Equation (a) gives a relationship between the torque 7 and the
maximum shear Stress 7,y

T = —T“;ax J (©)

Alternatively, expressed in terms of the maximum shear stress,

(6.5)

If Equation (6.4) is substituted into Equation (6.5), a more general relationship can be obtained
for the shear stress 7, at any radial distance p from the shaft centerline:

I

= (6.6)

Equation (6.6), for which Equation (6.5) is a special case, is known as the elastic torsion
formula. In general, the internal torque 7 in a shaft or shaft segment is obtained from a
free-body diagram and an equilibrium equation. Note: Equations (6.5) and (6.6) apply only
for linearly elastic action in homogeneous and isotropic materials.

Polar Moment of Inertia J

The polar moment of inertia J for a solid circular shaft is

=Tt =t ©6.7)

where r = radius and d = diameter. For a hollow circular shaft, the polar moment of inertia
J is given by

J = Z{R = r¥]= ZID* — d¥] (6.8)

where R = outside radius, » = inside radius, D = outside diameter, and d = inside diameter.

TORSIONAL SHEAR STRESS

FIGURE 6.7 Calculating the
resultant moment produced by
torsion shear stress.

MOVIES

MecMovies 6.2 presents an
animated derivation of the elastic
torsion formula.

The polar moment of inertia is
also known as the polar second
moment of area.

Typically, J has units of in.*
in the U.S. Customary System
and mm* in SL



FIGURE 6.8a Shaft subjected to
pure torsion.

6.4 Stresses on Oblique Planes

The elastic torsion formula [Equation (6.6)] can be used to calculate the maximum shear
stress produced on a transverse section in a circular shaft by a torque. It is necessary to es-
tablish whether the transverse section is a plane of maximum shear stress and whether there
are other significant stresses induced by torsion. For this study, the stresses at point A in the
shaft of Figure 6.8a will be analyzed. Figure 6.8b shows a differential element taken from
the shaft at A as well as the shear stresses acting on transverse and longitudinal planes. The
stress 7,, may be determined by means of the elastic torsion formula, and 7,, = 7,,.
(See Section 1.6.) If the equations of equilibrium are applied to the free-body diagram of
Figure 6.8c, the following results are obtained:

XF, = 7, dA — 7,,(dAcosO)cosf + 7, (dAsinb)sin = 0
We then have

T = Ty (cos?2 @ —sin20) = T,y €05 26 (6.9)

and
XF, = 0,dA — T,y (dAcos ) sinf — Ty (dAsin@)cosf = 0

from which it follows that

o, = 27, sinfcosf = 7, sin26 (6.10)

These results are shown in the graph of Figure 6.9, from which it is apparent that the
maximum shear stress occurs on transverse and longitudinal diametral planes (i.e., lon-
gitudinal planes that include the centerline of the shaft). The graph also shows that the
maximum normal stresses occur on planes oriented at 45° with the axis of the shaft and
perpendicular to the surface of the shaft. On one of these planes (6 = 45° in Figure 6.8b),
the normal stress is tension, and on the other (§ = 135°), the normal stress is compres-
sion. Furthermore, the maximum magnitudes for both o and T are equal. Therefore, the
maximum shear stress given by the elastic torsion formula is also numerically equal
to the maximum normal stress that occurs at a point in a circular shaft subjected to
pure torsion.

y
\ Ty
\ A
\ Ty
\
N
Ty N\ dA sin
X
<
Tyx \ Ty)c dA sin 6
FIGURE 6.8b Differential FIGURE 6.8¢ FBD of a wedge-shaped

element at point A on the shaft. portion of the differential element.
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FIGURE 6.9 Variation of normal and shear stresses with angle 6 on the surface of a shaft.

Any of the stresses discussed in the preceding paragraph may be significant in a par-
ticular problem. Compare, for example, the failures shown in Figure 6.10. In Figure 6.10a,
the steel axle of a truck split longitudinally. One would expect this type of failure to occur
also in a shaft of wood with the grain running longitudinally. In Figure 6.10b, the compres-
sion stress caused the thin-walled aluminum alloy tube to buckle along one 45° plane, while
the tensile stress caused tearing on the other 45° plane. Buckling of thin-walled tubes (and
other shapes) subjected to torsional loading is a matter of great importance to the designer.
In Figure 6.10c, tensile normal stresses caused the gray cast iron shaft to fail in tension—
typical of any brittle material subjected to torsion. In Figure 6.10d, the low-carbon steel
failed in shear on a plane that is almost transverse—a typical failure for ductile material. The
reason the fracture in Figure 6.10d did not occur on a transverse plane is that, under the large
plastic twisting deformation before rupture (note the spiral lines indicating elements origi-
nally parallel to the axis of the bar), longitudinal elements were subjected to axial tensile
loading. This axial loading was induced because the testing machine grips would not permit
the torsion specimen to shorten as the elements were twisted into spirals. This axial tensile
stress (not shown in Figure 6.8) changes the plane of maximum shear stress from a trans-
verse to an oblique plane (resulting in a warped surface of rupture).?

I (a)

(b)

FIGURE 6.10 Photos of actual shaft failures.

3 The tensile stress is not entirely due to the grips, because the plastic deformation of the outer elements of the bar
is considerably greater than that of the inner elements. This results in a spiral tensile stress in the outer elements
and a similar compressive stress in the inner elements.

STRESSES ON OBLIQUE PLANES

Buckling is a stability failure.
The phenomenon of stability
failure is discussed in Chapter 16.



MOVIES

MecMovies 6.2 presents an
animated derivation of the angle
of twist relationship.

6.5 Torsional Deformations

If the shear stresses in a shaft are below the proportional limit of the shaft material
(i.e., elastic action), then Hooke’s Law, 7 = G, relates shear stress and shear strain in the
torsion member. The relationship between the shear stress in a shaft at any radial coordi-
nate p and internal torque T is given by Equation (6.6):

T = — (6.6)

The shear strain is related to the angle of twist per unit length by Equation (6.1):

_ 44
Y=p 6.1)

Equations (6.6) and (6.1) can be substituted into Hooke’s Law,

Tp d¢
7.=G S— =Gp—
P Y J Pix

to express the angle of twist per unit length in terms of the torque 7*

dp T

= (6.11)
dx JG

To obtain the angle of twist for a specific shaft segment, Equation (6.11) can be integrated
with respect to the longitudinal coordinate x over the length L of the segment:

T
do = —dx
Jae=] 56
If the shaft is homogeneous (i.e., constant G) and prismatic (meaning constant diameter

and, in turn, constant J), and if the shaft has a constant internal torque 7, then the angle of
twist ¢ in the shaft can be expressed as

TL

*=G

6.12)

The units of ¢ are radians in both SI and the U.S. Customary System.
Alternatively, Hooke’s Law and Equations (6.1), (6.2), (6.5), and (6.6) can be com-
bined to give additional angle of twist relationships:

*= TG T G ©19

These relationships are often useful in dual-specification problems such as those in which
limiting values of ¢ and 7 are both specified.

To reiterate, Equations (6.12) and (6.13) may be used to compute the angle of twist ¢
only if the torsional member

e is homogeneous (i.e., constant G),
e is prismatic (i.e., constant diameter and, in turn, constant J), and
e has a constant internal torque 7.



If a torsion member is subjected to external torques at intermediate points (i.e., points
other than the ends) or if it consists of various diameters or materials, the torsion member
must be divided into segments that satisfy the three requirements just listed. For compound
torsion members comprising two or more segments, the overall angle of twist can be deter-
mined by algebraically adding the segment twist angles:

TL,
$=27 (6.14)

Here, T;, L;, G;, and J; are the internal torque, length, shear modulus, and polar moment of
inertia, respectively, for individual segments i of the compound torsion member.

The amount of twist in a shaft (or a structural element) is frequently a key consideration
in design. The angle of twist ¢ determined from Equations (6.12) and (6.13) is applicable for
a constant-diameter shaft segment that is sufficiently removed from sections where pulleys,
couplings, or other mechanical devices are attached (so that Saint-Venant’s Principle is
applicable). However, for practical purposes, it is customary to neglect local distortion at all
connections and compute twist angles as though there were no discontinuities.

Rotation Angles

It is often necessary to determine angular displacements at particular points in a compound
torsional member or within a system of several torsional members. For example, the proper
operation of a system of shafts and gears may require that the angular displacement at a
specific gear not exceed a limiting value. The term angle of twist pertains to the torsional
deformation in shafts or shaft segments. The term rotation angle is used when referring to
the angular displacement at a specific point in the torsion system or at rigid components,
such as pulleys, gears, couplings, and flanges.

6.6 Torsion Sign Conventions

A consistent sign convention is very helpful to us when we analyze torsion members and
assemblies of torsion members. The sign conventions that follow will be used for

e internal torque in shafts or shaft segments,
e angles of twist in shafts or shaft segments, and
e rotation angles of specific points or rigid components.

Internal Torque Sign Convention

Moments in general, and internal torques specifically, are conveniently represented by a
double-headed vector arrow. This convention is based on the right-hand rule:

® Curl the fingers of your right hand in the direction that the moment tends to rotate.
The direction that your right thumb points indicates the direction of the double-
headed vector arrow.

® (Conversely, point your right-hand thumb in the direction of the double-headed
vector arrow, and the fingers of your right hand curl in the direction that the
moment tends to rotate.

TORSION SIGN CONVENTIONS



TORSION

MecMovies 6.3 presents an
animation of the sign conventions
used for internal torque, shaft
element twist angles, and
rotation angle.

A positive internal torque 7 in a shaft or other torsion member tends to rotate in a
right-hand rule sense about the outward normal to an exposed section. In other words, an
internal torque is positive if the right-hand thumb points outward away from the sectioned
surface when the fingers of the right hand are curled in the direction that the internal torque
tends to rotate. This sign convention is illustrated in Figure 6.11.

N0rmg] +T
+T "9» ()m\\‘,
ard
FIGURE 6.11 Sign convention for internal torque.

Angle of Twist Sign Convention

The sign convention for angles of twist is consistent with the internal torque sign conven-
tion. A positive angle of twist ¢ in a shaft or other torsion member acts in a right-hand rule
sense about the outward normal to an exposed section. In other words,

® At an exposed section of the torsion member, curl the fingers of your right hand in
the direction of the twisting deformation.

® If your right-hand thumb points outward, away from the sectioned surface, the angle
of twist is positive.

This sign convention is illustrated in Figure 6.12.

O““\'ard
ﬂ()r]nu]

FIGURE 6.12 Sign convention for angles of twist.

Rotation Angle Sign Convention

Let the longitudinal axis of a shaft be defined as the x axis. A positive rotation angle acts in
a right-hand rule sense about the positive x axis. For this sign convention, an origin must
be defined for the coordinate system of the torsion member. If two parallel shafts are con-
sidered, then the two positive x axes should extend in the same direction. This sign conven-
tion is illustrated in Figure 6.13.

FIGURE 6.13 Sign convention for rotation angles.



A hollow circular steel shaft with an outside diameter of 1.50 in. and a wall
thickness of 0.125 in. is subjected to a pure torque of 140 Ib-ft. The shaft is
90 in. long. The shear modulus of the steel is G = 12,000 ksi. Determine

140 Ib-ft
(a) the maximum shear stress in the shatft.
(b) the magnitude of the angle of twist in the shaft.

90 in. B
Plan the Solution

The elastic torsion formula [Equation (6.5)] will be used to compute the maximum shear
stress, and the angle of twist equation [Equation (6.12)] will be used to determine the
angle of twist in the hollow shaft.

SOLUTION

The polar moment of inertia J for the hollow shaft will be required for these calculations.
The shaft has an outside diameter of D = 1.50 in. and a wall thickness of = 0.125 in.
The inside diameter d of the shaftisd = D — 2t = 1.50 in. — 2(0.125 in.) = 1.25 in. The
polar moment of inertia for the hollow shaft is

w

J==
32

[D* — d*] = —=[(1.50 in.)* — (1.25 in.)*] = 0.257325 in.*

T
32
(a) The maximum shear stress is computed from the elastic torsion formula

Te _ (140 Ib-ft) (1.50 in./2) (12 in./fo)
J 0.257325 in.*

= 4,896.5 psi = 4,900 psi Ans.
(b) The angle of twist magnitude in the 90-in.-long shaft is

TL (140 Ib-ft)(90 in.) (12 in./ft)

=—= - - = 0.0490 rad Ans.
JG  (0.257325 in.#)(12,000,000 Ib/in.?)

¢

A 500-mm-long solid steel [G = 80 GPa] shaft is being designed to transmit a

torque of 7= 20 N-m. The maximum shear stress in the shaft must not exceed T
70 MPa, and the angle of twist must not exceed 3° in the 500-mm length. Deter- T

mine the minimum diameter d required for the shaft.

Plan the Solution
The elastic torsion formula [Equation (6.5)] and the angle of twist equation [Equation (6.12)]
will be rearranged to solve for the minimum diameter required to satisfy each consider-
ation. The larger of the two diameters will dictate the minimum diameter d that can be
used for the shaft.




SOLUTION
The elastic torsion formula relates shear stress and torque:

Tc
T=—
J

In this instance, the torque and the allowable shear stress are known for the shaft. Rear-
range the elastic torsion formula, putting the known terms on the right-hand side of the
equation:

J_T
c T
Express the left-hand side of this equation in terms of the shaft diameter d:
(m/32)d* s=r
d/2 16 T

Now solve for the minimum diameter that will satisfy the 80 MPa allowable shear stress limit:

_ 167 _ 16(20 N-m)(1,000 mmjn)
o omT 7 (70 N/mm?2)

d? = 1,455.1309 mm?

o.d = 11.33 mm

The angle of twist in the shaft must not exceed 3° in a 500-mm length. Rearrange the
angle of twist equation so that the polar moment of inertia J is isolated on the left-hand
side of the equation:

o= I
JG Go
Express the polar moment of inertia in terms of the diameter d, and solve for the minimum
diameter that will satisfy the 3° limit:

_ 3211 _ 32(20 N-m) (500 mm) (1,000 mm/m)

d4
7G¢ (80,000 N/mm?)(3°)(m rad/180°)

= 24,317.084 mm*

o.od =12.49 mm

Based on these two calculations, the minimum diameter that is acceptable for the shaft is
d = 12.49 mm. Ans.

A compound shaft consists of a solid aluminum segment (1) and a
hollow steel segment (2). Segment (1) is a solid 1.625-in.-diameter
aluminum shaft with an allowable shear stress of 6,000 psi and a

shear modulus of 4 X 10° psi. Segment (2) is a hollow steel shaft
with an outside diameter of 1.25 in., a wall thickness of 0.125 in.,
an allowable shear stress of 9,000 psi, and a shear modulus of 11 X

106 psi. In addition to the allowable shear stresses, specifications
require that the rotation angle at the free end of the shaft must not
exceed 2°. Determine the magnitude of the largest torque T that
may be applied to the compound shaft at C.




Plan the Solution y
To determine the largest torque 7 that can be applied at C, we must
consider the maximum shear stresses and the angles of twist in both

shaft segments.

(€))

SOLUTION B

The internal torques acting in segments (1) and (2) can be easily | 16 in. H
determined from free-body diagrams cut through each segment.

Cut a free-body diagram through segment (2) and include
the free end of the shaft. A positive internal torque 7 is assumed y |
to act in segment (2). The following equilibrium equation is

obtained: T

1
IM, =T-T,=0 T, =T Gux

Repeat the process with a free-body diagram cut through segment | 16 in.
(1) that includes the free end of the shaft. From this free-body dia-
gram, a similar equilibrium equation is obtained:

M, =T-T,=0 T, =T

Therefore, the internal torque in both segments of the shaft is equal to the external torque
applied at C.

Shear Stress
In this compound shaft, the diameters and allowable shear stresses in segments (1) and (2)
are known. The elastic torsion formula can be rearranged to solve for the allowable torque
that may be applied to each segment.
/)

Tl = Tz =
o1 ()

TyJ5

Segment (1) is a solid 1.625-in.-diameter aluminum shaft. The polar moment of inertia for
this segment is

J = ;—2(1.625 in)* = 0.684563 in.4

Use this value along with the 6,000 psi allowable shear stress to determine the allowable
torque 77:

_ 7ly _ (6,000 psi)(0.684563 in.4)

T, =
T g (1.625 in./2)

= 5,055.2 Ib-in. (a)

Segment (2) is a hollow steel shaft with an outside diameter of D = 1.25 in. and a wall
thickness of ¢+ = 0.125 in. The inside diameter d of this segment is d = D — 2t =
1.25 in. — 2(0.125 in.) = 1.00 in. The polar moment of inertia for segment (2) is

I, = 3”—2[(1.25 in.)* — (1.00 in.)*] = 0.141510 in.*

Use this value along with the 9,000 psi allowable shear stress to determine the allowable
torque 75:

: )
- Ty _ (9,000 pSl)(O..141510 in#) — 2,037.7 Ib4n. )
C, (1.251in./2)

T,




Rotation Angle at C
The angles of twists in segments (1) and (2) can be expressed as
_ LL

JiG,

_ Ll
1,6,

& b,

The rotation angle at C is the sum of these two angles of twist:

Tl Ll + T2L2

=¢ +d, =
bc = + b, 16, TG,

Consequently, since 7} = T, = T, it follows that

d)C =T L + i
JiG )G,
Solving for external torque 7 gives
T < d)—c
L, N L,
NG )6,
- (2°) (7 rad /180°) (c)
16 in. + 25 in.
(0.684563 in.*) (4,000,000 psi)  (0.141510 in.*) (11,000,000 psi)
= 1,593.6 Ib-in.

External Torque T
Compare the three torque limits obtained in Equations (a), (b), and (c). On the basis of
these results, the maximum external torque that can be applied to the shaft at C is

T = 1,594 Ib-in. = 132.8 Ib-ft Ans.

EXAMPLE 6.4

A solid steel [G = 80 GPa] shaft of variable diameter is subjected to the torques shown.
Segment (1) of the shaft has a 36-mm diameter, segment (2) has a 30-mm diameter, and
segment (3) has a 25-mm diameter. The bearing shown allows the shaft to turn freely.
Additional bearings have been omitted for clarity.

(a) Determine the internal torque in segments (1), (2), and (3)
of the shaft. Plot a diagram showing the internal torques in
all segments of the shaft. Use the sign convention presented
in Section 6.6.

(b) Compute the maximum shear stress magnitude in each
segment of the shaft.

(c) Determine the rotation angles along the shaft measured
at gears B, C, and D relative to flange A. Plot a diagram
showing the rotation angles at all points on the shaft.




Plan the Solution

The internal torques in the three shaft segments will be determined
from free-body diagrams and equilibrium equations. The elastic
torsion formula [Equation (6.5)] will be used to compute the max-
imum shear stress in each segment once the internal torques are
known. The angle of twist equations [Equations (6.12) and (6.14)]
will be used to determine the twisting in individual shafts as well
as the rotation angles at gears B, C, and D.

SOLUTION

Equilibrium

Consider a free-body diagram that cuts through shaft segment (3)
and includes the free end of the shaft. A positive internal torque
T5 is assumed to act in segment (3). The equilibrium equation
obtained from this free-body diagram gives the internal torque in
segment (3) of the shaft:

M, =250 Nm—T; =0
=Ty = 250 N-m
Similarly, the internal torque in segment (2) is found from an
equilibrium equation obtained from a free-body diagram that

cuts through segment (2) of the shaft. A positive internal torque
T, is assumed to act in segment (2).

XM, = 250 Nm — 600 Nm—T7, = 0

=T, = =350 N-m
And for segment (1),
M, = 250 N-m — 600 N-m + 900 N-m —7; = 0
=T, = 550 N-m

A torque diagram is produced by plotting these three results.

Polar Moments of Inertia

The elastic torsion formula will be used to compute the maxi-
mum shear stress in each shaft segment. For this calculation, the
polar moments of inertia must be computed for each segment.
Segment (1) is a solid 36-mm-diameter shaft. The polar moment
of inertia for this shaft segment is

T 36 mm)* = 164,895.9 mm*

32

Shaft segment (2), which is a solid 30-mm-diameter shaft, has
a polar moment of inertia of

JIZ

I, = 3—7;(30 mm)* = 79,521.6 mm*

The polar moment of inertia for shaft segment (3), which is a
solid 25-mm-diameter shaft, has a value of

I, = 312(25 mm)* = 38,349.5 mm*

250 N-m

T3 (3)
.D N

600 N-m 250 N-m

—350 N-m

Internal torque diagram for compound shaft.




Shear Stresses
The maximum shear stress magnitude in each segment can be calculated with the use of
the elastic torsion formula:

Ty _ (550 N-m) (36 mm/2) (1,000 mm/m)

| = = 60.0 MPa Ans.
J 164,895.9 mm*

- Tye, _ (350 N-m)(30 mm/2) (1,000 mm/m) — 66.0 MPa Ans.
J, 79,521.6 mm*

. Tycy _ (250 N-m) (25 mm/2) (1,000 mm/m) — 815 MPa Ans.

A 38,349.5 mm*
Angles of Twist
Before rotation angles can be determined, the angles of twist in each segment must be
determined. In the preceding calculation, the sign of the internal torque was not consid-
ered because only the magnitude of the shear stress was desired. For the angle of twist
calculations here, the sign of the internal torque must be included.
T,L E
b, = L (550 N-m) (850 mm) (1,000 mm/m) — 0.035439 rad

JiG,  (164,895.9 mm*)(80,000 N/mm?)
T,L, (=350 N-m)(1,000 mm)(1,000 mm/m)
J,G, (79,521.6 mm*)(80,000 N/mm?)
T3L; (250 N-m)(700 mm) (1,000 mm/m)

_ _ = 0.057041 rad
& J5G;  (38,349.5 mm*)(80,000 N/mm?)

—0.055017 rad

d’z:

Rotation Angles
The angles of twist can be defined in terms of the rotation angles at the ends of each segment:

b1= g — Py by = —Pp by = dp — e
The origin of the coordinate system is located at flange A. We will arbitrarily define the

rotation angle at flange A to be zero (¢, = 0). The rotation angle at gear B can be calculated
from the angle of twist in segment (1):

b= dp — Py

sy = by + b = 0+ 0.035439 rad
0.035439 rad = 0.0354 rad

Similarly, the rotation angle at C is determined from the angle of

0.85m 1.00 m ‘-MJ twist in segment (2) and the rotation angle of gear B:

by = Pc — P
250 N-m nbe = ¢y + by = 0.035439 rad + (—0.055017 rad)

= —0.019578 rad = —0.01958 rad

—350N-m Finally, the rotation angle at gear D is
Internal torque diagram for compound shaft. by = dp — I
0.0354 rad 0.0375 rad
Sy = ¢ + ¢d; = —0.019578 rad + 0.057041rad
= 0.037464 rad = 0.0375rad
—0.01958 rad A plot of the rotation angle results can be added to the torque

Rotation angle diagram for compound shaft. diagram to give a complete report for the three-segment shaft.




ies Example M6.4

Determine the torque 7 that causes a maximum shearing stress of 50 MPa in the hollow
shaft. The outside diameter of the shaft is 40 mm, and the wall thickness is 5 mm.

ies Example M6.5

Determine the minimum permissible diameter for a solid shaft subjected to a torque of
5 kN-m. The allowable shear stress for the shaft is 65 MPa.

ies Example M6.6

A single torque of 7= 50 N-m is applied to a compound torsion mem-
ber. Segment (1) is a 32-mm-diameter solid brass [G = 37 GPa] rod.
Segment (2) is a solid aluminum [G = 26 GPa] rod. Determine the
minimum diameter of the aluminum segment if the rotation angle at C
relative to the support A must not exceed 3°.

ies Example M6.7

A solid circular driveshaft connects a motor to gears B and C. The
torque on gear B is 600 N-m, and the torque on gear C is 200 N-m,
acting in the directions shown. The driveshaft is steel [G = 66 MPa]
with a diameter of 25 mm.

(a) Determine the maximum shear stress in shafts (1) and (2).
(b) Determine the rotation angle of C with respect to A.




jes Example M6.8

The solid steel [G = 80 GPa] shaft between coupling A and gear B has
a diameter of 35 mm. Between gears B and C, the diameter of the solid
shaft is reduced to 25 mm. At gear B, a 20 N-m concentrated torque is
applied to the shaft in the direction indicated. A concentrated torque T
will be applied at gear C. If the total angle of rotation at C is not to
exceed 1°, determine the magnitude of torque 7 that can be applied in
the direction shown.

M6.1 Ten basic torsion problems involving internal torques,
shear stress, and angles of twist for a multisegment shaft.

PROBLEMS

49 N-m

FIGURE M6.1

P6.1 A solid circular steel shaft having an outside diameter of
d = 0.75 in. is subjected to a pure torque of 7' = 650 lb-in. Deter-
mine the maximum shear stress in the shaft.

P6.2 A hollow aluminum shaft with an outside diameter of
80 mm and a wall thickness of 5 mm has an allowable shear stress
of 75 MPa. Determine the maximum torque 7 that may be applied
to the shaft.

P6.3 A hollow steel shaft with an outside diameter of 100 mm
and a wall thickness of 10 mm is subjected to a pure torque of
T = 5,500 N-m.

(a) Determine the maximum shear stress in the hollow shaft.

(b) Determine the minimum diameter of a solid steel shaft for
which the maximum shear stress is the same as in part (a) for
the same torque 7.

P6.4 A compound shaft consists of two pipe segments. Seg-
ment (1) has an outside diameter of 200 mm and a wall thickness
of 10 mm. Segment (2) has an outside diameter of 150 mm and a
wall thickness of 10 mm. The shaft is subjected to torques Tz =
42 kN-m and T = 18 kN-m, which act in the directions shown in
Figure P6.4/5. Determine the maximum shear stress magnitude in
each shaft segment.

FIGURE P6.4/5

P6.5 A compound shaft consists of two pipe segments. Segment
(1) has an outside diameter of 10.750 in. and a wall thickness of
0.365 in. Segment (2) has an outside diameter of 6.625 in. and a wall
thickness of 0.280 in. The shaft is subjected to torques Tp =
60 kip-ft and T = 24 kip-ft, which act in the directions shown in
Figure P6.4/5. Determine the maximum shear stress magnitude in
each shaft segment.

P6.6 A compound shaft (Figure P6.6/7) consists of brass seg-
ment (1) and aluminum segment (2). Segment (1) is a solid brass
shaft with an outside diameter of 0.625 in. and an allowable
shear stress of 6,000 psi. Segment (2) is a solid aluminum shaft
with an outside diameter of 0.50 in. and an allowable shear stress



of 9,000 psi. Determine the magnitude of the largest torque 7T¢
that may be applied at C.

FIGURE P6.6/7

P6.7 A compound shaft (Figure P6.6/7) consists of brass seg-
ment (1) and aluminum segment (2). Segment (1) is a solid brass
shaft with an allowable shear stress of 60 MPa. Segment (2) is a
solid aluminum shaft with an allowable shear stress of 90 MPa. If a
torque of 7 = 23,000 N-m is applied at C, determine the minimum
required diameter of

(a) the brass shaft and
(b) the aluminum shaft.

P6.8 A solid 0.75-in.-diameter shaft is subjected to the torques
shown in Figure P6.8. The bearings shown allow the shaft to turn
freely.

(a) Plot a torque diagram showing the internal torque in
segments (1), (2), and (3) of the shaft. Use the sign conven-
tion presented in Section 6.6.

(b) Determine the maximum shear stress magnitude in the shaft.

10 Ib-ft

50 Ib-ft

FIGURE P6.8

P6.9 A solid constant-diameter shaft is subjected to the torques
shown in Figure P6.9. The bearings shown allow the shaft to turn
freely.

(a) Plot a torque diagram showing the internal torque in segments
(1), (2), and (3) of the shaft. Use the sign convention
presented in Section 6.6.

(b) If the allowable shear stress in the shaft is 80 MPa, determine
the minimum acceptable diameter for the shaft.

110 N-m

FIGURE P6.9

P6.10 The solid steel rod (1) shown in Figure P6.10 has an al-
lowable shear stress of 18 ksi. The brass tube (2) has an allowable
shear stress of 6 ksi. The outside diameter of the tube is D, = 1.50 in.,
and its wall thickness is r, = 0.125 in. The tube is attached to a
fixed plate at C, and both the rod and the tube are welded to a rigid
end plate at B. Calculate

(a) the largest torque 7 that can be applied at the upper end of the
steel rod if the allowable shear stress in tube (2) is not to be
exceeded.

(b) the corresponding minimum diameter d; required for steel
rod (1).

Fixed plate

Tube (2)

End plate

FIGURE P6.10

P6.11 A solid circular steel shaft having an outside diameter of
35 mm is subjected to a pure torque of 7= 640 N-m. The shear
modulus of the steel is G = 80 GPa. Determine

(a) the maximum shear stress in the shaft.
(b) the magnitude of the angle of twist in a 1.5-m length of shaft.

P6.12 A solid stainless steel [G = 12,500 ksi] shaft that is 72 in.
long will be subjected to a pure torque of 7= 900 Ib-in. Determine
the minimum diameter required if the shear stress must not exceed
8,000 psi and the angle of twist must not exceed 5°. Report both the
maximum shear stress 7 and the angle of twist ¢ at this minimum
diameter.

P6.13 A hollow steel [G = 12,000 ksi] shaft with an outside
diameter of 3.50 in. will be subjected to a pure torque of



T = 3,750 Ib-ft. Determine the maximum inside diameter d that can
be used if the shear stress must not exceed 8,000 psi and the angle
of twist must not exceed 3° in an 8-ft length of shaft. Report both
the maximum shear stress 7 and the angle of twist ¢ for this maxi-
mum inside diameter.

P6.14 A compound shaft (Figure P6.14) consists of brass seg-
ment (1) and aluminum segment (2). Segment (1) is a solid brass
[G = 5,600 ksi] shaft with an outside diameter of 1.75 in. and an
allowable shear stress of 9,000 psi. Segment (2) is a solid alumi-
num [G = 4,000 ksi] shaft with an outside diameter of 1.25 in.
and an allowable shear stress of 12,000 psi. The maximum rota-
tion angle at the upper end of the compound shaft must be limited
to ¢ = 4°. Determine the magnitude of the largest torque 7 that
may be applied at C.

FIGURE P6.14

P6.15 A simple torsion-bar spring is shown in Figure P6.15. The
shear stress in the steel [G = 80 GPa] shaft is not to exceed 70 MPa,
and the vertical deflection of joint D is not to exceed 10 mm when
aload of P = 11 kN is applied. Neglect the bending of the shaft and
assume that the bearing at C allows the shaft to rotate freely. Deter-
mine the minimum diameter required for the shaft. Use dimensions
of a = 1,400 mm, b = 600 mm, and ¢ = 175 mm.

FIGURE P6.15

P6.16 The mechanism shown in Figure P6.16 is in equilibrium
for an applied load of P = 20 kN. Specifications for the mecha-
nism limit the shear stress in the steel [G = 80 GPa] shaft BC to

70 MPa, the shear stress in bolt A to 100 MPa, and the vertical
deflection of joint D to a maximum value of 25 mm. Assume that
the bearings allow the shaft to rotate freely. Using L = 1,200 mm,
a = 110 mm, and b = 210 mm, calculate

(a) the minimum diameter required for shaft BC.
(b) the minimum diameter required for bolt A.

Bearings

FIGURE P6.16

P6.17 A solid 1.50-in.-diameter steel [G = 12,000 ksi] shaft is
subjected to torques Tp = 250 Ib-ft, T = 300 lb-ft, and Tp =
130 Ib-ft, acting in the directions shown in Figure P6.17. Assume
a=48in.,b =721in., and ¢ = 36 in.

(a) Prepare a diagram that shows the internal torque and the maxi-
mum shear stress in segments (1), (2), and (3) of the shaft.
Use the sign convention presented in Section 6.6.

(b) Determine the rotation angle of pulley C with respect to the
support at A.

(c) Determine the rotation angle of pulley D with respect to the
support at A.

FIGURE P6.17

P6.18 A solid steel [G = 80 GPa] shaft of variable diameter is
subjected to the torques shown in Figure P6.18. The diameter of the
shaft in segments (1) and (3) is 50 mm, and the diameter of the shaft
in segment (2) is 80 mm. The bearings shown allow the shaft to turn
freely. Calculate

(a) the maximum shear stress in the compound shaft.
(b) the rotation angle of pulley D with respect to pulley A.



|

1,200 N-m 4,500 N-m

2,800 N-m

FIGURE P6.18

P6.19 A compound shaft drives several pulleys, as shown in
Figure P6.19. Segments (1) and (2) of the compound shaft are hol-
low aluminum [G = 4,000 ksi] tubes, which have an outside diam-
eter of 3.00 in. and a wall thickness of 0.125 in. Segments (3) and
(4) are solid 1.50-in.-diameter steel [G = 12,000 ksi] shafts. The

bearings shown allow the shaft to turn freely. Calculate

(a) the maximum shear stress in the compound shaft.
(b) the rotation angle of flange C with respect to pulley A.
(c) the rotation angle of pulley E with respect to pulley A.

|

FIGURE P6.19

P6.20 Figure P6.20 shows a cutaway view of an assembly in
which a solid steel [G = 80 GPa] rod (1) is fitted inside of a brass
[G = 44 GPa] tube (2). The tube is attached to a fixed plate at C, and

Fixed plate

End plate

FIGURE P6.20

both the rod and the tube are welded to a rigid end plate at B. The
rod diameter is d; = 30 mm. The outside diameter of the tube is
D, = 50 mm, and its wall thickness is z, = 3 mm. Using a = 600 mm,
b = 400 mm, and 7" = 500 N-m, calculate

(a) the maximum shear stresses in both rod (1) and tube (2).
(b) the rotation angle at A.

P6.21 A compound shaft (Figure P6.21) consists of an alumi-
num alloy [G = 26 GPa] tube (1) and a solid bronze [G = 45 GPa]
shaft (2). Tube (1) has a length of L; = 900 mm, an outside diam-
eter of D; = 35 mm, and a wall thickness of 7, = 4 mm. Shaft (2)
has a length of L, = 1,300 mm and a diameter of d, = 25 mm. If an
external torque of T = 420 N-m acts at pulley B in the direction
shown, calculate the torque 7' required at pulley C so that the rota-
tion angle of pulley C relative to A is zero.

FIGURE P6.21

P6.22 The copper pipe shown in Figure P6.22 has an outside
diameter of 3.50 in. and a wall thickness of 0.313 in. The pipe is
subjected to a uniformly distributed torque of # = 90 Ib-ft/ft along its
entire length. Using a = 2.5 ft, b = 4 ft, and ¢ = 8 ft, calculate

(a) the shear stress at A on the outer surface of the pipe.
(b) the shear stress at B on the outer surface of the pipe.

FIGURE P6.22

P6.23 The solid shaft shown in Figure P6.23 is subjected to a
uniformly distributed torsional loading + = 7 kN-m/m and a con-
centrated external torque 7, = 2,500 N-m. Determine the minimum



required diameter of the shaft if the allowable shear stress for the (a) the angle of twist in shaft segment AB.
material is 100 MPa. Use a = 0.5 m, b = 1.2 m, and ¢ = 0.3 m. (b) the rotation angle ¢ at the free end of the shaft.

FIGURE P6.23

FIGURE P6.24

P6.24 Figure P6.24 shows a 50-mm-diameter solid shaft made P6.25 A 5-m-long solid bronze [G = 45 GPa] shaft must carry
of aluminum [G = 70 GPa] that is subjected to a uniformly distrib-  a uniformly distributed torsional loading of 35 kN-m/m along its
uted torsional loading of t+ = 4.2 kKN-m/m and two concentrated  full length. The angle of twist of the shaft is limited to 0.05 rad,
external torques: 7¢ = 5.0 kN-m and 7, = 2.3 kN-m. Using ¢ =  and the maximum allowable shear stress is limited to 120 MPa.
1.3m, b= 0.4m, and ¢ = 0.9 m, calculate What is the minimum diameter required for the shaft?

Ny = Number of teeth
T, on gear B

N, = Number of teeth
on gear A

FIGURE 6.14 Basic gear
assembly.

FIGURE 6.15 Free-body
diagrams of gears A and B.

6.7 Gears. in Torsion Assemblies

Gears are a fundamental component found in many types of mechanisms and devices—
particularly those devices that are driven by motors or engines. Gears are used for many
purposes, such as

® transmitting torque from one shaft to another,
increasing or decreasing torque in a shaft,

e increasing or decreasing the rate of rotation of a shaft,
e changing the rotation direction of two shafts, and
® changing rotational motion from one orientation to another; for instance, changing

rotation about a horizontal axis to rotation about a vertical axis.

Furthermore, since gears have teeth, shafts connected by gears are always synchronized
exactly with one another.

A basic gear assembly is shown in Figure 6.14. In this assembly, torque is transmitted
from shaft (1) to shaft (2) by means of gears A and B, which have radii of R, and R, re-
spectively. The number of teeth on each gear is denoted by N, and Np. Positive internal
torques 7, and T, are assumed in shafts (1) and (2). For clarity, bearings necessary to sup-
port the two shafts have been omitted. This configuration will be used to illustrate basic
relationships involving torque, rotation angle, and rotation speed in torsion assemblies
with gears.

Torque

To illustrate the relationship between the internal torques in shafts (1) and (2), free-body
diagrams of each gear are shown in Figure 6.15. If the system is to be in equilibrium, then
each gear must satisfy equilibrium. Consider the free-body diagram of gear A. The internal
torque 7 acting in shaft (1) is transmitted directly to gear A. This torque causes gear A to
rotate counterclockwise. As gears A and B rotate, the teeth of gear B exert a force on gear
A that acts tangential to both gears. This force, which opposes the rotation of gear A, is



denoted by F. A moment equilibrium equation about the x axis gives the relationship ~ GEARS IN TORSION ASSEMBLIES
between 7 and F for gear A:

SM,=T,—F«R, =0 . F=-4

% R, (a)

Next, consider the free-body diagram of gear B. If the teeth of gear B exert a force F on gear
A, then the teeth of gear A must exert on gear B a force that is equal in magnitude, but acts
in the opposite direction. This force causes gear B to rotate clockwise. A moment equilib-
rium equation about the x" axis gives

SM.=-FeRy—T, =0 (b)

If the expression for F determined in Equation (a) is substituted into Equation (b), then the
torque 7T, required to satisfy equilibrium can be expressed in terms of torque 77:

T
FRLEL = T ©

The magnitude of 75 is related to T by the ratio of the gear radii. Since the two gears rotate
in opposite directions, however, the sign of T, is opposite from the sign of 7.

MOVIES

Gear Ratio. The ratio Rz/R, in Equation (c) is called the gear ratio, and this ratio is
the key parameter that dictates relationships between shafts connected by gears. The gear  MecMovies 6.9 presents an
ratio in Equation (c) is expressed in terms of the gear radii; however, this parameter can  animation that illustrates basic
also be expressed in terms of gear diameters or gear teeth. gear relationships for torque,

The diameter D of a gear is simply two times its radius R. Accordingly, the gear ratio  rotation angle, rotation speed,
in Equation (c) could also be expressed as Dg/D,, where D, and Dy are the diameters of ~and power transmission.
gears A and B, respectively.

For two gears to interlock properly, the teeth on both gears must be the same size. In other
words, the arclength of a single tooth, which is termed the pitch p, must be the same for both
gears. The circumference C of gears A and B can be expressed either in terms of gear radius,

C, = 2mR, Cp = 27Ry,
or in terms of the pitch p and the number of teeth N on the gear,
Cy = PN,y Cp = PN
The circumference expressions for each gear can be equated and solved for the pitch p on
each gear:
_ 2@R, _ 27Ry
- Ny - Np

Moreover, since the tooth pitch p must be the same for both gears,

Ry _ Np

Ry Ny

In summary, the gear ratio between any two gears A and B can be expressed equivalently
by either gear radii, gear diameters, or numbers of gear teeth:

Gear ratio = Ry = Dy = N (d)
Ry, Dy N,




TORSION Rotation Angle. When gear A turns through an angle of ¢4 as shown in Figure 6.16,
the arclength s, along the perimeter of gear A is s, = Ry¢p4. Similarly, the arclength sp
along the perimeter of gear B is sz =/ Ry p. Since the teeth on each gear must be the same
size, the arclengths that are turned by the two gears must be equal in magnitude. The two
gears, however, turn in opposite directions. If s, and sp are equated and rotation in the op-
posite direction is accounted for, then the rotation angle ¢, can be expressed as

Ryby = —Rpdy Sy = ——p (e)

Note: The term Ry/R, in Equation (e) is simply the gear ratio; therefore,

FIGURE 6.16 Rotation angles :
for gears A and B. ¢, = —(Gear ratio)dp (f)

Rotation Speed. Rotation speed w is the rotation angle ¢ turned by the gear in a unit
of time; therefore, the rotation speeds of two interlocked gears are related in the same man-
ner as described for rotation angles.

o, = —(Gear ratio) wg (2)

42 teeth 315 N-m Two solid steel [G = 80 GPa] shafts are connected by the gears
: shown. Shaft (1) has a diameter of 35 mm, and shaft (2) has a
diameter of 30 mm. Assume that the bearings shown allow free
rotation of the shafts. If a 315 N-m torque is applied at gear D,
determine

(a) the maximum shear stress magnitudes in each shaft.
(b) the angles of twist ¢; and ¢,.
(c) the rotation angles ¢y and ¢ of gears B and C, respectively.

600 mm (d) the rotation angle of gear D.
85
0 mm Plan the Solution

The internal torque in shaft (2) can easily be determined from a
free-body diagram of gear D; however, the internal torque in shaft (1) will be dictated by the
ratio of gear sizes. Once you have determined the internal torques in both shafts, calculate
the angles of twist in each shaft, paying particular attention to the signs of the twist angles.
The twist angle in shaft (1) will dictate how much gear B rotates, which in turn will dictate
the rotation angle of gear C. The rotation angle of gear D will depend upon the rotation
angle of gear C and the angle of twist in shaft (2).

SOLUTION

Equilibrium

Consider a free-body diagram that cuts through shaft (2) and includes gear D. A positive
internal torque will be assumed in shaft (2). From this free-body diagram, a moment
equilibrium equation about the x" axis can be written to determine the internal torque 7,
in shaft (2).

, XM, =315Nm—-T7,=0 2. T, = 315 N-m (a)

315 N-m

X

Next, consider a free-body diagram that cuts through shaft (2) and includes
gear C. Once again, a positive internal torque will be assumed in shaft (2). The teeth of




gear B exert a force F on the teeth of gear C. If the radius of gear C is denoted by R,

_ N =42 teeth
a moment equilibrium equation about the x" axis can be written as '

SM, =T, FeR. =0 ~F=22

: -2 ®

A free-body diagram of gear B that cuts through shaft (1) is shown. A positive internal
torque 7 is assumed to act in shaft (1). If the teeth of gear B exert a force F' on the F
teeth of gear C, then equilibrium requires that the teeth of gear C exert an equal mag-
nitude force in the opposite direction on the teeth of gear B. With the radius of gear B
denoted by Rz, a moment equilibrium equation about the x axis can be written as

M, =-T,—F*R; =0 o1, = —F « Ry (c)
The internal torque in shaft (2) is given by Equation (a). The internal torque in shaft N =54t e
(1) can be determined by substituting Equation (b) into Equation (c): !
= per = Tp 1R
Re Rc

The gear radii Rp and R are not known. However, the ratio Rg/R is simply the gear ratio
between gears B and C. Since the teeth on both gears must be the same size in order for
the gears to mesh properly, the ratio of teeth on each gear is equivalent to the ratio of gear
radii. Consequently, the torque in shaft (1) can be expressed in terms of Ny and N, the
number of teeth on gears B and C, respectively:

T = -nRe N _ 515 Nm) 22 _ 405 N
R N¢ 42 teeth

Shear Stresses

The maximum shear stress magnitude in each shaft will be calculated from the elastic tor-
sion formula. The polar moments of inertia for each shaft will be required for this calcula-
tion. Shaft (1) is a solid 35-mm-diameter shaft, which has a polar moment of inertia of
312(35 mm)* = 147,324 mm*

Shaft (2) is a solid 30-mm-diameter shaft, which has a polar moment of inertia of

J1:

3—7;(30 mm)* = 79,552 mm*

To calculate the maximum shear stress magnitudes, the absolute values of 7' and 7, will
be used. The maximum shear stress magnitude in the 35-mm-diameter shaft (1) is

- Ty _ (405 N-m) (35 mm/2) (1,000 mm/m) _ 481 MPa Ans.
Jy 147,324 mm*

and the maximum shear stress magnitude in the 30-mm-diameter shaft (2) is
_ T)e, (315 N-m)(30 mm/2) (1,000 mm/m)
J, 79,552 mm*

J2:

T, = 59.4 MPa Ans.

Angles of Twist
The angles of twist must be calculated with the signed values of 7 and 7. Shaft (1) is 600 mm
long, and its shear modulus is G = 80 GPa = 80,000 MPa. The angle of twist in this shaft is

LL, _ (2405 N-m)(©00 mm)(1,000 mm/m) _ ) 1510 d = 00206 rad

&= J,G, (147,324 mm*)(80,000 N/mm?)

Ans.




Shaft (2) is 850 mm long; therefore, its angle of twist is

¢, = DL _ G15 Nm)®50 mm) (1,000 mmyn)
7 1,6, (79,522 mm*)(80,000 N/mm?)

= 0.042087 rad = 0.0421rad Ans.

Rotation Angles of Gears B and C
Ne=42teeth The rotation of gear B is equal to the angle of twist in shaft (1):

¢y = ¢, = —0.020618 rad = —0.0206 rad Ans.

Note: From the sign convention for rotation angles described in Section 6.6 and illus-
trated in Figure 6.13, a negative rotation angle for gear B indicates that gear B rotates
clockwise, as shown in the figure to the left.

The rotation angles of gears B and C are related because the arclengths associated
with the respective rotations must be equal. Why? Because the gear teeth are interlocked.
The gears turn in opposite directions, however. In this instance, gear B turns clockwise,
which causes gear C to rotate in a counterclockwise direction. This change of rotation
direction is accounted for in the calculations by a negative sign, so that

Rede = —Rpdy

where Rp and R are the radii of gears B and C, respectively. Using this relationship, we
can express the rotation angle of gear C as

Ny =54 teeth ¢C — __d)B

However, the ratio Rp/R is simply the gear ratio between gears B and C, and this ratio
can be equivalently expressed in terms of Nz and N, the number of teeth on gears
B and C, respectively:

__Ng
bc N, b
Therefore, the rotation angle of gear C is
b = —&d)B = —M(—O.O2O618 rad) = 0.026509 rad = 0.0265 rad Ans.
N¢ 42 teeth
Rotation Angle of Gear D

The rotation angle of gear D is equal to the rotation angle of gear C plus the twist that
occurs in shaft (2):

bp = ¢ + ¢, = 0.026509 rad + 0.042087 rad = 0.068596 rad = 0.0686 rad Ans.

ies Example M6.13

Two solid steel [G = 80 GPa] shafts are connected by the gears shown. The
diameter of each shaft is 35 mm. A torque 7 = 685 N-m is applied to the
system at D. Determine

(a) the maximum shear stress in each shaft.
(b) the angle of rotation at D.




ies Exercises

M®6.9 Six multiple-choice questions concerning torque, rotation  IM6.11  Six basic calculations involving three shafts connected
angle, and rotation speed of gears. by gears.

FIGURE M6.11

M®6.12 Five basic twist and rotation angle calculations involving
two shafts connected by gears.

FIGURE M6.9

M®6.10 Six basic calculations involving two shafts connected by
gears.

FIGURE M6.12

FIGURE M6.10

PROBLEMS

6.26 A torque of T, = 450 N-m is applied to gear D of the gear 150-mm

diameter

train shown in Figure P6.26. The bearings shown allow the shafts to
rotate freely.

(a) Determine the torque 7, required for equilibrium of the
system.

(b) Assume that shafts (1) and (2) are solid 30-mm-diameter steel
shafts. Determine the magnitude of the maximum shear
stresses acting in each shaft.

(c) Assume that shafts (1) and (2) are solid steel shafts, which
have an allowable shear stress of 60 MPa. Determine the 90-mm
minimum diameter required for each shaft. diameter

FIGURE P6.26




P6.27 The gear train system shown in Figure P6.27 includes
shafts (1) and (2), which are solid 20-mm-diameter steel shafts. The
allowable shear stress of each shaft is 50 MPa. The bearings shown
allow the shafts to rotate freely. Determine the maximum torque 7
that can be applied to the system without exceeding the allowable
shear stress in either shaft.

200-mm
aw,  diameter

diameter
FIGURE P6.27

P6.28 In the gear system shown in Figure P6.28/29, the motor
applies a torque of 220 N-m to the gear at A. A torque of T =
400 N-m is removed from the shaft at gear C, and the remaining
torque is removed at gear D. Segments (1) and (2) are solid 40-mm-
diameter steel [G = 80 GPa] shafts, and the bearings shown allow
free rotation of the shaft. Calculate

(a) the maximum shear stress in segments (1) and (2) of the shaft.
(b) the rotation angle of gear D relative to gear B.

Py, 100-mm
diameter

diameter

FIGURE P6.28/29

P6.29 In the gear system shown in Figure P6.28/29, the motor
applies a torque of 400 N-m to the gear at A. A torque of 7 = 700 N-m
is removed from the shaft at gear C, and the remaining torque is
removed at gear D. Segments (1) and (2) are solid steel [G = 80 GPa]
shafts, and the bearings shown allow free rotation of the shaft.

(a) Determine the minimum permissible diameters for segments
(1) and (2) of the shaft if the maximum shear stress must not
exceed 40 MPa.

(b) If the same diameter is to be used for segments (1) and (2),
determine the minimum permissible diameter that can be used
for the shaft if the maximum shear stress must not exceed
40 MPa and the rotation angle of gear D relative to gear B
must not exceed 3.0°.

P6.30 A motor provides a torque of 4,300 N-m to gear B of the
system shown in Figure P6.30. Gear A takes off 2,800 N-m from
shaft (1), and gear C takes off the remaining torque. Both shafts (1)
and (2) are solid and made of steel [G = 80 GPa]. The shaft lengths
are L; = 3.0 m and L, = 1.8 m, respectively. If the angle of twist in
each shaft must not exceed 3.0°, calculate the minimum diameter
required for each shaft.

FIGURE P6.30

P6.31 In the gear system shown in Figure P6.31/32, the motor ap-
plies a torque of 600 N-m to the gear at A. Shafts (1) and (2) are solid
shafts, and the bearings shown allow free rotation of the shafts.

(a) Determine the torque 7 provided by the gear system at gear E.

(b) If the allowable shear stress in each shaft must be limited to
70 MPa, determine the minimum permissible diameter for
each shaft.

72 teeth

€ 30 tecth

FIGURE P6.31/32

P6.32 In the gear system shown in Figure P6.31/32, a torque of
Tr = 720 lb-ft is delivered at gear E. Shaft (1) is a solid 1.50-in.-
diameter shaft, and shaft (2) is a solid 2.00-in.-diameter shaft. The
bearings shown allow free rotation of the shafts. Calculate

(a) the torque provided by the motor to gear A.
(b) the maximum shear stresses in shafts (1) and (2).



P6.33 Two solid 2.00-in.-diameter steel shafts are connected
by the gears shown in Figure P6.33. The shaft lengths are L; = 10 ft
and L, = 18 ft. Assume that the shear modulus of both shafts is
G = 12,000 ksi and that the bearings shown allow free rotation of
the shafts. If the gear at D is rotated through an angle of 6°, what
is the maximum shear stress in each shaft?

FIGURE P6.33

P6.34 Two solid steel shafts are connected by the gears shown in
Figure P6.34/35. The design requirements for the system specify
that (1) both shafts must have the same diameter, (2) the maximum
shear stress in each shaft must be less than 6,000 psi, and (3) the
rotation angle of gear D must not exceed 3°. Determine the mini-
mum required diameter of the shafts if the torque applied at gear D
is Tp = 345 1b-ft. The shaft lengths are L; = 10 ft and L, = 8 ft.
Assume that the shear modulus of both shafts is G = 12,000 ksi and
that the bearings shown allow free rotation of the shafts.

6.8 Power Transmission

72 teeth

FIGURE P6.34/35

P6.35 Two solid 2.50-in.-diameter steel shafts are connected by
the gears shown in Figure P6.34/35. The shaft lengths are L; = 16 ft
and L, = 12 ft. Assume that the shear modulus of both shafts is G =
12,000 ksi and that the bearings shown allow free rotation of the
shafts. If the torque applied at gear D is T, = 1,800 lb-ft, determine

(a) the internal torques 7' and 7, in the two shafts.
(b) the angles of twist ¢; and ¢, .

(c) the rotation angles ¢z and ¢ of gears B and C.
(d) the rotation angle of gear D.

One of the most common uses for a circular shaft is transmission of power from motors or
engines to devices and components. Power is defined as the work performed in a unit of
time. The work W done by a constant magnitude torque 7 is equal to the product of the
torque 7 and the angle ¢ through which the torque rotates:

(6.15)

Power is the rate at which the work is done. Therefore, Equation (6.15) can be differenti-
ated with respect to time ¢ to give an expression for the power P transmitted by a shaft
subjected to a constant torque 7*

p=W _rdo (6.16)

dt dt

The rate of change of the angular displacement d¢/dt is the rotational speed or angular
velocity w. Therefore, the power P transmitted by a shaft is a function of the torque magni-
tude T in the shaft and its rotational speed w,

(6.17)

where w is measured in radians per second.



TORSION

EXAMPLE 6.6

Power Units

In SI, an appropriate unit for torque is N-m. The corresponding SI unit for power is termed
a watt.

P = Tw = Nm)@adfs) = ™ — 1 watt = 1 W
S

In U.S. Customary Units, torque is often measured in Ib-ft, and thus the corresponding

power unit is

P = Tw = (1b-ft)(rad/s) = m
S

In U.S. practice, power is typically expressed in terms of horsepower (hp), which has the
following conversion factor:

Ib-ft
S

1 hp = 550 (6.18)

Rotational Speed Units

The rotational speed w of a shaft is commonly expressed either as frequency f or as revolu-
tions per minute (rpm). Frequency f is the number of revolutions per unit of time. The
standard unit of frequency is the hertz (Hz), which is equal to one revolution per second
(s™1). Since a shaft turns through an angle of 27 radians in one revolution (rev), the rota-
tional speed w can be expressed in terms of frequency f measured in Hz:

[f rev [277 rad
w=|—
s rev

] = 27rf rad/s

Accordingly, Equation (6.17) can be written in terms of frequency f (measured in Hz) as

|P =T = 2m/T| (6.19)

Another common measure of rotational speed is revolutions per minute (rpm). The rota-
tional speed w can be expressed in terms of revolutions per minute n as

nrev [277 rad][l mln] 2mn

= ——rad/s
60 s

min 60
Equation (6.17) can be written in terms of rpm 7 as

rev

_ 2anT
60

P=To (6.20)

A solid 0.75-in.-diameter steel shaft transmits 7 hp at 3,200 rpm. Determine the maxi-
mum shear stress magnitude produced in the shaft.

Plan the Solution

The power transmission equation [Equation (6.17)] will be used to calculate the torque in
the shaft. The maximum shear stress in the shaft can then be calculated from the elastic
torsion formula [Equation (6.5)].

SOLUTION
Power P is related to torque T and rotation speed w by the relationship P = Tw.
Since information about the power and rotation speed is given, this relationship can be




rearranged to solve for the unknown torque 7. The conversion factors required in this
process, however, can be confusing at first.

,_P__ @ hp)[550(lk2)-ft)/z/1 ilp]. _ :;3855(1) 0(313-ft()1/s 114890 Ibuft
@ (3,200rev/min)[ mra ][ m‘n] 1032 radfs
1rev 60 s

The polar moment of inertia for a solid 0.75-in.-diameter shaft is
J = ;7—2(0.75 in)* = 0.0310631 in.*

Therefore, the maximum shear stress produced in the shaft is

__ Te _ (114890 1b-f0) (075 in./2) (12 in./ft)
J 0.0310631 in.*

= 1,664 psi Ans.

ies Example M6.16

A 2-m-long hollow steel [G = 75 GPa] shaft has an outside diameter of
75 mm and an inside diameter of 65 mm. If the maximum shear stress
in the shaft must be limited to 50 MPa and the angle of twist must be
limited to 1°, determine the maximum power that can be transmitted by
this shaft when it is rotating at 600 rpm.

ies Example M6.17

A motor shaft is being designed to transmit 40 kW of power at 900 rpm. If the shear-
ing stress in the shaft must be limited to 75 MPa, determine

(a) the minimum diameter required for a solid shaft.
(b) the minimum outside diameter required for a hollow shaft if the shaft inside
diameter is assumed to be 80 percent of its outside diameter.

ies Example M6.18

The motor shown supplies 15 hp at 1,800 rpm at A. Shaft (1) is a solid
0.75-in.-diameter shaft, and shaft (2) is a solid 1.50-in.-diameter shaft.
Both shafts are made of steel [G = 12,000 ksi]. The bearings shown permit
free rotation of the shafts. Determine

(a) the maximum shear stress produced in each shaft.
(b) the rotation angle of gear D with respect to flange A.




Two solid 25-mm-diameter steel shafts are connected by the gears
shown. A motor supplies 20 kW at 15 Hz to the system at A. The
bearings shown permit free rotation of the shafts. Determine

(a) the torque available at gear D.
(b) the maximum shear stress magnitudes in each shaft.

Plan the Solution

The torque in shaft (1) can be calculated from the power trans-
mission equation. The torque in shaft (2) can then be deter-
mined from the gear ratio. Once the torques are known, the
maximum shear stress magnitudes will be determined from the
elastic torsion formula.

SOLUTION
The torque in shaft (1) can be calculated from the power transmission equation. The
power supplied by the motor is 20 kW, or

P =00 kW)[I,OOO W] N-m

= 20,000 W = 20,000 ——
1 kW S

The motor rotates at 15 Hz. This rotation speed must be converted to units of rad/s:

15 rev][ZTr rad] rad

o =15Hz = = 94.24778 —
S

S 1 rev

The torque in shaft (1) is therefore

P 20,000 N-m/s
o  94.24778 rad/s
The torque in shaft (2) will be increased because gear C is larger than gear B. Use the

number of teeth on each gear to establish the gear ratio, and compute the torque magni-
tude in shaft (2) as

T, = = 212.2066 N-m

T, = (212.2066 N-m)[jg teeti] = 339.5306 N-m

tee
Note: Only the torque magnitude is needed in this instance; consequently, the absolute

value of 7, is computed here.
The torque available at gear D in this system is therefore 7 = 340 N-m. Ans.

Shear Stresses
The polar moment of inertia for the solid 25-mm-diameter shafts is

J = 312(25 mm)* = 38,349.5 mm*

The maximum shear stress magnitudes in each segment can be calculated by the elastic
torsion formula:
Tie; _ (212.2066 N-m) (25 mm/2) (1,000 mm/m)

7 o= 19 = 692MPa  Ans.
7, 38,349.5 mm*

_ Tye,  (339.5306 N-m)(25 mm/2) (1,000 mmy/m)
7, 38,349.5 mm*

= 110.7 MPa Ans.

)




ies Exercises

M6.14  Six basic calculations involving power transmission in
two shafts connected by gears.

FIGURE M6.14

PROBLEMS

M®6.15 Six basic calculations involving power transmission in
three shafts connected by gears.

FIGURE M6.15

P6.36 The driveshaft of an automobile is being designed to
transmit 180 hp at 3,500 rpm. Determine the minimum diameter
required for a solid steel shaft if the allowable shear stress in the
shaft is not to exceed 6,000 psi.

P6.37 A solid 20-mm-diameter bronze shaft transmits 11 kW at
25 Hz to the propeller of a small sailboat. Determine the maximum
shear stress produced in the shaft.

P6.38 A tubular steel shaft is being designed to transmit 225 kW
at 1,700 rpm. The maximum shear stress in the shaft must not
exceed 30 MPa. If the outside diameter of the shaft is D = 75 mm,
determine the minimum wall thickness for the shaft.

P6.39 A solid 3-in.-diameter bronze [G = 6,000 ksi] shaft is 7 ft
long. The allowable shear stress in the shaft is 8 ksi, and the angle
of twist must not exceed 0.03 rad. Determine the maximum horse-
power that this shaft can deliver

(a) when rotating at 150 rpm.
(b) when rotating at 540 rpm.

P6.40 A tubular steel [G = 80 GPa] shaft with an outside diameter
of D = 100 mm and a wall thickness of # = 6 mm must not twist more
than 0.05 rad in a 7-m length. Determine the maximum power that the
shaft can transmit at 375 rpm.

P6.41 A hollow titanium [G = 43 GPa] shaft has an outside
diameter of D = 50 mm and a wall thickness of t = 1.25 mm. The
maximum shear stress in the shaft must be limited to 150 MPa.
Determine

(a) the maximum power that can be transmitted by the shaft if the
rotation speed must be limited to 20 Hz.

(b) the magnitude of the angle of twist in a 700-mm length of the
shaft when 30 kW is being transmitted at 8§ Hz.

P6.42 A tubular steel [G = 80 GPa] shaft is being designed to
transmit 150 kW at 30 Hz. The maximum shear stress in the shaft
must not exceed 80 MPa, and the angle of twist is not to exceed 6°

in a 4-m length. Determine the minimum permissible outside diam-
eter if the ratio of the inside diameter to the outside diameter is 0.80.

P6.43 A tubular aluminum alloy [G = 4,000 ksi] shaft is being
designed to transmit 400 hp at 1,500 rpm. The maximum shear
stress in the shaft must not exceed 6 ksi, and the angle of twist is not
to exceed 5° in an 8-ft length. Determine the minimum permissible
outside diameter if the inside diameter is to be three-fourths of the
outside diameter.

P6.44 The impeller shaft of a fluid agitator transmits 28 kW at
440 rpm. If the allowable shear stress in the impeller shaft must be
limited to 80 MPa, determine

(a) the minimum diameter required for a solid impeller shaft.

(b) the maximum inside diameter permitted for a hollow impeller
shaft if the outside diameter is 40 mm.

(c) the percent savings in weight realized if the hollow shaft is
used instead of the solid shaft. (Hint: The weight of a shaft is
proportional to its cross-sectional area.)

P6.45 A pulley with a diameter of D = § in. is mounted on a shaft
with a diameter of d = 1.25 in. as shown in Figure P6.45. Around the
pulley is a belt having tensions of '} = 120 1b and F;, = 480 Ib. If the
shaft turns at 180 rpm, calculate

(a) the horsepower being transmitted by the shaft.
(b) the maximum shear stress in the shaft.

FIGURE P6.45



P6.46 A conveyor belt is driven by an 8-hp motor turning at
1,500 rpm. Through a series of gears that reduce the speed, the
motor drives the belt drum shaft at a speed of 10 rpm. If the allow-
able shear stress is 8,000 psi and both shafts are solid, calculate

(a) the required diameter of the motor shaft.
(b) the required diameter of the belt drum shaft.

P6.47 A solid steel [G = 80 GPa] shaft with a diameter of 40 mm
and a length of 1.8 m transmits 30 kW of power from an electric
motor to a compressor. If the allowable shear stress is 60 MPa and
the allowable angle of twist is 1.5°, what is the slowest allowable
speed of rotation?

P6.48 A 1.50-in.-diameter solid bronze [G = 6,500 ksi] shaft is
used to transmit 15 hp. The length of the shaft is 42 in. If the allow-
able shear stress is 6,000 psi and the allowable angle of twist is 2.5°,
calculate the slowest permissible speed of rotation in Hz.

P6.49 A motor supplies 200 kW at 6 Hz to flange A of the shaft
shown in Figure P6.49/50. Gear B transfers 125 kW of power to
operating machinery in the factory, and the remaining power in the
shaft is transferred by gear D. Shafts (1) and (2) are solid aluminum
[G = 28 GPa] shafts that have the same diameter and an allowable
shear stress of 7 = 40 MPa. Shaft (3) is a solid steel [G = 80 GPa]
shaft with an allowable shear stress of 7 = 55 MPa. Determine

(a) the minimum permissible diameter for aluminum shafts
(1) and (2).

(b) the minimum permissible diameter for steel shaft (3).

(c) the rotation angle of gear D with respect to flange A if the
shafts have the minimum permissible diameters as determined
in (a) and (b).

FIGURE P6.49/50

P6.50 A motor supplies 60 kW at 5 Hz to flange A of the shaft
shown in Figure P6.49/50. Gear B transfers 40 kW of power to op-
erating machinery in the factory, and the remaining power in the
shaft is transferred by gear D. Shafts (1) and (2) are solid 65-mm-
diameter aluminum [G = 28 GPa] shafts, and shaft (3) is a solid
40-mm-diameter steel [G = 80 GPa] shaft. Calculate

(a) the maximum shear stress in the aluminum shafts.
(b) the maximum shear stress in the steel shaft.
(c) the rotation angle of gear D with respect to flange A.

P6.51 A motor supplies sufficient power to the system shown in
Figure P6.51/52 so that gears C and D provide torques of Ty =
800 N-m and Tp, = 550 N-m, respectively, to machinery in a factory.

Power shaft segments (1) and (2) are hollow steel tubes with an outside
diameter of D = 60 mm and an inside diameter of d = 50 mm. If the
power shaft [i.e., segments (1) and (2)] rotates at 40 rpm, determine

(a) the maximum shear stress in power shaft segments (1) and (2).

(b) the power (in kW) that must be provided by the motor as well
as the rotation speed (in rpm).

(c) the torque applied to gear A by the motor.

72 teeth &

FIGURE P6.51/52

P6.52 A motor supplies 9 kW to the system shown in Figure
P6.51/52. Sixty-five percent of the power supplied by the motor is
taken off by gear C, and the remaining 35 percent of the power is
taken off by gear D. Power shaft segments (1) and (2) are hollow steel
tubes with an outside diameter of D = 60 mm and an inside diameter of
d = 50 mm. If the allowable shear stress for the steel tubes is 55 MPa,
calculate the slowest permissible rotation speed for the motor.

P6.53 A motor supplies 25 hp at 6 Hz to gear A of the drive system
shown in Figure P6.53/54. Shaft (1) is a solid 2.25-in.-diameter alumi-
num [G = 4,000 ksi] shaft with a length of L; = 16 in. Shaft (2) is a
solid 1.5-in.-diameter steel [G = 12,000 ksi] shaft with a length of
L, = 12 in. Shafts (1) and (2) are connected at flange C, and the bear-
ings shown permit free rotation of the shaft. Determine

(a) the maximum shear stress in shafts (1) and (2).
(b) the rotation angle of gear D with respect to gear B.

S 24 teeth

FIGURE P6.53/54

P6.54 A motor supplies 15 hp to gear A of the drive system
shown in Figure P6.53/54. Shaft (1) is a solid 2.25-in.-diameter
aluminum [G = 4,000 ksi] shaft with a length of L; = 16 in. and
an allowable shear stress of 6,000 psi. Shaft (2) is a solid 1.5-in.-
diameter steel [G = 12,000 ksi] shaft with a length of L, = 12 in.



and an allowable shear stress of 8,000 psi. In addition to designat-
ing the allowable shear stresses, specifications require that the
rotation angle of gear D with respect to gear B must not exceed 2°.
Shafts (1) and (2) are connected at flange C, and the bearings
shown permit free rotation of the shaft. What is the slowest rota-
tion speed that is permissible for the motor?

P6.55 The system shown in Figure P6.55/56 is required to provide
atorque of 7 = 700 Ib-in. at a speed of 4 Hz. Shafts (1) and (2) are to
be solid steel shafts with an allowable shear stress of 6,000 psi. The
bearings shown permit free rotation of the shafts. Calculate

(a) the power that must be provided by the motor.
(b) the minimum diameter required for shaft (1).

FIGURE P6.55/56

P6.56 The motor shown in Figure P6.55/56 supplies 12 kW at
15 Hz at A. The bearings shown permit free rotation of the shafts.

(a) Shaft (2) is a solid 35-mm-diameter steel shaft. Determine the
maximum shear stress produced in shaft (2).

(b) If the shear stress in shaft (1) must be limited to 40 MPa,
determine the minimum acceptable diameter for shaft (1) if a
solid shaft is used.

P6.57 The motor shown in Figure P6.57/58 supplies 9 kW at
15 Hz at A. Shafts (1) and (2) are each solid 25-mm-diameter steel
[G = 80 GPa] shafts with lengths of L; = 900 mm and L, = 1,200
mm, respectively. The bearings shown permit free rotation of the
shafts. Determine

(a) the maximum shear stress produced in shafts (1) and (2).
(b) the rotation angle of gear D with respect to flange A.

TS

_‘qujw :
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FIGURE P6.57/58

P6.58 The motor shown in Figure P6.57/58 turns shaft (2) at
2 Hz. Shafts (1) and (2) are each solid 1-in.-diameter steel [G =
12,000 ksi] shafts with lengths of L; = 32 in. and L, = 45 in., re-
spectively. The bearings shown permit free rotation of the shafts.
If the rotation angle of gear D with respect to flange A must not
exceed 3°, what is the maximum power that is permissible for the
motor?

P6.59 The gear train shown in Figure P6.59 transmits power
from a motor to a machine at E. The motor turns at a frequency of
50 Hz. The diameter of solid shaft (1) is 25 mm, the diameter of
solid shaft (2) is 32 mm, and the allowable shear stress for each
shaft is 60 MPa. Determine

(a) the maximum power that can be transmitted by the gear train.
(b) the torque provided at gear E.
(c) the rotation speed of gear E (in Hz).

72 teeth
) C_ 30 teeth

-—
24 teeth

FIGURE P6.59

60 teeth

P6.60 The motor supplies 110 kW of power to line shaft ABC
shown in Figure P6.60, turning gears A, B, and C at 6 Hz. Gear A
removes P, = 70 kW of power from the line shaft, and gear C re-
moves the remainder. The shaft lengths are L; = 7m and L, = 4 m.
Assume that the shear modulus of both shafts is G = 80 GPa and
that the bearings shown allow free rotation of the shafts. Specifica-
tions call for the same-diameter solid steel shaft to be used for both
shafts (1) and (2). If the allowable shear stress is 40 MPa and the
allowable angle of twist in each shaft is 4°, determine the minimum
diameter that can be used for line shaft ABC.

FIGURE P6.60



6.9 Statically Indeterminate Torsion Members

In many simple mechanical and structural systems subjected to torsional loading, it is
possible to determine the reactions at supports and the internal torques in the individual
members by drawing free-body diagrams and solving equilibrium equations. Such tor-
sional systems are classified as statically determinate.

For many mechanical and structural systems, the equations of equilibrium alone are
not sufficient for the determination of internal torques in the members and reactions at sup-
ports. In other words, there are not enough equilibrium equations to solve for all of the
unknowns in the system. These structures and systems are termed statically indetermi-
nate. We can analyze structures of this type by supplementing the equilibrium equations
with additional equations involving the geometry of the deformations in the members of
the structure or system. The general solution process can be organized into a five-step pro-
cedure analogous to the procedure developed for statically indeterminate axial structures in
Section 5.5:

Step 1 — Equilibrium Equations: Equations expressed in terms of the unknown inter-
nal torques are derived for the system on the basis of equilibrium considerations.

Step 2 — Geometry of Deformation: The geometry of the specific system is evalu-
ated to determine how the deformations of the torsion members are related.

Step 3 — Torque-Twist Relationships: The relationships between the internal torque
in a member and its corresponding angle of twist are expressed by Equation (6.12).

Step 4 — Compatibility Equation: The torque-twist relationships are substituted into
the geometry-of-deformation equation to obtain an equation that is based on the struc-
ture’s geometry, but expressed in terms of the unknown internal torques.

Step 5 — Solve the Equations: The equilibrium equations and the compatibility equa-
tion are solved simultaneously to compute the unknown internal torques.

The use of this procedure to analyze a statically indeterminate torsion system is illustrated
in the next example.

EXAMPLE 6.8

y| 32 kip-in A compound shaft consists of two solid shafts that are con-
(1 ' nected at flange B and securely attached to rigid walls at A
and C. Shaft (1) is a 3.00-in.-diameter solid aluminum [G =
* 4,000 ksi] shaft that is 60 in. long. Shaft (2) is a 2.00-in.-
diameter solid bronze [G = 6,500 ksi] shaft that is 40 in.
long. If a concentrated torque of 32 kip-in. is applied to

' flange B, determine

B
| | 40 in.
L

e

(a) the maximum shear stress magnitudes in shafts (1) and (2).
(b) the rotation angle of flange B relative to support A.

Plan the Solution

The solution begins with a free-body diagram at flange B. The equilibrium equation
obtained from this free-body diagram reveals that the compound shaft is statically
indeterminate. We can obtain the additional information needed to solve the problem
by considering the relationship between the angles of twist in the aluminum and
bronze segments of the shaft.




SOLUTION

Step 1 — Equilibrium Equation: Draw a free-body diagram 32 kip-in.
of flange B. Assume positive internal torques in shaft T, — T,
segments (1) and (2). [See the sign convention detailed in
Section 6.6.] From this free-body diagram, the following B

moment equilibrium equation can be obtained:

M, =-T, + T, + 32 kip-in. = 0 (a)

There are two unknowns in Equation (a): 7} and T,. Consequently, statics alone does
not provide enough information for this problem to be solved. To obtain another
relationship involving the unknown torques 7 and 7,, we will next consider the
general relationship between the twist angles in the compound shaft.

Step 2 — Geometry of Deformation: The next question is, “How are the angles of
twist in the two shaft segments related?” The compound shaft is attached to rigid walls
at A and C; therefore, the twisting that occurs in shaft segment (1) plus the twisting in
shaft segment (2) cannot result in any net rotation of the compound shaft. In other
words, the sum of these angles of twist must equal zero:

®)

Step 3 — Torque-Twist Relationships: The angles of twists in shaft segments (1)
and (2) can be expressed by the angle of twist equation [Equation (6.12)]. Angle of
twist equations can be written for both segment (1) and segment (2):

_ LL
Jl Gl

_ Ll

¢ =G

¢2 (©)

Step 4 — Compatibility Equation: The torque-twist relationships [Equation (c)]
can be substituted into the geometry-of-deformation equation [Equation (b)] to obtain
a new relationship between the unknown torques 7 and 75:

hLL, + LL, _ 0

‘Il Gl J2 G2 N (d)

Notice that this relationship is not based on equilibrium, but rather on the relationship
between deformations that occur in the compound shaft. This type of equation is
termed a compatibility equation.

Step 5 — Solve the Equations: Two equations have been developed in terms of the
internal torques 77 and T»:

M, = -T, + T, + 32 kip-in. = 0 (a)
L, TL
171 4 2272 _ (d)
JlGl J2G2

These two equations must be solved simultaneously for us to determine the torques
in each shaft segment. The compatibility equation [Equation (d)] can be rearranged to
solve for internal torque 7,:

Tt
? : ‘IlGl L2 : LZ ‘]1 Gl




Substitute this result into the equilibrium equation [Equation (a)]:

T, - T, [ﬂ][ﬁ][@] + 32 kip-n. = 0
L2 Jl Gl

Then solve for the internal torque 77:

32 kip-in.
e lalz)e)
L\ NG,
Polar moments of inertia for the aluminum and bronze shaft segments are needed for this

calculation. Aluminum segment (1) is a solid 3.00-in.-diameter shaft that is 60 in. long
and has a shear modulus of 4,000 ksi. The polar moment of inertia for segment (1) is

I = (e)

J, = 312(3.00 in)* = 7.952156 in.*

Bronze segment (2) is a solid 2.00-in.-diameter shaft that is 40 in. long and has a shear
modulus of 6,500 ksi. Its polar moment of inertia is

J, = ;—2(2.00 in.)* = 1.570796 in.*

The internal torque 7 is computed by substitution of all values into Equation (e):

T, — . 32 klp—]ljl. _ 32 kip-in. — 21,600 Kip-in.
ll N [60 m.J[l.570796 in* ][6,500 k51] 1.481481
40 in.){ 7.952156 in.* )\ 4,000 ksi

Internal torque 7, can be found by backsubstitution into Equation (a):

T, = T, — 32 kip-in. = 21.600 kip-in. — 32 kip-in. = —10.400 kip-in.

Shear Stresses

Since the internal torques are now known, the maximum shear stress magnitudes can be
calculated for each segment from the elastic torsion formula [Equation (6.5)]. In calculat-
ing the maximum shear stress magnitude, only the absolute value of the internal torque
is used. In segment (1), the maximum shear stress magnitude in the 3.00-in.-diameter
aluminum shaft is

_ Ti¢; _ (21.600 Kip-in.)(3.00 in./2)

= 4.07 ksi Ans.
J, 7.952156 in.4 e

1

The maximum shear stress magnitude in the 2.00-in.-diameter bronze shaft segment (2) is

_ T,c, _ (10.400 klp—m.)('Z.OO in./2) 662 ksi Ans.
J, 1.570796 in.*

2

Rotation Angle of Flange B
The angle of twist in shaft segment (1) can be expressed as the difference between the
rotation angles at the +x and —x ends of the segment:

¢1 :¢B _d’A




Since the shaft is rigidly fixed to the wall at A, ¢, = 0. The rotation angle of flange B,
therefore, is simply equal to the angle of twist in shaft segment (1). Note: The proper sign
of the internal torque 7', must be used in the angle of twist calculation.

T,L, (21.600 kip-in.) (60 in.)

- - = 0.040744 rad = 0.0407 rad
s = J,G, — (7.952156 in.*)(4,000 ksi) Ans.

The five-step procedure demonstrated in the previous example provides a versatile
method for the analysis of statically indeterminate torsion structures. Additional problem-
solving considerations and suggestions for each step of the process are discussed in the
table that follows.

Solution Method for Statically Indeterminate Torsion Systems

Step 1 Equilibrium Draw one or more free-body diagrams (FBDs) for the structure, focusing on the joints, which
Equations connect the members. Joints are located wherever (a) an external torque is applied, (b) the cross-
sectional properties (such as the diameter) change, (c) the material properties (i.e., G) change, or
(d) a member connects to a rigid element (such as a gear, pulley, support, or flange). Generally,
FBD:s of reaction joints are not useful.

Write equilibrium equations for the FBDs. Note the number of unknowns involved and the
number of independent equilibrium equations. If the number of unknowns exceeds the number of
equilibrium equations, a deformation equation must be written for each extra unknown.

Comments:

® [ abel the joints with capital letters, and label the members with numbers. This simple scheme
can help you clearly recognize effects that occur in members (such as angles of twist) and
effects that pertain to joints (such as rotation angles of rigid elements).

® Asarule, when cutting a FBD through a torsion member, assume that the internal torque is
positive, as detailed in Section 6.6. The consistent use of positive internal torques along with
positive angles of twist (in Step 3) proves quite effective for many situations.

Step 2 Geometry of This step is distinctive to statically indeterminate problems. The structure or system should be
Deformation studied to assess how the deformations of the torsion members are related to each other. Most of
the statically indeterminate torsion systems can be categorized as either

1. systems with coaxial torsion members, or

2. systems with torsion members connected end to end in series.

Step 3 Torque-Twist The relationships between internal torque and angle of twist in a torsion member is expressed by
Relationships . TL,
"G,

As a practical matter, writing down torque—twist relationships for the torsion members is a helpful
routine at this stage of the calculation procedure. These relationships will be used to construct the
compatibility equation(s) in Step 4.

Step 4 Compatibility The torque—twist relationships (from Step 3) are incorporated into the geometric relationship of
Equation member angles of twist (from Step 2) to derive a new equation, which is expressed in terms of the
unknown internal torques. Together, the compatibility and equilibrium equations provide sufficient
information to solve for the unknown variables.

Step 5 Solve the The compatibility equation and the equilibrium equation(s) are solved simultaneously. While
Equations conceptually straightforward, this step requires careful attention to calculation details such as sign
conventions and unit consistency.




TORSION

Successful application of the five-step solution method depends on the ability to
understand how twisting deformations are related in a system. The table that follows pre-
sents considerations for two common categories of statically indeterminate torsion systems.
For each general category, possible geometry-of-deformation equations are discussed.

Geometry of Deformations for Typical Statically Indeterminate Torsion Systems

Equation Form

Comments Typical Problems

1. Coaxial torsion members.

¢, =9, Problems in this category include a A

tube surrounding an inner shaft. The
angles of twist for both torsional
members must be identical for this
type of system.

360 mm\J B

A (1)
iy |
[ (2)
T,
\ 450 mm
400 Ib-ft '
(1) -~
A (2)
@ (3) 400 Ib-ft
12in.\& A
20 in,
12 in.
2. Torsion members connected end to end in series.
Problems in this category include
two or more members connected
end to end.
¢+, =0 If there are no gaps or clearances in

¢, + ¢, = constant

the configuration, the member angles
of twist must sum to zero.

If there is a misfit between two
members or if the supports move as
the torque or torques are applied,
then the sum of the member angles
of twist equals the specified angular
rotation.




ies Example M6.19

A composite shaft consists of a hollow aluminum [G = 26 GPa] shaft (1) bonded to
a hollow bronze [G = 38 GPa] shaft (2). The outside diameter of shaft (1) is 50 mm,
and the inside diameter is 42 mm. The outside diameter of shaft (2) is 42 mm, and the
inside diameter is 30 mm. A concentrated torque of 7' = 1,400 N-m is applied to the
composite shaft at the free end B. Determine

(a) the torques 7 and T, developed in the aluminum and bronze shafts.
(b) the maximum shear stresses 7; and 7, in each shaft.
(c) the angle of rotation of end B.

A composite shaft consists of a hollow steel [G = 75 GPa] shaft
(1) connected to a solid brass [G = 40 GPa] shaft (2) at flange B.
The outside diameter of shaft (1) is 50 mm, and the inside
diameter is 40 mm. The outside diameter of shaft (2) is 50 mm. A
concentrated torque of 7 = 1,000 N-m is applied to the composite
shaft at flange B. Determine

(a) the torques 7, and T, developed in the steel and brass shafts.
(b) the maximum shear stresses 7; and 7, in each shaft.
(c) the angle of rotation of flange B.

1000 mm

EXAMPLE 6.9

A composite shaft assem-
bly consists of an inner
stainless steel [G = 12,500
ksi] core (2) connected by
rigid plates at A and B to
the ends of a brass [G =
5,600 ksi] tube (1). The
cross-sectional dimensions

of the assembly are shown.
The allowable shear stress of the brass tube (1) is 12 ksi, and the allowable shear stress of
the stainless steel core (2) is 18 ksi. Determine the maximum torque 7 that can be applied
to the composite shaft.

2

Cross-sectional dimensions.




Plan the Solution

A free-body diagram cut through the assembly will expose the internal
torques in the tube and the core. Since there are two internal torques and
only one equilibrium equation, the assembly is statically indeterminate.
The tube and the core are attached to rigid end plates; therefore, as the
assembly twists, both the tube and the core will twist by the same amount.
This relationship will be used to derive a compatibility equation in terms of the un-
known internal torques. Information about the allowable shear stresses will then be
used to determine which of the two components controls the torque capacity of the
composite shaft assembly.

SOLUTION

Step1 — Equilibrium Equation: Cutafree-bodydiagramthroughtheassemblyaround
rigid end plate A. From this free-body diagram, the following equilibrium equation can
be obtained:

M, =-T+T,+T, =0 (a)

Since there are three unknowns—77, T,, and external torque 7—this assembly is
statically indeterminate.

Step 2 — Geometry of Deformation: The tube and the core are both attached to
rigid end plates. Therefore, when the assembly is twisted, both components must twist

the same amount:
®)

Step 3 — Torque-Twist Relationships: The angles of twists in tube (1) and core (2)
can be expressed as

_ L

_ Ll
7.6, ¢,

b e

©

Step 4 — Compatibility Equation: Substitute the torque—twist relationships [Equa-
tion (c)] into the geometry-of-deformation equation [Equation (b)] to obtain the
compatibility equation:

LL, _ LL
SiG N6, @

Step 5 — Solve the Equations: Two equations have been derived in terms of the
three unknown torques (7', T,, and external torque 7). Additional information is
needed to solve for the unknown torques.

Allowable Shear Stresses
The maximum shear stress in the tube and in the core will be determined by the elastic
torsion formula. Since allowable shear stresses are specified for both components, the
elastic torsion formula can be written for each component and rearranged to solve for the
torque. For brass tube (1),

e T/
_ 44 o7 = 1l ©

1
Ji Sl




and for stainless steel core (2),

Ihye
_ 1o .
7'2——J =T, =
2 C

T2/

()

Substitute Equations (e) and (f) into the compatibility equation [Equation (d)] and simplify:

Ll _ L2
Jl Gl ? ‘]2 G2

T

i L 1, L

o JG ¢ 1,6,

nl _ ml
G, G, &)

Note: Equation (g) is simply Equation (6.13) written for tube (1) and core (2). Since the
tube and the core are both the same length, Equation (g) can be simplified to

oG, G, (h)

We cannot know beforehand which component will control the capacity of the torsional
assembly. Let us assume that the maximum shear stress in the stainless steel core (2) will
control; that is, 7, = 18 ksi. In that case, the corresponding shear stress in brass tube (1)
can be calculated from Equation (h):

i][ﬁ] — (18 ksi)[2'75 in./ 2][ 3,600 ks{] = 14.784 ksi > 12 ksi N.G.
o NG, 1.50 in./2)\12,500 ksi

T =T

This shear stress exceeds the 12-ksi allowable shear stress for the brass tube. Therefore,
our initial assumption is proved incorrect—the maximum shear stress in the brass tube
actually controls the torque capacity of the assembly.

Equation (h) is rearranged to solve for 7,, given that the allowable shear stress of the
brass tube is 7 = 12 ksi:

T =T [6—2][@] =2 ksi)[l'so in/2
o NG, 2.75 in./2

[12,500 ksi

] = 14.610 ksi < 18 ksi O.K.
5,600 ksi

Allowable Torques
On the basis of the compatibility equation, we now know the maximum shear stresses that
will be developed in each of the components. From these shear stresses, we can determine
the torques in each component by using Equations (e) and (f).

The polar moments of inertia for each component are required. For the brass tube (1),

J, = 312[(2.75 in.)* — (2.50 in.)*] = 1.779801 in.*

and for the stainless steel core (2),

J, = 312(1.50 in.)* = 0497010 in.*




From Equation (e), the allowable internal torque in brass tube (1) can be calculated as

. i 4
T, = o/, _ (2 kSI)(1-779801 in-") = 15.533 kip-in.
o 2.75 in./2

and from Equation (f), the corresponding internal torque in the stainless steel core (2) is

m,J, _ (14.610 ksi)(0.497010 in.*)
Cy 1.50 in./2

T, = — 9,682 kip-in.

Substitute these results in the equilibrium equation [Equation (a)] to determine the mag-
nitude of the external torque 7 that may be applied to the composite shaft assembly:

T =T, + T, = 15.533 kip-in. + 9.682 kip-in. = 252 kip-in. Ans.

6.21

A composite shaft consists of a hollow steel [G = 75 GPa] shaft (1)
connected to a solid bronze [G = 38 GPa] shaft (2) at flange B. The
outside diameter of shaft (1) is 80 mm, and the inside diameter is
65 mm. The outside diameter of shaft (2) is 80 mm. The allowable
shear stresses for the steel and bronze materials are 90 MPa and
50 MPa, respectively. Determine

(a) the maximum torque 7 that can be applied to flange B.
(b) the stresses 7; and 7, developed in the steel and bronze shafts.
(c) the angle of rotation of flange B.

ies Example M6.22

A composite shaft consists of a hollow aluminum [G = 26 GPa] shaft (1) bonded to
a hollow bronze [G = 38 GPa] shaft (2) at flange B. The outside diameter of shaft
(1) is 50 mm, and the inside diameter is 42 mm. The outside diameter of shaft (2) is
42 mm, and the inside diameter is 30 mm. The allowable shear stresses for the alu-
minum and bronze materials are 85 MPa and 100 MPa, respectively. Determine

(a) the maximum torque 7 that can be applied to the free end B.
(b) the stresses 7| and 7, developed in the shafts.
(c) the angle of rotation of end B.




ies Example M6.23

A composite shaft consists of a hollow stainless steel [G =
86 GPa] shaft (1) connected to a solid bronze [G = 38 GPa] shaft (2)
at flange B. The outside diameter of shaft (1) is 75 mm, and the inside
diameter is 55 mm. The outside diameter of shaft (2) is 75 mm. A
concentrated torque 7 will be applied to the composite shaft at flange
B. Determine

(a) the maximum magnitude of the concentrated torque 7 if the
angle of rotation at flange B cannot exceed 3°.
(b) the maximum shear stresses 7; and 7, in each shaft.

EXAMPLE 6.10

A torque of 18 kip-in. acts on gear C of the assembly shown.
Shafts (1) and (2) are solid 2.00-in.-diameter steel shafts, and
shaft (3) is a solid 2.50-in.-diameter steel shaft. Assume that
G = 12,000 ksi for all shafts. The bearings shown allow free rota-
tion of the shafts. Determine

__ 40 teeth 18 kip-in.

(a) the maximum shear stress magnitudes in shafts (1),
(2), and (3).

(b) the rotation angle of gear E.

(c) the rotation angle of gear C.

60 teeth
24 in,

Plan the Solution

A torque of 18 kip-in. is applied to gear C. This torque is trans-
mitted by shaft (2) to gear B, causing it to rotate and, in turn, twist
shaft (1). The rotation of gear B also causes gear E to rotate, which causes shaft (3) to
twist. Therefore, the torque of 18 kip-in. on gear C will produce torques in all three shafts.
The rotation angle of gear B will be dictated by the angle of twist in shaft (1). Similarly,
the rotation angle of gear C will be dictated by the angle of twist in shaft (3). Furthermore,
the relative rotation of gears B and E will be a function of the gear ratio. These relation-
ships will be considered in analyzing the internal torques produced in the three shafts.
Once the internal torques are known, the maximum shear stresses, twist angles, and
rotation angles can be determined.

SOLUTION

Step 1 — Equilibrium Equations: Consider a free-body diagram that cuts T,
through shaft (2) and includes gear C. A positive internal torque will be assumed
in shaft (2). From this free-body diagram, a moment equilibrium equation about
the x axis can be written to determine the internal torque 75 in shaft (2).

18 kip-in.

| =M, = 18kipin.—T, =0  ..T, = 18 kip-n. | (a)




Nj = 60 teeth =

Ny =40 teeth

@ N T

Next, consider a free-body diagram that cuts through shafts (1) and (2) and
includes gear B. Once again, positive internal torque will be assumed in shafts (1)

E and (2). The teeth of gear E exert a force F on the teeth of gear B. If the radius of

gear B is denoted by Rp, a moment equilibrium equation about the x axis can be
written as

SM, =T, —T, —F « Ry = 0 (b)

Next, consider a free-body diagram that cuts through shaft (3) and includes gear
E as shown. A positive internal torque 75 is assumed to act in shaft (3). Since the
teeth of gear E exert a force F on the teeth of gear B, equilibrium requires that the
teeth of gear B exert an equal magnitude force in the opposite direction on the teeth
of gear E. With the radius of gear E denoted by Rg, a moment equilibrium equation
about the x" axis can be written as

My =T, —FeR; =0 F=--% ©
E

The results of Equations (a) and (c) can be substituted into Equation (b) to give

T, =T, — F « Ry = 18 kip-in. — [—E]RB = 18 kip-in. + T3R—B

Rg R

The gear radii Rp and Ry are not known. However, the ratio Rg/Ry, is simply the gear

ratio between gears B and E. Since the teeth on both gears must be the same size in

order for the gears to mesh properly, the ratio of teeth on each gear is equivalent to the

ratio of gear radii. Consequently, the torque in shaft (1) can be expressed in terms of
Np and Ng, the number of teeth on gears B and E, respectively:

T, = 18 kipin. + T, (d)
NE

Equation (d) summarizes the results of the equilibrium considerations, but there are
still two unknowns in this equation: 7' and 75. Consequently, this problem is statically
indeterminate. To solve the problem, an additional equation must be developed. This
second equation will be derived from the relationship between the angles of twist in
shafts (1) and (3).

Step 2 — Geometry of Deformation: The rotation of gear B is equal to the angle of

twist in shaft (1):

¢B:¢1

Similarly, the rotation of gear E is equal to the angle of twist in shaft (3):

¢E :¢3

However, since the gear teeth mesh, the rotation angles for gears B and E are not
independent. The arclengths associated with the respective rotations must be equal,
but the gears turn in opposite directions. The relationship between gear rotations can
be stated as




RBd)B = _RE¢E

where Ry and Ry are the radii of gears B and E, respectively. Since the gear rotation Ng=40teeth
angles are related to the shaft angles of twist, this relationship can be expressed as | —

Ry = —Rps (e)

Step 3 — Torque-Twist Relationships: The angles of twists in shafts (1) and (3) can R
be expressed as

_ LL

JlGl

1,6, R

b b3

Step 4 — Compatibility Equation: Substitute the torque-twist relationships
[Equation (f)] into the geometry-of-deformation equation [Equation (e)] to
obtain

R T]Ll - —R T3L3
? JlGl . J3G3

N = 60 teeth

which can be rearranged and expressed in terms of the gear ratio Ny /N, o

Ny L, _ Tl @
N, J,G, 715G,

Note: The compatibility equation has two unknowns: 7} and T3. This equation can be
solved simultaneously with the equilibrium equation [Equation (d)] to calculate the
internal torques in shafts (1) and (3).

Step 5 — Solve the Equations: Solve for internal torque 73 in Equation (g):

-l
’ : NE L3 Jl Gl

Then substitute this result into Equation (d):

. N
T, = 18 kip-n. + T3N—B

E
ki |- 0 2] ) G Mo
Ng \L; )\ NGy )L N
2
- w52 22 26
Ng ) (L )\ NG,
Group the T terms to obtain
Ny V(L \(J3)(G
T, 1+[—B] [—1][—3][—3] = 18 kip-in. (h)
Ng JiI\G

Polar moments of inertia for the shafts are needed for this calculation. Shaft (1) is
a solid 2.00-in.-diameter shaft, and shaft (3) is a solid 2.50-in.-diameter shaft. The




polar moments of inertia for these shafts are

J, = 312(2.00 in)* = 1570796 in*

J5 ;—2(2.50 in.)* = 3.834952 in#

Both shafts have the same length, and both have the same shear modulus. Therefore,
Equation (h) reduces to

40 teeth]2 (1)[3.834952 in.4
60 teeth 1.570796 in.*

Tlll + ](1)] = T,(2.085070) = 18 kip-in.
From this equation, the internal torque in shaft (1) is computed as 77 = 8.6328 kip-in.

Backsubstitute this result into Equation (d) to find that the internal torque in shaft (3)
is Tz = —14.0508 kip-in.

Shear Stresses
The maximum shear stress magnitudes in the three shafts can now be calculated from the
elastic torsion formula:

_ Ty _ (8.6328 kip-in.) (2.00 in./2)

T = - = 5.50 ksi Ans.
Jy 1.570796 in.*

. = T,c, _ (18 k1p-m.)(2.90 in./2) — 11.46 ksi Ans.
J, 1.570796 in.*

- Tye; _ (14.0508 kip-in.) 2.50 in./2) _ 458 ksi Ans.

J3 3.834952 in.*

Since only the shear stress magnitudes are required here, the absolute value of 73 is
used.

Rotation Angle of Gear E
The rotation angle of gear E is equal to the angle of twist in shaft (3):

Gl _ 140508 Kipin)@4in) - 17398 1ad — —0.00733 rad

P =5 = J5G; (3834952 in#)(12,000 ksi) Ans

Rotation Angle of Gear C
The rotation angle of gear C is equal to the rotation angle of gear B plus the additional
twist that occurs in shaft (2):

bc = dp + b,
The rotation angle of gear B is equal to the angle of twist in shaft (1):

_TL,  (8.6328 kip-in.)(24 in.)

— ¢ = - = 0.010992 rad
= J,G,  (1.570796 in.*) (12,000 ksi)

Note: The rotation angle of gear B can also be found from the rotation angle of gear E:

by = e g — 900007328 rad) = 0010992 rad
Ny 40




The angle of twist in shaft (2) is
b — L, (18 kip-in.)(36 in.)

= = - — = 0.034377 rad
J,G,  (1.570796 in.#)(12,000 ksi)

Therefore, the rotation angle of gear C is

¢ = ¢ + ¢, = 0010992 rad + 0.034377 rad = 0.045369 rad = 0.0454 rad  Ans.

ies Example M6.24

An assembly of two solid brass [G = 44 GPa] shafts connected by
gears is subjected to a concentrated torque of 240 N-m, as shown.
Shaft (1) has a diameter of 20 mm, while the diameter of shaft (2)
is 16 mm. Rotation at the lower end of each shaft is prevented.
Determine the maximum shear stress in shaft (2) and the rotation
angle at A.

ies Exercises

M6.19 A composite torsion member consists of a tubular shell IM6.20 A composite torsion member consists of two solid shafts
(1) bonded to length AB of a continuous solid shaft that extends joined at flange B. Shafts (1) and (2) are attached to rigid supports
from A to C, which is labeled (2) and (3). A concentrated torque 7 at A and C, respectively. A concentrated torque 7 is applied to
is applied to free end C of the shaft in the direction shown. Deter-  flange B in the direction shown. Determine the internal torques and
mine the internal torques and shear stresses in shell (1) and core  shear stresses in each shaft. Also, determine the rotation angle of
(2) (i.e., between A and B). Also, determine the rotation angle at  flange B.

end C.

B
1700 mm c

s ||

FIGURE M6.19 FIGURE M6.20

1500 mm 4100 mm



M#6.21 A composite torsion member consists of two solid shafts
joined at flange B. Shafts (1) and (2) are attached to rigid supports
at A and C, respectively. Using the allowable shear stresses indi-
cated on the sketch, determine the maximum torque 7 that may be
applied to flange B in the direction shown. Determine the maxi-
mum shear stress in each shaft and the rotation angle of flange B at
the maximum torque.

PROBLEMS

o[

FIGURE M6.21

3100 mm

P6.61 A hollow circular cold-rolled bronze [G; = 6,500 ksi]
tube (1) with an outside diameter of 1.75 in. and an inside diam-
eter of 1.25 in. is securely bonded to a solid 1.25-in.-diameter
cold-rolled stainless steel [G, = 12,500 ksi] core (2) as shown in
Figure P6.61/62. The allowable shear stress of tube (1) is 27 ksi,
and the allowable shear stress of core (2) is 60 ksi. Determine

(a) the allowable torque 7 that can be applied to the tube-and-
core assembly.

(b) the corresponding torques produced in tube (1) and core (2).

(c) the angle of twist produced in a 10-in. length of the assembly
by the allowable torque 7.

(1)

XC

FIGURE P6.61/62

P6.62 An assembly consisting of a hollow cold-rolled bronze
[G, = 6,500 ksi] tube (1) and a solid 1.75-in.-diameter cold-rolled
stainless steel [G, = 12,500 ksi] core (2) is shown in Figure P6.61/
62. The tube and the core are securely bonded together, and an
external torque 7 is applied to the assembly. The inside diameter of
tube (1) is the same as the diameter of core (2); that is, d; = 1.75 in.
If the bronze tube is intended to carry at least 1.5 times as much
torque as the stainless steel core, what is the minimum outside diam-
eter required for the tube?

P6.63 A composite assembly consisting of a steel [G = 80 GPa]
core (2) connected by rigid plates at the ends of an aluminum [G =
28 GPa] tube (1) is shown in Figure P6.63a/64a. The cross-sectional
dimensions of the assembly are shown in Figure P6.63b/64b. If a torque
of 7= 1,100 N-m is applied to the composite assembly, determine

(a) the maximum shear stress in the aluminum tube and in the
steel core.
(b) the rotation angle of end B relative to end A.

(1

e Y e B
J_—‘_l |

B

300 mm

FIGURE P6.63a/64a Tube-and-Core Composite Shaft.

(1) ¥
50 mm
20 mm ( @ 40 mm

FIGURE P6.63b/64b Cross-Sectional Dimensions.

P6.64 A composite assembly consisting of a steel [G = 80 GPa]
core (2) connected by rigid plates at the ends of an aluminum
[G = 28 GPa] tube (1) is shown in Figure P6.63a/64a. The cross-
sectional dimensions of the assembly are shown in Figure P6.635/64b.
The allowable shear stress of aluminum tube (1) is 90 MPa, and the
allowable shear stress of steel core (2) is 130 MPa. Determine

(a) the allowable torque 7 that can be applied to the composite shaft.
(b) the corresponding torques produced in tube (1) and core (2).
(c) the angle of twist produced by the allowable torque 7.

P6.65 The composite shaft shown in Figure P6.65/66 consists
of a bronze sleeve (1) securely bonded to an inner steel core (2).
The bronze sleeve has an outside diameter of 35 mm, an inside
diameter of 25 mm, and a shear modulus of G; = 45 GPa. The
solid steel core has a diameter of 25 mm and a shear modulus of
G, = 80 GPa. The allowable shear stress of sleeve (1) is
180 MPa, and the allowable shear stress of core (2) is 150 MPa.
Determine



(a) the allowable torque 7 that can be applied to the composite shaft.

(b) the corresponding torques produced in sleeve (1) and core (2).

(c) the rotation angle of end B relative to end A that is produced
by the allowable torque 7.

FIGURE P6.65/66

P6.66 The composite shaft shown in Figure P6.65/66 consists of
a bronze sleeve (1) securely bonded to an inner steel core (2). The
bronze sleeve has an outside diameter of 35 mm, an inside diameter of
25 mm, and a shear modulus of G; = 45 GPa. The solid steel core has
a diameter of 25 mm and a shear modulus of G, = 80 GPa. The
composite shaft is subjected to a torque of 7= 900 N-m. Determine

(a) the maximum shear stresses in the bronze sleeve and the steel
core.
(b) the rotation angle of end B relative to end A.

P6.67 The composite shaft shown in Figure P6.67/68 consists of
two steel pipes that are connected at flange B and securely attached
to rigid walls at A and C. Steel pipe (1) has an outside diameter of
168 mm and a wall thickness of 7 mm. Steel pipe (2) has an outside
diameter of 114 mm and a wall thickness of 6 mm. Both pipes are
3 m long and have a shear modulus of 80 GPa. If a concentrated
torque of 20 kN-m is applied to flange B, determine

(a) the maximum shear stress magnitudes in pipes (1) and (2).
(b) the rotation angle of flange B relative to support A.

FIGURE P6.67/68

P6.68 The composite shaft shown in Figure P6.67/68 consists of
two steel pipes that are connected at flange B and securely attached
to rigid walls at A and C. Steel pipe (1) has an outside diameter of
168 mm and a wall thickness of 7 mm. Steel pipe (2) has an outside
diameter of 114 mm. Both pipes are 3 m long and have a shear
modulus of 80 GPa. A concentrated torque of 20 kN-m is applied

to flange B. If the internal torque in pipe (1) must be no more than
twice as large as the internal torque in pipe (2), what is the minimum
wall thickness required for pipe (2)?

P6.69 The composite shaft shown in Figure P6.69 consists of a
solid brass segment (1) and a solid aluminum segment (2) that are
connected at flange B and securely attached to rigid supports at
A and C. Brass segment (1) has a diameter of 1.00 in., a length of
L; = 15 in., a shear modulus of 5,600 ksi, and an allowable shear
stress of 8 ksi. Aluminum segment (2) has a diameter of 0.75 in., a
length of L, = 20 in., a shear modulus of 4,000 ksi, and an allow-
able shear stress of 6 ksi. Determine

(a) the allowable torque T that can be applied to the composite
shaft at flange B.

(b) the magnitudes of the internal torques in segments (1) and (2).

(c) the rotation angle of flange B that is produced by the allowable
torque Tp.

y

FIGURE P6.69

P6.70 The composite shaft shown in Figure P6.70 consists of a
solid brass segment (1) and a solid aluminum segment (2) that are
connected at flange B and securely attached to rigid walls at
A and C. Brass segment (1) has a diameter of 18 mm, a length of
L, = 235 mm, and a shear modulus of 39 GPa. Aluminum segment
(2) has a diameter of 24 mm, a length of L, = 165 mm, and a shear
modulus of 28 GPa. If a concentrated torque of 270 N-m is applied to
flange B, determine

(a) the maximum shear stress magnitudes in segments (1) and (2).
(b) the rotation angle of flange B relative to support A.

FIGURE P6.70



P6.71 The composite shaft shown in Figure P6.71/72 consists of
a stainless steel tube (1) and a brass tube (2) that are connected at
flange B and securely attached to rigid supports at A and C. Stain-
less steel tube (1) has an outside diameter of 2.25 in., a wall thick-
ness of 0.250 in., a length of L; = 40 in., and a shear modulus of
12,500 ksi. Brass tube (2) has an outside diameter of 3.500 in., a
wall thickness of 0.219 in., a length of L, = 20 in., and a shear
modulus of 5,600 ksi. If a concentrated torque of 7 = 42 kip-in. is
applied to flange B, determine

(a) the maximum shear stress magnitudes in tubes (1) and (2).
(b) the rotation angle of flange B relative to support A.

FIGURE P6.71/72

P6.72 The composite shaft shown in Figure P6.71/72 consists
of a solid stainless steel shaft (1) and a brass tube (2) that are con-
nected at flange B and securely attached to rigid supports at
A and C. Stainless steel shaft (1) has a diameter of 2.25 in., a
length of L; = 40 in., and a shear modulus of 12,500 ksi. Brass
tube (2) has an outside diameter of 3.500 in., a wall thickness of
0.219 in., and a shear modulus of 5,600 ksi. A concentrated torque
of Ty = 60 kip-in. is applied to flange B. If the shear stresses in
both (1) and (2) are to be equal in magnitude, what is the length L,
required for tube (2)?

P6.73 The torsional assembly of Figure P6.73/74 consists of a

cold-rolled stainless steel tube connected to a solid cold-rolled

brass segment at flange C. The assembly is securely fastened to

rigid supports at A and D. Stainless steel tube (1) and (2) has an

outside diameter of 3.50 in., a wall thickness of 0.120 in., and a

shear modulus of G = 12,500 ksi. The solid brass segment (3) has

a diameter of 2.00 in. and a shear modulus of G = 5,600 ksi. A

concentrated torque of 7B = 6 kip-ft is applied to the stainless steel

pipe at B. Determine

(a) the maximum shear stress magnitude in the stainless steel
tube.

(b) the maximum shear stress magnitude in brass segment (3).

(c) the rotation angle of flange C.

P6.74 The torsional assembly of Figure P6.73/74 consists of a
cold-rolled stainless steel tube connected to a solid cold-rolled

FIGURE P6.73/74

brass segment at flange C. The assembly is securely fastened to
rigid supports at A and D. Stainless steel tubes (1) and (2) have an
outside diameter of 3.50 in., a wall thickness of 0.120 in., a shear
modulus of G = 12,500 ksi, and an allowable shear stress of 30 ksi.
The solid brass segment (3) has a diameter of 2.00 in., a shear
modulus of G = 5,600 ksi, and an allowable shear stress of 18 ksi.
Determine the maximum permissible magnitude for the concen-
trated torque 7.

P6.75 The torsional assembly of Figure P6.75a consists of a
solid 75-mm-diameter bronze [G = 45 GPa] segment (1) securely
connected at flange B to solid 75-mm-diameter stainless steel [G =
86 GPa] segments (2) and (3). The flange at B is secured by four
14-mm-diameter bolts, which are each located on a 120-mm-diameter
bolt circle (Figure P6.75b). The allowable shear stress of the bolts
is 90 MPa, and friction effects in the flange can be neglected for this
analysis. Determine

(a) the allowable torque T- that can be applied to the assembly
at C without exceeding the capacity of the bolted flange
connection.

(b) the maximum shear stress magnitude in bronze segment (1).

(c) the maximum shear stress magnitude in stainless steel
segments (2) and (3).

FIGURE P6.75a
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diameter
bolts

120 mm

B

FIGURE P6.75b Flange B Bolts

P6.76 The torsional assembly shown in Figure P6.76/77 con-

sists of solid 2.50-in.-diameter aluminum [G = 4,000 ksi] seg-

ments (1) and (3) and a central solid 3.00-in.-diameter bronze

[G = 6,500 ksi] segment (2). Concentrated torques of T = T and

Tc = 2T, are applied to the assembly at B and C, respectively. If

Ty = 20 kip-in., determine

(a) the maximum shear stress magnitude in aluminum segments
(1) and (3).

(b) the maximum shear stress magnitude in bronze segment (2).

(c) the rotation angle of joint C.

FIGURE P6.76/77

P6.77 The torsional assembly shown in Figure P6.76/77
consists of solid 2.50-in.-diameter aluminum [G = 4,000 ksi] seg-
ments (1) and (3) and a central solid 3.00-in.-diameter bronze
[G = 6,500 ksi] segment (2). Concentrated torques of 7z = T and
Tc = 2T, are applied to the assembly at B and C, respectively. If the
rotation angle at joint C must not exceed 3°, determine

(a) the maximum magnitude of 7|y that may be applied to
the assembly.

(b) the maximum shear stress magnitude in aluminum segments
(1) and (3).

(c) the maximum shear stress magnitude in bronze segment (2).

P6.78 The torsional assembly shown in Figure P6.78/79 con-
sists of a solid 60-mm-diameter aluminum [G = 28 GPa] segment
(2) and two bronze [G = 45 GPa] tube segments (1) and (3), each
of which has an outside diameter of 75 mm and a wall thickness of
5 mm. If concentrated torques of 75 = 9 kN-m and T = 9 kN-m
are applied in the directions shown, determine

(a) the maximum shear stress magnitude in bronze tube segments
(1) and (3).

(b) the maximum shear stress magnitude in aluminum
segment (2).

(c) the rotation angle of joint C.

P6.79 The torsional assembly shown in Figure P6.78/79 con-
sists of a solid 60-mm-diameter aluminum [G = 28 GPa] segment
(2) and two bronze [G = 45 GPa] tube segments (1) and (3), each
of which has an outside diameter of 75 mm and a wall thickness of
5 mm. If concentrated torques of 7z = 6 kN-m and 7 = 10 kN-m
are applied in the directions shown, determine

(a) the maximum shear stress magnitude in bronze tube segments
(1) and (3).

(b) the maximum shear stress magnitude in aluminum
segment (2).

(c) the rotation angle of joint C.

FIGURE P6.78/79

P6.80 A solid 1.50-in.-diameter brass [G = 5,600 ksi] shaft
[segments (1), (2), and (3)] has been stiffened between B and C by
the addition of a cold-rolled stainless steel tube (4) (Figure P6.80a).
The tube (Figure P6.80b) has an outside diameter of 3.50 in., a wall
thickness of 0.12 in., and a shear modulus of G = 12,500 ksi. The
tube is attached to the brass shaft by means of rigid flanges welded
to the tube and to the shaft. (The thickness of the flanges can be

400 Ib-ft

(3)

400 Ib-ft
“

12 in.

20 in.

12 in.

FIGURE P6.80a



FIGURE P6.80b Cross Section Through Tube

neglected for this analysis.) If a torque of 400 Ib-ft is applied to the
shaft as shown in Figure P6.80a, determine

(a) the maximum shear stress magnitude in segment (1) of the
brass shaft.

(b) the maximum shear stress magnitude in segment (2) of the
brass shaft (i.e., between flanges B and C).

(c) the maximum shear stress magnitude in the stainless steel
tube (4).

(d) the rotation angle of end D relative to end A.

P6.81 A solid 60-mm-diameter cold-rolled brass [G = 39 GPa]
shaft that is 1.25 m long extends through and is completely
bonded to a hollow aluminum [G = 28 GPa] tube as shown
in Figure P6.81. Aluminum tube (1) has an outside diameter of
90 mm, an inside diameter of 60 mm, and a length of 0.75 m. Both
the brass shaft and the aluminum tube are securely attached to the
wall support at A. When the two torques shown are applied to the
composite shaft, determine

(a) the maximum shear stress magnitude in aluminum tube (1).
(b) the maximum shear stress magnitude in brass shaft segment (2).
(c) the maximum shear stress magnitude in brass shaft segment (3).
(d) the rotation angle of joint B.

(e) the rotation angle of joint C.

FIGURE P6.81

P6.82 The gear assembly shown in Figure P6.82/83 is subjected
to a torque of T¢ = 140 N-m. Shafts (1) and (2) are solid 20-mm-
diameter steel shafts, and shaft (3) is a solid 25-mm-diameter steel
shaft. Assume that L = 400 mm and G = 80 GPa. Determine

(a) the maximum shear stress magnitude in shaft (1).

(b) the maximum shear stress magnitude in shaft segment (3).
(c) the rotation angle of gear E.

(d) the rotation angle of gear C.

teeth

FIGURE P6.82/83

P6.83 The gear assembly shown in Figure P6.82/83 is sub-
jected to a torque of 7 = 1,100 1b-ft. Shafts (1) and (2) are solid
1.625-in.-diameter aluminum shafts, and shaft (3) is a solid 2.00-in.-
diameter aluminum shaft. Assume that L = 20 in. and G = 4,000 ksi.
Determine

(a) the maximum shear stress magnitude in shaft (1).

(b) the maximum shear stress magnitude in shaft segment (3).
(c) the rotation angle of gear E.

(d) the rotation angle of gear C.

P6.84 A torque of T = 460 N-m acts on gear C of the assembly
shown in Figure P6.84/85. Shafts (1) and (2) are solid 35-mm-diameter
aluminum shafts, and shaft (3) is a solid 25-mm-diameter aluminum
shaft. Assume that L = 200 mm and G = 28 GPa. Determine

(a) the maximum shear stress magnitude in shaft (1).

(b) the maximum shear stress magnitude in shaft segment (3).
(c) the rotation angle of gear E.

(d) the rotation angle of gear C.

y

54 teeth

42 teeth
FIGURE P6.84/85

P6.85 A torque of T- = 40 kip-in. acts on gear C of the as-
sembly shown in Figure P6.84/85. Shafts (1) and (2) are solid
2.00-in.-diameter stainless steel shafts, and shaft (3) is a solid



1.75-in.-diameter stainless steel shaft. Assume that L = 8 in. and
G = 12,500 ksi. Determine

(a) the maximum shear stress magnitude in shaft (1).

(b) the maximum shear stress magnitude in shaft segment (3).
(c) the rotation angle of gear E.

(d) the rotation angle of gear C.

P6.86 The steel [G = 12,000 ksi] pipe shown in Figure P6.86/87
is fixed to the wall support at C. The bolt holes in the flange at A were
supposed to align with mating holes in the wall support; however, an
angular misalignment of 4° was found to exist. To connect the pipe to
its supports, a temporary installation torque 7' must be applied at B
to align flange A with the mating holes in the wall support. The out-
side diameter of the pipe is 3.50 in., and its wall thickness is 0.216 in.

(a) Determine the temporary installation torque 7'z that must be
applied at B to align the bolt holes at A.

(b) Determine the maximum shear stress 7 ;. i the pipe after
the bolts are connected and the temporary installation torque
at B is removed.

(c) If the maximum shear stress in the pipe shaft must not exceed
12 ksi, determine the maximum external torque 7 that can be
applied at B after the bolts are connected.

P6.87 The steel [G = 12,000 ksi] pipe shown in Figure P6.86/87
is fixed to the wall support at C. The bolt holes in the flange at A
were supposed to align with mating holes in the wall support; how-
ever, an angular misalignment of 4° was found to exist. To connect

FIGURE P6.86/87

the pipe to its supports, a temporary installation torque 7z must be
applied at B to align flange A with the mating holes in the wall sup-
port. The outside diameter of the pipe is 2.875 in., and its wall
thickness is 0.203 in.

(a) Determine the temporary installation torque 7"z that must be
applied at B to align the bolt holes at A.

(b) Determine the maximum shear stress 7y, in the pipe after
the bolts are connected and the temporary installation torque
at B is removed.

(c) Determine the magnitude of the maximum shear stress in
segments (1) and (2) if an external torque of T = 80 kip-in. is
applied at B after the bolts are connected.

6.10 Stress Concentrations in Circular Shafts

Under Torsional Loadings

In Section 5.7, it was shown that the introduction of a circular hole or other geometric dis-
continuity into an axially loaded member causes a significant increase in the magnitude of
the stress in the immediate vicinity of the discontinuity. This phenomenon, called stress
concentration, also occurs for circular shafts under torsional forms of loading.

Previously in this chapter, the maximum shear stress in a circular shaft of uniform
cross section and made of a linearly elastic material was given by Equation (6.5):

(6.5)

In the context of stress concentrations in circular shafts, this stress is considered a nominal
stress, meaning that it gives the shear stress in regions of the shaft that are sufficiently
removed from shaft discontinuities. Shear stresses become much more intense near abrupt
changes in shaft diameter, and Equation (6.5) does not predict the maximum stresses near
shaft discontinuities such as grooves or fillets. The maximum shear stress at discontinuities
is expressed in terms of a stress-concentration factor K, which is defined by

6.21)

7-1’10111

In this relationship, 7., is the stress given by Tc¢/J for the minimum diameter of the shaft
(termed the minor diameter) at the discontinuity.

The full shaft diameter D at the
discontinuity is termed the major
diameter. The reduced shaft
diameter d at the discontinuity is
termed the minor diameter.



TORSION

30 — T L T
| ' r X T
28 | | i .
26 .
x | )
g 24 D r
g Ta = o T 16T
R A\ D T md® ]
£ 20 AN
=
S s %\ LD _ 120
g \\ 4
5 ho ! §S§\
? a4 eSS
—
12
10
0 0.05 0.10 0.15 0.20 025 0.30
I
Ratlod

FIGURE 6.17 Stress-concentration factors K for a circular shaft with a U-shaped groove.

Stress-concentration factors K for circular shafts with U-shaped grooves and for stepped
circular shafts are shown in Figures 6.17 and 6.18, respectively.* For both types of discontinu-
ity, stress-concentration factors K depend upon (a) the ratio D/d of the major diameter D to the
minor diameter d and (b) the ratio r/d of the groove or fillet radius r to the minor diameter d.
An examination of Figures 6.17 and 6.18 suggests that a generous fillet radius r should be used
wherever a change in shaft diameter occurs. Equation (6.21) can be used to determine local-
ized maximum shear stresses as long as the value of 7,,,, does not exceed the proportional limit
of the material.
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FIGURE 6.18 Stress-concentration factors K for a stepped shaft with shoulder fillets.

4 Adapted from Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed. (New York: John Wiley &
Sons, Inc., 1997).



Stress concentrations also occur at other features commonly found in circular shafts, STRESS CONCENTRATIONS
: : IN CIRCULAR SHAFTS UNDER
such as oil holes and keyways used for attaching pulleys and gears to the shaft. Each of
. L . . . . . . TORSIONAL LOADINGS
these discontinuities requires special consideration during the design process.

A stepped shaft has a 3-in. diameter for one-half of its length and a
1.5-in. diameter for the other half. If the maximum shear stress in the
shaft must be limited to 8,000 psi when the shaft is transmitting a
torque of 4,400 Ib-in., determine the minimum fillet radius » needed at
the junction between the two portions of the shaft.

Ve r l 4,400 Ib-in.

Plan the Solution

The maximum shear stress produced in the smaller diameter (i.e., minor
diameter) segment of the shaft will be determined. From this shear stress and the
allowable shear stress, the maximum allowable stress-concentration factor K can be
determined. With the allowable K and the other parameters of the shaft, Figure 6.18 can
be used to determine the minimum permissible fillet radius.

SOLUTION
The maximum shear stress produced by the 4,400 lb-in. torque in the minor diameter
shaft segment is

3in.

__ Te _ (4400 1b-in)(0.75 in.)

nom
J

= 6,639.7 psi
;—2(1.5 in.)*

Since the maximum shear stress in the fillet between the two portions of the shaft must be
limited to 8,000 psi, the maximum permissible value for the stress-concentration factor K,
based on the nominal shear stress in the minor diameter section, is
K= Tmx g2 8000ps 5,
T hom 6,639.7 psi

The stress-concentration factor K depends on two ratios: D/d and r/d. For the 3-in.-diameter
shaft with the 1.5-in.-diameter reduced section, the ratio D/d = (3.00in.)/(1.50 in.) = 2.00.
From the curves in Figure 6.18, a ratio r/d = 0.238 together with a ratio D/d = 2.00 will
produce a stress-concentration factor K = 1.20. Thus, the minimum permissible radius for
the fillet between the two portions of the shaft is

= 0.238 o= 0.238(1.50 in.) = 0.357 in. Ans.

N

PROBILEMS

P6.88 A stepped shaft with a major diameter of D = 1.375in. P6.89 A stepped shaft with a major diameter of D = 20 mm and
and a minor diameter of d = 1.00 in. is subjected to a torque of a minor diameter of d = 16 mm is subjected to a torque of
500 Ib-in. A fillet with a radius of r = 3/16 in. is used to transition 25 N-m. A full quarter-circular fillet having a radius of r = 2 mm is
from the major diameter to the minor diameter. Determine the maxi-  used to transition from the major diameter to the minor diameter.
mum shear stress in the shaft. Determine the maximum shear stress in the shaft.




P6.90 A fillet with a radius of 1/2 in. is used at the junction in a
stepped shaft where the diameter isreduced from 8.00 in. to 6.00 in.
Determine the maximum torque that the shaft can transmit if the
maximum shear stress in the fillet must be limited to 5 ksi.

P6.91 A stepped shaft with a major diameter of D = 2.50 in.
and a minor diameter of d = 1.25 in. is subjected to a torque
of 1,200 Ib-in. If the maximum shear stress must not exceed 4,000 psi,
determine the minimum radius r that may be used for a fillet at the
junction of the two shaft segments. The fillet radius must be chosen
as a multiple of 0.05 in.

P6.92 A fillet with a radius of 16 mm is used at the junction in a
stepped shaft where the diameter is reduced from 200 mm to 150 mm.
Determine the maximum torque that the shaft can transmit if the max-
imum shear stress in the fillet must be limited to 55 MPa.

P6.93 A stepped shaft with a major diameter of D = 50 mm and
aminor diameter of d = 32 mm is subjected to a torque of 210 N-m.
If the maximum shear stress must not exceed 40 MPa, determine
the minimum radius r that may be used for a fillet at the junction of
the two shaft segments. The fillet radius must be chosen as a mul-
tiple of 1 mm.

P6.94 A stepped shaft has a major diameter of D = 2.00 in. and
a minor diameter of d = 1.50 in. A fillet with a 0.25-in. radius is
used to transition between the two shaft segments. The maximum
shear stress in the shaft must be limited to 9,000 psi. If the shaft
rotates at a constant angular speed of 800 rpm, determine the maxi-
mum power that may be delivered by the shaft.

P6.95 A stepped shaft has a major diameter of D = 100 mm and
a minor diameter of d = 75 mm. A fillet with a 10-mm radius is
used to transition between the two shaft segments. The maximum
shear stress in the shaft must be limited to 60 MPa. If the shaft
rotates at a constant angular speed of 500 rpm, determine the maxi-
mum power that may be delivered by the shaft.

P6.96 A 2.00-in.-diameter shaft contains a 1/2-in.-deep U-shaped
groove that has a 1/4-in. radius at the bottom of the groove. The shaft
must transmit a torque of 7' = 720 Ib-in. Determine the maximum
shear stress in the shaft.

P6.97 A semicircular groove with a 6-mm radius is required in
a 50-mm-diameter shaft. If the maximum allowable shear stress in
the shaft must be limited to 40 MPa, determine the maximum
torque that can be transmitted by the shaft.

P6.98 A 40-mm-diameter shaft contains a 10-mm-deep U-shaped
groove that has a 6-mm radius at the bottom of the groove. The max-
imum shear stress in the shaft must be limited to 60 MPa. If the shaft
rotates at a constant angular speed of 22 Hz, determine the maximum
power that may be delivered by the shaft.

P6.99 A 1.25-in.-diameter shaft contains a 0.25-in.-deep U-shaped
groove that has a 1/8-in. radius at the bottom of the groove. The maxi-
mum shear stress in the shaft must be limited to 12,000 psi. If the shaft
rotates at a constant angular speed of 6 Hz, determine the maximum
power that may be delivered by the shaft.

6.11 Torsion of Noncircular Sections

Prior to 1820, the year that A. Duleau published experimental results to the contrary, it was
thought that the shear stresses in any torsionally loaded member were proportional to the
distance from its longitudinal axis. Duleau proved experimentally that this is not true for
rectangular cross sections. An examination of Figure 6.19 will verify Duleau’s conclusion.
If the stresses in the rectangular bar were proportional to the distance from its axis, the
maximum stress would occur at the corners. However, if there a stress of any magnitude
at the corner, as indicated in Figure 6.19q, it could be resolved into the components
indicated in Figure 6.19b. If these components existed, the two components shown by the
blue arrows would also exist. These last components cannot exist, since the surfaces on
which they are shown are free boundaries. Therefore, the shear stresses at the corners of
the rectangular bar must be zero.

The first correct analysis of the torsion of a prismatic bar of noncircular cross section
was published by Saint-Venant in 1855; however, the scope of this analysis is beyond the
elementary discussions of this book.> The results of Saint-Venant’s analysis indicate that,
in general, every section will warp (i.e., not remain plane) when twisted except for members

with circular cross sections.

5 A complete discussion of the theory is presented in various books, such as Mathematical Theory of Elasticity,
1. S. Sokolnikoff, 2nd. ed. (New York: McGraw-Hill, 1956): 109-134.
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FIGURE 6.19 Torsional shear stresses for a rectangular bar.

TORSION OF NONCIRCULAR
SECTIONS

Free boundar\ib

Shear stress 7
resolved into
components

For the case of the rectangular bar shown in Figure 6.2d, the distortion of the small
squares is greatest at the midpoint of a side of the cross section and disappears at the
corners. Since this distortion is a measure of shear strain, Hooke’s Law requires that the
shear stress be largest at the midpoint of a side of the cross section and zero at the corners.
Equations for the maximum shear stress and angle of twist for a rectangular section ob-
tained from Saint-Venant’s theory are

T

Toax = (6.22)
TL
¢ = BabG (6.23)

where a and b are the lengths of the short and long sides of the rectangle, respectively.
The numerical constants @ and 8 can be obtained from Table 6.1.°

Table 6.1 Table of Constants for Torsion
of a Rectangular Bar

Ratio b/a a B
1.0 0.208 0.1406
1.2 0.219 0.166
1.5 0.231 0.196
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291

10.0 0.312 0.312
% 0.333 0.333

6See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (New York: McGraw-Hill, 1969): Section 109.
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Narrow Rectangular Cross Sections

In Table 6.1, we observe that values for o and 8 are equal for b/a = 5. For aspect ratios
bla = 5, the coefficients « and 3 that respectively appear in Equations (6.22) and (6.23)
can be calculated from the following equation:

a=p8= [1—0.630%

1
3 (6.24)

As a practical matter, an aspect ratio b/a = 21 is sufficiently large so that values of
a = B = 0.333 can be used to calculate maximum shear stresses and deformations
in narrow rectangular bars within an accuracy of 3 percent. Accordingly, equations
for the maximum shear stress and angle of twist in narrow rectangular bars can be
expressed as

3T
Tmax = 2 (6.25)
and
3TL
= (6.26)
¢ a3bG

The absolute value of the maximum shear stress in a narrow rectangular bar occurs
on the edge of the bar in the middle of the long side. For a thin-walled member of uni-
form thickness and arbitrary shape, the maximum shear stress and the shear stress dis-
tribution are equivalent to those quantities in a rectangular bar with a large b/a ratio.
Thus, Equations (6.25) and (6.26) can be used to compute the maximum shear stress
and the angle of twist for thin-walled shapes such as those shown in Figure 6.20. For use
in these equations, the length a is taken as the thickness of the thin-walled shape. The
length b is equal to the length of the thin-walled shape as measured along the centerline of
the wall.

S
— — — — «—
—
h\]
u
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1 _ 3T
— « "™ &%
= _3r
S a*b

FIGURE 6.20 Equivalent narrow rectangular sections with shear stress distribution.



The two rectangular polymer bars shown are each subjected to a
torque of 7' = 2,000 Ib-in. For each bar, determine

(a) the maximum shear stress.
(b) the rotation angle at the free end if each bar has a length of
12 in. Assume that G = 500 ksi for the polymer material.

Plan the Solution
The aspect ratio b/a for each bar will be computed. Based on this
ratio, constants o and B will be determined from Table 6.1. The

Equations (6.22) and (6.23), respectively.

SOLUTION
For bar (a), the long side of the bar is » = 2.50 in. and the short side is @ = 1.00 in.;
therefore, b/a = 2.5. From Table 6.1, « = 0.258 and B8 = 0.249.

The maximum shear stress produced in bar (a) by a torque of 7 = 2,000 Ib-in. is

T 2,000 Ib-n.
mX T a2b (0.258)(1.00 in.)2 (2.50 in.)

and the angle of twist for a 12-in.-long bar is

= 3,100 psi Ans.

1L (2,000 Ib-in.)(12 in.)

= = - - — = 0.0771 rad Ans.
Ba*bG  (0.249)(1.00 in.)> 2.50 in.)(500,000 psi)

¢

For bar (b), the long side of the bar is » = 1.875 in. and the short side is a = 1.25 in.;
therefore, b/a = 1.5. From Table 6.1, & = 0.231 and 8 = 0.196.
The maximum shear stress produced in bar (b) by a torque of 7' = 2,000 Ib-in. is
T 2,000 Ib-in.

—_ - = 2,960 psi Ans.
" aab - (0.231)(1.25 in)2(1.875 in.) P

and the angle of twist for a 12-in.-long bar is

(A (2,000 Ib-in.) (12 in.)
Ba’bG  (0.196)(1.25 in.)3(1.875 in.) (500,000 psi)

b = = 0.0669 rad  Ans.

maximum shear stress and rotation angles will be computed from \/(J s0in

(b)

6.12 Torsion of Thin-Walled Tubes: Shear Flow

The elementary torsion theory presented in Sections 6.1, 6.2, and 6.3 is limited to circular
sections; however, one class of noncircular sections can be readily analyzed by elementary
methods. These shapes are thin-walled tubes such as the one illustrated in Figure 6.21a,
which represents a noncircular section with a wall of variable thickness (i.e., f varies).

A useful concept associated with the analysis of thin-walled sections is shear flow ¢,
defined as internal shearing force per unit of length of the thin section. Typical units for ¢
are pounds per inch or newtons per meter. In terms of stress, g equals 7 X ¢ X 1 (i.e., unity),
where 7 is the average shear stress across the thickness .




TORSION

Note that the shear flow and the
shear stress always act tangent
to the wall of the tube.

Median
line

~ i

FIGURE 6.22 Deriving
relationship between internal
torque and shear stress in
thin-walled section.

FIGURE 6.21 Shear flow in thin-walled tubes.

First, we will demonstrate that the shear flow on a cross section is constant even
though the wall thickness of the section may vary. Figure 6.215 shows a block cut from the
member of Figure 6.21a between A and B. Since the member is subjected to pure torsion,
the shear forces V;, V5, V3, and V, alone are necessary and sufficient for equilibrium (i.e., no
normal forces are involved). Summing forces in the x direction gives

Vi=V,
or
q,dx = gy dx
from which
91 = 43

and, since ¢ = 7 X 1,

The shear stresses at point A on the longitudinal and transverse planes have the same mag-
nitude; likewise, the shear stresses at point B have the same magnitude on the longitudinal
and transverse planes. Consequently, Equation (a) may be written as

Tply = Tplp

or
da = 4B

which demonstrates that the shear flow on a cross section is constant even though the wall
thickness of the section varies. Since ¢ is constant over a cross section, the largest average
shear stress will occur where the wall thickness is the smallest.

Next, an expression relating torque and shear stress will be developed. Consider the
force dF acting through the center of a differential length of perimeter ds, as shown in
Figure 6.22. The differential moment produced by dF about the origin O is simply p X dF,
where p is the mean radial distance from the perimeter element to the origin. The internal
torque equals the resultant of all of the differential moments; that is,

T = f(dF)p = f(qu)p = quds

This integral may be difficult to evaluate by formal calculus; however, the quantity pds is
twice the area of the triangle shown shaded in Figure 6.22, which makes the integral equal



to twice the area A,, enclosed by the median line. In other words, A,, is the mean area
enclosed within the boundary of the tube wall centerline. The resulting expression relates

torque 7T and shear flow ¢:
T =q2A,) (6.27)

Or, in terms of stress,

T
= 6.28
YW (6.28)

where 7 is the average shear stress across the thickness 7 (and tangent to the perimeter).
The shear stress determined by Equation (6.28) is reasonably accurate when ¢ is relatively
small. For example, in a round tube with a diameter-to-wall-thickness ratio of 20, the
stress as given by Equation (6.28) is 5 percent less than that given by the torsion formula.
It must be emphasized that Equation (6.28) applies only to “closed” sections—that is, sec-
tions with a continuous periphery. If the member were slotted longitudinally (e.g., see
Figure 6.23), the resistance to torsion would be diminished considerably from that of the
closed section.

TORSION OF THIN-WALLED
TUBES: SHEAR FLOW

\_'

FIGURE 6.23 Thin-walled
shape with an “open” cross
section.

A rectangular box section of aluminum alloy has 3 mm
outside dimensions of 100 mm by 50 mm. The plate
thickness is 2 mm for the 50-mm sides and 3 mm for T
the 100-mm sides. If the maximum shear stress must

.. . . 50 mm
be limited to 95 MPa, determine the maximum —j zmm
torque 7 that can be applied to the section.
100
Plan the Solution 'L = ’Il
The maximum shear stress will occur in the thin- Cross-sectional dimensions.

nest plate. From the allowable shear stress, the

shear flow in the thinnest plate will be calculated. Next, the area A enclosed by the
median line (see Figure 6.22) of the section wall will be calculated. Finally, the maximum
torque will be computed from Equation (6.27).

SOLUTION
The maximum shear stress will occur in the thinnest plate; therefore, the critical shear
flow ¢ is

g = 7t = (95 N/mm?)(2 mm) = 190 N/mm
The area enclosed by the median line is

A,, = (100 mm — 2 mm)(50 mm — 3 mm) = 4,606 mm?

Finally, the torque that can be transmitted by the section is computed from
Equation (6.27):

T = q(24,,) = (190 N/mm)(2)(4,606 mm?2) = 1,750,280 N-mm = 1,750 N-m Ans.




_PROBLEMS

P6.100 A torque of magnitude 7 = 1.5 kip-in. is applied to each
of the bars shown in Figure P6.100/101. If the allowable shear
stress is specified as 7o, = 8 ksi, determine the minimum required
dimension b for each bar.

FIGURE P6.100/101

P6.101 A torque of magnitude T = 270 N-m is applied to each
of the bars shown in Figure P6.100/101. If the allowable shear
stress is specified as 7,y = 70 MPa, determine the minimum
required dimension b for each bar.

P6.102 The bars shown in Figure P6.102/103 have equal cross-
sectional areas, and they are each subjected to a torque of 7 =
160 N-m. Determine

(a) the maximum shear stress in each bar.
(b) the rotation angle at the free end if each bar has a length of
300 mm. Assume that G = 28 GPa.

(b)

(a)

30 mm

T
T
25 mm

P6.103 The allowable shear stress for each bar shown in Figure
P6.102/103 is 75 MPa. Determine

50 mm

15 mm

FIGURE P6.102/103

(a) the largest torque 7 that may be applied to each bar.
(b) the corresponding rotation angle at the free end if each bar has
a length of 300 mm. Assume that G = 28 GPa.

P6.104 A solid circular rod having diameter D is to be replaced
by a rectangular tube having cross-sectional dimensions D X 2D
(which are measured to the wall centerlines of the cross section

shown in Figure P6.104). Determine the required minimum thick-
ness i, of the tube so that the maximum shear stress in the tube
will not exceed the maximum shear stress in the solid bar.

ll‘
I

2D

FIGURE P6.104

P6.105 A 24-in.-wide by 0.100-in.-thick by 100-in.-long steel
sheet is to be formed into a hollow section by being bent through
360° and having the long edges welded (i.e., butt-welded) together.
Assume a cross-sectional medial length of 24 in. (no stretching of
the sheet due to bending). If the maximum shear stress must be
limited to 12 ksi, determine the maximum torque that can be car-
ried by the hollow section if

(a) the shape of the section is a circle.

(b) the shape of the section is an equilateral triangle.

(c) the shape of the section is a square.

(d) the shape of the section is a rectangle measuring 8 X 4 in.

P6.106 A 500-mm-wide by 3-mm-thick by-2 m-long aluminum
sheet is to be formed into a hollow section by being bent through
360° and having the long edges welded (i.e., butt-welded) together.
Assume a cross-sectional medial length of 500 mm (no stretching
of the sheet due to bending). If the maximum shear stress must be
limited to 75 MPa, determine the maximum torque that can be car-
ried by the hollow section if

(a) the shape of the section is a circle.

(b) the shape of the section is an equilateral triangle.

(c) the shape of the section is a square.

(d) the shape of the section is a rectangle measuring 150 X 100 mm.

P6.107 A torque of T = 150 kip-in. will be applied to the hol-
low thin-walled aluminum alloy section shown in Figure P6.107. If
the maximum shear stress must be limited to 10 ksi, determine the
minimum thickness required for the section. (Note: The dimensions
shown are measured to the wall centerline.)

3in. 8 in. 3in.
I 1

FIGURE P6.107




P6.108 A torque of T = 2.5 kN-m will be applied to the hollow
thin-walled aluminum alloy section shown in Figure P6.108. If the
maximum shear stress must be limited to 50 MPa, determine the
minimum thickness required for the section. (Note: The dimensions
shown are measured to the wall centerline.)

—

100 mm

L

FIGURE P6.108

P6.109 A torque of T = 100 kip-in. will be applied to the hol-
low thin-walled aluminum alloy section shown in Figure P6.109. If
the section has a uniform thickness of 0.100 in., determine the mag-
nitude of the maximum shear stress developed in the section.
(Note: The dimensions shown are measured to the wall centerline.)

10 in.

FIGURE P6.109

P6.110 A torque of T = 2.75 kN-m will be applied to the hol-
low thin-walled aluminum alloy section shown in Figure P6.110. If
the section has a uniform thickness of 4 mm, determine the magni-
tude of the maximum shear stress developed in the section. (Note:
The dimensions shown are measured to the wall centerline.)

150 mm 25 mm
T 1

FIGURE P6.110

P6.111 A cross section of the leading edge of an airplane wing
is shown in Figure P6.111. The enclosed area is 82 in.2. Sheet
thicknesses are shown on the diagram. For an applied torque of
T = 100 kip-in., determine the magnitude of the maximum shear
stress developed in the section. (Note: The dimensions shown are
measured to the wall centerline.)

0.050 in. A

FIGURE P6.111

P6.112 A cross section of an airplane fuselage made of alumi-
num alloy is shown in Figure P6.112. For an applied torque of
T = 1,250 kip-in. and an allowable shear stress of 7 = 7.5 ksi, de-
termine the minimum thickness of the sheet (which must be con-
stant for the entire periphery) required to resist the torque. (Note:
The dimensions shown are measured to the wall centerline.)

N T

15 in.
B c

+ V.
20 in.

A + D i
15 in.

71

30 in.

FIGURE P6.112
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Equilibrium of Beams
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The behavior of slender structural members subjected to axial loads and to torsional
loadings was discussed in Chapters 5 and 6, respectively. This chapter begins the consider-
ation of beams, one of the most common and important components used in structural and
mechanical applications. Beams are usually long (compared with their cross-sectional
dimensions), straight, prismatic members that support loads, which act perpendicular to the
longitudinal axis of the member. They resist transverse applied loads by a combination of
internal shear force and bending moment.

Types of Supports

Beams are normally classified by the manner in which they are supported. Figure 7.1
shows graphic symbols used to represent three types of supports:

® Figure 7.1a shows a pin support. A pin support prevents translation in two orthogo-
nal directions. For beams, this means that displacements parallel to the longitudinal
axis of the beam (i.e., the x direction in Figure 7.1a) and perpendicular to the longitu-
dinal axis (i.e., the y direction in Figure 7.1a) are restrained at the supported joint.
While translation is restrained by a pin support, rotation of the joint is permitted. In
Figure 7.1a, the beam is free to rotate about the z axis, and reaction forces act on the
beam in the x and y directions.

The term transverse refers to
loads and sections that are
perpendicular to the longitudinal
axis of the member.
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y

(a) Pin support

y
—x

4y

(b) Roller support

y

My
Aof=—
A

4y

(c) Fixed support
FIGURE 7.1 Types of supports.

Clip angle

(a) Pin support

Beam

® Figure 7.1b shows a roller support. A roller support prevents translation perpendicular
to the longitudinal axis of the beam (i.e., the y direction in Figure 7.1b); however, the
joint is free to translate in the x direction and to rotate about the z axis. Unless
specifically stated otherwise, a roller support should be assumed to prevent joint
displacement both in the +y and —y directions. The roller support in Figure 7.1
provides a reaction force to the beam in the y direction only.

® Figure 7.1c shows a fixed support. A fixed support prevents both translation and
rotation at the supported joint. The fixed support shown in Figure 7.1c¢ provides
reaction forces to the beam in the x and y directions as well as a reaction moment in
the z direction. This type of support is sometimes called a moment connection.

Figure 7.1 shows symbols that represent three types of supports commonly associated with
beams. It is important to keep in mind that these symbols are simply graphic shorthand used
to easily communicate the beam support conditions. Actual pin, roller, and fixed supports
may take many configurations. Figure 7.2 shows one possibility for each type of connection.

One type of pin support is shown in Figure 7.2a. In this connection, three bolts are used
to attach the beam to a small component called a clip angle, which in turn is bolted to the
vertical supporting member (called a column). The bolts prevent the beam from moving
either horizontally or vertically. Strictly speaking, the bolts also provide some resistance
against rotation at the joint. Since the bolts are located close to the middle of the beam,
however, they are not capable of fully restraining rotation at the connection. This type of
connection permits enough rotation so that the joint is classified as a pin connection.

Figure 7.2b shows one type of roller connection. The bolts are inserted into slotted
holes in a small plate called a shear tab. Since the bolts are in slots, the beam is free to
deflect in the horizontal direction, but it is restrained from deflecting either upward or
downward. Slotted holes are sometimes used to facilitate the construction process, making
it easier for heavy beams to be quickly attached to columns.

Figure 7.2¢ shows a welded steel moment connection. Notice that extra plates are
welded to the top and bottom surfaces of the beam and that these plates are connected di-
rectly to the column. These extra plates prevent the beam from rotating at the joint.

Types of Statically Determinate Beams

Beams are further classified by the manner in which the supports are arranged. Figure 7.3
shows three common statically determinate beams. Figure 7.3a shows a simply supported

Extra plates welded
directly to column

Deflection is
restrained and
rotation of the joint
is prevented by the
extra plates attached
to the top and
bottom flanges.

The slotted bolts
restrain vertical
deflection, but
allow the beam
to move
horizontally.

Beam
Shear tab with slots

(b) Roller support (c) Fixed support

FIGURE 7.2 Examples of actual beam supports.



beam (also called a simple beam). A simply supported beam has a pin support at one end
and a roller support at the opposite end. Figure 7.3b shows a variation of the simply
supported beam in which the beam continues across the support in what is termed an
overhang. In both cases, the pin and roller supports provide three reaction forces for the
simply supported beam: a horizontal reaction force at the pin and vertical reaction forces at
both the pin and the roller. Figure 7.3¢ shows a cantilever beam. A cantilever beam has a
fixed support at one end only. The fixed support provides three reactions to the beam: hori-
zontal and vertical reaction forces and a reaction moment. These three unknown reaction
forces can be determined from the three equilibrium equations (i.e., XF, = 0, ¥F, = 0, and
>M = 0) available for a rigid body.

Types of Loads

Several types of loads are commonly supported by beams (Figure 7.4). Loads focused
on a small length of the beam are called concentrated loads. Loads from columns or
from other members, as well as support reaction forces, are typically represented by
concentrated loads. Concentrated loads may also represent wheel loads from vehicles
or forces applied by machinery to the structure. Loads that are spread along a portion
of the beam are termed distributed loads. Distributed loads that are constant
in magnitude are termed uniformly distributed loads. Examples of uni-

SHEAR AND MOMENT
IN BEAMS

|
Lo A

(a) Simple supported beam

fbA B cI

(b) Simple beam with overhang

|
I A B

(c¢) Cantilever beam

FIGURE 7.3 Types of statically
determinate beams.

Concentrated )

formly distributed loads include the weight of a concrete floor slab or the load Linearly

. . . . e Uniformly distributed
forces created by wind. In some instances, the load may be linearly distrib- distributed load
uted, which means that the distributed load, as the term implies, changes load
linearly in magnitude over the span of the loading. Snow, soil, and fluid pres- N\
sure are examples of considerations that can create linearly distributed loads. gf * ) |
Ab Iso be subjected t trated ts, which tend t £ <

eam may also be subjected to concentrated moments, which tend to Concentrated

bend and rotate the beam. Concentrated moments are most often created by moment

other members that connect to the beam.

7.2 Shear and Moment in Beams

To determine the stresses created by applied loads, it is first necessary to determine the
internal shear force V and the internal bending moment M acting in the beam at any point
of interest. The general approach for finding V and M is illustrated in Figure 7.5. In this
figure, a simply supported beam with an overhang is subjected to two concentrated loads
P, and P, as well as to a uniformly distributed load w. A free-body diagram is obtained by
cutting a section at a distance of x from pin support A. The cutting plane exposes an internal
shear force V and an internal bending moment M. If the beam is in equilibrium, then any
portion of the beam that we consider must also be in equilibrium. Consequently, the free
body with shear force V and bending moment M must satisfy equilibrium. Thus, equilib-
rium considerations can be used to determine values for V and M acting at location x.

Because of the applied loads, beams develop internal shear forces V and bending
moments M that vary along the length of the beam. For us to properly analyze the stresses
produced in a beam, we must determine V and M at all locations along the beam span.
These results are typically plotted as a function of x in what is known as a shear-force
and bending-moment diagram. These diagrams summarize all shear forces and bend-
ing moments along the beam, making it straightforward to identify the maximum and
minimum values for both V and M. These extreme values are required to calculate the
largest stresses.

FIGURE 7.4 Symbols used for
various types of loads.
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FIGURE 7.6 Sign conventions
for internal shear force V and
bending moment M.

Positive V
rotates
beam slice
clockwise

+V
), =
\

Positive M
bends
beam slice
upward into
a “smile”

+M
=
—_—

Negative V
rotates
beam slice
counterclockwise

=
==

-V

Negative M
bends
beam slice
downward into
a “frown”

FIGURE 7.7 Sign conventions
for V and M shown on beam slice.

FIGURE 7.5 Method of sections applied to beams.

Since many different loads may act on a beam, functions describing the variation of
V(x) and M(x) may not be continuous throughout the entire beam span. Because of this,
shear-force and bending-moment functions must be determined for a number of intervals
along the beam. In general, intervals are delineated by
(a) the locations of concentrated loads, concentrated moments, and support reactions or
(b) the span of distributed loads.

The examples that follow illustrate how shear-force and bending-moment functions
can be derived for various intervals by the use of equilibrium considerations.

Sign Conventions for Shear-Force and Bending-Moment Diagrams. Before deriv-
ing internal shear-force and bending-moment functions, we must develop a consistent sign
convention. These sign conventions are illustrated in Figure 7.6.

A positive internal shear force V

® acts downward on the right-hand face of a beam.
® acts upward on the left-hand face of a beam.

A positive internal bending moment M

® acts counterclockwise on the right-hand face of a beam.
® acts clockwise on the left-hand face of a beam.

These sign conventions can also be expressed by the directions of V and M that act on
a small slice of the beam. This alternative statement of the V and M sign conventions is
illustrated in Figure 7.7.

A positive internal shear force V causes a beam element to rotate clockwise.
A positive internal bending moment M bends a beam element concave upward.

A shear-force and bending-moment diagram will be created for each beam by plotting
shear-force and bending-moment functions. To ensure consistency among the functions, it
is very important that these sign conventions are observed.



Draw the shear-force and bending-moment diagrams for the
simply supported beam shown. y

Plan the Solution

First, determine the reaction forces at pin A and roller C. Then, 4 i
consider two intervals along the beam span: between A and B,
and between B and C. Cut a section in each interval and draw the

o~

appropriate free-body diagram (FBD), showing the unknown in-
ternal shear force V and internal bending moment M acting on
the exposed surface. Write the equilibrium equations for each
FBD, and solve them for functions describing the variation of V
and M with location x along the span. Plot these functions to
complete the shear-force and bending-moment diagrams.

SOLUTION

Support Reactions

Since this beam is symmetrically supported and symmetrically loaded, the reaction forces
must also be symmetric. Therefore, each support exerts an upward force equal to P/2.
Since no applied loads act in the x direction, the horizontal reaction force at pin support
A is zero.

Shear and Moment Functions

In general, the beam will be sectioned at an arbitrary distance x from pin support A and
all forces acting on the free body will be shown, including the unknown internal shear
force V and internal bending moment M acting on the exposed surface.

Interval 0 = x < L/2: The beam is cut on section a—a, which is located at an arbitrary
distance x from pin support A. An unknown shear force V and an unknown bending
moment M are shown on the exposed surface of the beam. Note that positive directions
are assumed for both V and M. (See Figure 7.6 for sign conventions.)

Since no forces act in the x direction, the equilibrium equation >F, = 0 is trivial. The
sum of forces in the vertical direction yields the following function for V:

-V = sVo=

N | o

(a)

The sum of moments about section a—a gives the following function for M:

M, = —gx +M =0 M = gx (b)

a—a

These results show that the internal shear force V is constant and the inter-
nal bending moment M varies linearly in the interval 0 < x < L/2.

Dt~

o[~

0~y

Interval L/2 = x < L: The beam is cut on section b—b, which is located at
an arbitrary distance x from pin support A. Section b—b, however, is located

beyond B where the concentrated load P is applied. As before, an unknown —:
shear force V and an unknown bending moment M are shown on the A<

y
exposed surface of the beam and positive directions are assumed for both V. ,,
and M. 2




The sum of forces in the vertical direction yields the follow-
ing function for V:

P P
SR =2 -P-V=0 .V=-2 (©)

The equilibrium equation for the sum of moments about sec-
tion b—b gives the following function for M:

v 1 X P PL @
Ai 2 ic .'.MZ—EX +7

y y
g' L L 1 g Again, the internal shear force V is constant and the internal
2 2 bending moment M varies linearly in the interval L/2 < x < L.
P Plot the Functions
2 Plot the functions given in Equations (a) and (b) for the inter-
val 0 = x < L/2, and the functions defined by Equations (c)

v and (d) for the interval L/2 < x < L, to create the shear-force
and bending-moment diagram shown.

_ g The maximum internal shear force is Vi, = £P/2. The
maximum internal bending moment is M,,,, = PL/4, and it

PL occurs at x = L/2.
4 Notice that the concentrated load causes a discontinuity

at its point of application. In other words, the shear-force dia-
gram “jumps” by an amount equal to the magnitude of the
concentrated load. The jump in this case is downward, which
is the same direction as the concentrated load P.

Draw the shear-force and bending-moment diagrams for the
simple beam shown.

*  Plan the Solution
The solution process outlined in Example 7.1 will be used to
derive V and M functions for this beam.

SOLUTION
Support Reactions
A FBD of the beam is shown. The equilibrium equations are
y _ —
i, IF,=A+C =0
£\ IM, = —M, + C,L =0
B ] =
e = B |4 ? C From these equations, the beam reactions are
4 M M
= -0 = _70
A)’ % T % le Cy = L and Ay 3




The negative value for A, indicates that this reaction acts opposite to the direction as-
sumed initially. Subsequent free-body diagrams will be revised to show this reaction

force acting downward.

Interval 0 = x < L/2: Section the beam at an arbitrary distance x between A and B. Show
the unknown shear force V and the unknown bending moment M on the exposed surface
of the beam. Assume positive directions for both V and M, according to the sign conven-

tion given in Figure 7.6.

The sum of forces in the vertical direction yields the following function for V:

M
LF,=——"2-V=0 .V=

M,

IL,

The sum of moments about section a—a gives the following function for M:

M,

M =—xt+M=0
L

a—a

()

(b)

These results indicate that the internal shear force V is constant and the internal bending

moment M varies linearly in the interval 0 = x < L/2.

Interval L/2 = x < L: The beam is cut on section b—b, which is at an
arbitrary location between B and C. The sum of forces in the vertical

direction yields the following function for V:

v =M
YL L

The equilibrium equation for the sum of moments about section b—b gives

the following function for M:

M
My, = —"Lx—-My+M=0
Y @
_ My
IL
Again, the internal shear force V is constant and the internal

bending moment M varies linearly in the interval L/2 < x < L.

Plot the Functions

Plot the functions given in Equations (a) and (b) for the inter-
val 0 = x < L/2, and the functions defined by Equations (c)
and (d) for the interval L/2 = x < L, to create the shear-force
and bending-moment diagram shown.

The maximum internal shear force is V,, =
The maximum internal bending moment is M,
and it occurs at x = L/2.

Notice that the concentrated moment does not affect the
shear-force diagram at B. It does create, however, a disconti-
nuity in the bending-moment diagram at its point of applica-
tion. The bending-moment diagram “jumps” by an amount
equal to the magnitude of the concentrated moment. The
clockwise concentrated external moment M causes the bend-
ing-moment diagram to jump upward at B by an amount
equal to the magnitude of the concentrated moment.

M,

—M,/L.
*M,/2,

-
L . !
2 ‘
M
o, M
@
(C) ||"I hd ‘ L 5
A B l b| Vv
X
My ¥ B
Tv
y
=M
(@ ] — x
A B | c
M g L L M,
Ly 2 2 |z




y | Draw the shear-force and bending-moment diagrams for the
W simply supported beam shown.
| Py SUPP
|

determined, cut a section at an arbitrary location x and draw
the corresponding free-body diagram (FBD), showing the un-
known internal shear force V and internal bending moment M
acting on the cut surface. Develop the equilibrium equations
for the FBD, and solve these two equations for functions
describing the variation of V and M with location x along the
span. Plot these functions to complete the shear-force and
bending-moment diagrams.

3 ﬂ SOLUTION

. M Support Reactions
e L 5 Since this beam is symmetrically supported and symmetrically loaded, the
reaction forces must also be symmetric. The total load acting on the beam
is wL; therefore, each support exerts an upward force equal to half of this
load: wL/2.

Interval 0 = x < L: Section the beam at an arbitrary distance x between A
and B. Make sure that the original distributed load w is shown on the
FBD at the outset. Show the unknown shear force V and the unknown
bending moment M on the exposed surface of the beam. Assume positive
directions for both V and M, according to the sign convention given in
Figure 7.6. The resultant of the uniformly distributed load w acting on a
beam of length x is equal to wx. The resultant force acts at the middle of
this loading (i.e., at the centroid of the rectangle that has width x and

height w). The sum of forces in the vertical direction yields the

y ‘ following function for V:
VN

wL
|@ I x ZFYZT_WX_VZO

A= ?B wL L (@)
’ ¢ .'.V=——wx=w[3—x

wL 2

B l — x Plan the Solution
A .@, =B After the support reactions at pin A and roller B have been

2 12
The shear-force function is linear (i.e., a first-order function),
WL and the slope of this line is equal to —w (which is the intensity
of the distributed load).

The sum of moments about section a—a gives the
following function for M:

wL

|t~

wi? 2 2 (b)

The internal bending moment M is a quadratic function (i.e., a
second-order function).




Plot the Functions
Plot the functions given in Equations (a) and (b) to create the shear-force and bending-
moment diagram shown.

The maximum internal shear force is V,,,, = *wL/2, and it is found at A and B. The
maximum internal bending moment is M,,,,, = wL?/8, and it occurs at x = L/2.

Note that the maximum bending moment occurs at a location where the shear force
Vis equal to zero.

Draw the shear-force and bending-moment diagrams for the y

simply supported beam shown. /m

Plan the Solution @
After determining the support reactions at pin A and roller C, A

cut sections between A and B (in the linearly distributed load-
ing) and between B and C (in the uniformly distributed load-

D~

|~

= C

ing). Draw the appropriate free-body diagrams, work out the
equilibrium equations for each FBD, and solve these equa-
tions for functions describing the variation of V and M with
location x along the span. Plot these functions to complete the
shear-force and bending-moment diagrams.

SOLUTION
Support Reactions WL
The FBD for the entire beam is shown. The resultant force 4
of the linearly distributed loading is equal to the area of the — %

triangle that has base L/2 and height w:

(L) _ wL
22)" T 1)

The resultant force acts at the centroid of this triangle, which
is located at two-thirds of the base dimension, measured from

|~

312 3

Equilibrium equations for the beam can be written as

the point of the triangle:
2Ly L

which can be solved to determine the reaction forces:

A, = le and C, = £wL
24 24

Interval 0 = x < L/2: Section the beam at an arbitrary distance x between A and B. Make
sure that you replace the original linearly distributed load on the FBD. A new resul-
tant force for the linearly distributed load must be derived specifically for this FBD.

The slope of the linearly distributed load is equal to w/(L/2) = 2w/L. Accord-
ingly, the height of the triangular loading at section a—a is equal to the product of this
slope and the distance x—that is, (2w/L)x. Therefore, the resultant of the linearly

|~




2w

L j—j/fx

distributed load that is acting on this FBD is (1/2)x [(2w/L)x] = (wx%/L), and

it acts at a distance of x/3 from section a—a.

V and M functions applicable for the interval 0 = x < L/2 can be derived

from the equilibrium equations for the FBD:

2 2
4 9 TP = twp Py _o =¥ T (@)
Y24 L L 24
A wL
24 I x 1 7 5 5 7
M, , = ——wLx + ﬂ[ﬁ] +M =0 M=-"20 Ly (v
24 L \3 3L 24
£ ' x-L 1 [x ~ L] The shear-force function is quadratic (i.e., a second-order
. 2 2 function), and the bending-moment function is cubic (i.e., a
% W[x - %] third-order function).
v Interval L/2 = x < L: Section the beam at an arbitrary dis-
b tance x between B and C. Make sure that you replace the
[@ I, 5 original distributed loads on the FBD before deriving the V
A =i B ‘ by and M functions.
7 f % . X—% Based on this FBD, the equilibrium equations can be
2" x written as
IF _le—W—L—w[ —£]—V= V—le—W—L—w(x— ©
Y04 4 2 24 4
IL IL
M, , = —lex & W—(x ——] + w[x ——)—[x = —] +M =
24 2
2 (d)
M= _W_L[ _£] _2( _£]
4 3 2 2
y w
/m These equations can be simplified to
[@ — V= W[EL - x] and
A <= B *C 24
b ¢ y ¢ w
7 u M = —(—12x% + 13Lx — I*
2k L L "t 24( )

order function) between B and C.

Plot the Functions
bending-moment diagram shown.

location where the shear force V' is equal to zero.

The shear-force function is linear (i.e., a first-order function),
and the bending-moment function is quadratic (i.e., a second-

Plot the V and M functions to create the shear-force and

Notice that the maximum bending moment occurs at a




Draw the shear-force and bending-moment diagrams for the

cantilever beam shown. y
Plan the Solution 3 KN/m
Initially, determine the reactions at fixed support A. Three sec- .
tions will need to be considered for the intervals between AB, A B C ID
BC, and CD. For each section, draw the appropriate free-body
diagram, develop the equilibrium equations, and solve these L m ’m ’m
equations for functions describing the variation of V and M with f i '
location x along the span. Plot these functions to complete the
shear-force and bending-moment diagrams.
SOLUTION 19 kN .
Support Reactions A
A FBD of the entire beam is shown. Since no forces act in the x .
direction, the reaction force A, = 0 will be omitted from the FBD. M, p
The nontrivial equilibrium equations are | v |
XF,= A, +19kN —6kN =0 4 ¢
M, =M, +(19kN)CQm) — 6 kN)Sm) = 0 >m 2 m m | 1im
Av |} T 1
From these equations, the beam reactions are found to be
A, = —13kN and M, =8 kNm
8 kN-m

Since A, is negative, it really acts downward. The correct direction of this
reaction force will be shown in subsequent free-body diagrams.

Interval 0 = x < 2 m: Section the beam at an arbitrary distance x between A and
B. The FBD for this section is shown. From the equilibrium equations for this
FBD, determine functions for V and M:

IF, = -13kN-V =0
(a)
-V =—13kN

M, , = (A3kN)x —8kN-m + M =0

~M = —(13 kN)x + 8 kN-m (®)

Interval 2 m = x < 4 m: From a section cut between B and C, determine the
following shear and moment functions:

SF = —13kN+19kN -V =0
Y (c)
-V =6kN

XM, ;, = (I3 kN)x —(19kN)(x —2m) =8 kN-m + M =0

S (d)
S.M = (6 kN)x — 30 kN-m

19 kN
2m
8 kN-m
b M
| L )
A B b ¥,
4
r X |
1BNY




19 kN %(x_4m)
(3 kN/m)(x — 4 m)
2m
8 kN-m M
c
A B C ot
4m x—4m
T
4 X
131<N‘v
19 kKN
d A
8 kN-m 3 kN/m
! I — x
A B C D
y 2m 2m 2m
3N Y

Interval 4 m = x < 6 m: From a section cut between C and
D, determine the following shear and moment functions:

IF, = —13kN + 19 kN

—(B kN/m)(x —4m) -V =0 (e)
.V = (3 kN/m)x + 18 kN
XM, . = (13 kN)x — (19 kN)(x — 2 m)
. (x —4 m)
+ (3 kN/m)(x —4 m)—2 )

—8kNm +M =0

M = —(1.5 kN/m)x? + (18 kN)x — 54 kN-m

Plot the Functions
Plot the functions given in Equations (a) through (f) to con-
struct the shear-force and bending-moment diagram shown.
Notice that the shear-force diagram is constant in inter-
vals AB and BC (i.e., zero-order functions) and linear in in-
terval CD (i.e., a first-order function). The bending-moment
diagram is linear in intervals AB and BC (i.e., first-order
functions) and quadratic in interval CD (i.e., a second-order
function).

P7.1 For the cantilever beam and loading shown in Figure P7.1,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

FIGURE P7.1

P7.2  For the simply supported beam shown in Figure P7.2,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

| a b

FIGURE P7.2




P7.3  For the cantilever beam and loading shown in Figure P7.3,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

Y y
JIJIJIILIIILT
[ X
A B C
a b |
FIGURE P7.3

P7.4 For the simply supported beam subjected to the loading
shown in Figure P7.4,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

y W
w

[TITIITIIITITY

A B
| a b

FIGURE P7.4

P7.5 For the cantilever beam and loading shown in Figure P7.5,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

o

= ]

A B

FIGURE P7.5

P7.6 For the simply supported beam shown in Figure P7.6,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) determine the location and the magnitude of the maximum
bending moment.

y

M
L

FIGURE P7.6

P7.7 For the simply supported beam subjected to the loading
shown in Figure P7.7,

(a) derive equations for the shear force V and the bending
moment M for any location in the beam. (Place the origin at
point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

(c) report the maximum bending moment and its location.

50 kN 75 kN

[@1 — X
A | B c -T. D
I 1

3m 3m 4m

FIGURE P7.7

P7.8 For the simply supported beam subjected to the loading
shown in Figure P7.8,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

(c) report the maximum positive bending moment, the maximum
negative bending moment, and their respective locations.

20 kN 60 kN
| (o) — X
A = B c =D
2m 6m 2m |
FIGURE P7.8



P7.9 For the simply supported beam subjected to the loading

shown in Figure P7.9,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

(c) report the maximum positive bending moment, the maximum
negative bending moment, and their respective locations.

y
7 kips/ft

FM TITITTITTTT
A = B &Ic

9ft | 21 ft |

X

1~

FIGURE P7.9

P7.10 For the cantilever beam and loading shown in Figure P7.10,
(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)
(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.
y
4 kips/ft

2

[ X

A B C

FIGURE P7.10

P7.11 For the simply supported beam subjected to the loading

shown in Figure P7.11,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

(c) report the maximum bending moment and its location.

42 kips
y
6 kips/ft
VITTTITIITITITITT]
B —
Aﬂ B = C
| 10 ft 20 ft |
FIGURE P7.11

P7.12 For the simply supported beam subjected to the loading

shown in Figure P7.12,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

(c) report the maximum positive bending moment, the maximum
negative bending moment, and their respective locations.

36 kN
y
180 kN-m
7\ Y
i { — x
A A |8 = C D
| 4 m 5m | 3m
FIGURE P7.12

P7.13  For the cantilever beam and loading shown in Figure P7.13,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

d
120 kip-ft 5 kips/ft
JIJIIILLLL]
[ x
A B c
8 ft 6 ft |
FIGURE P7.13

P7.14 For the cantilever beam and loading shown in Figure P7.14,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

y 17 kips
| 6 kips/ft
—x
A B C
| 9 ft 5 ft
< T
FIGURE P7.14

P7.15 For the simply supported beam subjected to the loading
shown in Figure P7.15,

(a) derive equations for the shear force V and the bending moment
M for any location in the beam. (Place the origin at point A.)

(b) plot the shear-force and bending-moment diagrams for the
beam, using the derived functions.

(c) report the maximum positive bending moment, the maximum
negative bending moment, and their respective locations.

7 Kips/ft

B w»C

1
A 250 kip-ft W
41t | 8 fi
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FIGURE P7.15



7.3 Graphical Method for Constructing Shear
and Moment Diagrams

As shown in Section 7.2, we can construct shear and moment diagrams by developing
functions that express the variation of internal shear force V(x) and internal bending mo-
ment M(x) along the beam and then plotting these functions. When a beam has several
loads, however, this approach can be quite time-consuming and a simpler method is
desired. The process of constructing shear and moment diagrams is much easier if specific
relationships between load, shear, and moment are taken into consideration.

Consider a beam subjected to several loads, as shown in Figure 7.8a. All loads are
shown in their respective positive directions. We will investigate a small portion of the
beam where there are no external concentrated loads or concentrated moments. This small
beam element has length Ax (Figure 7.8)). An internal shear force V and an internal bend-
ing moment M act on the left side of the beam element. Because the distributed load is
acting on this element, the shear force and bending moment on the right side must be
slightly different in order to satisfy equilibrium, having values of V + AV and M + AM,
respectively. All shear forces and bending moments are assumed to act in their positive
directions, as defined by the sign convention shown in Figure 7.6. The distributed load can
be replaced by its resultant force w(x) Ax that acts at a fractional distance k Ax from the
right side, where 0 < k < 1 (e.g., if the distributed load is uniform, k = 0.5). This small
portion of the beam must satisfy equilibrium; therefore, we can consider two equilibrium
conditions—the sum of forces in the vertical direction and the sum of moments about
point O on the right side of the element:

SF, =V 4w Ax—(V + AV) = 0
LAV = wx)Ax
XM, = VAx—wx)Ax okAx —M + (M + AM) =0

SAM = VAx + w(x) Ax e kAx

Dividing each by Ax and taking the limit as Ax — 0 give the following relationships:

av
— 7.1
dx W) -1
aM
o 1% (7.2)

FIGURE 7.8a Generalized beam subjected to positive external loads.

w(x) Ax
W) 'r— ’IF— kAx
I M+AM
el
M T V+AV

X

E

FIGURE 7.8b Beam element
showing internal shear forces
and bending moments.



EQUILIBRIUM OF BEAMS

A positive slope inclines
upward when moving to

the right or downward when
moving to the left.

For brevity, the shear-force
diagram is also termed the V
diagram or the V curve. The
bending-moment diagram is
also termed the M diagram
or the M curve.

w w e
B _ ——T’
é— ————A A I

w(x) WF’ /WG
Bl -

|
A B c D |E F =G

w,

G
At any location x, the slope of the
V diagram is equal to the intensity
of the distributed load w(x).

The slope of the M diagram is equal to the intensity
of the shear force V at the same x location.

FIGURE 7.9 Relationships between slopes for the load, shear, and moment diagrams.

Equation (7.1) indicates that the slope of the shear-force diagram is equal to the numerical
value of the distributed load intensity at any location x. Similarly, Equation (7.2) indicates
that the slope of the bending-moment diagram is equal to the numerical value of the shear
force at any location x.

To illustrate the meaning of Equation (7.1), consider the beam shown in Figure 7.9,
which is subjected to a distributed load w(x) that increases from w(x) = w, = 0 at A to
w(x) = wg at G. At A where the distributed load w is zero, the slope of the shear-force dia-
gram is also zero. Moving to the right along the beam span, the distributed load increases to
a small positive value at B, and accordingly, the slope of the shear-force diagram at B is a
small positive value (i.e., the shear-force diagram slopes slightly upward). At points C through
G, the distributed load magnitude gets larger and larger (i.e., more and more positive). Simi-
larly, the slope of the shear-force diagram at these points becomes increasingly more positive.
In other words, the V curve gets increasingly steeper as the distributed load w gets larger.

In a similar manner, Equation (7.2) states that the slope of the bending-moment dia-
gram at any point is equal to the shear force V at that same point. At point A in Figure 7.9,
the shear force V; is a relatively large negative value; therefore, the slope of the bending-
moment diagram is a relatively large negative value. In other words, the M diagram slopes
sharply downward. At points B and C, the shear forces Vz and V- are still negative, but not
as negative as V,. Consequently, the M diagram still slopes downward, but not as steeply as
at A. At point D, the shear force V, is zero, which means that the slope of the M diagram is
zero. (This is an important detail because the maximum and minimum values of a function
are at those locations where the slope of the V diagram is zero.) At point E, the shear force
Vg becomes a small positive number, and accordingly, the M diagram begins to slope up-
ward slightly. At points F and G, the shear forces Vi and V; are relatively large positive
numbers, which means that the M diagram slopes sharply upward.



Equations (7.1) and (7.2) may also be rewritten in the form dV = w(x)dx and
dM = Vdx. The terms w(x) dx and Vdx represent differential areas under the distributed-load
and shear-force diagrams, respectively. Equation (7.1) can be integrated between any two

locations x; and x, on the beam:
V2 X
fVl dav —fx1 w(x)dx

This gives the following relationship:

AV =V, =V, = [Cw)dr

1

Similarly, Equation (7.2) can be expressed in integral form as

M, X
f M = [vx
M,

X

which gives the relationship

AM =M, — M, = ["Vdx
X

(7.3)

(7.4)

Equation (7.3) reveals that the change in shear force AV between any two points on the
beam is equal to the area under the distributed-load curve between those same two points.
Similarly, Equation (7.4) states that the change in bending moment AM between any two

points is equal to the corresponding area under the shear-force curve.

To illustrate the significance of Equations (7.3) and (7.4), consider the beam shown in
Figure 7.10. The change in shear force between points E and F can be found from the area

w(x) Wy /WG
w\, Wb WE— ’T’T T
w S
I X
A B c D |E F \=2» G

The change in shear force AV between
any two locations is equal to the area
under the distributed-load curve.

Vi

The change in bending moment AM between any
two locations is equal to the area under the V curve.

FIGURE 7.10 Relationships between areas for the load, shear, and moment diagrams.

GRAPHICAL METHOD FOR
CONSTRUCTING SHEAR AND
MOMENT DIAGRAMS

The terms load diagram and
distributed-load curve are
synonyms. For brevity, the
distributed-load curve is
referred to as the w diagram
or the w curve.



EQUILIBRIUM OF BEAMS

The positive direction for a
concentrated load is upward.

An upward load P causes the
shear diagram to jump upward.
Similarly, a downward load P
causes the shear diagram to
jump downward.

P()
= M+AM
M T V+AV

E

Ax

FIGURE 7.11a Free-body
diagram of beam element
subjected to concentrated
load Py,

FIGURE 7.11b Free-body
diagram of beam element
subjected to concentrated
moment M.

under the distributed-load curve between those same two points. Similarly, the change in
bending moment between points B and C is given by the area under the V curve between
those same two points.

Regions of Concentrated Loads and Moments

Equations (7.1) through (7.4) were derived for a portion of the beam subjected to distrib-
uted load only. Next, consider the free-body diagram of a very thin portion of the beam (see
Figure 7.8a) directly beneath one of the concentrated loads (Figure 7.11a). Force equilib-
rium for this free body can be stated as

~AV =P, (1.5)

IF, =V+ R -(V+AV)=0

This equation shows that the change in shear force AV between the left and right sides of a
thin beam element is equal to the intensity of the external concentrated load P, acting on
the beam element. At the location of a positive external load, the shear-force diagram is
discontinuous. The shear-force diagram “jumps” upward by an amount equal to the inten-
sity of an upward concentrated load. A downward external concentrated load causes the
shear-force diagram to jump downward (see Example 7.1).

Next, consider a thin beam element located at a concentrated moment (Figure 7.115b).
Moment equilibrium for this element can be expressed as

SM,=-M—VAx +M, +(M +AM) =0
As Ax approaches zero,
AM = —M, (7.6)

The moment diagram is discontinuous at locations where external concentrated mo-
ments are applied. Equation (7.6) reveals that the change in internal bending moment
AM between the left and right sides of a thin beam element is equal to the negative of
the external concentrated moment M, acting on the beam element. If a positive external
moment is defined as counterclockwise, then a positive external moment causes the
bending-moment diagram to “jump” downward. Conversely, a negative external mo-
ment (i.e., a moment that acts clockwise) causes the internal bending-moment diagram
to jump upward (see Example 7.2).

Maximum and Minimum Bending Moments

In mathematics, we find the maximum value for a function f(x) by taking the derivative of
the function, setting the derivative equal to zero, and determining the corresponding loca-
tion x. Once this value of x is known, it can be substituted into f(x) and the maximum value
can be ascertained.

In the context of shear and moment diagrams, the function of interest is the bending-
moment function M(x). The derivative of this function is dM/dx, and accordingly, the
maximum bending moment will occur at locations where dM/dx = 0. Notice, however,
Equation (7.2), which states that dM/dx = V. If these two equations are combined, we
can conclude that the maximum or minimum bending moment occurs at locations where
V = 0. This conclusion will be true unless there is a discontinuity in the M diagram
caused by an external concentrated moment. Consequently, maximum and minimum



bending moments will occur at points where the V curve crosses the V = 0 axis as well
as at points where external concentrated moments are applied to the beam. Bending mo-
ments corresponding to the location of discontinuities also should be computed to check
for maximum or minimum bending moment values.

Six Rules for Constructing Shear-Force
and Bending-Moment Diagrams

Equations (7.1) through (7.6) comprise six rules that can be used to construct shear-force
and bending-moment diagrams for any beam. These rules, grouped according to usage, can
be stated as follows:

Rules for the Shear-Force Diagram

Rule 1: The shear-force diagram is discontinuous at points subjected to concentrated loads
P. An upward P causes the V diagram to jump upward, and a downward P causes the V
diagram to jump downward [Equation (7.5)].

Rule 2: The change in internal shear force between any two locations x; and x, is equal to
the area under the distributed-load curve [Equation (7.3)].

Rule 3: At any location x, the slope of the V diagram is equal to the intensity of the distrib-
uted load w [Equation (7.1)].

Rules for the Bending-Moment Diagram

Rule 4: The change in internal bending moment between any two locations x; and x, is
equal to the area under the shear-force diagram [Equation (7.4)].

Rule 5: At any location x, the slope of the M diagram is equal to the intensity of the internal
shear force V [Equation (7.2)].

Rule 6: The bending-moment diagram is discontinuous at points subjected to external
concentrated moments. A clockwise external moment causes the M diagram to jump
upward, and a counterclockwise external moment causes the M diagram to jump down-
ward [Equation (7.6)].

For convenience, these six rules are presented along with illustrations in Table 7.1.

General Procedure for Constructing Shear-Force
and Bending-Moment Diagrams

The method for constructing V and M diagrams presented here is called the graphical
method because the load diagram is used to construct the shear-force diagram and then the
shear-force diagram is used to construct the bending-moment diagram. The six rules just
outlined are used to make these constructions. The graphical method is much less time-
consuming than the process of deriving V(x) and M(x) functions for the entire beam, and it
provides the information necessary to analyze and design beams. The general procedure
can be summarized by the following steps:

Step 1 — Complete the Load Diagram: Sketch the beam including the supports,
loads, and key dimensions. Calculate the external reaction forces, and if the beam is a
cantilever, find the external reaction moment. Show these reactions on the load diagram,
using arrows to indicate the proper direction for these forces and moments.

GRAPHICAL METHOD FOR
CONSTRUCTING SHEAR AND
MOMENT DIAGRAMS

A negative area results from
negative w (i.e., downward
distributed load).

The area computed from
negative shear force values
is considered negative.

The graphical method is most
useful when the areas associated
with Equations (7.3) and (7.4)
are simple rectangles or
triangles. These types of areas
exist when beam loadings are
concentrated loads or uniformly
distributed loads.



Table 7.1

Construction Rules for Shear-Force and Bending-Moment Diagrams

Equation

Load Diagram w

Shear-Force Diagram V

Bending-Moment Diagram M

Rule 1: Concentrated loads create discontinuities in the shear-force diagram. [Equation (7.5)]
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Vs

Positive jump
in shear force V
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Rule 2: The change in shear force is equal to the area under the distributed-load curve. [Equation (7.3)]
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Rule 3: The slope of the V diagram is equal to the intensity of the distributed load w. [Equation (7.1)]
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Rule 4: The change in bending moment is equal to the area under the shear-force

diagram. [Equation (7.4)]

X,
My, — M, =L"de
A

fx "V de

X,
AM:MB—MAzf "V(x) dx
A

X

M
AM ?
M,
A B

Rule 5: The

slope of the M diagram is equal to the intensity of the shear forc

e V. [Equation (7.2)]
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Step 2 — Construct the Shear-Force Diagram: The shear-force diagram will be con-
structed directly beneath the load diagram. For that reason, it is convenient to draw a
series of vertical lines beneath significant beam locations to help align the diagrams.
Begin the shear-force diagram by drawing a horizontal axis, which will serve as the x
axis for the V diagram. The shear-force diagram should always start and end on the
value V = 0. Construct the V diagram from the leftmost end of the beam toward the
rightmost end, using the rules outlined on p. 225. Rules 1 and 2 will be the rules most
frequently used to determine shear-force values at important points. Rule 3 is useful
when sketching the proper diagram shape between these key points. Label all points
where the shear force changes abruptly and locations where maximum or minimum
(i.e., maximum negative values) shear forces occur.

Step 3 — Locate Key Points on the Shear-Force Diagram: Special attention should be
paid to locating points where the V diagram crosses the V = 0 axis, because these points
indicate locations where the bending moment will be either a maximum or a minimum
value. For beams with distributed loadings, Rule 3 will be essential for this task.

Step 4 — Construct the Bending-Moment Diagram: The bending-moment dia-
gram will be constructed directly beneath the shear-force diagram. Begin the bending-
moment diagram by drawing a horizontal axis, which will serve as the x axis for the M
diagram. The bending-moment diagram should always start and end on the value M = 0.
Construct the M diagram from the leftmost end of the beam toward the rightmost end,
using the rules outlined on p. 225. Rules 4 and 6 will be the rules most frequently used to
determine bending-moment values at important points. Rule 5 is useful when sketching
the proper diagram shape between these key points. Label all points where the bending
moment changes abruptly and locations where maximum or minimum (i.e., maximum
negative values) bending moments occur.

In the example problems that follow, a special notation is used to denote diagram values

GRAPHICAL METHOD FOR
CONSTRUCTING SHEAR AND
MOMENT DIAGRAMS

Starting and ending at V = 0 are
related to the beam equilibrium
equation ¥Fy = 0. A shear-force
diagram that does not return to
V = 0 at the rightmost end of the
beam indicates that equilibrium
has not been satisfied. The most
common cause of this error in
the V diagram is a mistake in the
calculated beam reaction forces.

Starting and ending at M = 0 are
related to the beam equilibrium
equation XM = 0. A bending-
moment diagram that does not
return to M = 0 at the rightmost
end of the beam can be an
indication that equilibrium has
not been satisfied. The most
common cause of this error in
the M diagram is a mistake in the
calculated beam reaction forces.
If the applied loads included
concentrated moments, another
common error is “jumping”

the wrong direction at the

at discontinuities on the V and M diagrams. To illustrate this notation, suppose that a | discontinuities.
discontinuity occurs on the shear-force diagram at x = 15. The shear value on the —x

side of the discontinuity will be denoted V(157), and the value on the +x side will be

denoted V(157). Similarly, if a bending-moment discontinuity occurs at x = 0, then the

moment values at the discontinuity will be denoted M(0~) and M(0™).

Draw the shear-force and bending-moment diagrams for the 12 kips 10 kips

simply supported beam shown. Determine the maximum y

bending moment that occurs in the span. v v

Plan the Solution -@- — x
Complete the load diagram by calculating the reaction forces 4 === B c =D
at pin A and roller D. Since only concentrated loads act on this

beam, use Rule 1 to construct the shear-force diagram from 4ft 8 ft 9 ft

the load diagram. Construct the bending-moment diagram
from the shear-force diagram, using Rule 4 to calculate the
change in bending moments between key points.




12 kips 10 kips SOLUTION
y Support Reactions
V v A FBD of the entire beam is shown. Since no loads act in the
e . horizontal direction, the equilibrium equation XF, = 0 is
' trivial and will not be considered further. The nontrivial
A =i\ B c D R .
) equilibrium equations are
Av4 it - 9 ft TDv XF, = A, + D, — 12 kips — 10 kips = 0
A “ XM, = —(12 kips) (4 ft) — (10 kips)(12 ft) + D, (21 ft) = 0
The following beam reactions can be computed from these equations:
Ay = l4kips and D, = 8Kkips
Construct the Shear-Force Diagram
Show the reaction forces on the load diagram acting in their proper directions. Draw a
series of vertical lines beneath key points on the beam, and draw a horizontal line that will
define the axis for the V diagram. Use the steps outlined next to construct the V diagram.
(Note: The lowercase letters on the V diagram correspond to the explanations given for
each step.)
12 kips 10 kips a V(07) = 0 kips (zero shear at end of beam).
y b V(0*) = 14 kips (Rule 1: V diagram jumps up by an
amount equal to the 14-kip reaction).
@ v v . ¢ V(47) = 14 kips (Rule 2: Since w = 0, the area under
|, — the w curve is also zero. Hence, there is no change in
A _.-A'_ B ¢ TD the shear-force diagram).
) I 4 ft 8 ft 0 ft ) V(4*) = 2 kips (Rule 1: V diagram jumps down by
14 kips | 8 kips 12 kips).
ps

e V(127) = 2 kips (Rule 2: The area under the w curve is
zero; therefore, AV = 0).

S V(12*%) = -8 kips (Rule 1: V diagram jumps down by

h 10 kips).
3) ' g V(217) = -8 kips (Rule 2: The area under the w curve
2 -8 kips is zero; therefore, AV = 0).

h V(217) = 0 kips (Rule 1: V diagram jumps up by an
amount equal to the 8-kip reaction force and returns
to V = 0 kips).

Notice that the V diagram started at V, = 0 and finished at V;, = 0.

Construct the Bending-Moment Diagram
Starting with the V diagram, use the steps that follow to construct the M diagram. (Note:
The lowercase letters on the M diagram correspond to the explanations given for each

step.)

i M(0) = 0 (zero moment at the pinned end of a simply supported beam).

J M(4) = 56 kip-ft (Rule 4: The change in bending moment AM between any two
points is equal to the area under the V diagram). The area under the V diagram
between x = 0 ft and x = 4 ft is simply the area of rectangle (1), which is 4 ft wide
and + 14 kips high. The area of this rectangle is (+ 14 kips)(4 ft) = +56 kip-ft

(a positive value). Since M = 0 kip-ft at x = 0 ft and the change in bending moment
is AM = +56 kip-ft, the bending moment at x = 4 ft is M; = 56 kip-ft.




k M(12) = 72 kip-ft (Rule 4: AM = area under the V 12 kips
diagram). AM is equal to the area under the V diagram y
between x = 8 ft and x = 12 ft. The area of rectangle v
(2) is (+2 kips)(8 ft) = +16 kip-ft. Therefore, AM =

+16 kip-ft (a positive value). Since M = +56 kip-ft

atj and AM = +16 kip-ft, the bending moment at k is A =h B
M, = +56 kip-ft + 16 kip-ft = +72 kip-ft. Even 1

though the shear force decreases from + 14 kips to 14 kips
+2 kips, notice that the bending moment continues to
increase in this region. b c

[ M(21) = 0 kip-ft (Rule 4: AM = area under the V
diagram). The area under the V diagram between M, 2 kips
x = 12 ft and x = 21 ft is the area of rectangle (3), vV —
which is (-8 kips)(9 ft) = —72 kip-ft (a negative @
value); therefore, AM = —72 kip-ft. At point k, M =
+72 kip-ft. The bending moment changes by AM =
—172 kip-ft between k and /; consequently, the bending
moment at x = 21 ft is M; = 0 kip-ft. This result is cor-
rect since we know that the bending moment at roller
D must be zero.

56 kip-ft |/

3)

-8 kips

k | 72 kip-ft

Notice that the M diagram started at M; = 0 and finished at !
M; = 0. Also, notice that the M diagram consists of linear
segments. From Rule 5 (the slope of the M diagram is equal to the intensity of the shear
force V), we can observe that the slope of the M diagram must be constant between points
i, ], k, and [ because the shear force is constant in the corresponding regions. The slope of
the M diagram between points i and j is + 14 kips, the M slope between points j and & is
+2 kips, and the M slope between points k and [ is —8 kips. The only type of curve that
has a constant slope is a line.

The maximum shear force is V = 14 kips. The maximum bending moment is
M = +72 kip-ft at x = 12 ft. Notice that the maximum bending moment occurs where
the shear-force diagram crosses the V = 0 axis (between points e and f).

Relationships Between the Diagram Shapes

Equation (7.3) reveals that the V diagram is obtained by integrating the distributed load w,
and Equation (7.4) shows that the M diagram is obtained by integrating the shear force V.
Consider, for example, a beam segment that has no distributed load (w = 0). For this case,
integration of w gives a constant shear-force function [i.e., a zero-order function f(x°)], and
integrating a constant V gives a linear function for the bending moment [i.e., a first-order
function f(x")]. If a beam segment has constant w [i.e., a zero-order function f(x%)], then the
V diagram is a first-order function f(x') and the M diagram is a second-order function f(x?).
As can be seen, the order of the function successively increases by 1 in going from the w to
the V to the M diagrams.

If the V diagram is constant for a beam segment, then the M diagram will be linear,
which makes the M diagram relatively straightforward to sketch. If the V diagram is linear
for a beam segment, then the M diagram will be quadratic (i.e., a parabola). A parabola can
take one of two shapes: either concave or convex. The proper shape for the M diagram can
be determined from information found on the V diagram since the slope of the M diagram is
equal to the intensity of the shear force V [Rule 5: Equation (7.2)]. Various shear-force dia-
gram shapes and their corresponding bending-moment shapes are illustrated in Figure 7.12.




EQUILIBRIUM OF BEAMS If the shear-force diagram is positive and looks like this . . .

b Ve Linear

(first-order)

Linear
Constant (first-order)
(zero-order) Vg

B Quadratic
(second-order)

Linear
(first-order)

Quadratic
(second-order)

Slope becomes Slope becomes
Constant slope more positive less positive
(an upward ramp) (a hill that (an arch)
gets steeper)

(a) Positive shear-force diagrams

If the shear-force diagram is negative and looks like this . . .

Vi Constant

Linear
(first-order)

(zero-order) Linear
(first-order)

Quadratic
(second-order)

Linear Quadratic
(first-order) My (second-order) Mp Mp
Slope becomes Slope becomes

Constant slope more negative less negative
(a downward ramp) (a waterfall) (a valley)
(b) Negative shear-force diagrams

FIGURE 7.12 Relationships between V and M diagram shapes.

']

1.5 kKN/m Draw the shear-force and bending-moment diagrams for the
TTTTTTTITTIITTIIL simply supported beam shown. Determine the maximum
x bending moment that occurs in the span.

A B ¢ Plan the Solution
‘ . 5 ‘ This example focuses on finding the maximum moment in a
f = T = i beam that has a uniformly distributed load. To calculate the




maximum moment, we must first find the location where V = 0. To do this, we will de-
termine the slope of the shear-force diagram from the intensity of the distributed loading,
using Rule 3. Once the location where V = 0 is established, the maximum bending mo-
ment can be calculated from Rule 4.

SOLUTION
Support Reactions
A FBD of the beam is shown. For the purpose of calculating 6 kN

external beam reactions, the —1.5 kN/m distributed load can y ’<—>

be replaced by its resultant force of (1.5 kN/m)(4 m) = 6 kN

acting downward at the centroid of the loading. The equilib- @ i
rium equations are

SF,= A, +C,—6kN =0
M, = —(6 kKN)Qm)+ Cy(6m) =0 | - e

From these equations, the beam reactions are
Ay=4kN and C, = 2kN

Construct the Shear-Force Diagram
Show the reaction forces on the load diagram acting in their proper directions. The origi-
nal distributed load—not the 6-kN resultant force—should be used to construct the V
diagram. The resultant force can be used to determine the external beam reactions; how-
ever, it cannot be used to determine the shear-force variation in the beam.

The steps that follow are used to construct the V diagram. (Note: The lowercase
letters on the diagram correspond to the explanations given for each step.)

a V(07) = 0 kN (zero shear at end of beam).

b V(0*) = 4 kN (Rule 1: V diagram jumps up by an amount ’ | 1.5 kN/m
equal to the 4-kN reaction force). JILIIIIIIILIILLTY
¢ V(4) = —2 kN (Rule 2: The change in shear force AV is 12 — x
equal to the area under the w curve). The area under the A == B T c
w curve between A and B is (—1.5 kN/m)(4 m) = —6 kN; 1
therefore, AV = —6 kN. Since V), = +4 kN, the shear 4kN 4m . Zm 2kN

force atcis V,, = +4 kKN -6 kKN = —2 kN.
Since w is constant between A and B, the slope of the 4, b
V diagram is also constant (Rule 3) and equal to

1.5 kN/m
—1.5 kN/m between b and c. Consequently, the V (1) f .
diagram is linear in this region. V- ' &
d V(67) = —2 kN (Rule 2: The area under the w curve is 2667 m L O kN
zero between B and C; therefore, AV = 0). - ¢ d

e V(61) = OkN (Rule 1: V diagram jumps up by an amount
equal to the 2-kN reaction force and returns to V = 0 kN).

f Before the V diagram is complete, we must locate the point between b and ¢ where
V = 0. To do this, recall that the slope of the shear-force diagram (dV/dx) is equal to
the intensity of the distributed load w (Rule 3). In this instance, a finite length of the
beam Ax is considered rather than an infinitesimal length dx. Accordingly, Equation
(7.1) can be expressed as

. AV
Slope of V diagram = Ax =w (a)

Given that the distributed load is w = —1.5 kN/m between points A and B, the slope
of the V diagram between points b and c is equal to —1.5 kN/m. Since V = 4 kN




at point b, the shear force must change by AV = —4 kN to cross the V = 0 axis. Use
the known slope and the required AV to solve for Ax from Equation (a):

_ AV —4KkN

Ax =
w —1.5 kN/m

= 2.667 m

Since x = 0 m at b, point fis located at 2.667 m from the left end of the beam.

Construct the Bending-Moment Diagram

Starting with the V diagram, the steps that follow are used to construct the M diagram.
(Note: The lowercase letters on the M diagram correspond to the explanations given for
each step.)

y g M(0) = 0 (zero moment at the pinned end of the simply
1.5 kN/m supported beam).
JILIIIIIIIITITIITI h M(2.667) = +5.333 kN-m (Rule 4: The change in
e — bending moment AM between any two points is equal to
A _ﬁt_ B T c the area under the V diagram). The V diagram between b
4
2

. 5 and f'is a triangle (1) with a width of 2.667 m and a height
4N = . =] 2N of +4 kN. The area of this triangle is +5.333 kN-m;
therefore, AM = +5.333 kN-m. Since M = 0 kN-m at

4 kN b % (4 kN)(2.667 m) = 5.333 kN-m x = 0mand AM = +5.333 kN-m, the bending moment
atx = 2.667 mis M, = +5.333 kN-m.
(1) f B The shape of the bending-moment diagram between g

and & can be sketched from Rule 5 (the slope of the M
» 2 kN diagram is equal to the shear force V). The shear force at b is
+4 kN; therefore, the M diagram has a large positive slope
L (L2 kN)(1.333 m) = —1.333 kN-m at g. Between b and f, the shear force is still positive, but it
2 decreases in magnitude; consequently, the slope of the M
diagram is positive, but it becomes less steep as x increases.
5.333 kN-m h Atf, V =0, so the slope of the M diagram becomes zero.
[ 4kN-m i M(4) = +4 kN-m (Rule 4: AM = area under the V
diagram). The shear-force diagram between fand c is a
triangle (2) with a width of 1.333 m and a height of
M —2 kN. This triangle has a negative area of —1.333 kN-m;
therefore, AM = —1.333 KN-m. At h, M = +5.333 kN-m.
Adding AM = —1.333 kN-m to this value gives the
bending moment at x = 4 m: M; = +4 kN-m.

The shape of the bending-moment diagram between 4 and i can be sketched
from Rule 5 (the slope of the M diagram is equal to the shear force V). The slope of
the M diagram is zero at h, which corresponds to V = 0 at f. As x increases, V
becomes increasingly negative; consequently, the slope of the M diagram becomes
more and more negative until it reaches a slope of dM/dx = —2 kN at point i.

J M(6) = 0kN-m (Rule 4: AM = area under the V diagram). The area under the V
diagram between x = 4 m and x = 6 m is simply the area of rectangle (3): (—2 kN)
X (2m) = —4 kN-m. Adding AM = —4 kN-m to the bending moment at point i
(M; = +4 kN-m) gives the bending moment at point j: M; = 0 kN-m. This result is
correct since we know that the bending moment at roller C must be zero.

a

2.667m

The maximum shear force is V = 4 kN. The maximum bending moment is M =
+5.333 kN-m at x = 2.667 m, occurring where the shear-force diagram crosses V = 0
(between points b and c).




EXAMPLE 7.8

Draw the shear-force and bending-moment diagrams for the 30 kips )
. . . y 5 kips/ft
simply supported beam shown. Determine the maximum | 2 kips/ft
positive bending moment and the maximum negative bend- Y |
ing moment that occur in the beam. | o) | x
Plan the Solution A =5 c =D
The challenges of this problem are ‘
51t 10 ft 10 ft
(a) to determine both the largest positive and largest '
negative moments and
(b) to sketch the proper shape of the M curve as it goes from negative to positive values.
SOLUTION
Support Reactions 50 Kins 50 kips
A FBD of the beam is shown. For the purpose of calculating P P
external beam reactions, the distributed loads are replaced by 30 kips LSt I 10 ft I
their resultant forces. The equilibrium equations are Y ¢
SF, = B, + D, — 30 kips — 20 kips — 50 kips = 0 Y
) , ,
XMy = (30 kips) (5 ft) — (20 kips) (5 ft) Al o) R c ! b )
—(50 kips)(15 ft) + D, (20 ft) = 0

) . _ 5 ft 10 ft 10 ft

From these equations, the beam reactions are B, = 65 kips s ' Ip

y

and D, = 35 kips.

Construct the Shear-Force Diagram

Before beginning, complete the load diagram by noting the reaction forces and using

arrows to indicate their proper directions. Use the original distributed loads to construct

the V diagram—not the resultant forces.

a V(—=57) = 0 kips.

b V(=5%) = —30kips (Rule 1). 30 kips

¢ V(07) = —30 kips (Rule 2). " |2 wipste
Zero area under the w curve between A and V TTTTTTTITT l l l l l l l l l

B; therefore, AV = 0 between b and c. | o I

d V(0*) = +35 kips (Rule 1). A l - = Ao
y
,
5 ft 10 ft

5 kips/ft

e V(10) = +15 kips (Rule 2: AV = area under
w curve). The area under the w curve 10 ft
between B and C is —20 kips. Since w is con- Vos kips 35 kips
stant in this region, the slope of the V
diagram is also constant (Rule 3) and equal 35 kips d
to —2 kips/ft between d and e.

f V(207) = —35 kips (Rule 2: AV = area
under w curve). The area under the w curve @
between C and D is —50 kips. The slope of a (@)
the V diagram is constant (Rule 3) and equal h )
to —5 kips/ft between e and f. M AV = -50 kips

¢ V(20*) = 0 kips (Rule 1). 3t

h To complete the V diagram, locate the point 230 kips b
between e and f where V = 0. The slope of the V >t
diagram in this interval is —5 kips/ft (Rule 3). /| =35 kips

2 kips/ft AV =20 kips

15 kips

5 kips/ft

o




Atpoint e, V = + 15 kips; consequently, the shear force must change by AV = —15 kips
to intersect the V = 0 axis. Use the known slope and the required AV to find Ax:

Ax= AV =M=3,oﬁ
w —5 kips/ft

Since x = 10 ft at point e, point % is located at x = 13 ft.

Construct the Bending-Moment Diagram

Starting with the V diagram, the steps that follow are used to construct the M diagram:

30 kips
5 kips/ft

VAT

5 ft 10 ft 10 ft
65 kips

35 kips

35 kips ¢* % (35 kips + 15 kips)(10 ft) = +250 kip-ft

% (15 kips)(3 ft) = +22.5 kip-ft

“ @ |

) h “

3 ft

—>

=30 kips

% (=35 kips)(7 ft) = —122.5 kip-ft ~35 kips

122.5 kip-ft

Small negative slope

100 Kip-ft

Positive slope )
Negative slope

Large negative

Positive slope slope

m

Positive slope
Constant
negative

slope

Large positive slope
—150 kip-ft

i

M(-5) = 0 (zero moment at the free end of a
simply supported beam).
M(0) = —150 kip-ft (Rule 4: AM = area
under V diagram). The area of region (1) is
(—30 kips)(5 ft) = —150 kip-ft; therefore,
AM = —150 kip-ft. The M diagram is linear
between points i and j, having a constant
negative slope of —30 kips.
M(10) = +100 kip-ft (Rule 4: AM = area
under V diagram). The area of trapezoid (2) is
+250 kip-ft; hence, AM = +250 kip-ft.
Adding AM = +250 kip-ft to the —150 kip-ft
moment at j gives M), = +100 kip-ft at x = 10 ft.
Use Rule 5 (slope of M diagram = shear
force V) to sketch the M diagram between j and
k. Since V,; = +35 kips, the M diagram has a
large positive slope at j. As x increases, the
shear force stays positive, but decreases to a
value of V, = +15 kips at point e. As a result,
the slope of the M diagram will be positive
between j and k, but it will flatten as it nears
point k.
M(13) = +122.5 kip-ft (Rule 4: AM = area
under V diagram). Area (3) under the V
diagram is +22.5 kip-ft; thus, AM = +22.5
kip-ft. Add +22.5 kip-ft to M, = +100 kip-ft
to compute M; = +122.5 kip-ft at point /.
Since V = 0 at this location, the slope of the M
diagram is zero at point /.
M(20) = 0 kip-ft (Rule 4: AM = area under
V diagram). The area of triangle (4) is
—122.5 kip-ft; therefore, AM = —122.5 kip-ft.

The shape of the bending-moment diagram between [/ and m can be sketched from
Rule 5 (slope of M diagram = shear force V). The slope of the M diagram is zero at /.
As x increases, V becomes increasingly negative; consequently, the slope of the M dia-
gram becomes more and more negative until it reaches its most negative slope at

x = 20 ft.

The maximum positive bending moment is +122.5 kip-ft, and it occurs at x = 13 ft.
The maximum negative bending moment is —150 kip-ft, and this bending moment occurs

atx = 0.




Draw the shear-force and bending-moment diagrams for the y|
cantilever beam shown. Determine the maximum bending

moment that occurs in the beam.

Plan the Solution

50 kN

The effects of external concentrated moments on the V and M

diagrams are sometimes confusing. Two external concentrated

moments act on this cantilever beam.

SOLUTION

Support Reactions

A FBD of the beam is shown. For the purpose of calculating
external beam reactions, the distributed loads are replaced by
their resultant forces. The equilibrium equations are

ZFy = Ay + 180 kKN —50kN =0
XM, = (180 kN)(1.5 m) — (50 kN)(5 m)
—140 kN-m — M, = 0
From these equations, the beam reactions are Ay = — 130 kN

and M, = —120 kN-m.

Construct the Shear-Force Diagram

Before beginning, complete the load diagram by noting
the reaction forces and using arrows to indicate their
proper directions. Use the original distributed loading to
construct the V diagram—not the resultant force.

a V(07) = 0kN.

b V(0") = —130 kN (Rule 1).
V(3) = +50 kN (Rule 2).
The area under the w curve between A and B is
+180 kN; therefore, AV = +180 kN between b
and c.

d V(4) = +50 kN (Rule 2: AV = area under w curve).
There is zero area under the w curve between B and
C; therefore, no change occurs in V.

e V(57) = +50kN (Rule 2: AV = area under w curve).
There is zero area under the w curve between C and
D; therefore, no change occurs in V.

f V(57) = O kN (Rule 1).

g To complete the V diagram, locate the point between b and ¢ at which V = 0. The

slope of the V diagram in this interval is +60 kN/m (Rule 3). At point b, V =

—130 kN; consequently, the shear force must change by AV = +130 kN to intersect

the V = 0 axis. Use the known slope and the required AV to find Ax:

Ap = AV _ 4130KN

=— =2.1667
w +60 kN/m

m

60 kN/m 140 kKN-m
TTTTTTITTITITITI0T /\‘ .
A B cl. ID
! 3m 1m Im
AlSOkN 50 kN
y 1.5m ,
M, 1 140 kKN-m
C Y
A B c|db D
& 3m ! 1m ! 1 m
g
y 50 kN
120 kN-m 60 kN/m 140 kN-m
CITTTTTTTTTTTTTTT /\‘ .
IA B‘ ci ‘ID
3m | 1m | Im |
1301<Nv~
50kN € . ¢ SOKN
v e @ o @ |
f
(1)
b
~130 kN 2167 m




y 50kN  Construct the Bending-Moment Diagram
Starting with the V diagram, use the following steps to
120 kN-m 60 kN/m 140 kN-m g 5 & step

CITTTTTTTTTTTTTTT N\ v construct the M diagram:

— « h M®O)=0.

|
|
B ‘ cl& D i M(0T) = —120 kN-m (Rule 6: For a counterclock-

|
A
I im I'm I'm wise external moment, the M diagram jumps down by
' ' an amount equal to the 120 kN-m reaction).
i j M(2.1667) = —260.836 kN-m (Rule 4: AM = area
50 kN € d e under V diagram). Area (1) = —140.836 kN-m;
a g ?) 3) ) therefore, AM = —140.836 kN-m.
v I3 Use Rule 5 (slope of M diagram = shear force V)
M to sketch the M diagram between i and j. Since
b V), = =130 kN, the M diagram has a large negative slope
2167 m at i. As x increases, the shear force becomes less
negative until it reaches zero at g. As a result, the slope
of the M diagram will be negative between 7 and j, but it
will flatten as it reaches point j.
k M@3) = —240 kN-m (Rule 4: AM = area under
V diagram). Area (2) = +20.833 kN-m; hence,
AM = +20.833 kN-m. Adding AM to the
-260.83 kN-m 240 kN-m —260.836 kKN-m moment at j gives
M; = —240 kN-m at x = 3 m.

Use Rule 5 (slope of M diagram = shear force V) to sketch the M diagram
between j and k. Since V, = 0, the M diagram has zero slope at j. As x increases, the
shear force becomes increasingly positive until it reaches its largest positive value at
point c. This means that the slope of the M diagram will be positive between j and &,
curving upward more and more as x increases.

[ M(47) = —190 kN-m (Rule 4: AM = area under V diagram). Area (3) =
+50 kN-m. Adding AM = +50 kN-m to the —240 kN-m moment at k gives
M; = —190 kN-m at x = 4 m.

m M(4") = —50 kN-m (Rule 6: For a clockwise external moment, the M diagram
jumps up by an amount equal to the 140 kN-m external concentrated moment).

n M(5) = 0 kN-m (Rule 4: AM = area under V diagram). Area (4) = +50 kN-m.

130 kN

The maximum bending moment is —260.8 kN-m, and it occurs at x = 2.1667 m.

ies Example M7.1

Six rules for constructing shear-force and bending-moment diagrams.

Part 1 — Rules
for Constructing
Shear-Force
Piagrams

Part Z - Rules

. i for Constructing
fo EBending-Moment

sheal” Ol’ﬂenf Piagrams




ies Example M7.3

Dynamically generated shear-force and bending-moment diagrams for
48 beams with various support and loading configurations. Brief explana- Sh cead r-FéTGe_l
tions are given for all key points on both the V and M diagrams. f: and

Bending-

0 Moment
‘ Dla_grams- 1
Step—by-gﬁep examples

start >

M7.1 Six Rules for Constructing Shear-Force and Bending- M7.2 Following the rules, score at least 350 points out of 400
Moment Diagrams. Score at least 40 points for each of the six  possible points.
rules. (Minimum total score = 240 points.)

Sh ear-Féii‘ce1
Part 1 — Rules f
for Constructing an
Shear—Force
Piagrams Bendlng-
[ o Moment
Part Z — Rules ) | 3
. v DIdgrams
M T 01 i
sheaf"f o oment B““‘g;%}a;':"m FOIIOWIg]g CHEWES
pen d'n ms . o 0
diagr?
FIGURE M7.1 FIGURE M7.2
PROBIEMS
P7.16-P7.30 Use the graphical method to construct the shear- 28 kips 42 kips
force and bending-moment diagrams for the beams shown in y

Figures P7.16-P7.30. Label all significant points on each diagram,
and identify the maximum moments (both positive and negative)
along with their respective locations. Clearly differentiate straight- ﬁ
line and curved portions of the diagrams. A

| 4 ft 4 ft 6 ft

FIGURE P7.16




, 35kN 45 kN 15 kN y 10 kips/ft
Y Y Y Eu} I
! ; — x A B c =D
A B c| ==p E | en 9 fi T
I T T 1
! im 4m 2m ! 4m FIGURE P7.23
FIGURE P7.17
38 kips
15 kips 25 kips A\ Y 45 kips/t
v TTTTTITTTIT Y
} x
|
| x A i B c D =BE
A B c | 3.5 ft 7 ft 41t 3.5t |
o SALI FIGURE P7.24
FIGURE P7.18
60 kN
y| y
10 kips/ft 45 kN/m
JIIIILILILIIIITLL \ RN
o) L x ) — X
A B = C A B c =D
12 ft 6 ft | | 2.5m 2.5m 4m |
T 1 ' 1
FIGURE P7.19 FIGURE P7.25
y 10 kips
4.5 kips/ft
JIJITIJILIUITIITILT1] 60 kip-ft
ﬁ -  J \
A B C <> D | ) x
3ft 9 ft | 3 ft A 5 |4 ¢
' ' 3.5 ft 6.5 ft |
FIGURE P7.20 T |
FIGURE P7.26
y A SOKN
| 40 kKN/m y 2 kN 11 kN
JOLIJLILLLLL LI /{”N'm
-} 0N AN i
A B A { —
| 3m 1m A ‘ B C
FIGURE P7.21 ! 35m 25m
FIGURE P7.27
A\ 28 kips
. y
9 kips/ft 66 kN-m 96 kN-m
JIIJILIIIIIIIILTT] -\ 7 N\
| x !@! } } — x
A B c A B | &b c|db =D
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FIGURE P7.22
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FIGURE P7.28



80 kN-m | om | 50 kN-m
I 1
FIGURE P7.29
15 kN
y
25 kN-m 7 kN/m
Y JITIT)
X
A B c D E
| 4m 4m 4m | 3m
I T T 1
FIGURE P7.30

P7.31-P7.32 Draw the shear-force and bending-moment dia-
gram for the beams shown in Figures P7.31 and P7.32. Assume the
upward reaction provided by the ground to be uniformly distrib-
uted. Label all significant points on each diagram. Determine the
maximum value of

(a) the internal shear force and
(b) the internal bending moment.

25 kips 25 kips

2 kips/ft

VILIIIILLIY

4 ft 4 ft 4 ft 4 ft
I T T 1 1
FIGURE P7.31
50 kN
40 kN/m 40 kN/m
1 m 1m 1 m 1m
T -1~ T T 1

FIGURE P7.32

P7.33-P7.36 Use the graphical method to construct the shear-
force and bending-moment diagrams for the beams shown in Fig-
ures P7.33—P7.36. Label all significant points on each diagram, and
identify the maximum moments along with their respective loca-
tions. Additionally, determine

(a) Vand M in the beam at a point located 0.75 m to the right of B.
(b) Vand M in the beam at a point located 1.25 m to the left of C.

125 kN

50 kN/m

VITTTTTTTTIITITITTTT

LS
A B

X

|
= C
| 3m 12m |
FIGURE P7.33
15 kN 18 kN
40 kKN/m
Y JUTTITTTITITY \
A B c D
3m | 6m | 4 m
FIGURE P7.34
y 65 kN/m
| 25 kN/m
| 2 i x
A == B = C
3m 5m
FIGURE P7.35
75 kN 60 kN
35 kN/m
VITITTTIT T
[ X
A B 120 kN-m c
25m 3.5m |
FIGURE P7.36



P7.37-P7.39 Use the graphical method to construct the
shear-force and bending-moment diagrams for the beams shown
in Figures P7.37-P7.39. Label all significant points on each dia-
gram, and identify the maximum moments along with their re-
spective locations. Additionally, determine

(a) Vand M in the beam at a point located 1.50 m to the right of B.
(b) Vand M in the beam at a point located 1.25 m to the left of D.

52 kN 36 kN

35 kN/m

Y uuuumui V.

(B
A -l-B 150kNm‘ =D E

| 6m | 3m
T

3m

FIGURE P7.37

80kNA 20 kN
] 25 kKN/m

AR A
2 I
=3 c =p |E

35m | 55m | 25m
T

FIGURE P7.38

X

A

45m

160 kN
120 kN/m

50 kKN/m
Yooy
LEaT

{©) |
A -l-B c = D
2m |

FIGURE P7.39

P7.40-P7.55 Use the graphical method to construct the shear-
force and bending-moment diagrams for the beams shown in Fig-
ures P7.40-P7.55. Label all significant points on each diagram, and
identify the maximum moments (both positive and negative) along
with their respective locations. Clearly differentiate straight-line
and curved portions of the diagrams.

d
120 kN/m
225 kN-m 60 kN/m
TN
i I x
A B = C D
| 4 m 3.5m | 2.5m
I T

FIGURE P7.40

25 kips
5 kips/ft
25 kip-ft
l 1l l LI v
| - x
A -ﬁh— B c D =
3 ft | 5 ft 5 ft 5 ft |
FIGURE P7.41
17 kips
y
35 kip-fit | 8 kips/ft
JIJIIIIILIILIL]
| (o) {—x
A ‘- B = D
3 ft | 9 ft | 3 ft
FIGURE P7.42
60 kips 60 kips
6 kips/ft A kit
s/t
TRy
o) i X
A B c =D E /
10 ft 10 ft 10 ft 10 ft
1
FIGURE P7.43
5 kips 10 kips

15 kips
2 kips/ft
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|
T X
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T T
FIGURE P7.44
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| x
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FIGURE P7.45



20 kips 70 kips
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6 kips/ft *
[ x
A B C
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T T 1
FIGURE P7.46
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I T 1
FIGURE P7.47
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T 1
FIGURE P7.49
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7.4 Discontinuity Functions to Represent
Load, Shear, and Moment

In Section 7.2, we constructed shear and moment diagrams by developing functions that
express the variation of internal shear force V(x) and internal bending moment M(x) along
the beam and then plotting these functions. The method of integration used in Section 7.2
is convenient if the loads can be expressed as continuous functions acting over the entire
beam length. However, if several loadings act on the beam, this approach can become ex-
tremely tedious and time-consuming because a new set of functions must be developed for
each interval of the beam.

In this section, a method will be presented in which a single function is formulated
that incorporates all loads acting on the beam. This single load function w(x) will be con-
structed in such a way that it will be continuous for the entire length of the beam even
though the loads may not be. The load function w(x) can then be integrated twice—first to
derive V(x) and a second time to obtain M(x). To express the load on the beam in a single
function, two types of mathematical operators will be employed. Macaulay functions will
be used to describe distributed loads, and singularity functions will be used to represent
concentrated forces and concentrated moments. Together, these functions are termed dis-
continuity functions. Their usage has restrictions that distinguish them from ordinary
functions. To provide a clear indication of these restrictions, the traditional parentheses
used with functions are replaced by angle brackets, called Macaulay brackets, that take the
form (x — a)".

Macaulay Functions

Distributed loadings can be represented by Macaulay functions, which are defined in
general terms as follows:

n 0 when x < a
(x —a) = forn=0mn=0,1,2,...) .7
(x —a)® when x =a

Whenever the term inside the brackets is less than zero, the function has no value and it is
as if the function does not exist. However, when the term inside the brackets is greater
than or equal to zero, the Macaulay function behaves like an ordinary function, which
would be written with parentheses. In other words, the Macaulay function acts like a
switch in which the function turns on for values of x greater than or equal to a.

Three Macaulay functions corresponding to n = 0, n = 1, and n = 2 are plotted in
Figure 7.13. In Figure 7.13a, the function (x — a)? is discontinuous at x = a, producing
a plot in the shape of a step. Accordingly, this function is termed a step function. From

(x-a) (x-a) (x-a)’
_—
|
|
I X X X
0 a [0} a 0] a
(@n=20 byn=1 (cyn=2

FIGURE 7.13 Graphs of Macaulay functions.



the definition given in Equation (7.7), and with the recognition that any number raised to
the zero power is defined as unity, the step function can be summarized as

(x— a>0 _ {0 when x < a 78)

1 whenx =a

When scaled by a constant value equal to the load intensity, the step function (x — a)? can
be used to represent uniformly distributed loadings. In Figure 7.13b, the function
(x — a)! is termed a ramp function because it produces a linearly increasing plot beginning
at x = a. Accordingly, the ramp function (x — a)! combined with the appropriate load in-
tensity can be used to represent linearly distributed loadings. The function {(x — a)? in
Figure 7.13¢ produces a parabolic plot beginning at x = a.

Observe that the quantity inside of the Macaulay brackets is a measure of length;
therefore, it will include a length dimension such as meters or feet. The Macaulay functions
will be scaled by a constant to account for the intensity of the loading and to ensure that
all terms included in the load function w(x) have consistent units of force per unit length.
Table 7.2 gives discontinuity expressions for various types of loads.

Singularity Functions

Singularity functions are used to represent concentrated forces P, and concentrated
moments M,. A concentrated force P, can be considered a special case of a distributed
load in which an extremely large load P, acts over a distance ¢ that approaches zero
(Figure 7.14a). Thus, the intensity of the loading is w = P, /e, and the area under the
loading is equivalent to P. This can be expressed by the singularity function

Wwx) = By(x —a) ' = {0 when x #a (7.9

Py, whenx = a

in which the function has a value of P, only at x = a and is otherwise zero. Observe that
n = —1. Since the bracketed term has a length unit, the result of the function has units of
force per unit length, as required for dimensional consistency.

Similarly, a concentrated moment M, can be considered as a special case involving
two distributed loadings, as shown in Figure 7.14b. For this type of load, the following
singularity function can be employed:

) 0 whenx # a
w(x) = My(x —a) ~ = (7.10)
M, when x = a

As before, the function has a value of M, only at x = a and is otherwise zero. In Equation
(7.10), notice that n = —2, which ensures that the result of the function has consistent units
of force per unit length.

Integrals of Discontinuity Functions

Integration of discontinuity functions is defined by the following rules:

M for n = O
f<x —aY'dx =1 n+1 - (7.11)
(x — a)"Jrl for n <0

Notice that for negative values of the exponent n, the only effect of integration is that n
increases by 1.

DISCONTINUITY FUNCTIONS
TO REPRESENT LOAD,
SHEAR, AND MOMENT



EQUILIBRIUM OF BEAMS

FIGURE 7.14 Singularity
functions to represent (a)
concentrated forces and (b)
concentrated moments.

Macaulay functions continue
indefinitely for x > a. Therefore,
a new Macaulay function (or in
some cases, several functions)
must be introduced to terminate
a previous function.
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|
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(a) Concentrated force as a special case of a distributed load

w(x) w(x)
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)
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a a

(b) Concentrated moment as a special case of a distributed load

* X

Constants of Integration. The integration of Macaulay functions does produce con-
stants of integration. The constant of integration that results from the integration of w(x)
to obtain V(x) is simply the shear force at x = 0; that is, V(0). Similarly, the second con-
stant of integration that results when V(x) is integrated to obtain M(x) is the bending mo-
ment at x = 0; that is, M(0). If the loading function w(x) is written solely in terms of the
applied loads, then constants of integration must be included in the integration process
and evaluated with the use of boundary conditions. As these constants of integration are
introduced into either the V(x) or M(x) functions, they are expressed by singularity func-
tions in the form C(x)0. After their introduction into either V(x) or M(x), the constants are
then integrated in the usual manner in subsequent integrals.

However, the same result for both V(x) or M(x) can be obtained by including the reaction
forces and moments in the load function w(x). The inclusion of reaction forces and moments
in w(x) has considerable appeal since the constants of integration for both V(x) or M(x) are
automatically determined without the need for explicit reference to boundary conditions. The
reactions for statically determinate beams are easily computed in a fashion that is familiar to
all engineering students. Accordingly, beam reaction forces and moments will be incorpo-
rated in the load function w(x) in the examples presented subsequently in this section.

To summarize, constants of integration arise in the double integration of w(x) to obtain
V(x) and M(x). If w(x) is formulated solely in terms of the applied loads, then these constants
of integration must be explicitly determined with the use of boundary conditions. However,
if beam reaction forces and moments are included in w(x) along with the applied loads, then
constants of integration are redundant and thus unnecessary for the V(x) and M(x) functions.

Application of Discontinuity Functions to Determine V and M. Table 7.2 summa-
rizes discontinuity expressions for w(x) required for various common loadings. It is impor-
tant to keep in mind that Macaulay functions continue indefinitely for x > a. In other
words, once a Macaulay function is switched on, it stays on for all increasing values of x.
In accordance with the concept of superposition, a Macaulay function is cancelled by the
addition of another Macaulay function to the beam’s w(x) function.



Table 7.2 Basic Loads Represented by Discontinuity Functions

Case Load on Beam Discontinuity Expressions
/M_Oi w(x) = My{x — a)_2
1 | { x V(x) = My(x —a)'
~ M(x) = Mo(x—a)0
A"
w(x) = By{x — ay”’
2 | R V(x) = Py(x —a)’
M(x) = Py(x —a)’
T o
3 &« V() = wylx — a)
M) = 22 (x —a)’
a
LW
" w(x) = ) (x —a)
_ Mo 2
4 e — V(x) = > (x —a)
. ‘ b ‘ M) = e —a)
[T ) )
5 t x V(ix) = wo(x—o:l)1 —wo(x—otz>1
o . ‘ M(x) = %(x—al)z —%u—azf
b w, 1 W 1 0
w(x) = —%(x — a) — —Lx - a,) — wylx —a,)
b b
’% id 2 w 2 1
6 | N V(x)=2—z<x—a1> —2—2<x—a2> — o (x — ay)
<a+>| M(x):ﬂ(x—alf—ﬂ(x—azf—ﬂ(x—%)z
a, 2
b
w(x) = wy(x — al)o — %(x — al)1 + %(x - az)1
" ;
7 % . Vix) = wo(x—al)] —%(x—aﬁz +%(x—a2)2
‘L’I M()c)=ﬂ(x—al)2—ﬂbc—al)s—i—m(x—az)3
2 6b 6b




Use discontinuity functions to obtain expressions for the inter-
nal shear force V(x) and internal bending moment M(x) in the
120 KN-m 30 kN/m .
7\ V TTIIT beam shown. Use these expressions to plot the shear-force and
— - bending-moment diagrams for the beam.
b |
A i X B c |p E =27  Plan the Solution
| 2m 2m 2m 3m 3m | Determine the reactions at simple supports A and F. Using
I T T T 1

Table 7.2, write expressions of w(x) for each of the three
loads acting on the beam, as well as for the two support reactions. Integrate w(x) to
determine an equation for the shear force V(x), and then integrate V(x) to determine an
equation for the bending moment M(x). Plot these functions to complete the shear-
force and bending-moment diagrams.

KN SOLUTION
’ 120 kN-m 30 kN/m Support Reactions
A U | TTTTIT A FBD of the beam is shown. The equilibrium equations
7 't hd | . are
A L B c D E ‘fF ZF)( = Ax =0 (trivial)
1 2m . 2m 2m . 3m | 3m | ZFy:Ay+Fy—45kN—(30kN/m)(3m):0
Ay F,
' ' M, = 120 kN-m — (45 kN) (4 m)

— (30 KNIm)(3 m)(7.5 m) + F,(12 m) = 0

From these equations, the beam reactions are
A = 73.75 kN and F, = 61.25 kN

Discontinuity Expressions
Reaction force A,: The upward reaction force at A is expressed by

wx) = A, (x=0m) ' = 7375kN(x — 0 m)" (@)

120 kN-m concentrated moment: From case 1 of Table 7.2, the 120 kN-m concentrated
moment acting at x = 2 m is represented by the singularity function:

w(x) = —120 kN-m(x — 2 m) (b)

Note that the negative sign is included to account for the counterclockwise moment rota-
tion shown on this beam.

45-kN concentrated load: From case 2 of Table 7.2, the 45-kN concentrated load acting
at x = 4 m is represented by the singularity function:

w(x) = —45kN(x — 4 m) ' (©)

Note that the negative sign is included to account for the downward direction of the
45-kN concentrated load shown on this beam.

30 kN/m uniformly distributed load: The uniformly distributed load requires the use of
two terms. Term 1 applies the 30 kN/m downward load at point D where x = 6 m:

w(x) = =30 kN/m(x — 6 m)°




The uniformly distributed load represented by this term continues to act on the beam
for values of x greater than x = 6 m. For the beam and loading considered here, the
distributed load should act only within the interval 6 m = x = 9 m. To terminate the
downward distributed load at x = 9 m requires the superposition of a second term.
The second term applies an equal-magnitude upward uniformly distributed load that
begins at E where x = 9 m:

w(x) = —30 kN/m(x — 6 m)0 +30 kN/m(x — 9 m>0 ()

The addition of these two terms produces a downward 30 kN/m distributed load that
begins at x = 6 m and terminates at x = 9 m.

30 kN/m 30 kN/m 30 kN/m
JIJILITIJIILY JIITTT
|+ - = !
D E F D E F D E F
6m 3m 3m 6m 3m 3m 6m 3m 3m
T T T 1 T T
I3 I |7
Term 1: Downward uniformly Term 2: Upward uniformly 30 kN/m distributed load
distributed load beginning at D distributed load beginning at E beginning at D and ending at E
~(30 kKN/m)(x — 6 m)’ +(30 KN/m)(x — 9 m)"
Reaction force F: The upward reaction force at F is expressed by
-1 -1
w(x) = F(x =12m) ~ = 61.25 kN(x — 12 m) (e)

As a practical matter, this term has no effect since the value of Equation (e) is zero for all
values of x = 12 m. Since the beam is only 12 m long, values of x > 12 m make no sense
in this situation. However, this term will be retained here for completeness and clarity.

Complete beam loading expression: The sum of Equations (a) through (e) gives the load
expression w(x) for the entire beam:

w(x) = 7375 kN(x —0m) ' —120 kN-m(x —2m) > —45 kN(x —4 m) '

()
—30 kN/m(x — 6 m)’ + 30 kN/m(x — 9 m)" + 61.25 KN(x — 12 m) "

Shear-force equation: Using the integration rules given in Equation (7.11), integrate
Equation (f) to derive the shear-force equation for the beam:

V(ix) = fw(x)dx
= 7375 kN(x —0m)" — 120 kN-m(x —2m) ' — 45 kN(x —4 m)" €3
—30 kN/m(x —6m)" + 30 kN/m(x —9 m)' + 61.25 kN(x —12 m)"

Bending-moment equation: Similarly, integrate Equation (g) to derive the bending-
moment equation for the beam:

M(x) = f V(x)dx

= 7375 kN(x —0m)" —120 kN-m(x —2 m)" — 45 kN(x —4 m)' (h)
_ w@c —6m)* + WW —9m)* + 61.25 KN(x —12 m)'




45 kN Plot the Functions

y Plot the V(x) and M(x) functions given in Equations (g)
120 kN-m % and (h) for 0 m =< x = 12 m to create the shear-force and
4 ] bending-moment diagram shown.

@ X
A== | c D E £ F
1 2m 2m 2m 3m 3m 4 f
73.75 kKN | ‘ 61.25 kN
73.75 kN

‘ -61.25kN -61.25kN
246.28 kKN-m

183.75 kKN-m
147.50 kKN-m

y 50 kN/m Express the linearly distributed load acting on the beam between A and B with
discontinuity functions.
| ¥ Plan the Solution
A B

c The expressions found in Table 7.2 are explained by means of the example of the
loading shown on the beam to the left.

4.0m

N

SOLUTION
When we refer to case 4 of Table 7.2, our first instinct might be to represent the
linearly distributed load on the beam with just a single term:

50 kN/m
25m

1

w(x) = (x —0m)

However, this term by itself produces a load that continues to increase as x increases. To
terminate the linear load at B, we might try adding the algebraic inverse of the linearly
distributed load to the w(x) equation:

50 kN/m
25m

SOKNm o 5 my!

w(x) = (x —0m) +
The sum of these two expressions represents the loading shown next. While the second
expression has indeed cancelled out the linearly distributed load from B onward, a uni-

formly distributed loading remains.




50 kN/m

Term 1 =- (x=0m)'
2.5m d
>
A
L —— T
SO0kNm T 50kNm ]
y }/r VVV = AA X
~
A B ~ A B
2.5m S~ 2.5m
50 kN/m 1
Term2 = +——=— (x—2.5m)

... eliminates the linear portion of the load;
however, a uniformly distributed load remains.

Adding the inverse of the linearly
increasing load to the beam at B . . .

To cancel this uniformly distributed load, a third term that begins at B is required:

Wiy = —20KNmM gyt 20K s ! 4 50 KN (x — 2.5 m)’
2.5 m
7 —
S0kN/m T S0kN/m T
y }/I’WWW = — y “/I‘VVV v
A B A B
2.5m 2.5m

& Term 3 = +50 kN/m (x - 2.5 m)’

An additional uniform load term
that begins at B is required to
cancel the remaining uniform load.

Therefore, three terms must be
superimposed in order to obtain the desired
linearly distributed load between A and B.

As shown in this example, three terms are required to represent the linearly increas-
ing load that acts between A and B. Case 6 of Table 7.2 summarizes the general disconti-
nuity expressions for a linearly increasing load. Similar reasoning is used to develop case
7 of Table 7.2 for a linearly decreasing distributed loading.

11 Kips/ft

Use discontinuity functions to obtain expressions for the inter-
nal shear force V(x) and internal bending moment M(x) in the
beam shown. Use these expressions to plot the shear-force and

9 kips/ft

11

bending-moment diagrams for the beam.

A

C

Plan the Solution

6 ft 6 ft 6 ft

=3
Determine the reactions at simple supports A and F. Using I
Table 7.2, write w(x) expressions for the linearly decreasing
load between A and B and for the linearly increasing load between C and D, as well as
for the two support reactions. Integrate w(x) to determine an equation for the shear
force V(x), and then integrate V(x) to determine an equation for the bending moment
M(x). Plot these functions to complete the shear-force and bending-moment diagrams.




9 kips/ft

11 kips/ft SOLUTION

5 kips/ft Support Reactions
A FBD of the beam is shown to the left. Before beginning,

ez it is convenient to subdivide the linearly increasing load

‘ D g Ec Dbetween Cand D into

1

5 kips/ft

12 ft

C D

6 ft

| 6 ft (a) a uniformly distributed load that has an intensity of
|, S kips/ft and
(b) alinearly distributed load that has a maximum
intensity of 6 kips/ft.

Accordingly, the beam equilibrium equations are
XF., =E, =0 (trivial)

1 . . 1 .
LF, =B, + E, — 5(9 kips/ft) (6 ft) — (S kips/ft) (6 ft) —5(6 kips/ft) (6 ft) =0

M
=
[

%(9 kips/ft) 6 ft) @ ft) — & kips/ft) (6 ft) O ft)

—%(6 kips/ft) (6 ft) (10 ft) + Ey(18 ft)y =0
From these equations, the beam reactions are
B, = 56.0 kips and E, = 19.0 kips

Discontinuity Expressions
Decreasing linearly distributed load between A and B: Use case 7 of Table 7.2 to write
the following expression for the 9 kips/ft linearly distributed loading:

9 kips/ft 9 kips/ft

w(x) = —9 kips/ft(x — 0 ft)’ + (x —0 ft)' (x—61t) | (2

Reaction force B,: The upward reaction force at B is expressed with the use of case 2
of Table 7.2:

w(x) = 56.0 kips(x — 6ft)"" (b)

Uniformly distributed load between C and D: The uniformly distributed load requires the
use of two terms. From case 5 of Table 7.2, express this loading as

w(x) = —5 kips/ft(x — 12 ft)o + 5 kips/ft(x — 18 ft)0 (©

Increasing linearly distributed load between C and D: Use case 6 of Table 7.2 to write the
following expression for the 6 kips/ft linearly distributed loading:

_ 6 kips/ft
6 ft

6 kips/ft

w(x) = (x —12ft) + (x —18 fy' — 6 kips/ft(x — 18 ft)° | (g

Reaction force E,: The upward reaction force at £ is expressed by

w(x) = 19 Kips (x — 24 ft) " (e)

As a practical matter, this term has no effect since the value of Equation (e) is zero for all
values of x = 24 ft. However, this term will be retained here for completeness and clarity.




Complete beam loading expression: The sum of Equations (a) through (e) gives the load

expression w(x) for the entire beam:

9 kips/ft

w(x) = —9 kips/ft (x — 0 ft)" + (x — 0 ft)' — (x —6 ft)'

9 kips/ft
6 ft
+56.0 kips (x —6 ft) ' — 5 kips/ft(x —12 ft)° + 5 Kips/ft (x — 18 ft)°
6 kips/ft 6 kips/ft

6 ft

— 6 Kips/ft (x — 18 ft)° + 19 kips (x — 24 ft) '

(x — 12 ft) + (x —18 ft)'

)

Shear-force equation: Integrate Equation (f), using the integration rules given in

Equation (7.11) to derive the shear-force equation for the beam:

V(x) = f w(x)dx

— 0 kips/ft(x — 0 ft)' 4 2P g2 2K g2
26 ft) 26 ft)
+ 56.0 kips(x — 6 ft)’ — 5 kips/ft (x — 12 ft)' + 5 kips/ft (x — 18 ft)'
6 kips/ft (x—12 ft)2 n 6 kips/ft (x—18 ft)2
2(6 fo) 26 ft)

— 6 kips/ft (x — 18 ft)' + 19 kips(x — 24 ft)"

(@

Bending-moment equation: Similarly, integrate Equation (g) to derive the bending-

moment equation for the beam:

=27 kips
Plot the Functions

Plot the V(x) and M(x) functions given in Equations (g) and
(h) for O ft = x = 24 ft to create the shear-force and bending-
moment diagram shown.

~108 kip-ft

131.39 kip-ft

M(X) = fV(x) dx 9 kips/ft 11 kips/ft
. q 5 kips/ft
= 2RI g gty 2N gy’ T lﬂﬂT
2 6(6 fr) | =1 .
2K 6 ) 4 56.0 Kips(x— 6 1) A Booe =
6(6 ft) 6 ft 6 ft 6 ft 6ft 4
i i 56 ki 19 ki
_SKipt e, SKIDYC el ] ips
2 2 29 kips 29 kips
_ 6 kips/ft (x —12 ft)3 N 6 kips/ft (x—18 ft)3
6(6 ft) 66 ft)
- klgs/ft (x —18 ft)” + 19 kips(x — 24 ft)'




PROBLEMS

P7.56-P7.66 For the beams and loading shown in Figures

P7.56-P7.66,

(a) use discontinuity functions to write the expression for w(x);
include the beam reactions in this expression.
(b) integrate w(x) twice to determine V(x) and M(x).

(c) use V(x) and M(x) to plot the shear-force and bending-moment

diagrams.
180 1b 450 Ib
y
[9)1 —x
A B c =D
| 2 ft 4 ft 3 ft |
FIGURE P7.56
10 kN 35 kN
I O —x
A JIbB c =D
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FIGURE P7.57
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y
0) | X
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FIGURE P7.58
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P7.67-P7.72 For the beams and loading shown in Figures

P7.67-P7.72,

(a) use discontinuity functions to write the expression for w(x);
include the beam reactions in this expression.

(b) integrate w(x) twice to determine V(x) and M(x).

(c) determine the maximum bending moment in the beam
between the two simple supports.

Y | 18 kN/m
T~ m
|
A 1—3 = C
1m | 3m |
T 1
FIGURE P7.67
y 5 kips/ft
| I X
A E B - C
9 ft 5 ft |

FIGURE P7.68

9 kips/ft

y| 5 kips/ft
= -
A | B %c

o

6 ft 10 ft 11 ft

FIGURE P7.69

70 kN/m

Ai B C %ID

| 2.5m

4.0 m 1.5m
I T
FIGURE P7.70
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| (o) |
A B <> D
1.5m | 55m 2.0m
T
FIGURE P7.71
60 kN
90 kN/m
| O —x
A -l— B c =D
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FIGURE P7.72
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- 8.1 Introduction

Perhaps the most common type of structural member is the beam. In actual structures and ma-
chines, beams can be found in a wide variety of sizes, shapes, and orientations. The elementary
stress analysis of the beam constitutes one of the more interesting facets of mechanics of materials.

Beams are usually long (compared with their cross-sectional dimensions), straight,
prismatic members that support transverse loads, which are loads that act perpendicular to
the longitudinal axis of the member (Figure 8.1a). Loads on a beam cause it to bend (or
flex) as opposed to stretching, compressing, or twisting. The applied loads cause the
initially straight member to deform into a curved shape (Figure 8.1b), which is called the
deflection curve or the elastic curve.

In this study, we will consider beams that are initially straight and have a longitudinal
plane of symmetry (Figure 8.2a). The member cross section, the support conditions, and

Y P

The term transverse refers to
loads and sections that are
perpendicular to the longitudinal
axis of the member.

FIGURE 8.1a Transverse loads applied to a beam. FIGURE 8.1b Deflection caused by bending.




BENDING

Longitudinal plane of symmetry

Longitudinal axis

Longitudinal “fibers”

FIGURE 8.2a Longitudinal plane of symmetry. FIGURE 8.2b  The notion of longitudinal

“fibers.”

the applied loads are symmetric with respect to this plane of symmetry. Coordinate axes
used for beams will be defined so that the longitudinal axis of the member will be desig-
nated the x axis; the y axis will be directed vertically upward, and the z axis will be oriented
so that the x—y—z axes form a right-handed coordinate system. In Figure 8.1b, the x—y plane
is called the plane of bending, since the loads and the member deflection occur in this
plane. Bending (also termed flexure) is said to occur about the z axis.

In discussing and understanding the behavior of beams, it is convenient to imagine the
beam to be a bundle of many longitudinal fibers, which run parallel to the longitudinal axis
(or simply the axis) of the beam (Figure 8.2b). This terminology originated when the most
common material used to construct beams was wood, which is a fibrous material. Although
metals such as steel and aluminum do not contain fibers, the terminology is nevertheless
quite useful to describe and understand bending behavior. As shown in Figure 8.2, bending
causes fibers in the upper portion of the beam to be shortened or compressed, while fibers
in the lower portion are elongated in tension.

Pure Bending

Pure bending refers to flexure of a beam in response to constant (i.e., equal) bending
moments. For example, the region between points B and C for the beam shown in Figure 8.3

P P
y
\ hy k \ A
X
A B n' Tk c N D
y —)‘—L—Ax ’ ¢
P P
a b a

FIGURE 8.3 Example of pure bending in a region of a beam.



has a constant bending moment M, and consequently, this region is said to be in pure bending.
Pure bending occurs only in regions where the transverse shear force V is equal to zero.
Recall Equation (7.2), which shows that V = dM/dx. If the bending moment M is constant,
then dM/dx = 0, which in turn means that V = 0. Pure bending also implies that no axial
forces act in the beam.

In contrast, nonuniform bending refers to flexure where the shear force V is not equal
to zero. If V # 0, then dM/dx # 0, which means that the bending moment changes along
the span of the beam.

In the sections that follow, the strains and stresses in beams subjected to pure bending
will be investigated. Fortunately, the results obtained for pure bending can be applied to
beams with nonuniform bending if the beam is relatively long compared with its cross-
sectional dimensions, or in other words, if the beam is “slender.”

8.2 Flexural Strains

To investigate the strains produced in a beam subjected to pure bending, consider a short
segment of the beam shown in Figure 8.3. The segment, located between sections A—h and
k—k, is shown in Figure 8.4 with the deformations greatly exaggerated. The beam is as-
sumed to be straight before bending occurs, and the beam cross section is constant. (In
other words, the beam is a prismatic member.) Sections s—h and k—k, which were plane
surfaces before deformation, remain plane surfaces after deformation.

If the beam is initially straight, then all beam fibers between sections A—h and k—k are
initially the same length Ax. After bending occurs, the beam fibers in the upper portions of
the cross section become shortened, and fibers in the lower portions become elongated.
However, a single surface exists between the upper and lower surfaces of the beam where
the beam fibers neither shorten nor elongate. This surface is called the neutral surface of
the beam, and the intersection of this surface with any cross section is called the neutral
axis of the section. All fibers on one side of the neutral surface are compressed, and those
on the opposite side are elongated.

When subjected to pure bending, the beam deforms into the shape of a circular arc.
The center of this arc O is called the center of curvature. The radial distance from the
center of curvature to the beam neutral surface is called the radius of curvature, and it is
designated by the Greek letter p (rho).

Consider a longitudinal fiber located at some distance y above the neutral surface. In
other words, the origin of the y coordinate axis will be located on the neutral surface. Be-
fore bending, the fiber has a length of Ax. After bending, it becomes shorter, and its de-
formed length will be denoted Ax’. From the definition of normal strain given in Equation
(2.1), the normal strain of this longitudinal fiber can be expressed as
. A — Ax
m —= =%

e. = — = li
L Ax—0 Ax

The beam segment subjected to pure bending deflects into the shape of a circular arc, and the
interior angle of this arc will be denoted Af. According to the geometry shown in Figure 8.4,
the lengths Ax and Ax’ can be expressed in terms of arc lengths so that the longitudinal strain
&, can be related to the radius of curvature p as

e — lim Ax'— Ax — lim (p— y)AO — pAb _ —ly

¥ A0 Ax 260 pAf p @1

FLEXURAL STRAINS

0

e
——
4 Ax'
M)
A
h 5 -

Neutral surface

FIGURE 8.4 Flexural
deformation.



BENDING

Equation (8.1) indicates that the normal strain developed in any fiber is directly pro-
portional to the distance of the fiber from the neutral surface. Equation (8.1) is valid
for beams of any material, whether the material is elastic or inelastic, linear or non-
linear. Notice that the strain determined here occurs in the x direction, even though the
loads applied to the beam act in the y direction and the beam bends about the z axis.
For a positive value of p (as defined shortly), the negative sign in Equation (8.1) indi-
cates that compression strain will be developed in the fibers above the neutral surface
(i.e., positive values of y), while tensile strain will occur below the neutral surface
(where y values are negative). Note that the sign convention for g, is the same as that
defined for normal strains in Chapter 2; specifically, elongation is positive and short-
ening is negative.

Curvature « (Greek letter kappa) is a measure of how sharply a beam is bent, and it
is related to the radius of curvature p by

K =

(8.2)

£
p

If the load on a beam is small, then the beam deflection will be small, the radius of curva-
ture p will be very large, and the curvature « will be very small. Conversely, a beam with
large deflections will have a small radius of curvature p and a large curvature . For the
x—y—z coordinate axes used here, the sign convention for « is defined such that « is positive
if the center of curvature is located above a beam. The center of curvature O for the beam
segment shown in Figure 8.4 is located above the beam; therefore, this beam has a positive
curvature k, and in accordance with Equation (8.2), the radius of curvature p must be posi-
tive, too. To summarize, k and p always have the same sign. They are both positive if the
center of curvature is located above the beam, and they are both negative if the center of
curvature is located below the beam.

Transverse Deformations

Longitudinal strains &, in the beam are accompanied by deformations in the plane of the
cross section (i.e., strains in the y and z directions) due to the Poisson effect. Since most
beams are slender, the deformations in the y—z plane due to Poisson effects are very
small. If the beam is free to deform laterally (as is usually the case), normal strains in the
y and z directions do not cause transverse stresses. This situation is comparable to that of
a prismatic bar in tension or compression, and therefore, the longitudinal fibers in a beam
subjected to pure bending are in a state of uniaxial stress.

8.3 Normal Stresses in Beams

For pure bending, the longitudinal strain &, that occurs in the beam varies in proportion to
the fiber’s distance from the neutral surface of the beam. The variation of normal stress o,
acting on a transverse cross section can be determined from a stress—strain curve for the
specific material used to fabricate the beam. For most engineering materials, the stress—
strain diagrams for both tension and compression are identical in the elastic range.
Although the diagrams may differ somewhat in the inelastic range, the differences can be
neglected in many instances. For the beam problems considered in this book, the tension and
compression stress—strain diagrams will be assumed identical.



The most common stress—strain relationship encountered in engineering is the equa-
tion for a linear elastic material, which is defined by Hooke’s Law: o = Ee. If the strain
relationship defined in Equation (8.1) is combined with Hooke’s Law, then the variation of
normal stress with distance y from the neutral surface can be expressed as

o, = e, = —2y = —Eky (83)

X X p

Equation (8.3) shows that the normal stress o, on the transverse section of the beam varies
linearly with distance y from the neutral surface. This type of stress distribution is shown
in Figure 8.5a for the case of a bending moment M, which produces compression stresses
above the neutral surface and tension stresses below the neutral surface.

While Equation (8.3) describes the variation of normal stress over the depth of a beam,
its usefulness depends upon knowing the location of the neutral surface. Moreover, the
radius of curvature p is generally not known, whereas the internal bending moment M is
readily available from shear-force and bending-moment diagrams. A more useful relation-
ship than Equation (8.3) would be one that related the normal stresses produced in the
beam to the internal bending moment M. Both of these objectives can be accomplished by
determining the resultant of the normal stress o, acting over the depth of the cross section.

In general, the resultant of the normal stresses in a beam consists of two components:

(a) aresultant force acting in the x direction (i.e., the longitudinal direction) and
(b) aresultant moment acting about the z axis.

If the beam is subjected to pure bending, the resultant force in the longitudinal direc-
tion must be zero. The resultant moment must equal the internal bending moment M in the
beam. From the stress distribution shown in Figure 8.5a, two equilibrium equations can be
written: 2F, = 0 and XM, = 0. From these two equations,

(a) the location of the neutral surface can be determined and
(b) the relationship between bending moment and normal stress can be established.

Location of the Neutral Surface

The cross section of the beam is shown in Figure 8.5h. We will consider a small element dA
of the cross-sectional area A. The beam is assumed to be homogeneous, and the bending
stresses are produced at an arbitrary radius of curvature p. The distance from the area
dA to the neutral axis is measured by the coordinate y. The normal stresses acting on area dA

y ‘ y

— o d/ “
M Clup 3
y
— _ X
0 ¢ 0
Chot
4
KNeutral surface

Neutral axis

(a) Side view of beam, showing
normal stress distribution

(b) Beam cross section

FIGURE 8.5 Normal stresses in a beam of linearly elastic material.

NORMAL STRESSES IN BEAMS

Since plane cross sections
remain plane, the normal stress
o, caused by bending is also
uniformly distributed in the

z direction.

The intersection of the neutral
surface (which is a plane) and
any cross section of the beam (also
a plane surface) is a line, which is
termed the neutral axis.

In Figure 8.5a, compression
stresses are indicated by arrows
pointing toward the cross section
and tension stresses are indicated
by arrows pointing away from
the cross section.
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Keep in mind that this
conclusion assumes pure
bending of an elastic material.
If an axial force exists in the
flexural member or if the
material is inelastic, the neutral
surface will not pass through
the centroid of the
cross-sectional area.

A moment comprises a force
term and a distance term. The
distance term is often called a
moment arm. On area dA, the
force is o, dA. The moment arm
is y, which is the distance from
the neutral surface to dA.

produce a resultant force dF given by o, dA. (Recall that force can be thought of as the
product of stress and area.) In order to satisfy horizontal equilibrium, all forces dF for the
beam in Figure 8.5a must sum to zero or, as expressed in terms of calculus,

ZFX:de:j;adizo

Substitution of Equation (8.3) for o yields

SF, :Lodi =—fA %ydAz—%fA ydA =0 (8.4)

In Equation (8.4), the elastic modulus E cannot be zero for a solid material. The radius of
curvature p could equal infinity; however, this would imply that the beam does not bend at all.
Consequently, horizontal equilibrium of the normal stresses can be satisfied only if

fA ydA =0 (a)

This equation states that the first moment of area of the cross section with respect to the z
axis must equal zero. From statics, recall that the definition for the centroid of an area with
respect to a horizontal axis also includes the first moment of area term:

y:j};ydA

fAdA

Substituting Equation (a) into Equation (b) shows that equilibrium can be satisfied only if
y = 0; in other words, the distance y measured from the neutral surface to the centroid of
the cross-sectional area must be zero. Thus, for pure bending, the neutral axis must pass
through the centroid of the cross-sectional area.

As discussed in Section 8.1, the study of bending presented here applies to beams that
have a longitudinal plane of symmetry. Consequently, the y axis must pass through the
centroid. The origin O of the beam coordinate system (see Figure 8.5b) is located at the
centroid of the cross-sectional area. The x axis lies in the plane of the neutral surface and is
coincident with the longitudinal axis of the member. The y axis lies in the longitudinal
plane of symmetry, originates at the centroid of the cross section, and is directed vertically
upward (for a horizontal beam). The z axis also originates at the centroid and acts in the
direction that produces a right-handed x—y—z coordinate system.

(b)

Moment-Curvature Relationship

The second equilibrium equation to be satisfied requires that the sum of moments must
equal zero. Consider again the area element dA and the normal stress that acts upon it
(Figure 8.5b). Since the resultant force dF acting on dA is located at a distance of y from
the z axis, it produces a moment dM about the z axis. The resultant force can be expressed
as dF = o, dA. A positive normal stress o, (i.e., a tension normal stress) acting on area
dA, which is located at a positive y, produces a moment dM that rotates in a negative
right-hand rule sense about the z axis; therefore, the incremental moment dM is
expressed as dM = —yo, dA.



All such moment increments that act on the cross section, along with the internal
bending moment M, must sum to zero in order to satisfy equilibrium about the z axis:

M. =—L yo,dA—M =0

If Equation (8.3) is substituted for o, then the bending moment M can be related to the
radius of curvature p:

M= —j; yo dA = %fA y2dA (8.5)

Again from statics, recall that the integral term in Equation (8.5) is called the second
moment of area or, more commonly, the area moment of inertia:

I, =fA y2dA

The subscript z indicates an area moment of inertia determined with respect to the z cen-
troidal axis (i.e., the axis about which the bending moment M acts). The integral term in
Equation (8.5) can be replaced by the moment of inertia I, where

- = (8.6)

This relationship is called the moment—curvature equation, and it shows that the beam
curvature is directly related to bending moment and inversely related to the quantity E7,. In
general, the term EI is known as the flexural rigidity, and it is a measure of the bending
resistance of a beam.

Flexure Formula

The relationship between normal stress o, and curvature was developed in Equation (8.3),
and the relationship between curvature and bending moment M is given by Equation (8.6).
These two relationships can be combined, giving

o, = —Exy = —E[ﬂ]y

EIl,
to define the stress produced in a beam by a bending moment:
My
O =~ T 8.7
Z

Equation (8.7) is known as the elastic flexure formula or simply the flexure formula. As
developed here, a bending moment M that acts about the z axis produces normal stresses that
act in the x direction (i.e., the longitudinal direction) of the beam. The stresses vary linearly
in intensity over the depth of the cross section. The normal stresses produced in a beam by
a bending moment are commonly referred to as bending stresses or flexural stresses.

Examination of the flexure formula reveals that a positive bending moment causes
negative normal stresses (i.e., compression) for portions of the cross section above the
neutral axis (i.e., positive y values) and positive normal stresses (i.e., tension) for portions
below the neutral axis (i.e., negative y values). The opposite stresses occur for a negative
bending moment. The distributions of bending stresses for both positive and negative bend-
ing moments are illustrated in Figure 8.6.

NORMAL STRESSES IN BEAMS

In the context of mechanics of
materials, the area moment of
inertia is usually referred to as
simply the moment of inertia.

The radius of curvature p is
measured from the center of
curvature to the neutral surface
of the beam. (See Figure 8.5b.)
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bending stress bending stress

M M
‘ _____ X ‘ ————— X
Tension Compression
bending stress bending stress
(a) Bending stresses caused by (b) Bending stresses caused by
positive M negative M

FIGURE 8.6 Relationship between bending moment M and bending stress.

In Chapter 7, a positive internal bending moment was defined as a moment that

e acts counterclockwise on the right-hand face of a beam; or
e acts clockwise on the left-hand face of a beam.

Compression This sign convention can now be enhanced by taking into account the bending stresses

R
M oy W— g M produced by the internal moment. The enhanced bending-moment sign convention is
illustrated in Figure 8.7.

-
Tension
(a) Positive M e . .
. A positive internal bending moment M causes
Tension
ﬁ ® compression bending stresses above the neutral axis;
‘ } ® tension bending stresses below the neutral axis; and
- -_— <y ® a positive curvature k.
Compression

(b) Negative M

FIGURE 8.7 Enhanced bending-
moment sign convention.

A negative internal bending moment M causes

® tension bending stresses above the neutral axis;
® compression bending stresses below the neutral axis; and
® anegative curvature K

Maximum Stresses on a Cross Section

Since the intensity of the bending stress o, varies linearly with distance y from the neutral
surface [see Equation (8.3)], the maximum bending stress o,,, occurs on either the top or
the bottom surface of the beam, depending on which surface is farther from the neutral
surface. In Figure 8.5b, the distances from the neutral axis to either the top or the bottom of
the cross section are denoted by ¢, and cp, respectively. In this context, ¢, and cpy are
taken as absolute values of the y coordinates for the top and bottom surfaces. The corre-
sponding bending stress magnitudes are given by

Mc
Oy = —2 = M for the top surface of the beam
I
Z top (8 8)
I .
Oax = % _ M for the bottom surface of the beam
z bot




The sense of o, (either tension or compression) is dictated by the sign of the bending mo-
ment. The quantities S, and Sy, are called the section moduli of the cross section, and they
are defined as

I I
Sep =~ and S, = —— (8.9)

Ctop Chot

The section modulus is a convenient property for beam design because it combines two
important cross-sectional properties into a single quantity.

The beam cross section shown in Figure 8.5 is symmetric about the y axis. If a beam
cross section is also symmetric about the z axis, it is called a doubly symmetric cross
section. For a doubly symmetric shape, ¢, = cpo = ¢ and the bending stress magnitudes
at the top and bottom of the cross section are equal and given by

1
g.. = —= M where S == (8.10)
S c

Again, Equation (8.10) gives only the magnitude of the stress. The sense of o (either ten-
sion or compression) is dictated by the sense of the bending moment.

Nonuniform Bending

The preceding analysis assumed that a slender, homogeneous, prismatic beam was subjected
to pure bending. If the beam is subjected to nonuniform bending, which occurs when a
transverse shear force V exists, then the shear force produces out-of-plane distortions of the
cross sections. Strictly speaking, this out-of-plane distortion violates the initial assumption
that cross-sectional surfaces that are planar before bending remain planar after bending.
However, the distortion caused by transverse shear forces is not significant for common
beams, and its effect may be neglected. Therefore, the equations developed in this section
may be used to calculate flexural stresses for beams subjected to nonuniform bending.

Summary
Bending stresses in a beam are evaluated in a three-step process.

Step 1 — Determine the Internal Bending Moment M: The bending moment may
be specified, but more typically, the bending moment is determined by constructing a
shear-force and bending-moment diagram.

Step 2 — Calculate Properties for the Beam Cross Section: The centroid location
must be determined first since the centroid defines the neutral surface for pure bending.
Next, the moment of inertia of the cross-sectional area must be calculated about the
centroidal axis that corresponds to the bending moment M. If the bending moment M
acts about the z axis, then the moment of inertia about the z axis is required. Finally,
bending stresses within the cross section vary with depth. Therefore, the y coordinate at
which stresses are to be calculated must be established.

Step 3 — Use the Flexure Formula to Calculate Bending Stresses: Two equa-
tions for bending stresses were derived:

%G =7 8.7)

(8.10)

NORMAL STRESSES IN BEAMS



BENDING

EXAMPLE 8.1

In common practice, both of these equations are often called the flexure formula. The
first form is more useful for calculating the bending stress at locations other than the top
or the bottom of the beam cross section. Use of this form requires careful attention to the
sign conventions for M and y. The second form is more useful for calculating maximum
bending stress magnitudes. If it is important to determine whether the bending stress is
either tension or compression, then that is done by inspection, using the sense of the
internal bending moment M.

10 mm A beam with an inverted tee-
shaped cross section is subjected
1 M to positive bending moments of
40 mm MZ = S.kN—m. The cross-sectional
% dimensions of the beam are

150 mm shown. Determine

(a) the centroid location, the
H moment of inertia about the
| | 15 mm z axis, and the controlling

120 mm sect'%on modulus about the
Z axis.

(b) the bending stress at points H and K. State whether the normal stress is fension or
compression.

(c) the maximum bending stress produced in the cross section. State whether the stress
is tension or compression.

Plan the Solution

The normal stresses produced by the bending moment will be determined from the flex-
ure formula [Equation (8.7)]. Before the flexure formula is applied, however, the section
properties of the beam cross section must be calculated. The bending moment acts about
the z centroidal axis; therefore, the location of the centroid in the y direction must be de-
termined. Once the centroid has been located, the moment of inertia of the cross section
about the z centroidal axis will be calculated. When the centroid location and the moment
of inertia about the centroidal axis are known, the bending stresses can be readily calcu-
lated from the flexure formula.

SOLUTION

(a) The centroid location in the horizontal direction can be determined from symmetry
alone. The centroid location in the y direction must be determined for the inverted tee
cross section. The tee shape is first subdivided into rectangular shapes (1) and (2), and
the area A; for each of these shapes is computed. For calculation purposes, a reference
axis is arbitrarily established. In this example, the reference axis will be placed at the
bottom surface of the tee shape. The distance y; in the vertical direction from the ref-
erence axis to the centroid of each rectangular area A; is determined, and the product
v;A; (termed the first moment of area) is computed. The centroid location y mea-
sured from the reference axis is computed as the sum of the first moments of area y;A;
divided by the sum of the areas A;. The calculation for the inverted tee cross section
is summarized in the table on the next page.




10 mm

A; Yi YiAi

(mm?) (mm) (mm?) -
(1) 1,500 90 135,000 @
) 1,800 75 13,500

3,300 148,500 T q 130 mm

90 mm
- _ IyA 148500 mm? oo l 7.5 mm o
SA, 3,300 mm? Ret. b = Ti5mm

axis
The z centroidal axis is located 45.0 mm above the reference axis for T 120 mm
the inverted tee cross section. Ans.

The internal bending moment acts about the z centroidal axis, and consequently,
the moment of inertia must be determined about this same axis for the inverted tee
cross section. Since the centroids of areas (1) and (2) do not coincide with the z cen-
troidal axis for the entire cross section, the parallel axis theorem must be used to
calculate the moment of inertia for the inverted tee shape.

The moment of inertia /,; of each rectangular shape about its own centroid must
be computed for the calculation to begin. For example, the moment of inertia of area
(1) about the z centroidal axis for area (1) is calculated as I.; = bh3/12 = (10 mm)
(150 mm)3/12 = 2,812,500 mm*. Next, the perpendicular distance d; between the
z centroidal axis for the inverted tee shape and the z centroidal axis for area A; must
be determined. The term d; is squared and multiplied by A; and the result is added to
1.; to give the moment of inertia for each rectangular shape about the z centroidal axis
of the inverted tee cross section. The results for all areas A; are summed to determine
the moment of inertia of the cross section about its centroidal axis. The complete
calculation procedure is summarized in the following table:

10 mm
I Id;| d2A, I,
(mm*) (mm) (mm?) (mm?) t
40 mm (1)
(1) 2,812,500 45.0 3,037,500 5,850,000 \
2) 33,750 375 2,531.250 | 2,565,000 120 mm KAl 150 mm
8,415,000
P
. . . . 45 mm H @
The moment of inertia of the cross section about its z centroidal axis Ref. N [ | 15 mm
is I, = 8,415,000 mm®. Ans.  axis 120 mm

Since the inverted tee cross section is not symmetric about its z
centroidal axis, two section moduli are possible. [See Equation (8.9).] The distance
from the z axis to the upper surface of the cross section will be denoted c,p,. The sec-
tion modulus calculated with this value is

¢ I, 8,415,000 mm*

b Ciop 120 mm

= 70,136 mm?

Let the distance from the z axis to the lower surface of the cross section be denoted
Cpor- The corresponding section modulus is

I, 8,415,000 mm*
Spot = —— = ——————

= 187,000 mm?3
Chot 45 mm




(b)

(©)

The controlling section modulus is the smaller of these two values; therefore, the
section modulus for the inverted tee cross section is

S = 70,125 mm3 Ans.

Why is the smaller section modulus said to control in this context? The maximum
bending stress is calculated with the use of the section modulus from the following
form of the flexure formula [see Equation (8.10)]:

The section modulus S appears in the denominator of this formula; consequently,
there is an inverse relationship between the section modulus and the bending stress.
The smaller value of S corresponds to the larger bending stress.

Since the centroid location and the moment of inertia about the centroidal axis have
been determined, the flexure formula [Equation (8.7)] can now be used to determine
the bending stress at any coordinate location y. (Recall that the y coordinate axis has
its origin at the centroid.) Point H is located at y = —30 mm; therefore, the bending
stress at H is given by

_ My _ (5 KN-m)(=30 mm)(1,000 N/KN) (1,000 mm/m)
o 8,415,000 mm*

Z

= 17.83 MPa = 17.83 MPa (T) Ans.

Point K is located at y = +80 mm; therefore, the bending stress at K is calculated as

o _ My (5 KkN-m)80 mm) (1,000 NAN)(1,000 mm/m)
o 8,415,000 mm*

—47.5 MPa = 47.5 MPa (C) Ans.

Regardless of the particular cross-sectional geometry, the largest bending stress in any

beam will occur at either the top surface or the bottom surface of the beam. If the cross

section is not symmetric about the axis of bending, then the largest bending stress

magnitude (for any given moment M) will occur at the location farthest from the

neutral axis, or in other words, at the point that has the largest y coordinate. For the

inverted tee cross section, the largest bending stress will occur at the upper surface:
My (6 kN-m) (120 mm) (1,000 N/kN) (1,000 mm/m)

g = —— =

* I, 8,415,000 mm*
—71.3 MPa = 71.3 MPa (C) Ans.

Alternatively, the section modulus S could be used in Equation (8.10) to determine
the magnitude of the maximum bending stress:

_ M _ (5 kN-m)(1,000 N/kN) (1,000 mm/m)
s 70,125 mm?
71.3 MPa = 71.3 MPa (C) by inspection

If Equation (8.10) is used to calculate the maximum bending stress, the sense of the
stress (either tension or compression) must be determined by inspection.




EXAMPLE 8.2

The cross-sectional dimensions M 75 mm
of a beam are shown on the
right. If the maximum allow-
able bending stress is 230 MPa,
determine the magnitude of the
maximum internal bending mo-
ment M that can be supported by

the beam. (Note: The rounded

40 mm

corners of the cross section can
be neglected in performing the 6 mm
section property calculations.)
Plan the Solution
The centroid location and the moment of inertia of the beam cross section must be calcu-
lated at the outset. Once the section properties have been computed, the flexure formula
will be rearranged to determine the maximum bending moment that can be applied without
exceeding the 230-MPa allowable bending stress.
SOLUTION
The centroid location in the horizontal direction can be determined from symmetry. The
cross section can be subdivided into three rectangular shapes. In accordance with the
procedure described in Example 8.1, the centroid calculation for this shape is summarized
in the following table:
A, y; VA, 75 mm
(mm?) (mm) (mm3) 6 mm
@))] 450 37 16,650 (1) l
- ) N
2) 204 17 3,468 T
3) 204 17 3,468 mm  |a |  40mm
_—
858 23,586 Ref. l @ 17 mm 3
axis
_ Xy,A; 23,586 mm? >
y = = = 27.49 mm 6 mm
ZA; 858 mm?
The z centroidal axis is located 27.49 mm above the reference
axis for this cross section. Ans.
The moment of inertia calculation about this axis is sum- 75 mm
marized in the following table:
6 mm
y
I, Id;| d?A; I, | p O R
4 4 4 12.51 mm
(mm*) (mm) (mm*) (mm*?) f
@))] 1,350 9.51 40,698.0 42,048.0 ! 40 mm
27.49 mm
@) 19,652 10.49 224482 | 42,1002 Ref o ® |
3) 19,652 10.49 22,448.2 42,100.2 axis
126,248.4 6 mm




The moment of inertia of the cross section about its z centroidal axis is
I, = 126,248.4 mm*. Ans.

The largest bending stress in any beam will occur at either the top or the bottom
surface of the beam. For this cross section, the distance to the bottom of the beam is
greater than the distance to the top of the beam. Therefore, the largest bending stress will
occur on the bottom surface of the cross section at y = —27.49 mm. In this situation, it is
convenient to use the flexure formula in the form of Equation (8.10), setting ¢ = 27.49 mm.
Equation (8.10) can be rearranged to solve for the bending moment M that will produce a
bending stress of 230 MPa on the bottom surface of the beam:

od. (230 N/mm?)(126,248.4 mm*)

M = =
c 27.49 mm

= 1,056,280 N-mm = 1,056 N-m Ans-
For the bending moment direction indicated in the sketch on the previous page, a bending
moment of M = 1,056 N-m will produce a compression stress of 230 MPa on the bottom
surface of the beam.

MOVIES

Investigate bending stresses acting on various
portions of a cross section and determine internal
“[2in bending moments, given bending stresses.

2in
F~1in

11in

MOVIES

22 mm

ies Example M8.5

Animated example of the procedure for calculating the centroid of a tee shape.



| 300 mm ‘
1

Determine the centroid location and the moment of inertia about the centroidal
axis for a tee shape.

MecMovies Exercises

M8.1 The Centroids Game: Learning the Ropes. Score at
least 90 percent on the game.

The Centroids Game

Learning the Ropes

FIGURE M8.1




M8.2 The Moment of Inertia Game: Starting from Square
One. Score at least 90 percent on the game.

Starting From Square One
FIGURE M8.2

PROBLEMS

M8.3  Use the flexure formula to determine bending stresses in a
flanged shape.

mM

FIGURE M8.3

P8.1 During fabrication of a laminated timber arch, one of the
10-in.-wide by 1-in.-thick Douglas fir [E = 1,900 ksi] planks is
bent to a radius of curvature of 40 ft. Determine the maximum
bending stress developed in the plank.

P8.2 A high-strength steel [E = 200 GPa] tube having an out-
side diameter of 80 mm and a wall thickness of 3 mm is bent into a
circular curve having a 52-m radius of curvature. Determine the
maximum bending stress developed in the tube.

P8.3 A high-strength steel [E = 200 GPa] band saw blade wraps
around a pulley that has a diameter of 450 mm. Determine the max-
imum bending stress developed in the blade. The blade is 12 mm
wide and 1 mm thick.

P8.4 The boards for a concrete form are to be bent into a circu-
lar shape having an inside radius of 10 m. What maximum thick-
ness can be used for the boards if the normal stress is not to exceed
7 MPa? Assume that the modulus of elasticity for the wood is
12 GPa.

P8.5 A beam having a tee-shaped cross section is subjected to
equal 12 kN-m bending moments, as shown in Figure P8.5a. The
cross-sectional dimensions of the beam are shown in Figure P8.5b.
Determine

(a) the centroid location, the moment of inertia about the z axis,
and the controlling section modulus about the z axis.

(b) the bending stress at point H. State whether the normal stress
at H is tension or compression.

(c) the maximum bending stress produced in the cross section.
State whether the stress is tension or compression.

FIGURE P8.5a
100 mm
y 25 mm i
H e —
z
175 mm
150 mm
25 mm
FIGURE P8.5b



P8.6 A beam is subjected to equal 6.5 kip-ft bending moments, 8mm L, 8mm
as shown in Figure P8.6a. The cross-sectional dimensions of the T 11
beam are shown in Figure P8.6b. Determine

(a) the centroid location, the moment of inertia about the z axis,
and the controlling section modulus about the z axis. 50 mm

(b) the bending stress at point H, which is located 2 in. below the H
z centroidal axis. State whether the normal stress at H is 8 mm

tension or compression. T
. . . . 50 mm
(c) the maximum bending stress produced in the cross section.

State whether the stress is fension or compression. FIGURE P8.7b

6.5 kip-ft
P8.8 A beam is subjected to equal 17.5 kip-ft bending moments,

as shown in Figure P8.8a. The cross-sectional dimensions of the
beam are shown in Figure P8.8b. Determine

(a) the centroid location, the moment of inertia about the z axis,
and the controlling section modulus about the z axis.

(b) the bending stress at point H. State whether the normal stress
at H is tension or compression.

6.5 kip-ft (c) the bending stress at point K. State whether the normal stress

FIGURE P8.6a at K is tension or compression.

(d) the maximum bending stress produced in the cross section.
State whether the stress is tension or compression.

Lin. 17.5 kip-ft y

17.5 kip-ft

T S

FIGURE P8.8a
FIGURE P8.6b

P8.7 A beam is subjected to equal 470 N-m bending moments,
as shown in Figure P8.7a. The cross-sectional dimensions of the
beam are shown in Figure P8.7b. Determine

(a) the centroid location, the moment of inertia about the z axis,
and the controlling section modulus about the z axis.

(b) the bending stress at point H. State whether the normal stress 10 in. z 14 in.
at H is tension or compression. 2in.

(c) the maximum bending stress produced in the cross section. & K
State whether the stress is tension or compression. 2in. _ S

Tl ew |

FIGURE P8.8b

P8.9 The cross-sectional dimensions of a beam are shown in
Figure P8.9.

(a) If the bending stress at point K is 43 MPa (C), determine the
internal bending moment M, acting about the z centroidal axis
FIGURE P8.7a of the beam.




(b) Determine the bending stress at point H. State whether the
normal stress at H is tension or compression.

75 mm

5 mm

y T
-

50 mm

N T T

FIGURE P8.9

P8.10 The cross-sectional dimensions of the beam shown in Fig-
ure P8.10 are d = 5.0 in., bf =4.0in., = 0.50 in., and 7,, = 0.25 in.

(a) If the bending stress at point H is 4,500 psi (T), determine the
internal bending moment M, acting about the z centroidal axis

of the beam.
(b) Determine the bending stress at point K. State whether the
normal stress at K is tension or compression.

Pl

|

FIGURE P8.10

P8.11 The dimensions of the double-box beam cross section
shown in Figure P8.11 are » = 150 mm, d = 50 mm, and # = 4 mm.
If the maximum allowable bending stress is 17 MPa, determine the
maximum internal bending moment M, magnitude that can be
applied to the beam.

[iyp)

S
FIGURE P8.11

P8.12 The cross-sectional dimensions of a beam are shown in
Figure P8.12. The internal bending moment about the z centroidal
axis is M, = +2.70 kip-ft. Determine

(a) the maximum tension bending stress in the beam.
(b) the maximum compression bending stress in the beam.

6in.
0.5 in. y
| H

i —

4 in
ﬂ 0.5 in.
Kéed — v
FIGURE P8.12

P8.13 The cross-sectional dimensions of a beam are shown in

Figure P8.13.

(a) If the bending stress at point K is 35.0 MPa (T), determine the
bending stress at point H. State whether the normal stress at H

is tension or compression.

(b) If the allowable bending stress is 165 MPa, determine the
magnitude of the maximum bending moment M, that can be
supported by the beam.

240 mm

y 30\|[mm
——

16 mm —

350 mm

e
FIGURE P8.13

P8.14 The cross-sectional dimensions of a beam are shown in

Figure P8.14.

(a) If the bending stress at point K is 9.0 MPa (T), determine the
bending stress at point H. State whether the normal stress at

H is tension or compression.
(b) If the allowable bending stress is 165 MPa, determine the
magnitude of the maximum bending moment M, that can be

supported by the beam.
H —_—
y
= 180 mm
J_I( 12 mm
20 mm )
30 mm —’I —
260 mm
FIGURE P8.14



P8.15 The cross-sectional dimensions of the beam shown in
Figure P8.15area = 5.0in.,6 = 6.0in.,d = 4.01in.,and r = 0.5 in.
The internal bending moment about the z centroidal axis is M, =
—4.25 kip-ft. Determine

(a) the maximum tension bending stress in the beam.
(b) the maximum compression bending stress in the beam.

b
y
— ;
— (typ.) d
/|
FIGURE P8.15

P8.16 The cross-sectional dimensions of a beam are shown in
Figure P8.16. The internal bending moment about the z centroidal
axis is M, = +270 Ib-ft. Determine

(a) the maximum tension bending stress in the beam.
(b) the maximum compression bending stress in the beam.

075in, L _0.75in.
T T T T
= 3
0.125 in.

y
L 2.50 in.

P8.17 Two vertical forces are applied to a simply supported
beam (Figure P8.17a) having the cross section shown in Figure
P8.17b. Determine the maximum tension and compression bending
stresses produced in segment BC of the beam.

(typ)
z

FIGURE P8.16

12 kN 12 kN

vy vy

AiL B C

FIGURE P8.17a

X

3m 1m

=
]

200 mm

1

15 mm

&

160 mm

|

—’I |<—9mm

FIGURE P8.17b

P8.18 Two vertical forces of P = 240 Ib are applied to a simply
supported beam (Figure P8.18a) having the cross section shown in
Figure P8.18b. Using a = 30 in., L = 84 in., b = 3.0in.,d = 4.0
in., and ¢ = 0.5 in., calculate the maximum tension and compres-
sion bending stresses produced in segment BC of the beam.

4 =3 C > D
a | L | a
FIGURE P8.18a
A4 A
d

1

f b

FIGURE P8.18b

8.4 Analysis of Bending Stresses in Beams

In this section, the flexure formula will be applied in the analysis of bending stresses for
statically determinate beams subjected to various applied loads. The analysis process
begins with the construction of shear-force and bending-moment diagrams for the specific
span and loading. The cross-sectional properties of the beam will be determined next.

Essential properties include
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FIGURE 8.8 Reinforced concrete beam.

(a) the centroid of the cross section,

(b) the moment of inertia of the cross-sectional area about the centroidal axis of
bending, and

(c) the distances from the centroidal axis to both the top and bottom surfaces
of the beam.

After these prerequisite calculations have been completed, bending stresses can be
calculated from the flexure formula at any location on the beam.

Beams can be supported and loaded in a variety of ways; consequently, the distribu-
tion and intensity of positive and negative bending moments are unique for each beam.
Understanding the significance of the bending-moment diagram as it relates to flexural
stresses is essential for the analysis of beams. For instance, consider a reinforced concrete
beam with an overhang, as shown in Figure 8.8. Concrete is a material with substantial
strength in compression, but very low strength in tension. When concrete is used to con-
struct a beam, steel bars must be placed in those regions where tension stresses occur, in
order to reinforce the concrete. In some portions of the overhang beam, tension stresses
will develop below the neutral axis, while tension stresses will occur above the neutral axis
in other portions. The engineer must define these regions of tension stress so that the rein-
forcing steel is placed where it is needed. In summary, the engineer must be attentive not
only to the magnitude of bending stresses, but also to the sense (either tension or compres-
sion) of stresses that occur above and below the neutral axis and that vary with positive and
negative bending moments along the span.

Cross-Sectional Shapes for Beams

Beams can be constructed from many different cross-sectional shapes such as squares,
rectangles, solid circular shapes, and round pipe or tube shapes. A number of additional
shapes are available for use in structures made of steel, aluminum, and fiber-reinforced
plastics, and it is worthwhile to discuss some terminology associated with these standard
shapes. Since steel is perhaps the most common material used in structures, this discussion
will focus on the five standard rolled structural steel shapes shown in Figure 8.9.
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FIGURE 8.9 Standard steel shapes.

The most commonly used steel shape for beams is called a wide-flange shape
(Figure 8.9a). The wide-flange shape is optimized for economy in bending applications. As
shown by Equation (8.10), the bending stress in a beam is inversely related to its section
modulus S. If a choice is given between two shapes having the same allowable stress, the
shape with the larger S is the better choice because it will be able to withstand more bend-
ing moment than the one with the smaller S. The weight of a beam is proportional to its
cross-sectional area, and typically, the cost of a beam is directly related to its weight.
Therefore, a shape that is optimized for bending is configured so that it provides the largest
possible section modulus S for a given cross-sectional area of material. The area of a wide-
flange shape is concentrated in its flanges. The area of the web, which connects the two
flanges, is relatively small. By increasing the distance between the centroid and each flange,
the shape’s moment of inertia (about the X—X axis) can be increased dramatically, roughly
in proportion to the square of this distance. Consequently, the section modulus of the shape
can be substantially increased with a minimal overall increase in area.

For a wide-flange shape, the moment of inertia / and the section modulus S about the
X-X centroidal axis (shown in Figure 8.9a) are much larger than 7 and S about the Y-Y
centroidal axis. As a result, a shape that is aligned so that bending occurs about the X—X
axis is said to be bending about its strong axis. Conversely, bending about the Y-Y axis is
termed bending about the weak axis.

In U.S. customary units, a wide-flange shape is designated by the letter W followed by
the nominal depth of the shape measured in inches and its weight per length measured in
pounds per foot. A typical U.S. customary designation is W12 X 50, which is spoken as
“W12 by 50.” This shape is nominally 12 in. deep, and it weighs 50 Ib/ft. W-shapes are
manufactured by passing a hot billet of steel through several sets of rollers arrayed in series
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that incrementally transform the hot steel into the desired shape. By varying the spacing
between rollers, a number of different shapes of the same nominal dimensions can be pro-
duced, giving the engineer a finely graduated selection of shapes. In making W-shapes, the
distance between flanges is kept constant while the flange thickness is increased. Conse-
quently, the actual depth of a W-shape is generally not equal to its nominal depth. For
example, the nominal depth of a W12 X 50 shape is 12 in., but its actual depth is 12.2 in.

In ST units, the nominal depth of the W-shape is measured in millimeters. Instead of
weight per length, the shape designation gives mass per length, where mass is measured in
kilograms and length is measured in meters. A typical SI designation is W310 X 74. This
shape is nominally 310 mm deep, and it has a mass of 74 kg/m.

Figure 8.9b shows a tee shape, which consists of a flange and a stem. Figure 8.9¢
shows a channel shape, which is similar to a W-shape except that the flanges are truncated
so that the shape has one flat vertical surface. Steel tee shapes are designated by the letters
WT, and channel shapes are designated by the letter C. WT- and C-shapes are named in a
similar fashion as W-shapes, where the nominal depth and either the weight per length or
mass per length are specified. Steel WT-shapes are manufactured by cutting a W-shape at
mid-depth; therefore, the nominal depth of a WT-shape is generally not equal to its actual
depth. C-shapes are rolled so that the actual depth is equal to the nominal depth. Both the
WT- and C-shapes have strong and weak axes for bending.

Figure 8.9d shows a rectangular tube shape called a hollow structural section (HSS).
The designation used for HSS shapes gives the overall depth followed by the outside width
followed by the wall thickness. For example, an HSS10 X 6 X 0.50 is 10 in. deep and 6 in.
wide and has a wall thickness of 0.50 in.

Figure 8.9¢ shows an angle shape, which consists of two legs. Angle shapes are des-
ignated by the letter L followed by the long leg dimension, the short leg dimension, and
the leg thickness (e.g., L6 X 4 X 0.50). Although angle shapes are versatile members that
can be used for many purposes, single L-shapes are rarely used as beams because they are
not very strong and they tend to twist about their longitudinal axis as they bend. However,
pairs of angles connected back-to-back are regularly used as flexural members in a con-
figuration that is called a double-angle shape (2L).

Cross-sectional properties of standard shapes are presented in Appendix B. While one
could calculate the area and moment of inertia of a W- or a C-shape from the specified
flange and web dimensions, the numerical values given in the Appendix B tables are pre-
ferred since they take into account specific section details such as fillets.

A flanged cross section is used to support the loads shown on the beam on the next page.
The dimensions of the shape are given. Consider the entire 20-ft length of the beam and
determine

(a) the maximum tension bending stress at any location along the beam, and
(b) the maximum compression bending stress at any location along the beam.

Plan the Solution

The flexure formula will be used to determine the bending stresses in this beam. However,
the internal bending moments that are produced in the beam and the properties of the
cross section must be determined before the stress calculations can be performed. With
the use of the graphical method presented in Section 7.3, the shear-force and bending-
moment diagrams for the beam and loading will be constructed. Then, the centroid
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location and the moment of inertia will be calculated for the beam
cross section. Since the cross section is not symmetric about the
axis of bending, bending stresses must be investigated for both the
largest positive and largest negative internal bending moments that

occur along the entire beam span.

SOLUTION

Support Reactions

A FBD of the beam is shown. For the purpose of calculat-
ing the external beam reactions, the downward 200 Ib/ft
distributed load can be replaced by a resultant force of
(200 Ib/ft)(20 ft) = 4,000 1b acting downward at the cen-
troid of the loading. The equilibrium equations are

IF, = B, + D, — 700 Ib — 1,500 Ib — 4,000 Ib = 0
M, = (700 1b)(20 ft) + (1,500 Ib) (11 fo)
+ 4,000 1b)(10 fo) — B, (15 ft) = 0

From these equilibrium equations, the beam reactions at
pin support B and roller support D are

B, = 4,700 Ib and D, = 1,500 Ib

Construct the Shear-Force and
Bending-Moment Diagrams
The shear-force and bending-moment diagrams can be
constructed with the six rules outlined in Section 7.3.
The maximum positive internal bending moment occurs
3.5 ft to the right of C and has a value of M = 5,625 1b-ft.
The maximum negative internal bending moment occurs
at pin support B and has a value of M = — 6,000 1b-ft.

Centroid Location

The centroid location in the horizontal direction can be
determined from symmetry alone. To determine the vertical
location of the centroid, the flanged cross section is subdi-
vided into three rectangular shapes. A reference axis for
the calculation is established at the bottom surface of the
lower flange. The centroid calculation for the flanged shape
is summarized in the table on the next page.

A

700 1b

in.
101

700 1b

1,500 Ib

4,000 Ib
I 10 ft

A B |C
5t 41t 11 ft
!
B,
700 1b 1,500 Ib

200 Ib/ft
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B c D
y 4
5ft 4 ft 11 ft
¥4,700 1b 1,500 Ib
\
3,000 Ib

-1,700 Ib

4,400 Ib-ft

—6,000 1b-ft

5,625 Ib-ft

-1,500 Ib
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1) (in.2) (in.) (in.3)
7 R (D) 4.0 11.5 46.0
2) 10.0 6.0 60.0

11.51in. 12 in.
10in. 3) 8.0 0.5 4.0
in. . 22.0 110.0

T G
_Ref. axis

—* Ty, A, 0inJ .
. — 7= Vi A _ 110 O.1n —50in.
8 in. lin. ZA; 22.0 in.?

The z centroidal axis is located 5.0 in. above the reference axis for this cross
section. Ans.

Moment of Inertia

Since the centroids of areas (1), (2), and (3) do not coincide with the z centroidal
axis for the entire cross section, the parallel axis theorem must be used to calculate
the moment of inertia of the cross section about this axis. The complete calcula-
tion is summarized in the following table:

3 I, d;] d2A,; I,
(in.%) (in.) (in%) (in%)
in. ) 0.333 6.5 169.000 | 169.333
) 83.333 1.0 10.000 | 93333
3) 0.667 45 162.000 | 162.667
! 425.333

The moment of inertia of the cross section about its z centroidal axis is
I, = 425.333 in.*. Ans.

Flexure Formula
A positive bending moment produces compression stress at the top of the beam
and tension stress at the bottom. Since the beam cross section is not symmetric
about the axis of bending (i.e., the z axis), the bending stress magnitude at the
top of the beam will be greater than the bending stress at the bottom of the
beam.

The maximum positive internal bending moment is M = 5,625 1b-ft. For
this positive moment, the compression bending stress produced on the top of
the flanged shape (at y = +7 in.) is calculated as

oo My _ (5625 Ibfy@in)(12in/f) _

* 1 425.333 in.#

z

—1,111 psi = 1,111 psi (C)

and the tension bending stress produced on the bottom of the flanged shape (at
y = =51in.) is calculated as

o = _My _ (5,625 lb-ft)(—Slr}.)(lZm./ft) — 1793 psi = 793 psi (T)
1 425.333 in.*

Z

A negative bending moment produces tension stress at the top of the beam and com-
pression stress at the bottom. The maximum negative internal bending moment is




M = —6,000 Ib-ft. For this negative moment, the tension bending stress produced on the
top of the flanged shape (at y = +7 in.) is calculated as

o= My CO000 T in) (20 s G s o
i 425333 in.*

Z

and the compression bending stress produced on bottom of the flanged shape (at
y= —5in.)is

oo My _ (6,000 Ib£0)(S in)(12 inft) _
x I 425.333 in.*

z

—846 psi = 846 psi (C)

(a) Maximum tension bending stress: For this beam, the maximum tension bending stress
occurs on top of the beam at the location of the maximum negative internal bending
moment. The maximum tension bending stress is o, = 1,185 psi (T). Ans.

(b) Maximum compression bending stress: The maximum compression bending stress
also occurs on top of the beam; however, it occurs at the location of the maximum
positive internal bending moment. The maximum compression bending stress is
o, = 1,111 psi (C). Ans.

EXAMPLE 8.4

A 40-mm-diameter solid steel shaft supports the loads

shown. Determine the magnitude and location of the maxi- c D E
mum bending stress in the shaft. I_L

Note: For the purposes of this analysis, the bearing at
B can be idealized as a pin support and the bearing at E
can be idealized as a roller support. I 500 mm | 400 mm I 600 mm I 600 mm | 400 mm I

T T
Plan the Solution & & & &
200N 350 N 400 N 200N

By the graphical method presented in Section 7.3, the
shear-force and bending-moment diagrams for the shaft
and loading will be constructed. Since the circular cross
section is symmetric about the axis of bending, the maximum
bending stress will occur at the location of the maximum
internal bending moment.

SOLUTION
Support Reactions
A FBD of the beam is shown. From this FBD, the equilibrium equations can be written as

SF,= B, + E, —200 N — 350 N — 400 N — 200 N = 0
XM, = (200 N)(500 mm) — (350 N) (@00 mm) — (400 N)(1,000 mm)
~ (200 N)2,000mm) + E, (1,600 mm) = 0

From these equilibrium equations, the beam reactions at pin support B and roller
support E are
B, = 625N and E, =525N




Construct the Shear-Force and

E F  Bending-Moment Diagrams
I The shear-force and bending-moment diagrams can be
il constructed in accordance with the six rules outlined in
Section 7.3
I 500 mm_| 400 mmI 600 mm I 600 mm | 400 mmI The maximum internal bending moment occurs at D
& ! ¢ & ! ¢ and has a magnitude of M = 115 N-m.
200 N 350N 400 N 200 N Moment of Inertia
The moment of inertia for the 40-mm-diameter solid steel
shaft is

I, = ld“ — £(40 mm)* = 125,664 mm*
| 5 c b e P 64 64

l == Flexure Formula
A

The maximum bending stress in the shaft occurs at D. Since

500 mm | 400 mm I 600 mm 600 mm | 400 mm the circular cross section is symmetric about the axis of

! bending, both the tension and compression bending stresses

Y 025N & Y 225N Y have the same magnitude. In this situation, the flexure for-
200N 350N 400N 200N mula in the form of Equation (8.10) is convenient for calcu-

lating bending stresses. The distance ¢ used in Equation
(8.10) is simply the shaft radius. From this form of the flex-
ure formula, the maximum bending stress magnitude in the
shaft is

_ Mc _ (115 N-m)(20 mm) (1,000 mm/m)
s 1 125,664 mm*

Z

18.30 MPa Ans.

Section Modulus for a Solid Circular Section
Alternatively, the maximum bending stress magnitude in
the shaft can be computed from the section modulus. For a
solid circular section, the following formula can be derived
for the section modulus:

I, @edyd @
c d)2 32

S = d?

For the 40-mm-diameter solid steel shaft considered here, the section modulus is,
therefore,

S =" a3 = 7 40 mm)® = 6,283 mm?
32 32

and the maximum bending stress magnitude in the shaft can be computed from

S M _ (115 N-m) (1,000 mm/m) — 18,30 MPa Ans.
S 6,283 mm?




Determine the bending-moment diagram and
the maximum tension and compression bending
stresses for a tee shape.

Determine maximum bending moments, given allowable tension and compression bending 32 mm
stresses. o T
mm
@
72 mm
@ ¢
48 mm Cross
Section

MecMovies Example M8.11

Determine the bending-moment diagram, the moment of 180 kN
inertia, and the bending stress produced in a simple span
beam consisting of a wide-flange steel shape.

3m 3m

Determine the bending-moment diagram, the moment
of inertia, and the bending stress produced in a cantile-
ver beam consisting of a tee shape.

15 mm

120 mm
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600 Ib/ft
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: ein tia, and the bending stress for a simple

| , span beam consisting of a U-shape beam.
2in

Eaa

Determine the bending-moment diagram,
the centroid location, the moment of iner-

4.0 kN/m 6.0 kN/m

(L=

ies Example M8.15

Determine the bending-moment diagram and
the bending stress for a standard steel shape that
is used as a simply supported beam with an
overhang.

C10 x 30 Moment of inertia calculations involving shapes built up from standard steel shapes.

| W18 x 50

C10 x 30



les Exercises

M8.8 Calculate the tension and compression bending stresses
produced in singly symmetric cross sections.

5 )

25.80 kN-m

31m |
1

o
=

Y| I,=15x10°mm*
| | ] A

- “*T'r“"'

80 mm

\__ Beam section B /

FIGURE M8.8

PROBLEMS

M8.9 Given a specific bending-moment diagram, compute the
maximum tension and compression bending stresses produced at
any location along the span.

M8.10 Given an allowable tension bending stress and an allow-
able compression bending stress, determine the maximum internal
bending-moment magnitude that may be applied to a beam.

P8.19 A WT230 X 26 standard steel shape is used to support
the loads shown on the beam in Figure P8.19a. The dimensions
from the top and bottom of the shape to the centroidal axis are
shown on the sketch of the cross section (Figure P8.19b). Consider
the entire 4-m length of the beam and determine

(a) the maximum tension bending stress at any location along the
beam, and

(b) the maximum compression bending stress at any location
along the beam.

15 kN
20 kN/m

UL

A B C

1m

10 kN/m

3m

FIGURE P8.19a

y
- K
60.7 mm
z 3
164.3 mm
WT230 x 26

FIGURE P8.19b

P8.20 A WT305 X 41 standard steel shape is used to support the
loads shown on the beam in Figure P8.20a. The dimensions from
the top and bottom of the shape to the centroidal axis are shown on
the sketch of the cross section (Figure P8.19b). Consider the entire
10-m length of the beam and determine

(a) the maximum tension bending stress at any location along the
beam, and

(b) the maximum compression bending stress at any location
along the beam.
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FIGURE P8.20b

P8.21 A steel tee shape is used to support the loads shown on
the beam in Figure P8.21a. The dimensions of the shape are shown
in Figure P8.21b. Consider the entire 24-ft length of the beam and
determine

(a) the maximum tension bending stress at any location along the
beam, and

(b) the maximum compression bending stress at any location
along the beam.

7 kips 16 kips

6 kips/ft

16.00 in.
y
[ 1.50 in
Z —
18.50 in.

|

—

0.75 in.
FIGURE P8.21b

P8.22 A flanged shape is used to support the loads shown on the
beam in Figure P8.22a. The dimensions of the shape are shown in
Figure P8.22b. Consider the entire 18-ft length of the beam and
determine

(a) the maximum tension bending stress at any location along the
beam, and

(b) the maximum compression bending stress at any location
along the beam.

1,800 1b 2,100 1b

800 Ib/ft

I 4

o |
14HEL B C =D E
|

I

3ft 4 ft 4 ft
I T
FIGURE P8.22a
10 in.

| y | 2in

Z
8 in.

—s 2 in.
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FIGURE P8.22b

P8.23 A channel shape is used to support the loads shown on the
beam in Figure P8.23a. The dimensions of the shape are shown in
Figure P8.23b. Consider the entire 12-ft length of the beam and
determine

(a) the maximum tension bending stress at any location along the
beam, and

(b) the maximum compression bending stress at any location
along the beam.

2,300 1b
900 Ib/ft
— N O O
A B C

. 3 ft | 9 ft !

FIGURE P8.23a
12 in.
0.5 in. y
(  — |
—> [<—0.5in. .

FIGURE P8.23b

P8.24 A W360 X 72 standard steel shape is used to support the
loads shown on the beam in Figure P8.24a. The shape is oriented so
that bending occurs about the weak axis as shown in Figure P8.24b.
Consider the entire 6-m length of the beam and determine



(a) the maximum tension bending stress at any location along the
beam, and

(b) the maximum compression bending stress at any location
along the beam.

6 kN
15 kN/m

lVllllllllM‘llllllll
A =5

1.5m |
S

l

45 kN-m c
1.5m | 3m
O

FIGURE P8.24a
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W360 x 72
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P8.25 A 20-mm-diameter solid steel shaft supports loads
P, =500 N, P = 1,750 N, and Pz = 500 N, as shown in Figure
P8.25/26. Assume that L; = 90 mm, L, = 260 mm, L; = 140 mm,
and L; = 160 mm. The bearing at B can be idealized as a roller
support, and the bearing at D can be idealized as a pin support.
Determine the magnitude and location of the maximum bending
stress in the shaft.

FIGURE P8.24b

FIGURE P8.25/26

P8.26 A 1.75-in.-diameter solid steel shaft supports loads P, =
2501b, P = 600 Ib, and Py = 250 Ib, as shown in Figure P8.25/26.
Assume that L; = 9in., L, = 24 in., Ly = 12 in., and L, = 15 in.
The bearing at B can be idealized as a roller support, and the bear-
ing at D can be idealized as a pin support. Determine the magnitude
and location of the maximum bending stress in the shaft.

P8.27 The steel beam in Figure P8.27a/28a has the cross sec-
tion shown in Figure P8.275/28b. The beam length is L = 6.0 m,
and the cross-sectional dimensions are d = 350 mm, by = 205 mm,
ty= 14 mm, and t,, = 8 mm. Calculate the largest intensity of dis-
tributed load wy, that can be supported by this beam if the allowable
bending stress is 200 MPa.

L L
2 ' 2 '
FIGURE P8.27a/28a
b,
J P
) v ’ S
S
. —>
z d

FIGURE P8.27b/28b

P8.28 The steel beam in Figure P8.27a/28a has the cross section
shown in Figure P8.275/28b. The beam length is L = 22 ft, and the
cross-sectional dimensions are d = 16.3 in., bf = 10.0 in., tr =
0.665 in., and #,, = 0.395 in. Calculate the maximum bending stress
in the beam if wy = 6 kips/ft.

P8.29 A HSSI2 X 8 X 1/2 standard steel shape is used to sup-
port the loads shown on the beam in Figure P8.29. The shape is
oriented so that bending occurs about the strong axis. Determine the
magnitude and location of the maximum bending stress in the beam.

15 kips

4 kips/ft

LU

2 kips/ft

Wil

70 Kip-ft

|4ﬁ 7 ft 8 fit

FIGURE P8.29

P8.30 A W410 X 60 standard steel shape is used to support the
loads shown on the beam in Figure P8.30. The shape is oriented so
that bending occurs about the strong axis. Determine the magnitude
and location of the maximum bending stress in the beam.

20 kN 60 kN
n 40 kKN/m
- VITTTTT 111110
I
A B c D
2m 3m | I m !
FIGURE P8.30



The ratio of one dimension to

another is called an aspect ratio.

For a rectangular cross section,
the ratio of height 4 to width b is
the aspect ratio of the beam.

8.5 Introductory Beam Design for Strength

At a minimum, a beam must be designed so that it is capable of supporting the loads
acting on it without exceeding allowable bending stresses. A successful design involves
the determination of an economical cross section for the beam—one that performs the
intended function but does not waste materials. Elementary design generally involves
either

(a) the determination of appropriate dimensions for basic shapes such as rectangular or
circular cross sections or

(b) the selection of satisfactory standard manufactured shapes that are available for the
preferred material.

A complete beam design requires attention to many concerns. This discussion, however,
will be limited to the task of proportioning cross sections so that allowable bending stresses
are satisfied, thus ensuring that a beam has sufficient strength to support the loads that act
upon it.

The section modulus S is a particularly convenient property for beam strength
design. One form of the flexure formula given by Equation (8.10) for doubly symmetric
shapes was

where S =-

Mc M 1
S c

If an allowable bending stress is specified for the beam material, then the flexure formula
can be rearranged to solve for the minimum required section modulus S,;,:

M

Tallow

S =

min —

8.11)

Using Equation (8.11), the engineer may either

(a) determine the cross-sectional dimensions necessary to attain the minimum section
modulus, or

(b) select a standard shape that offers a section modulus equal to or greater
than S,,;,.

The maximum bending moment in the beam is found from a bending-moment
diagram. If the cross section to be used for the beam is doubly symmetric, then the maxi-
mum bending-moment magnitude (i.e., either positive or negative M) should be used in
Equation (8.11). In some instances, it may be necessary to investigate both the maximum
positive bending moment and the maximum negative bending moment. One such situation
arises when differing allowable tension and compression bending stresses are specified for
a cross section that is not doubly symmetric, such as a tee shape.

If a beam has a simple cross-sectional shape, such as a circle, a square, or a rectangle
of specified height-to-width proportions, then its dimensions can be determined directly
from S,,;,, since by definition, S = I/c. If a more complex shape (e.g., a W-shape) is to be
used for the beam, then tables of cross-sectional properties such as those included in
Appendix B are utilized. The general process for selecting an economical standard steel
shape from a table of section properties is outlined in Table 8.1.



Table 8.1 Selecting Standard Steel Shapes for Beams

Step 1: Calculate the minimum section modulus required for the specific span and loading.

Step 2: In the section properties tables (such as those presented in Appendix B), locate the section modulus values. Typically, the
beam will be oriented so that bending occurs about the strong axis; therefore, find the column that gives S for the strong axis
(which is typically designated as the X—X axis).

Step 3: Start your search at the bottom of the section properties table. Shapes are typically sorted from heaviest to lightest; therefore,
the shapes at the bottom of the table are usually the lightest-weight members. Scan up the column until a section modulus
equal to or slightly greater than S,;, is found. This shape is acceptable, and its designation should be noted.

Step 4: Continue scanning upwards until several acceptable shapes have been determined.

Step 5: After several acceptable shapes have been identified, select one shape for use as the beam cross section. The lightest-weight
cross section is usually chosen because beam cost is directly related to the weight of the beam. However, other considerations
could affect the choice. For example, a limited height might be available for the beam, thus necessitating a shorter and
heavier cross section instead of a taller, but lighter, shape.

EXAMPLE 8.5

A 24-ft-long simply supported wood beam sup- 120016 120016 1,2001b

ports three 1,200-1b concentrated loads that are

located at the quarter points of the span. The h

allowable bending stress of the wood is 1,800 psi. \ / \ / \ /

If the aspect ratio of the solid rectangular wood

beam is specified as #/b = 2.0, determine the min- 4 m E b

imum width b that can be used for the L 6 ft 6 ft 6 ft 6 ft J

beam. ~ >

Beam and loading. Cross section.
1,200 1b 1,200 1b 1,200 1b

Plan the Solution

By the graphical method presented in Section 7.3, the
shear-force and bending-moment diagrams for the beam
and loading will be constructed at the outset. With the
use of the maximum internal bending moment and the V V v
specified allowable bending stress, the required section _
modulus can be determined from the flexure formula A B c D N E
[Equation (8.10)]. The beam cross section can then be T 6 ft 6 ft 6 ft 6t 4
proportioned so that the height of the cross section is 1,800 lbl 1,800 1b
twice as large as the width.

SOLUTION

Construct the Shear-Force and

Bending-Moment Diagrams

The shear-force and bending-moment diagrams for the
beam and loading are shown. The maximum internal
bending moment occurs at C.

1,800 1b

—-1,800 Ib
Required Section Modulus

The flexure formula can be solved for the minimum
section modulus required to support a maximum internal
bending moment of M = 14,400 Ib-ft without exceeding
the 1,800 psi allowable bending stress:

14,400 Ib-ft

10,800 Ib-ft 10,800 1b-ft

Omax = ? = Oyliow M —



M (14,400 Ib-ft) (12 in./ft)
T llow 1,800 psi
= 96.0 in.3

oS =

Section Modulus for a Rectangular Section
For a solid rectangular section with width b and height #, the following formula can be
derived for the section modulus:

L bhj12 b2
¢ h/2 6

The aspect ratio specified for the beam in this problem is /b = 2; therefore, h = 2b.
Substituting this requirement into the section modulus formula gives

bh? _ b@b? 4,5 24
6 6 6 3

The minimum required beam width can now be determined:

§b3 = 96.0 in.3 S.b =524 in. Ans.

EXAMPLE 8.6

55 kip-ft L

30 kips

2.5 kips/ft

15kips  The beam shown will be constructed from a standard steel
W-shape with an allowable bending stress of 30 ksi.

M

1 kips/ft

(a) Develop a list of acceptable shapes that could be

[ used for this beam. Include the most economical W8,

= C D W10, W12, W14, W16, and W18 shapes on the list
7 ft l 4t of possibilities.

' (b) Select the most economical W-shape for this beam.

Plan the Solution

By the graphical method presented in Section 7.3, the shear-force and bending-
moment diagrams for the beam and loading will be constructed at the outset. With the use
of the maximum internal bending moment and the specified allowable bending stress, the
required section modulus can be determined from the flexure formula [Equation (8.10)].
Acceptable standard steel W-shapes will be selected from Appendix B, and the lightest of
those shapes will be chosen as the most economical shape for this application.

SOLUTION
Support Reactions
A FBD of the beam is shown. From this FBD, the equilibrium equations can be written as

XF, = A, + C; — 30 kips — 15 kips — 30 kips — 4 kips = 0

IMc = (30 kips)(7 ft) + (30 kips) (6 ft) — (4 kips) (2 ft) — (15 kips)@ ft) + 55 kip-ft — A, (12 ft) = O




From these equilibrium equations, the beam reactions
at pin support A and roller support C are

A, = 31.42 kips and C, = 47.58 kips

Shear-Force and Bending-Moment Diagrams

The shear-force and bending-moment diagrams for
the beam and loading are shown. The maximum inter-
nal bending moment in the beam is M = 70.83 kip-ft,
and it occurs at B.

Required Section Modulus

The flexure formula can be solved for the minimum
section modulus required to support the maximum in-
ternal bending moment without exceeding the 30 ksi
allowable bending stress:

g .. = M =0,
max S — Yallow
go M _ (7083 kip-f0)(12 in./ft)
T Oiow 30 ksi

= 28.33in.}

(a) Select acceptable steel shapes: The properties of
selected standard steel wide-flange shapes are presented
in Appendix B. W-shapes having a section modulus
greater than or equal to 28.33 in.? are acceptable for the
beam and loading considered here. Since the cost of a
steel beam is proportional to its weight, it is generally
preferable to select the lightest acceptable shape for
use.

Follow the procedure for selecting standard steel
shapes presented in Table 8.1. By this process, the fol-
lowing shapes are identified as being acceptable for the
beam and loading:

W8 X 40, S = 35.5in.?
W10 X 30, S = 32.4in.?
W12 X 26,8 = 33.4in.3
W14 x 22,8 =29.0in.?
W16 X 31,8 = 47.2 in.3
W18 X 35,8 = 57.6 in.?

30 kips 4 kips
30 kips | 6 ft 2 ft I 15 kips
55 kip-ft v ¢ ¢ v
@ |
A B ¢ b
5 ft 7 ft 4 ft
N e
30 kips 15 kips
2.5 kips/ft
55 Kip-ft M 1 kips/tt
| o
Aa B © P
4 5 ft 7 ft 4ft
31.42 kips I 47.58 kips
31.42 kips ‘
. 19.00 kips
18.92 kips 15.00 kips

-55.00 kip-ft
|

~11.08 Kips

70.83 kip-ft

(b) Select the most economical W-shape: The most economical W-shape can now be
selected from the short list of acceptable shapes. From this list, a W14 X 22 standard
steel wide-flange shape is identified as the lightest-weight section for this beam and

loading.

Ans.

—28.58 kips

—68.00 kip-ft




PROBLEMS

P8.31 A solid steel shaft supports loads P, = 200 Ib and
Pp = 300 1b as shown in Figure P8.31. Assume that L; = 6 in.,
L, = 20 in., and L3 = 10 in. The bearing at B can be idealized as a
roller support, and the bearing at C can be idealized as a pin sup-
port. If the allowable bending stress is 8 ksi, determine the mini-
mum diameter that can be used for the shaft.

A B c D
| L, L, L, |
P, PDW
FIGURE P8.31

P8.32 A solid steel shaft supports loads P, = 250 N and
Pc = 620 N as shown in Figure P8.32. Assume that L; = 500 mm,
L, = 700 mm, and L3 = 600 mm. The bearing at B can be idealized
as a roller support, and the bearing at D can be idealized as a pin
support. If the allowable bending stress is 105 MPa, determine the
minimum diameter that can be used for the shaft.

4 B C -
| Ly L, | Ly
PA PC
FIGURE P8.32

P8.33 A simply supported wood beam (Figure P8.33a/34a)
with a span of L = 15 ft supports a uniformly distributed load of
wp = 320 Ib/ft. The allowable bending stress of the wood is 1,200 psi.
If the aspect ratio of the solid rectangular wood beam is specified as
h/b = 2.0 (Figure P8.33b/34b), calculate the minimum width b that
can be used for the beam.

"o

JILIIILIIILIILI]Y

FIGURE P8.33a/34a
% h
b

2.

FIGURE P8.33b/34b

P8.34 A simply supported wood beam (Figure P8.33a/34a)
with a span of L = 5 m supports a uniformly distributed load of wy.
The beam width is » = 140 mm, and the beam height is # = 260 mm
(Figure P8.33b/34b). The allowable bending stress of the wood is
9.5 MPa. Calculate the magnitude of the maximum load wy that
may be carried by the beam.

P8.35 A cantilever wood beam (Figure P8.35a/36a) with a
span of L = 3.6 m supports a linearly distributed load with maximum
intensity of wy. The beam width is » = 240 mm, and the beam height
is h = 180 mm (Figure P8.356/36b). The allowable bending stress of
the wood is 7.6 MPa. Calculate the magnitude of the maximum load
wy that may be carried by the beam.

Wom
I A
|

‘B

L

~ 1

cei] I
]

FIGURE P8.35b/36b

FIGURE P8.35a/36a

P8.36 A cantilever wood beam (Figure P8.35a/36a) with a
span of L = 15 ft supports a linearly distributed load with maxi-
mum intensity of wy = 420 Ib/ft. The allowable bending stress of
the wood is 1,400 psi. If the aspect ratio of the solid rectangular
cross section is specified as h/b = 0.75 (Figure P8.35b/36b),
determine the minimum width b that can be used for the beam.

P8.37 The beam shown in Figure P8.37 will be constructed from
a standard steel W-shape, with an allowable bending stress of 24 ksi.

(a) Develop a list of five acceptable shapes that could be used for
this beam. On this list, include the most economical W10,
W12, W14, W16, and W18 shapes.

(b) Select the most economical W shape for this beam.

4 kips

12 kips 8 kips

v v v

Ai B C D

| sh 5 ft

<

FIGURE P8.37

|
JT- E

5 ft

P8.38 The beam shown in Figure P8.38 will be constructed from a
standard steel W-shape, with an allowable bending stress of 165 MPa.

(a) Develop a list of four acceptable shapes that could be used for
this beam. Include the most economical W360, W410, W460,
and W530 shapes on the list of possibilities.

(b) Select the most economical W shape for this beam.



50 kN 50 kN (b) Select the most economical W shape for this beam.
40 kN/m ) B 15 kN
VITUTTITTTNT T UT Ul
| () |
A =5 c =D
2m ,!\ 2m 5m I 3m
FIGURE P8.38
P8.39 The beam shown in Figure P8.39 will be constructed from a A
40 kN/m

standard steel W-shape, with an allowable bending stress of 165 MPa. —

(a) Develop a list of four acceptable shapes that could be used for ~ FIGURE P8.40

this beam. Include the most economical W360, W410, W460,

and W530 shapes on the list of possibilities.
(b) Select the most economical W shape for this beam. P8.41 The beam shown in Figure P8.41 will be constructed from a
standard steel HSS-shape, with an allowable bending stress of 30 ksi.

40 kN 40 kN 40 kN
(a) Develop a list of three acceptable shapes that could be used
60 kN/m for this beam. On this list, include the most economical HSSS,
35 KN/m v HSS10, and HSS12 shapes.
| e | (b) Select the most economical HSS-shape for this beam.
)
A =35 c e E
24m J 30m 46m 20m
21 5 kips
FIGURE P8.39
2 kips/ft
P8.40 The beam shown in Figure P8.40 will be constructed TTTTTTTTITITTTIT \

from a standard steel W-shape, with an allowable bending stress of

165 MPa. 4

B C
(a) Develop a list of four acceptable shapes that could be used for | 16 ft | 3 ft
this beam. Include the most economical W310, W360, W410, f T

and W460 shapes on the list of possibilities. FIGURE P8.41

8.6 Flexural Stresses in Beams of Two Materials

Many structural applications involve beams made of two materials. These types of beams
are called composite beams. Examples include wood beams reinforced with steel plates
attached to the top and bottom surfaces, and reinforced concrete beams in which steel rein-
forcing bars are embedded to resist tension stresses. Engineers purposely design beams in
this manner so that advantages offered by each material can be efficiently utilized.

The flexure formula was derived for homogeneous beams—that is, beams consisting of
a single, uniform material characterized by an elastic modulus E. As a result, the flexure
formula cannot be used to determine the normal stresses in composite beams without some
additional modifications. In this section, a computational method will be developed so that
a beam cross section that consists of two different materials can be “transformed” into an
equivalent cross section consisting of a single material. For this equivalent homogeneous
beam, the flexure formula can be used to evaluate bending stresses in the beam.

Equivalent Beams

Before considering a beam made of two materials, let us first examine what is required so
that two beams of different materials can be considered equivalent. Suppose that a small



BENDING

“‘---._—--'"M

B

L
(a) Bar subjected to pure
bending

=il

y

1
4 40 mm
_
15 mm—>l—|b

(b) Cross-sectional dimensions
of aluminum bar

|
T
40 mm
| 105 mm |

(c) Cross-sectional dimensions
of equivalent wood beam

FIGURE 8.10 Equivalent
beams of aluminum and wood.

rectangular aluminum bar having an elastic modulus of E,,,, = 70 GPa is used as a beam
in pure bending (Figure 8.10a). The bar is subjected to an internal bending moment of
M = 140,000 N-mm, which causes the bar to bend about the z axis. The width of the bar is
15 mm, and the height of the bar is 40 mm (Figure 8.10b); therefore, its moment of inertia
about the z axis is I, = 80,000 mm*. The radius of curvature p of this beam can be com-
puted from Equation (8.6):

1 M 140,000 N-mm
P Ely, (70,000 N/mm?)(80,000 mm*)
..p = 40,000 mm

The maximum bending strain caused by the bending moment can be determined from
Equation (8.1):

1 1

g, = ——y =—————(+20 mm) = +0.0005 mm/mm

P 40,000 mm
Next, suppose that we want to replace the aluminum bar with wood, which has an elastic
modulus of E,,q = 10 GPa. In addition, we require that the wood beam must be equivalent
to the aluminum beam. The question becomes, “What dimensions are required in order for
the wood beam to be equivalent to the aluminum beam?”

What is meant by “equivalent” in this context? To be equivalent, the wood beam must
have the same radius of curvature p and the same distribution of bending strains &, as the
aluminum beam for the given internal bending moment M. To produce the same p for the
140 N-m bending moment, the moment of inertia of the wood beam must be increased to

, _ M __ 140,000 N-mm

Mo _ 40,000 mm) = 560,000 mm*
wood = P = 107000 Nimm? ¢ )

The wood beam must be larger than the aluminum bar in order to have the same radius of
curvature. However, equivalence also requires that the wood beam must exhibit the same
distribution of strains. Since strains are directly proportional to y, the wood beam must have
the same y coordinates as the aluminum bar, or in other words, the height of the wood
beam must also be 40 mm.

The moment of inertia of the wood beam must be larger than that of the aluminum bar,
but the height of both must be the same. Therefore, the wood beam must be wider than the
aluminum bar if the two beams are to be equivalent:

3 3
Lot = o = Dyooa 40 mm)” = 560,000 mm*
12 12
" Dyooq = 105 mm

* P Woo

In this example, a wood beam that is 105 mm wide and 40 mm tall is equivalent to an aluminum
beam that is 15 mm wide and 40 mm tall (Figure 8.10c). Since the elastic moduli of the two
materials are different (by a factor of 7 in this case), the wood beam (which has the lesser E') must
be wider than the aluminum bar (which has the greater E)—wider in this case by a factor of 7.

If the two beams are equivalent, are the bending stresses the same? The bending stress
produced in the aluminum beam can be calculated from the flexure formula:

_ (140,000 N-mm) (20 mm)

= = 35 MPa

Tam 80.000 mm*

Similarly, the bending stress in the wood beam is
(140,000 N-mm) (20 mm) — 5MPa

O' =
wood 560,000 mm*



The bending stress in the wood is one-seventh of the stress in the aluminum; therefore,
equivalent beams do not necessarily have the same bending stresses, only the same p and €.

In this example, the elastic moduli, the beam widths, and the bending stresses all dif-
fer by a factor of 7. Compare the moment—curvature relationships for the two beams:

1 M M

p - Ealumlalum E

woodI wood

Expressing the moments of inertia in terms of the respective beam widths b, and byeeq
and the common beam height / gives

M B M
byh®) byoogh’
Ealum [ ahiz ] Ewood [ (iog ]
which can be simplified to
bwnod — Ealum
ba]um Ewood

The ratio of elastic moduli will be termed the modular ratio and denoted by the symbol 7.
For the two materials considered here, the modular ratio n has a value of

_ Egym _ 70GPa
E 10 GPa

wood
Hence, the factor of 7 that appears throughout this example stems from the modular ratio
for the two materials. The required width of the wood beam can be expressed in terms of
the modular ratio n as

b, E

wood __ alum __ n - b

b E

alum

n

= nb,

alum

= 7(15 mm) = 105 mm

wood
wood

The bending stresses from the two beams also differed by a factor of 7. Since the aluminum
and wood beams are equivalent, the bending strains are the same for the two beams:

(8X )alum = (8«‘6 )WOOd

Stress is related to strain by Hooke’s Law; therefore, the bending strains can be expressed as
g

(Sx)alum = [E] and (sx)wood = [%]

The relationship between bending stresses for the two materials can be now be expressed
in terms of the modular ratio n:

alum wood

o o a E
alum __ " wood or alum __ alum __ n
E alum E wood Twood E wood

Once again, the ratio of bending stresses differs by an amount equal to the modular ratio n.

To summarize, a beam made of one material is transformed into an equivalent beam
of a different material by modifying the beam width (and only the beam width). The ratio
between the elastic moduli of the two materials (termed the modular ratio) dictates the
change in width required for equivalence. Bending stresses are not equal for equivalent
beams; rather, they, too, differ by a factor equal to the modular ratio.

Transformed-Section Method

The concepts introduced in the preceding example can be used to develop a method for
analyzing beams made up of two materials. The basic idea is to transform a cross section that

FLEXURAL STRESSES IN BEAMS
OF TWO MATERIALS
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In this procedure, Material 1 can
be thought of as a “common
currency” for the transformation.
All areas are converted to their
equivalents in the common
currency.

Suppose that Material 2 was a
“hard” material like steel and
Material 1 was a “soft” material
like rubber. If the strains in both
the rubber and the steel were the
same, a much greater area of
rubber would be required to
transmit the same force that
could be transmitted by a small
area of steel.

(a) Original cross section

[

consists of two different materials into an equivalent cross section of only one material. Once
this transformation is completed, techniques developed previously for flexure of homoge-
neous beams can be used to determine the bending stresses.

Consider a beam cross section that is made up of two linear elastic materials (desig-
nated Material 1 and Material 2) that are perfectly bonded together (Figure 8.11a). This
composite beam will bend as described in Section 8.2. If a bending moment is applied to
this beam, then, like a homogeneous beam, the total cross-sectional area will remain plane
after bending. This means that the normal strains will vary linearly with the y coordinate
measured from the neutral surface and that Equation (8.1) is valid:

5=y (8.1)

p

In this situation, however, the neutral surface cannot be assumed to pass through the cen-
troid of the composite area.

‘We wish to transform Material 2 into an equivalent amount of Material 1 and, in so doing,
define a new cross section made entirely of Material 1. In order for this transformed cross sec-
tion to be valid for calculation purposes, it must be equivalent to the actual cross section (which
consists of Material 1 and Material 2), meaning that the strains and the curvature of the trans-
formed section must be the same as the strains and curvature of the actual cross section.

How much area of Material 1 is equivalent to an area dA of Material 2? Consider a
cross section consisting of two materials in which Material 2 is stiffer than Material 1, or in
other words, E, > E; (Figure 8.115). We will investigate the force transmitted by an area
element dA, of Material 2. Element dA has width dz and height dy. The force dF transmitted
by this element of area is given by dF' = o, dz dy. From Hooke’s Law, the stress o, can be
expressed as the product of the elastic modulus and the strain; therefore,

dF = (E,e)dzdy

Since Material 2 is stiffer than Material 1, more area of Material 1 will be required to transmit
a force equal to dF. The distribution of strain in the transformed section must be the same as
the strain distribution in the actual cross section. For that reason, the y dimensions (i.e., the
dimensions perpendicular to the neutral axis) in the transformed section must be the same as
those in the actual cross section. The width dimension (i.e., the dimension parallel to the
neutral axis), however, can be modified. Let the equivalent area dA’ of Material 1 be given by

nb

()]

(b) Orginal cross section
with dA = dydz

FIGURE 8.11 Beam with two materials: basic geometry and transformed geometry of the cross section.

(c) Material 2 transformed by use of the
modular ratio n



height dy and a modified width n dz, where n is a factor to be determined (Figure 8.11c¢). The
force transmitted by this area of Material 1 can be expressed as

dF' = (Eie)(ndz)dy

If the transformed section is to be equivalent to the actual cross section, the forces dF’ and
dF must be equal:

(E\e)(ndz)dy = (E,e)dzdy

Therefore,

Ch E (8.12)

The ratio 7 is called the modular ratio.

This analysis shows that the actual cross section consisting of two materials can be trans-
formed by use of the modular ratio into an equivalent cross section consisting of a single mate-
rial. The actual cross section is transformed in the following manner: The area of Material 1 is
unmodified, meaning that its original dimensions remain unchanged. The area of Material 2 is
transformed into an equivalent area of Material 1 by multiplication of the actual width (i.e., the
dimension that is parallel to the neutral axis) by the modular ratio n. The height of Material 2
(i.e., the dimension perpendicular to the neutral axis) is kept the same. This procedure pro-
duces a transformed section, made entirely of Material 1, that transmits the same force (for
any given strain €) as the actual cross section, which is composed of two materials.

Does the transformed section have the same neutral axis as the actual cross section?
If the transformed cross section is equivalent to the actual cross section, then it must pro-
duce the same strain distribution. Therefore, it is essential that both cross sections have the
same neutral axis location. For a homogeneous beam, the neutral axis was determined by
summing forces in the x direction in Equation (8.4). Application of this same procedure for
a beam made up of two materials gives

SF, = LlcrxldA +L/;20x2dA =0

in which gy, is the stress in Material 1 and o, is the stress in Material 2. In this equation,
the first integral is evaluated over the cross-sectional area of Material 1 and the second in-
tegral is evaluated over the cross-sectional area of Material 2. From Equation (8.3), the
normal stresses at y (measured from the neutral axis) for the two materials can be expressed
in terms of the radius of curvature p as

El E2
Oy =——") and O = — y 8.1
0 0 (8.13)

Substituting these expressions for oy, and o, gives

E E
XF, =—| —LydA— | =2ydA =0
. fAl e j;z P
The radius of curvature can be cancelled out so that this equation reduces to
E dA + E dA =0
i fAl YdA + Ly fAz y

In this equation, the integrals represent the first moments of the two portions of the cross
section with respect to the neutral axis. At this point, the modular ratio will be introduced
so that the previous equation can be rewritten in terms of n:

ElLlydA+E1L2yndA=O

FLEXURAL STRESSES IN BEAMS
OF TWO MATERIALS
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This reduces to

fAl ydA + fA2 yndA = 0 (8.14)

The area of the transformed cross section can be expressed as

fAldA—kL2ndA=LtdA,

so that Equation (8.14) can be rewritten simply as

L ydA, =0 (8.15)

Therefore, the neutral axis passes through the centroid of the transformed section, just as
it passes through the centroid of a homogeneous beam.

Does the transformed section have the same moment—curvature relationship as the
actual cross section? From the relationships of Equation (8.13), the moment—curvature
relationship for a beam of two materials is

M:—J; yo, dA

= —j;l yo, dA —j;z yo, dA

!
— 2 2
—p[fAlEly dA—l—j;zEQy dA]

By the modular ratio, the elastic modulus of Material 2 can be expressed as E, = nkEj,
which reduces the preceding equation to

E
M=—1[ 2 dA 2olA]
pfAly +fAzy"

The term in brackets is just the moment of inertia /, of the transformed section about its
neutral axis (which was previously shown to pass through the centroid). Therefore, the
moment—curvature relationship can be written as

£y,

M= where I, = fA Y2 dA, (8.16)

Therefore, the moment—curvature relationship of the transformed cross section is equal to
that of the actual cross section.

How are bending stresses calculated for each of the two materials according to the
transformed-section method? Equation (8.16) can be expressed as

1 M

P El

and substituted into the stress relationships of Equation (8.13) to give the bending stress at
those locations corresponding to Material 1 in the actual cross section:

M)y - M
El, I

El
Oy = _?y = -

(8.17)

t




Notice that the bending stress in Material 1 is calculated from the flexure formula. Recall
that the actual area of Material 1 was not modified in developing the transformed section.

The bending stress at those locations corresponding to Material 2 in the actual cross
section is given by

O = _2_)’ = _[

M ] E, My My
5 Ey=-=22Y_

.
El, E, I, i (8.18)

t

When the transformed-section method is used to calculate bending stresses at locations
corresponding to Material 2 (i.e., the transformed material) in the actual cross section, the
flexure formula must be multiplied by the modular ratio n.

For a cross section consisting of two materials (Figure 8.12a), the strains caused by a
bending moment are distributed linearly over the depth of the cross section (Figure 8.12b),
just as they are for a homogeneous beam. The corresponding normal stresses are also distrib-
uted linearly; however, there is a discontinuity at the intersection of the two materials (Fig-
ure 8.12¢), which is a consequence of the differing elastic moduli for the materials. In the
transformed-section method, the normal stresses for the material that was transformed (Material
2 in this instance) are calculated by multiplying the flexure formula by the modular ratio n.

To recap, the procedure for calculating bending stresses by the transformed-section
method depends upon whether or not the material was transformed:

® [f the area was not transformed, then simply calculate the associated bending stresses
from the flexure formula.

® [f the area was transformed, then multiply the flexure formula by n» when calculating
the associated bending stresses.

In this discussion, the actual beam cross section was transformed into an equivalent
cross section consisting entirely of Material 1. It is also permissible to transform the cross
section to Material 2. In that case, the modular ratio is defined as n = E|/E,. The bending
stresses in Material 2 of the actual cross section will be the same as the bending stresses in
the corresponding portion of the transformed cross section. The bending stresses at those
locations corresponding to Material 1 in the actual cross section will be obtained by multi-
plying the flexure formula by n = E|/E,.

K N

- SR
s @]\ My~
i A— Op =—nN——m
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(a) Original cross section (b) Distribution of (c) Distribution of normal stresses
normal strains

FIGURE 8.12 Beam with two materials: strain and stress distributions.
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EXAMPLE 8.7

A cantilever beam 10 ft long carries a uniformly

distributed load of w = 100 Ib/ft. The beam is

constructed from a 3-in.-wide by 8-in.-deep

3in. . go5in.  wood timber (1) that is reinforced on its upper

surface by a 3-in.-wide by 0.25-in.-thick alumi-

y num plate (2). The elastic modulus of the wood

is E = 1,700 ksi, and the elastic modulus of the

8 in. aluminum plate is £ = 10,200 ksi. Determine

the maximum bending stresses produced in
) timber (1) and aluminum plate (2).

Plan the Solution
The transformed-section method will be used
Cross-sectional to transform the cross section consisting of two
Cantilever beam with w = 100 Ib/ft. dimensions. materials into an equivalent cross section con-
sisting of a single material. This transformed
section will be used for calculation purposes. The centroid location and the moment of
inertia of the transformed section about its centroid will be calculated. With these section
properties, the flexure formula will be used to compute the bending stresses in both the
wood and the aluminum for the maximum internal bending moment produced in the
cantilever span.

3in.

SOLUTION

Modular Ratio

The transformation procedure is based on the ratio of the elastic moduli for the two

materials, termed the modular ratio and denoted by n. The modular ratio is defined as the

elastic modulus of the transformed material divided by the elastic modulus of the refer-

ence material. In this example, the stiffer material (i.e., the aluminum) will be trans-
formed into an equivalent amount of the less stiff

>|' 0.25 in. material (i.e., the wood); therefore, the wood will be

) used as the reference material. The modular ratio for

this transformation is

6 x3in. =18 in.

M=~

2) y

8in. . Emms _ é
E, f El

e

M 10,200 ksi

3in. 1,700 ksi

Transformed cross section. The width of the aluminum portion of the cross

section is multiplied by the modular ratio n. The
resulting cross section, consisting solely of wood, is
2 y equivalent to the actual cross section, which con-
sists of both wood and aluminum.

6 x3in. =18 in.

Mm—r
—

i
3.5987 in.

| 7 _
T 8in. Section Properties
4.6513 in. The centroid location for the transformed section
l ©)) is shown in the figure on the left. The moment of
inertia of the transformed section about the z cen-
troidal axis is I, = 192.5 in.%.

3in.




Maximum Bending Moment
The maximum bending moment for a 10-ft-long cantilever beam with a uniformly distrib-
uted load of w = 100 Ib/ft is

wil? _ (100 Ib/ft) (10 ft)2

m = T = ; = —5,000 Ib-ft = —60,000 Ib-n.

Flexure Formula

The flexure formula [Equation (8.7)] gives the bending stress at any coordinate location y;
however, the flexure formula is valid only if the beam consists of a homogeneous material.
The transformation process used to replace the aluminum plate with an equivalent amount
of wood was necessary to obtain a homogeneous cross section that satisfies the limitations
of the flexure formula.

The transformed section consisting entirely of wood is equivalent to the actual cross
section. The transformed section is equivalent because the bending strains produced in
the transformed section are identical to the strains produced in the actual cross section.
The bending stresses in the transformed section, however, require an additional adjust-
ment. The bending stresses computed for the original wood portion of the cross section
[i.e., area (1)] are correctly computed from the flexure formula. The bending stresses
computed for the aluminum plate must be multiplied by the modular ratio n to account for
the difference in elastic moduli of the two materials.

100 Ib/ft
3. 025in, y y ,
+660 pe 6,730 psi
(@)
Yy +614 ne 1,044 psi - 6,260 psi
— & —— O,
‘ 8 in. ( * !
60,000(lb-in.
(1) —853 e —1,450 psi
«— (contraction) | (elongation)—  «— (compression) | (tension) —
3in.
Beam cross section. Profile view of beam. Bending strains. Bending stresses.

Maximum Bending Stresses in the Wood

The maximum bending stress in the wood portion (1) of the cross section occurs at the
lower surface of the beam. Since the wood was not transformed, Equation (8.17) is used
to compute the maximum bending stress:

My _ (=60,000 Ib-in.)(—4.6513 in.) _

= = —1,450 psi = 1,450 psi (C)  Auns.
: 1, 192.5 in.4 P PR Ans

S

X

Maximum Bending Stresses in the Aluminum

The aluminum portion of the cross section was transformed in the analysis to an equiva-
lent width of wood. While the bending strains for the transformed section are correct, the
bending stress for the transformed material must be multiplied by the modular ratio n to
account for the differing elastic moduli of the two materials. The maximum bending stress
in the aluminum portion (2) of the cross section, which occurs at the upper surface of the
beam, is computed from Equation (8.18):

My _ (60,000 Ibin) (3.5987 in.)
1, 192.5 in.4

o, = = 6,730 psi = 6,730 psi (T)  Ans.




Bending Stresses at the Intersection of the Two Materials

The joint between timber (1) and aluminum plate (2) occurs at y = 3.3487 in. At this loca-
tion, the bending strain in both materials is identical: €, = +614 pe. Since the elastic
modulus of the aluminum is six times greater than the elastic modulus of the wood, the
bending stress in the aluminum, calculated as

My _ (60,000 Ib-in.) 3.3487 in.)
I, 192.5 in.4

= 6,263 psi = 6,263 psi (T)

Oy = —

is six times greater than the bending stress in the wood:

My  (=60.000 Ib-in.)3.3487 in.) . .
g, =——=— = 1,044 psi = 1,044 psi
T 192.5 in.* P pet (D

This result can also be seen by application of Hooke’s Law to each material. For a normal
strain of e, = +614 e, the normal stress in wood timber (1) is found from Hooke’s Law as

o, = Eig, = (1,700,000 psi)(614 X 10-%in./in.) = 1,044 psi = 1,044 psi (T)
and the normal stress in aluminum plate (2) is

o, = Eye, = (10,200,000 psi)(614 X 10-5in./in.) = 6,263 psi = 6,263 psi (T)

ies Example M8.16

1 180 mm i Determine the bending stresses in a composite
| | beam, using the transformed-section method.
I i
40 mm luminu
z
40 mm
N

| 180 mm

les Example M8.17

40 mm Given allowable stresses for the aluminum and brass materials, determine the
l | Aluminum | largest allowable moment that can be applied about the z axis to the beam cross
10 mm (1) section.
(2)
40mm Z -
Brass
10 mm (1)
Aluminum




les Example M8.18

Given allowable stress for two materials, determine the largest allowable moment that can
be applied about the horizontal axis of the beam cross section shown. _

18 in

0.25 in

ies Example M8.19

Given allowable stress for wood and steel materials, determine the largest allowable (1) (Fr
moment and, in turn, the maximum distributed load that can be applied to a simply
supported beam.
7.251in
i
0.25 inJ |’ 3.50 in | 0.25 in
2T 2T

les Exercises

M8.16 A composite beam cross section consists of two rectan- " 160 mm |
gular bars securely bonded together. The beam is subjected to a I H |
specified bending moment M. Determine I

(a) the vertical distance from K to the centroidal axis. 80 mm
(b) the bending stress produced at H. |
(c) the bending stress produced at K.

FIGURE M8.16



M8.17 A composite beam cross section consists of two rectan-
gular bars securely bonded together. From the indicated allowable
stress, determine

(a) the vertical distance from K to the centroidal axis.
(b) the maximum allowable bending moment M.

(c) the bending stress produced at H.

(d) the bending stress produced at K.

PROBLEMS

; 240 mm

60 mm

[

FIGURE M8.17

P8.42 A composite beam is fabricated by bolting two 3-in.-wide X
12-in.-deep wood planks to the sides of a 0.50 in. X 12 in. steel plate
(Figure P8.42b). The moduli of elasticity of the wood and the steel are
1,800 ksi and 30,000 ksi, respectively. The simply supported beam
spans a distance of 20 ft and carries two concentrated loads P, which
are applied at the quarter points of the span (Figure P8.42a).

(a) Determine the maximum bending stresses produced in the
wood planks and the steel plate if P = 3 kips.

(b) Assume that the allowable bending stresses of the wood and
the steel are 1,200 psi and 24,000 psi, respectively. Determine
the largest acceptable magnitude for concentrated loads P.
(You may neglect the weight of the beam in your calculations.)

FIGURE P8.42a

0.50 in.

I

12 in.

3in. || 3in.

FIGURE P8.42b

P8.43 The cross section of a composite beam that consists of
4-mm-thick fiberglass faces bonded to a 20-mm-thick particleboard
core is shown in Figure P8.43. The beam is subjected to a bending
moment of 55 N-m acting about the z axis. The elastic moduli for
the fiberglass and the particleboard are 30 GPa and 10 GPa,
respectively. Determine

(a) the maximum bending stresses in the fiberglass faces and the
particleboard core.

(b) the stress in the fiberglass at the joint where the two materials
are bonded together.

[
z a 20 mm
|
50 mm 4 Jrlm
FIGURE P8.43

P8.44 A composite beam is made of two brass [E = 110 GPa]
bars to two aluminum [E = 70 GPa] bars, as shown in Figure P8.44.
The beam is subjected to a bending moment of 380 N-m acting
about the z axis. Using @ = 5 mm, b = 40 mm, ¢ = 10 mm, and d =
25 mm, calculate

(a) the maximum bending stresses in the aluminum bars.
(b) the maximum bending stress in the brass bars.



y

!
Aluminum a
c Brass T
z d
c
Brass l
Aluminum a
T
b

FIGURE P8.44

P8.45 An aluminum [E = 10,000 ksi] bar is bonded to a steel
[E = 30,000 ksi] bar to form a composite beam (Figure P8.45b/46D).
The composite beam is subjected to a bending moment of M =
+300 1b-ft about the z axis (Figure P8.45a/46a). Determine

(a) the maximum bending stresses in the aluminum and steel bars.
(b) the stress in the two materials at the joint where they are
bonded together.

Aluminum

Z

FIGURE P8.45a/46a

y
Steel T
0.75 in.
i |
T
. 0.50 in.
Aluminum |
2.00 in.

FIGURE P8.45b/46b

P8.46 An aluminum [E = 10,000 ksi] bar is bonded to a steel
[E = 30,000 ksi] bar to form a composite beam (Figure P8.45b/46b).
The allowable bending stresses for the aluminum and steel bars are
20 ksi and 30 ksi, respectively. Determine the maximum bending
moment M that can be applied to the beam.

P8.47 Two steel [E = 30,000 ksi] plates are securely attached to
a Southern pine [E = 1,800 ksi] timber to form a composite beam
(Figure P8.47). The allowable bending stress for the steel plates is
24,000 psi, and the allowable bending stress for the Southern pine
is 1,200 psi. Determine the maximum bending moment that can be
applied about the horizontal axis of the beam.

1
PL

FIGURE P8.47

P8.48 The simply supported beam shown in Figure P8.48a/49a
carries a uniformly distributed load w on overhang BC. The beam is
constructed of a Southern pine [E = 12 GPa] timber that is reinforced
on its upper surface by a steel [E = 200 GPa] plate (Figure P8.48b/
49b). The beam spans are L = 4 m and a = 1.25 m. The wood beam
has dimensions of b,, = 150 mm and d,, = 280 mm. The steel plate
dimensions are b, = 230 mm and 7, = 6 mm. Assume that the
allowable bending stresses of the wood and the steel are 9 MPa and
165 MPa, respectively. Determine the largest acceptable magnitude
for distributed load w. (You may neglect the weight of the beam in
your calculations.)

y

FIGURE P8.48a/49a

H y
z — d,
Wood

FIGURE P8.48b/49b

P8.49 The simply supported beam shown in Figure P8.48a/49a
carries a uniformly distributed load of w = 28 kN/m on overhang
BC. The beam is constructed of a Southern pine [E = 12 GPa]
timber that is reinforced on its upper surface by a steel [E = 200 GPa]
plate (Figure P8.48b5/49b). The beam spans are L = 5.5 m and
a = 1.75 m. The wood beam has dimensions of b,, = 215 mm
and d,, = 325 mm. The steel plate dimensions are b, = 250 mm
and 7, = 10 mm. (You may neglect the weight of the beam in



your calculations.) At the location of the maximum bending
moment for the beam, determine

(a) the vertical distance from point K to the neutral axis of the
composite beam.
(b) the bending stress in the steel at H.

P8.50 Two steel plates, each 4 in. wide and 0.25 in. thick, rein-
force a wood beam that is 3 in. wide and 8 in. deep. The steel plates
are attached to the vertical sides of the wood beam in a position
such that the composite shape is symmetric about the z axis, as
shown in the sketch of the beam cross section (Figure P8.50). De-
termine the maximum bending stresses produced in both the wood
and the steel if a bending moment of M, = +50 kip-in. is applied
about the z axis. Assume that E,,q = 2,000 ksi and Ey. =

30,000 ksi.
’|
4 in. z 8 in.
0.25 in. thick
3in.

FIGURE P8.50

P8.51 A glue-laminated wood beam is reinforced by carbon
fiber reinforced plastic (CFRP) material bonded to its bottom
surface. The cross section of the composite beam is shown in
Figure P8.51b. The elastic modulus of the wood is 1,700 ksi, and

the elastic modulus of the CFRP is 23,800 ksi. The simply sup-
ported beam spans 24 ft and carries two concentrated loads P,
which act at the quarter-points of the span (Figure P8.51a). The
allowable bending stresses of the wood and the CFRP are 2,400 psi
and 175,000 psi, respectively. Determine the largest acceptable
magnitude for the concentrated loads P. (You may neglect the
weight of the beam in your calculations.)

Ai B C &ID

L 6 ft 12 ft 6 ft J

FIGURE P8.51a

5.5 in.

12 in.

%%@M%%
gl

BT
=~
e !
CFRP | T
3in. % .

FIGURE P8.51b

8.7 Bending Due to Eccentric Axial Load

As discussed in Chapters 1, 4, and 5, an axial load whose line of action passes through the
centroid of a cross section (termed a centric axial load) creates normal stress that is uni-
formly distributed across the cross-sectional area of a member. An eccentric axial load is
a force whose line of action does not pass through the centroid of the cross section. When
an axial force is offset from a member’s centroid, bending stresses are created in the mem-
ber in addition to the normal stresses caused by the axial force. Analysis of this type of
bending, therefore, requires consideration of both axial stresses and bending stresses. Many
structures are subjected to eccentric axial loads, including common objects such as sign-
posts, clamps, and piers.

The normal stresses acting on the section containing C are to be determined for the
object shown in Figure 8.13a. The analysis presented here assumes that the bending



(a) Configuration of bending member (b) Free-body diagram
FIGURE 8.13 Bending due to an eccentric axial load.

member has a plane of symmetry (see Figure 8.2a) and that all loads are applied in the
plane of symmetry.

The line of action of the axial load P does not pass through centroid C; therefore, this
object (between points H and K) is subjected to an eccentric axial load. The eccentricity
between the line of action of P and the centroid C is denoted by the symbol e.

The internal forces acting on a cross section can be represented by an internal
axial force F acting at the centroid of the cross section and an internal bending moment
M acting in the plane of symmetry, as shown on the free-body diagram cut through C
(Figure 8.13b).

Both the internal axial force F and the internal bending moment M produce normal
stresses (Figure 8.14). These stresses must be combined to determine the complete stress
distribution at the section of interest. The axial force F' produces a normal stress o, = F/A
that is uniformly distributed over the entire cross section. The bending moment M produces
a normal stress, given by the flexure formula o, = —My/I,, that is linearly distributed over
the depth of the cross section. The complete stress distribution is obtained by superposing
the stresses produced by F and M as

O =N T T (8.19)

The sign conventions for F and M are the same as those presented in previous chapters.
A positive internal axial force F produces tension normal stresses. A positive internal bend-
ing moment produces compression normal stresses for positive values of y.

An axial force whose line of action is separated from the centroid of the cross section by
an eccentricity e produces an internal bending moment of M = P X e. Thus, for an
eccentric axial force, Equation (8.19) can also be expressed as

_F (Pe)y
A I

%

5, B S
> b

(8.20)

Internal Uniform Stress caused Complete
axial force stress due by bending stress
and bending to axial moment distribution
moment force

FIGURE 8.14 Normal stresses caused by eccentric axial load.



BENDING Neutral Axis Location

Whenever an internal axial force F acts simultaneously with an internal bending mo-
ment M, the neutral axis is no longer located at the centroid of the cross section. In fact,
depending upon the magnitude of the internal axial force F, there may be no neutral axis
at all. All normal stresses on the cross section may be either tension stresses or compres-
sion stresses. The location of the neutral axis can be determined by setting o, = 0 in
Equation (8.19) and solving for the distance y measured from the centroid of the cross
section.

Limitations

The stresses determined by this approach assume that the internal bending moment in the
flexural member can be accurately calculated from the original undeformed dimensions. In
other words, the deflections caused by the internal bending moment must be relatively
small. If the flexural member is relatively long and slender, the lateral deflections caused by
the eccentric axial load may significantly increase the eccentricity e, which amplifies the
bending moment.

The use of Equations (8.19) and (8.20) should be consistent with Saint-Venant’s
Principle. In practice, this means that stresses cannot be accurately calculated near points
H and K in Figure 8.13a.

EXAMPLE 8.8

13 in. A structural member with a rectangular cross section 10 in. wide by 6 in. deep sup-
ports a 30-kip concentrated load as shown. Determine the distribution of normal
l30 kips  gstresses on section a—a of the member.

! Plan the Solution
| The internal forces acting on section a—a must be determined at the outset. The
| principle of equivalent force systems will be used to determine a force and a mo-
| ment acting at the section of interest that is equivalent to the single 30-kip concen-
| trated load acting on the top of the structural member. Once the equivalent force
| and moment have been determined, the stresses produced at section a—a can be
a a computed.
10 in.

SOLUTION
Equivalent Force and Moment
The cross section of the structural member is rectangular; therefore, by sym-
metry, the centroid must be located 5 in. from the left side of the structural
member. The 30-kip concentrated load is located 13 in. from the left side of
the structural member. Consequently, the concentrated load is located 8 in. to the
right of the centroidal axis of the structural member. The distance between the line
of action of the load and the centroidal axis of the member is commonly termed the
eccentricity e. In this instance, the load is said to be located at an eccentricity of
e = 8in.

Since its line of action does not coincide with the centroidal axis of the structural
member, the 30-kip load produces bending in addition to axial compression. The




section a—a that is required for equivalence is equal to the product of the load and
the eccentricity e. Therefore, an internal force of F = 30 kips and an internal
bending moment of M = F X e = (30 kips)(8 in.) = 240 kip-in. acting at the
centroid of section a—a are equivalent to the 30-kip load applied to the top of the

\
structural member. )
F =30 kips
M = 240 kip-in.
Section Properties
The centroid location is known from symmetry. The area of the cross section is H K

A = (10 in.)(6 in.) = 60 in.2. The bending moment M = 240 kip-in. acts about the

z axis; therefore, the moment of inertia about the z axis must be determined in order il X
to calculate the bending stresses:
(6 1n.)(10 in.)?
R A S Z

I, =500 in4
12

equivalent force at section a—a is simply equal to the 30-kip load. The moment at yL e=8in. l 30 kips
\
\

Axial Stress
On section a—a, the internal force F' = 30 kips (which acts along the y centroidal axis)
produces a normal stress of

F 30 kips .
(Taxml = Z = 60 in_Z = 0.5 kSl (C)

which acts vertically (i.e., in the y direction). The axial stress is a compression normal
stress that is uniformly distributed over the entire section.

Bending Stress
The magnitude of the maximum bending stress on section a—a can be determined from
the flexure formula: 1.9 ksi (T)
Combined DW
I . stress
o = Mc _ (240 klp-lfl-)(5 LD 2.9 ksi (C)
1 500 in.#

z 2.4 ksi (T)
. . . e . . Bending
The bending stress acts in the vertical direction (i.e., in the y direction), and it increases stress .
. . . . . . 2.4 ksi (C)
linearly with distance from the axis of bending. In the coordinate system defined for
this problem, distance from the axis of bending is measured in the x direction from the Axial

2 axis. stress m 0.5 ksi (C)
The sense of the bending stress (either tension or compression) can be readily

determined by inspection, based on the direction of the internal bending moment M. In F =30 kips

this instance, M causes compression bending stresses on the K side of the structural ﬁ= 240 kip-in

member and tension bending stresses on the H side.

H K

Combined Normal Stresses

Since the axial and bending stresses are normal stresses that act in the same direction
(i.e., the y direction), they can be directly added to give the combined stresses acting on
section a—a. The combined normal stress on side H of the structural member is

Oy = Opial T Openg = —0.5ksi + 2.4 ksi = +1.9 ksi = 1.9 ksi (T) Ans.




and the combined normal stress on side K is

Ok = Opint + Tveng = —0.5 ksi — 2.4 ksi = —2.9 ksi = 2.9 ksi (C) Ans.

Neutral Axis Location

For an eccentric axial load, the neutral axis (i.e., the location with zero stress) is not
located at the centroid of the cross section. Although not requested in this example, the
location of the axis of zero stress can be determined from the combined stress distribu-
tion. By the principle of similar triangles, the combined stress is zero at a distance of
3.958 in. from the left side of the structural member.

EXAMPLE 8.9

12 mm The C-clamp shown is made of an alloy that
has a yield strength of 324 MPa in either ten-
sion or compression. Determine the allowable

4 mm clamping force that the clamp can exert if a
factor of safety of 3.0 is required.

12mm Flan the Solution
The location of the centroid for the tee-
shaped cross section must be determined at
the outset. Once the centroid has been lo-

LﬂnJ cated, the eccentricity e of the clamping force

. P can be determined and the equivalent force
12 mm Cross section a—a. and moment acting on section a—a can be
" established. Expressions for the combined
T axial and bending stresses, written in terms of the unknown P, can be set
6 mm l 4 mm equal to the allowable normal stress. From these expressions, the maxi-
mum allowable clamping force can be determined.
4
Section Properties
10 mm 12 mm The centroid for the tee-shaped cross section is located as shown in the
sketch on the left. The cross-sectional area is A = 96 mm?, and the moment
K of inertia about the z centroidal axis can be calculated as I, = 2,176 mm?,
4 mm Allowable Normal Stress

The alloy used for the clamp has a yield strength of 324 MPa. Since a
factor of safety of 3.0 is required, the allowable normal stress for this
material is 108 MPa.

Internal Force and Moment

A free-body diagram cut through the clamp at section a—a is shown. The
internal axial force F is equal to the clamping force P. The internal bend-
ing moment M is equal to the clamping force P times the eccentricity e
between the centroid of section a—a and the line of action of P, which is
e =40 mm + 6 mm = 46 mm.




Axial Stress
On section a—a, the internal force F' (which is equal to the clamping force P) produces a
normal stress of

. F_P__P
ol AT A 96 mm?2

This normal stress is uniformly distributed over the entire cross section. By inspection, the
axial stress is tension.

Bending Stress

Since the tee shape is not symmetrical about its z axis, the bending stress on section a—a
at the top of the flange (point H) will be different from the bending stress at the bottom of
the stem (point K). At point H, the bending stress can be expressed in terms of the clamp-
ing force P as

My _ P@#6 mm) (6 mm) P

I 2,176 mm*  7.88406 mm?2

z

a-bend,H -

By inspection, the bending stress at point H will be tension.
The bending stress at point K can be expressed as

@ _ P@6 mm)(10 mm) P
1 2,176 mm* 4.73043 mm?2

o-bend,K =
z

By inspection, the bending stress at point K will be compression.

Axial Bending Combined
stress stress stress

— Exl e

Combined Stress at H
The combined stress at point H can be expressed in terms of the unknown clamping
force P as

P P 1 1 P

+ =P + =
96 mm?  7.88406 mm? 96 mm?  7.88406 mm? 7.28572 mm?

Ucomb, H —

Note that the axial and bending stress expressions are added since both are tension
stresses. This expression can be set equal to the allowable normal stress to obtain one pos-
sible value for P:

; <= 108 MPa = 108 N/mm?2 P =787 N (a)
7.28572 mm?




Combined Stress at K
The combined stress at point K is the sum of a tension axial stress and a compression
bending stress:

P P 1 1 P

Ucomb, K = -

96 mm?  4.73043 mm? 96 mm?  4.73043 mm? T 4.97560 mm?

The negative sign indicates that the combined stress at K is a compression normal stress. A
second possible value for P can be derived from the expression that follows. The negative
signs can be omitted here because we are interested only in the magnitude of P.

__r = 108 MPa = 108 N/mm? S.P=537TN (b)
4.97560 mm?

Controlling Clamping Force
The allowable clamping force is the lesser of the two values obtained from Equations (a)
and (b). For this clamp, the maximum allowable clamping force is P = 537 N. Ans.

ies Example M8.20

A C-clamp is expected to exert a maximum total clamping force of 400 N. The clamp cross
section is 20 mm wide and 10 mm thick. Determine the maximum tension and compression
stresses in the clamp.

ies Example M8.21

precast concrete beam A precast concrete beam is supported by a corbel on a concrete column.
The reaction force at the end of the beam is 1,200 kN. This reaction force
acts on the corbel at a distance of 240 mm from the column centerline.
ot Determine the stresses at the base of the column at points @ and b.
colum




les Example M8.22

A steel inverted tee shape is used as a boom for a wall bracket jib
crane that can lift loads of up to 5 kN. The boom is pinned to the
wall at A. At point B, the boom is supported by steel rod BC. The pin
at A is located on the centroidal axis of the inverted tee, but at B, the
steel rod is connected to the tee 65 mm above the centroidal axis.
When the 5-kN crane load is in the position shown, determine the nor-
mal stress at point H, located at the topmost edge of the inverted tee,
1.0 m from A.

M8.21 Determine the normal stresses at A and B.

l12kN

thickness
14 mm

A

FIGURE M8.20

thickness
72 mm

FIGURE M8.21



M8.22 Answer 10 questions concerning the structure shown IM8.23 Pipe AB (outside diameter and wall thickness specified)
subjected to various loads. supports a uniformly distributed load of w. Determine the reaction

FIGURE M8.22

forces at pin A, the axial force in member (1), and the normal stresses
at points H and K, located at a specified distance above pin A.

5.00 m

11 kN/m

FIGURE M8.23

PROBILEMS

P8.52 A steel pipe assembly supports a concentrated load of P8.53 The screw of a clamp exerts a compressive force of 350 Ib

22 kN as shown

in Figure P8.52. The outside diameter of the pipe on the wood blocks. Determine the normal stresses produced at

is 142 mm, and the wall thickness is 6.5 mm. Determine the normal  points H and K. The clamp cross-sectional dimensions at the section
stresses produced at points H and K. of interest are 1.25 in. by 0.375 in. thick.

600

FIGURE P8.52

FIGURE P8.53

P8.54 A 30-mm-diameter steel rod is formed into a machine part
with the shape shown in Figure P8.54. A load of P = 2,500 N is applied



to the ends of the part. If the allowable normal stress is limited to
40 MPa, what is the maximum eccentricity e that may be used for
the part?

FIGURE P8.54

P8.55 The offset link shown in Figure P8.55 is subjected to a
load of P = 1,100 Ib. The link has a rectangular cross section with
a thickness of 0.375 in. at section a—a. A minimum clearance of y =
1.5 in. is specified for this link. If the tension normal stress must be
limited to 15,000 psi at section a—a, calculate the minimum depth d
required for the link.

FIGURE P8.55

P8.56 The machine component shown in Figure P8.56 has a
rectangular cross section with a depth of d = 3.00 in. and a thick-
ness of 0.75 in. The component is subjected to a tension load of
P = 9,000 Ib. A milling operation will be used to remove a por-
tion of the cross section in the central region of the component.
If the allowable tension stress at section a—a must be limited to
30,000 psi, determine the maximum depth of cut y that is per-
missible.

—
P | \ a y -’ P
-— | d e

FIGURE P8.56

P8.57 A tubular steel column CD supports horizontal cantile-
ver arm ABC, as shown in Figure P8.57. Column CD has an
outside diameter of 10.75 in. and a wall thickness of 0.365 in.
Determine the maximum compression stress at the base of col-
umn CD.

700 1b
13 ft |

900 Ib
wof |

16 ft

FIGURE P8.57

P8.58 Determine the normal stresses acting at points H
and K for the structure shown in Figure P8.58a. The cross-
sectional dimensions of the vertical member are shown in Figure
P8.58b.

1,200 1b l

in.

FIGURE P8.58a

8 in.

z
FIGURE P8.58b Cross section.



P8.59 A W18 X 35 standard steel shape is subjected to a ten-
sion force P that is applied 15 in. above the bottom surface of
the wide-flange shape, as shown in Figure P8.59. If the tension
normal stress of the upper surface of the W-shape must be lim-
ited to 18 ksi, determine the allowable force P that may be ap-
plied to the member.

P P
15 in. 15 in.
b o

FIGURE P8.59

P8.60 A WT305 X 41 standard steel shape is subjected to a
tension force P that is applied 250 mm above the bottom surface
of the tee shape, as shown in Figure P8.60. If the tension normal
stress of the upper surface of the WT-shape must be limited to
150 MPa, determine the allowable force P that may be applied to
the member.

WT305 x 41

FIGURE P8.60

P8.61 A pin support consists of a vertical plate 60 mm wide by
10 mm thick. The pin carries a load of 1,200 N. Determine the
normal stresses acting at points H and K for the structure shown in
Figure P8.61.

Front View Perspective View

HBE K

45 mm

10mm—)|

30 mm

FIGURE P8.61

1,200 N 1,200 N

P8.62  The bracket shown in Figure P8.62 is subjected to a load
of P = 1,300 Ib. The bracket has a rectangular cross section with a
width of » = 3.00 in. and a thickness of t = 0.375 in. If the tension

normal stress must be limited to 24,000 psi at section a—a, what is
the maximum offset distance y that can be used?

FIGURE P8.62

P8.63 A load of P = 2,400 Ib is applied parallel to the longitu-
dinal axis of a rectangular structural tube, as shown in Figure P8.63a.
The cross-sectional dimensions of the structural tube, are given in
Figure P8.63b. If a = 20 in. and b = 2 in., calculate the normal
stresses produced at points H and K.

y | a N
| | 1 ,
. e

FIGURE P8.63a

FIGURE P8.63b



P8.64 The tee shape shown in Figure P8.64b/65b is used as a
short post to support a load of P = 4,600 1b. The load P is ap-
plied at a distance of 5 in. from the surface of the flange, as
shown in Figure P8.64a/65a. Determine the normal stresses at
points H and K, which are located on section a—a.

P8.65 The tee shape shown in Figure P8.64b/65b is used as a
short post to support a load of P. The load P is applied at a dis-
tance of 5 in. from the surface of the flange, as shown in Figure
P8.64a/65a. The tension and compression normal stresses in the
post must be limited to 1,000 psi and 800 psi, respectively. De-
termine the maximum magnitude of load P that satisfies both the
tension and compression stress limits.

5in.

FIGURE P8.64a/65a

12 in.
1

Z

12 in.

[ AR S

H
FIGURE P8.64b/65b Cross-sectional dimensions.

P8.66 The tee shape shown in Figure P8.66b is used as a post
that supports a load of P = 25 kN, which is applied 400 mm from
the flange of the tee shape, as shown in Figure P8.66a. Determine
the magnitudes and locations of the maximum tension and com-
pression normal stresses within the vertical portion BC of the
post.

FIGURE P8.66a

mm

FIGURE P8.66b Cross-sectional dimensions.

P8.67 The steel pipe shown in Figure P8.67 has an outside
diameter of 195 mm, a wall thickness of 10 mm, an elastic
modulus of £ = 200 GPa, and a coefficient of thermal expan-
sion of @ = 11.7 X 1079/°C. Using a = 300 mm, b = 900 mm,
and 6 = 70°, calculate the normal strains at H and K after a load
of P = 40 kN has been applied and the temperature of the pipe
has been increased by 25°C.

a
e;/
b P
H K

FIGURE P8.67



P8.68 The U-shaped aluminum bar shown in Figure P8.68 is
used as a dynamometer to determine the magnitude of the ap-
plied load P. The aluminum [E = 70 GPa] bar has a square cross
section with dimensions ¢ = 30 mm and b = 65 mm. The strain
on the inner surface of the bar was measured and found to be
955 we. What is the magnitude of load P?

-_— ———— e
P P
b
J :
Strain gage
FIGURE P8.68

P8.69 A short length of a rolled-steel [E = 29 X 103 ksi]
column supports a rigid plate on which two loads P and Q are
applied, as shown in Figure P8.69a/70a. The column cross sec-
tion (Figure P8.69b/70b) has a depth of d = 8.0 in., an area of
A = 5.40 in.2, and a moment of inertia of . = 57.5 in.*. Normal
strains are measured with strain gages H and K, which are at-
tached on the centerline of the outer faces of the flanges. Load P
is known to be 35 kips, and the strain in gage H is measured as
ey = +120 X 107¢ in./in. Using @ = 6.0 in., determine

(a) the magnitude of load Q.
(b) the expected strain reading for gage K.

P8.70 A short length of a rolled-steel [E = 29 X 103 ksi]
column supports a rigid plate on which two loads P and Q are

applied, as shown in Figure P8.69a/70a. The column cross sec-
tion (Figure P8.695/70b) has a depth of 4 = 8.0 in., an area of
A = 5.40in.2, and a moment of inertia of I, = 57.5 in.%. Normal
strains are measured with strain gages H and K, which are
at tached on the centerline of the outer faces of the flanges. The
strains measured in the two gages are g5 = —530 X 10~ in./in.
and eg = —310 X 107%in./in. Using a = 6.0 in., determine the
magnitudes of loads P and Q.

FIGURE P8.69a/70a

Gage H
x

Cross section

FIGURE P8.69b/70b

8.8 Unsymmetric Bending

In Sections 8.1 through 8.3, the theory of bending was developed for prismatic beams.
In deriving this theory, beams were assumed to have a longitudinal plane of symmetry
(Figure 8.2a), which was termed the plane of bending. Furthermore, loads acting on
the beam as well as the resulting curvatures and deflections were assumed to act only
in the plane of bending. If the beam cross section is unsymmetric or if the loads on
the beam do not act in the plane of bending, then the theory of bending developed in
Sections 8.1 through 8.3 is not valid.

Consider the following thought experiment: The unsymmetric flanged cross section
shown in Figure 8.15a (termed a zee section) is subjected to equal magnitude bending
moments M, that act as shown about the z axis. Further, suppose that the beam bends only
in the x—y plane in response to M, and that the z axis is the neutral axis for bending. If this
supposition is correct, then the bending stresses shown in Figure 8.15b will be produced in
the zee section. Compression bending stresses will occur above the z axis, and tension
bending stresses will occur below the z axis.



Flange

j—

Compression

MZ
M, bending stress

Tension
bending stress

(a) Equal magnitude bending (b) Bending stresses produced in the zee (c¢) Resultant forces produced by the bending
moments M, applied to the section if bending were to occur in the stresses in the flanges
zee section x—y plane only

FIGURE 8.15 Unsymmetric bending thought experiment.

Next, consider the stresses that act in the flanges of the zee section. Bending
stresses will be uniformly distributed across the width of each flange. The internal re-
sultant force of the compression bending stresses acting in the top flange will be termed
F (Figure 8.15¢). Its line of action passes through the midpoint of the flange (in the
horizontal direction) at a distance of z¢ from the y axis. Similarly, the internal resultant
force of the tension bending stresses in the bottom flange will be termed F7, and its line
of action is located a distance of z; from the y axis. Since resultant forces F- and Fy are
equal in magnitude, but act in opposite directions, they form an internal couple, which
creates a bending moment about the y axis. This internal moment about the y axis
(i.e., acting in the x—z plane) is not counteracted by any external moment (since the
applied moments M, act about the z axis only); therefore, equilibrium is not satisfied.
Consequently, pending of the unsymmetric beam canpot occur solely in the plane of the In this context, the term
applied loads (i.e., the x—y plane). This thought experiment shows that the unsymmetric arbitrary cross section means
beam must bend both in the plane of the applied moments M, (i.e., the x—y plane) and in  ghapes that may not have
the out-of-plane direction (i.e., the x—z plane). axes of symmetry.

Prismatic Beams of Arbitrary Cross Section

A more general theory of bending is required for beams having an arbitrary cross
section. We will assume that the beam is subjected to pure bending, that plane cross sections
before bending remain plane after bending, and that bending stresses remain elastic. The
cross section of the beam is shown in Figure 8.16, and the longitudinal axis of the beam
is defined as the x axis. In this derivation, the y and z axes will be assumed to be oriented
vertically and horizontally, respectively. However, these axes may exist at any orientation,
provided that they are orthogonal.

Bending moments M, and M, will be assumed to act on the beam, creating beam cur-
vature in the x—z and x—y planes, respectively. The bending moments create normal stresses
oy that are distributed linearly above and below the neutral axis n—n. As shown in the pre-  FIGURE 8.16 Bending of a
ceding thought experiment, loads acting on an unsymmetrical beam may produce bending  beam with an arbitrary cross
both within and perpendicular to the plane of loading. section.




BENDING

Moments of inertia and the
product of inertia for areas are
reviewed in Appendix A.

Let 1/p, denote the beam curvature in the x—y plane and 1/p, denote the curvature in
the x—z plane. Since cross sections that are planar before bending remain planar after bend-
ing, the normal strain in the longitudinal direction &, at any location (y, z) in the beam cross
section can be expressed as

e Y _ 2

* p. Py
If the bending is elastic, then the bending stress o is proportional to the bending strain, and
the stress distribution over the cross section can be defined by
Ey Ez

o =Fe = —— a
P Py (@)

To satisfy equilibrium, the resultant of all bending stresses must reduce to zero net axial
force as

fA og.dA =0 (b)

and the following moment equations must be satisfied:

[ zoda = m, ©
A

. yoda = —m, d

Substitute the expression for o, given by Equation (a) into Equation (b) to obtain

YLz
p- Py

1 1
A=— [ yda + — [ zaa =
d pzfAyd +pyfAzd 0| (o

This equation can be satisfied only if the neutral axis n—n passes through the centroid of the
cross section.
Substitution of Equation (a) into Equation (c) gives

B = 8 _E (o
fAz[_E—p—y]dA_—pfAysz ; [ 2da = m, )

but the integral terms are simply the moment of inertia about the z axis and the product of
inertia, respectively:

I :Lzsz I, :j;ysz

Therefore, Equation (f) can be rewritten as

EI EI
= _ (8)
p. Py
Similarly, Equation (a) can be substituted into Equation (d) to give
EI EI
—t+ K =M (h)
P, Py

where
I, = 2 dA



Equations (g) and (h) can be solved simultaneously to derive expressions for the curvatures
in the x—y and x—z planes, respectively, due to bending moments M, and M.

1 MI + M, 1 M+ MI, _
p.  E(LL—12) P E(LL —I2) M

These curvature expressions can be substituted into Equation (a) to give a general relation-
ship for the bending stresses produced in a prismatic beam of arbitrary cross section sub-
jected to bending moments M, and M_:

(MLt ML)y (MLt ML)

zlyz
o 8.21)
LI =15, I, 1%,
or
Iz—1 1 y+1 2z
% = [121 _;Zzy]My +[ = ]MZ (8.22)
yiz yz yiz yz

Neutral Axis Orientation

The orientation of the neutral axis must be determined in order to locate points in the cross
section where the normal stress has a maximum or minimum value. Since ¢ is zero on the
neutral surface, the orientation of the neutral axis can be determined by setting Equation (8.21)
equal to zero:

—(MZIy + Mylyz)y + (MyIZ + leyz)z =0

Solving for y then gives
M, + M1,

Y=t
MI, + M,

which is the equation of the neutral axis in the y—z plane. If the slope of the neutral axis is
expressed as dy/dz = tan (3, the orientation of the neutral axis is given by

M+ M1

anf = i I
M.I, + M,I,

(8.23)

Beams with Symmetric Cross Sections

If a beam cross section has at least one axis of symmetry, then the product of inertia for the
cross section is /,, = 0. In this case, Equations (8.21) and (8.22) reduce to

Mz M
g =t L (8.24)
I I,
and the neutral axis orientation can be expressed by
an 8 = M,I, (8.25)

M,

UNSYMMETRIC BENDING



BENDING Notice that if the loading acts entirely in the x—y plane of the beam, then M, = 0 and Equa-
tion (8.24) reduces to
M.y
o = ——
X IZ
which is identical to the elastic flexure formula [Equation (8.7)] developed in Section 8.3.
Equation (8.24) is useful for the flexural analysis of many common cross-sectional
shapes (e.g., rectangle, W-shape, C-shape, WT-shape) that are subjected to bending moments
about two axes (i.e., M, and M.).

Principal Axes of Cross Sections

Since the principal axes are In the preceding derivation, the y and z axes were assumed to be oriented vertically and
orthogonal, if either the y or z horizontally, respectively. However, any pair of orthogonal axes may be taken as y and z in
axis is a principal axis, thenthe  ysing Equations (8.21) through (8.25). For any cross section, it can be shown that there are
other axis is automatically a always two orthogonal centroidal axes for which the product of inertia 7, = 0. These axes

principal axis. are called the principal axes of the cross section, and the corresponding planes of the beam

are called the principal planes of bending. For bending moments applied in the principal
planes, bending occurs only in those planes. If a beam is subjected to a bending moment
that is not in a principal plane, then that bending moment can always be resolved into com-
ponents that coincide with the two principal planes of the beam. Then, by superposition,
the total bending stress at any (3, z) coordinate in the cross section can be obtained by alge-
braically adding the stresses produced by each moment component.

Limitations

The preceding discussion holds rigorously only for pure bending. During bending, shear
stress and shear deformations will also occur in the cross section; however, these shear
stresses do not greatly affect the bending action, and they can be neglected in the calcula-
tion of bending stresses by Equations (8.21) through (8.25).

EXAMPLE 8.10

A standard steel C180 X 22 channel shape is subjected to a resultant bending

135 mm 1 moment of M = 5 kN-m oriented at an angle of 13° with respect to the z axis,
Het— as shown. Calculate the bending stresses at points H and K and determine the
e orientation of the neutral axis.
C180x 22 Plan the Solution
f The section properties for the C180 X 22 channel shape can be obtained from
z 178mm  Appendix B. Moment components in the y and z directions will be computed

from the magnitude and orientation of the resultant bending moment. Since
5kN-m  13° the channel shape has one axis of symmetry, the bending stresses at points H
and K will be calculated from Equation (8.24) and the orientation of the neu-
B tral axis will be calculated from Equation (8.25).

K
Ld SOLUTION
58.4 mm

Section Properties
From Appendix B, the moments of inertia of the C180 X 22 shape are I, =
570,000 mm* and 7, = 11.3 X 10° mm*. Since the shape has an axis of




symmetry, the product of inertia is I, = 0. The depth and flange width of the C180 X 22
shape are d = 178 mm and by = 58.4 mm, respectively, and the distance from the back of
the channel to its centroid is 13.5 mm. These dimensions are shown in the sketch.

Coordinates of Points H and K
The (y, z) coordinates of point H are

_ 178 mm
2

= 89 mm Zy = 13.5 mm

Yu

and the coordinates of point K are
~ 178 mm

= —89 mm g = 13.5 mm — 584 mm = —44.9 mm

Yk =

Moment Components
The bending moments about the y and z axes are

M M sinf = (5 kN-m) sin(—13°) = —1.12576 kN-m = —1.12576 X 10® N-mm

¥
M M cos® = (5 kN-m) cos(—13°) = 4.87185 kN-m = 4.87185 x 106 N-mm

Z

Bending Stresses at H and K
Since the C180 X 22 shape has an axis of symmetry, the bending stresses at points A and K
can be computed from Equation (8.24). At point H, the bending stress is

_ Mz My

I, L

(=1.12576 X 10® N-mm)(13.5 mm)  (4.87185 X 10° N-mm)(89 mm)

Oy

570,000 mm* 11.3 X 10® mm*
= —65.0 MPa = 65.0 MPa (C) Ans.
At point K, the bending stress is
_ MyZ sz
oy = —— — —=
1,1
~ (~1.12576 X 10° Nemm)(—44.9 mm) _ (4.87185 x 106 N-mm)(—89 mm)
570,000 mm* 11.3 X 10° mm* 13.5 mm— " Neutral
— +127.0 MPa = 127.0 MPa (T) Ans. ﬁpe o
H
Orientation of the Neutral Axis Compression :eeglsill(l’)lz
The orientation of the neutral axis can be calculated from Equation (8.25): bending stress stress
M, J
M I g g 6 4 z 178
R L (=1.12576 kN-m)(11.3 X 10° mm*) _4.580949 :
M. Iy (4.87185 kN-m) (570,000 mm*) ———— Y M,
: SkN-m  13° ‘
Tension
B =-=T717° 77,70 bending stress

Positive B angles are rotated clockwise from the z axis; therefore, the neutral axis
is oriented as shown in the sketch. The sketch has been shaded to indicate the
tension and compression normal stress regions of the cross section.

C )
58.4 mm

mm




EXAMPLE 8.11

} H
y
8in 9,000 Ib-in.
: @ >3
0.50 in.
K T @
4in
7 D
1
8 in M T
4 in.
)
R, — l
Ref. T
. . 0.50 in.
0.50 in. 3.50 in.
n o (yp)
0.859 in.
7 B
(1) g
8 in T
ZF <& !
2850 4 in.
. in. (2)
L |
Ref. T
. . 0.50 in.
0.50 in. 3.50 in.
m m | (typ)

An unequal-leg angle shape is subjected to a bending moment of M = 9,000 Ib-in.,
oriented as shown. Calculate the bending stresses at points H and K and determine
the orientation of the neutral axis.

Plan the Solution

To begin the calculation, we must first locate the centroid of the angle shape. Then,
the area moments of inertia /, and /, and the product of inertia /,, must be computed
with respect to the centroid location. The bending stresses at points H and K will
be computed from Equation (8.21), and the orientation of the neutral axis will be
computed from Equation (8.23).

SOLUTION

Section Properties

The angle shape will be subdivided into two areas (1) and (2) as shown. (Note:
The fillets will be neglected in this calculation.) The corner of the angle
(as indicated in the sketch) will be used as the reference location for calculations
in both the horizontal and vertical directions. The location of the centroid in the
vertical direction is calculated in the following manner:

A; Yi Yil;
(in.2) (in.) (in.3)
(D 4.00 4 16.00
2) 1.75 0.25 0.4375
5.75 16.4375
A. in.3
C_TuA_164375ind oo
A 5.75 in.2

Similarly, the location of the centroid in the horizontal direction is calculated from

A; % ZiA;

(in.2) (in.) (in.3)

(D) 4.00 —0.25 —1.00
2) 1.75 —2.25 —3.9375
5.75 —4.9375
__ZnA _ —4935ind oo

T A 5.75 in.2

The location of the centroid for the angle shape is shown in the sketch. Next, the moment
of inertia /,, is calculated for the angle shape about its y centroidal axis.

A, Z 1, Id;| d2A, 1,
(in.2) (in.) (in.%) (in.) (in.%) (in.%)
(D) 4.00 —0.25 0.0833 0.609 1.4835 1.5668
2) 1.75 —2.25 1.7865 1.391 3.3860 5.1725
6.7393




Similarly, the moment of inertia /, about the z centroidal axis is calculated from

A; Vi I; Id;| d?A; I
(in.2) (in.) (in.%) (in.) (in.%) (in.%)
(1) 4.00 4 21.3333 | 1.1410 5.2075 | 26.5408
2) 1.75 0.25 0.0365 | 2.6090 | 11.9120 | 11.9485
38.4893

and the product of inertia /,, about the centroid is calculated from

A; Yi % Y-y 2=z |1, = 0-y)z-z)A;
(in.2) (in.) (in.) (in.) (in.) (in.%)
(1) 4.00 4 —0.25 —1.1410 —0.6090 2.7795
) 1.75 0.25 —2.25 2.6090 1.3910 6.3510
9.1304

Coordinates of Points H and K
The (y, z) coordinates of point H are

yy = 8in. —2.859 in. = 5.141 in. zy = 0.859 in.
and the coordinates of point K are

ye = —2.859in.  z; = 0.859 in.

Moment Components
The bending moment acts about the —z axis; therefore,

M, = —9,000 Ib-in. and M, =0

Bending Stresses at H and K

Since the angle shape does not have an axis of symmetry, the bending stresses at points
H and K must be computed from Equation (8.21) or Equation (8.22). Since M, = 0,
Equation (8.22) is the more convenient of the two equations in this instance. The bend-
ing stress at point H is calculated from Equation (8.22) as

e
yz yz yiz yz
—(6.7393 in.4)(5.141 in.) + (9.1304 in.#)(0.859 in.)
(6.7393 in.4)(38.4893 in.*) — (9.1304 in*)’
+1,370 psi = 1,370 psi (T)

=0+

(=9,000 Ib-in.)




and the bending stress at point K is

o = [Izz - Iyzy]M N [—Iyy + IyZZ]M
y z
LI — 12 LI 12

—(6.7393 in.*)(—2.859 in.) + (9.1304 in.*)(0.859 in.)

=0+ ’ 5 (—9,000 Ib-in.)
0.859 in. (6.7393 in.#)(38.4893 in.*) — (9.1304 in.*)
H = —1,386 psi = 1,386 psi (C)
Tensi
bi;’fl‘i‘;’gf stress Orientation of the Neutral Axis
y The orientation of the neutral axis can be calculated from Equation (8.23):
8in. 53.6° .
9,000 lb-in. M,I, + M1, 0 + (9,000 Ib-in.)(9.1304 in.*

Z* >> tanf = —= = e : in.)( : in) _ 13548

5850 M.I, + M, (9,000 Ib-in.)(6.7393 in.*) + O

. m.

v o 0.50 in. ~.B =53.6°
K t .. . . .
Compression (p) Positive B angles are rotated clockwise from the z axis; therefore, the neutral axis
bending stress 4in. Neutral is oriented as shown in the sketch. The sketch has been shaded to indicate the
axis tension and compression normal stress regions of the cross section.
P8.71 A beam with a box cross section is subjected to a resul- . 7 in. .
tant moment magnitude of 2,100 N-m acting at the angle shown in
Figure P8.71. Determine l y %
(a) the maximum tension and the maximum compression bending 125n | I
stresses in the beam. ’ '
(b) the orientation of the neutral axis relative to the +z axis. T
Show its location on a sketch of the cross section. ‘
9 in.
R p— 2,100 N-m
y <1 550
22 kip-ft
7] 30°
K
90 mm g
Z
*)‘ L— 0.75 in.
_ 5 mm
(typ) FIGURE P8.72
-/
55 mm

FIGURE P8.71 P8.73 A beam with a box cross section is subjected to a resul-

tant moment magnitude of 75 kip-in. acting at the angle shown in
P8.72 The moment acting on the cross section of the T-beam has ~ Figure P8.73. Determine

a magnitude of 22 kip-ft and is oriented as shown in Figure P8.72. (a) the bending stress at point H.

Determine (b) the bending stress at point K.
(a) the bending stress at point H. (c) the maximum tension and the maximum compression bending
(b) the bending stress at point K. stresses in the beam.

(c) the orientation of the neutral axis relative to the +z axis; show  (d) the orientation of the neutral axis relative to the +z axis.
its location on a sketch of the cross section. Show its location on a sketch of the cross section.



y
75 kip-in.
20°
K
Z \
z \ in.
0.375 in.
PASESR T
L (typ)
H
6 in.
FIGURE P8.73

P8.74 The moment acting on the cross section of the wide-
flange beam has a magnitude of M = 12 kN-m and is oriented as
shown in Figure P8.74/75. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c) the orientation of the neutral axis relative to the +z axis. Show
its location on a sketch of the cross section.

P8.75 For the cross section shown in Figure P8.74/75, deter-
mine the maximum magnitude of the bending moment M so that
the bending stress in the wide-flange shape does not exceed
165 MPa.

35°
z 210 mm

<— 10 mm

! |
K

210 mm

FIGURE P8.74/75

P8.76 The unequal-leg angle is subjected to a bending moment
of M, = 20 kip-in. that acts at the orientation shown in Figure
P8.76/77. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c) the maximum tension and the maximum compression bending
stresses in the cross section.

(d) the orientation of the neutral axis relative to the +z axis; show
its location on a sketch of the cross section.

P8.77 For the cross section shown in Figure P8.76/77, deter-
mine the maximum magnitude of the bending moment M so that
the bending stress in the unequal-leg angle shape does not exceed
24 ksi.

75 in.

A

M. 4.0 in.

0.375 in. 1

FIGURE P8.76/77

P8.78 The moment acting on the cross section of the zee shape
has a magnitude of M = 40 kN-m and is oriented as shown in
Figure P8.78. Determine

(a) the bending stress at point H.

(b) the bending stress at point K.

(c) the maximum tension and the maximum compression bending
stresses in the cross section.

(d) the orientation of the neutral axis relative to the +z axis.
Show its location on a sketch of the cross section.

100 mm

H |
T 25 mm
y
15°
4 \’ 200 mm
40 kN-m
16 mm ——> [«—
1 25 mm
« I
100 mm

FIGURE P8.78

P8.79 The moment acting on the cross section of the unequal-
leg angle has a magnitude of 14 kN-m and is oriented as shown in
Figure P8.79. Determine

(a) the bending stress at point H.
(b) the bending stress at point K.



(c) the maximum tension and the maximum compression bending  (c) the maximum tension and the maximum compression bending

stresses in the cross section.

stresses in the cross section.

(d) the orientation of the neutral axis relative to the +z axis. Show  (d) the orientation of the neutral axis relative to the +z axis.
its location on a sketch of the cross section. Show its location on a sketch of the cross section.

P8.81 For the cross section shown in Figure P8.80/81, deter-

150 mm mine the maximum magnitude of the bending moment M so that
y the bending stress in the zee shape does not exceed 24 ksi.
" K
— 2.50 in.
7 — D
14 kN-m H
200 mm .
19 mm 0.50 in._
P
(typ) y
FIGURE P8.79 5in. z > M
— [«=—0.351in.
P8.80 The moment acting on the cross section of the zee shape L K
has a magnitude of M = 4.75 kip-ft and is oriented as shown in 0.50 in. |

Figure P8.80/81. Determine

(a) the bending stress at point H.
(b) the bending stress at point K.

For a rectangular beam, the
nominal bending stress used

in Equation (8.26) is the stress at
its minimum depth. For a
circular shaft, the nominal
bending stress is computed for
its minimum diameter.

FIGURE P8.80/81

8.9 Stress Concentrations Under Flexural Loadings

In Section 5.7, it was shown that the introduction of a circular hole or other geometric dis-
continuity into an axially loaded member could cause a significant increase in the stress
near the discontinuity. Similarly, increased stresses occur near any reduction in diameter of
a circular shaft subjected to torsion. This phenomenon, termed stress concentration, occurs
in flexural members as well.

In Section 8.3, it was shown that the normal stress magnitude in a beam of uniform
cross section in a region of pure bending is given by Equation (8.10) as

O = — (8.10)

The bending stress magnitude computed from Equation (8.10) is termed a nominal stress
because it does not account for the stress-concentration phenomenon. Near notches,
grooves, fillets, or any other abrupt change in cross section, the normal stress due to bend-
ing can be significantly greater. The relationship between the maximum bending stress at
the discontinuity and the nominal stress computed from Equation (8.10) is expressed in
terms of a stress-concentration factor K as

K = % (8.26)

The nominal stress used in Equation (8.26) is the bending stress computed for the mini-
mum depth or diameter of the flexural member at the location of the discontinuity. Since



the factor K depends only upon the geometry of the member, curves can be developed that
show the stress-concentration factor K as a function of the ratios of the parameters in-
volved. Such curves for notches and fillets in rectangular cross sections subjected to pure
bending are shown in Figures 8.17 and 8.18.! Similar curves for grooves and fillets in cir-

cular shafts subjected to pure bending are shown in Figures 8.19 and 8.20.2
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FIGURE 8.17  Stress-concentration factors K for bending of a flat bar with opposite
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FIGURE 8.18 Stress-concentration factors K for bending of a flat bar with shoulder fillets.
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FIGURE 8.19 Stress-concentration factors K for bending of a circular shaft with a
U-shaped groove.
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FIGURE 8.20 Stress-concentration factors K for bending of a stepped shaft with shoulder fillets.

EXAMPLE 8.12

A cantilever spring made of SAE 4340 heat-treated steel is 50 mm
thick. As shown in the figure, the depth of the rectangular cross sec-
T N 7 M tion is reduced from 80 mm to 40 mm, with fillets at the transition.
40 mm — D
v

A factor of safety of 2.5 with respect to fracture is specified for the
spring. Determine the maximum safe moment M for the spring if

80 mm

!
\ Radius r

(a) the fillet radius r is 4 mm.
(b) the fillet radius r is 12 mm.




SOLUTION

is 1,030 MPa. Thus, the allowable stress for the spring is
- o9y _ 1,034 MPa
ES 2.5
The moment of inertia 7 at the minimum spring depth is
(50 mm) @0 mm)3
12

1

of the stress-concentration factor K:

The ultimate strength o, for heat-treated SAE 4340 steel (see Appendix D for its properties)

= 413.6 MPa

= 266,667 mm*

The allowable bending-moment magnitude can be derived from Equation (8.26) in terms

Taiow! _ (413.6 N/mm?)(266,667 mm*) _ 5,514,574 Nmm _ 5,515 N-m

M =
allow Kc K (20 mm)

depth D to the reduced depth d is D/d = 80/40 = 2.0.

(a) Fillet Radius r = 4 mm

~5515Nm _ 5515 Nm
K 1.84

M

(b) Fillet Radius r = 12 mm

4y — 3515 N-m 5,515 Nem
K 1.38

With reference to the nomenclature used in Figure 8.18, the ratio of the maximum spring

A stress-concentration factor of K = 1.84 is obtained from Figure 8.18 with D/d = 2.0
and r/d = 4/40 = 0.10. The maximum allowable bending moment is thus

= 2,997 N-m

For a 12-mm fillet, r/d = 12/40 = 0.30, and thus, the corresponding stress-concentration fac-
tor from Figure 8.18 is K = 1.38. Accordingly, the maximum allowable bending moment is

= 3,996 N-m

K K

Ans.

Ans.

PROBILEMS

P8.82 A stainless-steel spring (shown in Figure P8.82/83) has
a thickness of 3/4 in. and a change in depth at section B from
D = 1.501n. to d = 1.25 in. The radius of the fillet between the two
sections is » = 0.125 in. If the bending moment applied to the
spring is M = 2,000 Ib-in., determine the maximum normal stress
in the spring.

(&)

9 (2) DM

\ cC
A B Radius r

— g —>
< Q>

FIGURE P8.82/83

P8.83 An alloy-steel spring (shown in Figure P8.82/83) has a
thickness of 25 mm and a change in depth at section B from
D =75 mm to d = 50 mm. If the radius of the fillet between the
two sections is » = 8 mm, determine the maximum moment that
the spring can resist if the maximum bending stress in the spring
must not exceed 120 MPa.

P8.84 The notched bar shown in Figure P8.84/85 is subjected
to a bending moment of M = 300 N-m. The major bar width is
D =75 mm, the minor bar width at the notches is d = 50 mm, and
the radius of each notch is » = 10 mm. If the maximum bending
stress in the bar must not exceed 90 MPa, determine the minimum
required bar thickness b.

P8.85 The machine part shown in Figure P8.84/85 is made of
cold-rolled 18-8 stainless steel. (See Appendix D for properties.)
The major bar width is D = 1.50 in., the minor bar width at the
notches is d = 1.00 in., the radius of each notch is r = 0.125 in.,



=¥

b
t
2 =
( Radius r

and the bar thickness is » = 0.25 in. Determine the maximum safe
moment M that may be applied to the bar if a factor of safety of
2.5 with respect to failure by yield is specified.

\ L
FIGURE P8.84/85

P8.86 The shaft shown in Figure P8.86/87 is supported at each end
by self-aligning bearings. The major shaft diameter is D = 2.00 in.,
the minor shaft diameter is d = 1.50 in., and the radius of the fillet
between the major and minor diameter sections is » = 0.125 in. The
shaft length is L = 24 in., and the fillets are located at x = 8§ in. Deter-
mine the maximum load P that may be applied to the shaft if the
maximum normal stress must be limited to 24,000 psi.

N

I L ‘

I 2 U
FIGURE P8.86/87

P
Radius r
/|

L I
2

P8.87 The C86100 bronze (see Appendix D for properties) shaft
shown in Figure P8.86/87 is supported at each end by self-aligning
bearings. The major diameter is D = 40 mm, the minor shaft diam-
eter is d = 25 mm, and the radius of the fillet between the major and
minor diameter sections is ¥ = 5 mm. The shaft length is L =
500 mm, and the fillets are located at x = 150 mm. Determine the
maximum load P that may be applied to the shaft if a factor of safety
of 3.0 is specified.

P8.88 The machine shaft shown in Figure P8.88/89 is made of
1020 cold-rolled steel. (See Appendix D for properties.) The
major shaft diameter is D = 1.000 in., the minor diameter is
d = 0.625 in., and the radius of the fillet between the major and
minor diameter sections is » = 0.0625 in. The fillet are located at
x =41in. from C. If a load of P = 125 1b is applied at C, determine
the factor of safety in the fillet at B.

Radius r P

FIGURE P8.88/89

P8.89 The machine shaft shown in Figure P8.88/89 is made of
1020 cold-rolled steel. (See Appendix D for properties.) The
major shaft diameter is D = 30 mm, the minor shaft diameter is
d = 20 mm, and the radius of the fillet between the major and
minor diameter sections is » = 3 mm. The fillets are located at
x = 90 mm from C. Determine the maximum load P that can be
applied to the shaft at C if a factor of safety of 1.5 is specified.

P8.90 The grooved shaft shown in Figure P8.90 is made of
C86100 bronze. (See Appendix D for properties). The major
diameter is D = 50 mm, the minor shaft diameter at the groove is
d = 34 mm, and the radius of the groove is = 4 mm. Determine
the maximum allowable moment M that may be applied to the
shaft if a factor of safety of 1.5 with respect to failure by yield is
specified.

MC DM
Radius r
FIGURE P8.90



Shear Stress In Beams
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- 9.1 Introduction

For beams subjected to pure bending, only tension and compression normal stresses are
developed in the flexural member. In most situations, however, loadings applied to a beam
create nonuniform bending; that is, internal bending moments are accompanied by internal
shear forces. As a consequence of nonuniform bending, shear stresses as well as normal
stresses are produced in the beam. In this chapter, a method will be derived for determining
the shear stresses produced by nonuniform bending. The method will also be adapted to
consider beams fabricated from multiple pieces joined together by discrete fasteners.

- 9.2 Resultant Forces Produced by Bending Stresses

Before developing the equations that describe beam shear stresses, it is instructive to
consider in more detail the resultant forces produced by bending stresses on portions of
the beam cross section. Consider the simply supported beam shown in Figure 9.1 in
which a concentrated load of P = 9,000 N is applied at the middle of a 2-m-long span.
The shear-force and bending-moment diagrams for this span and loading are shown.
For this investigation, we will arbitrarily consider a 150-mm-long segment BC of the
beam that is located 300 mm from the left support, as shown in Figure 9.1. The beam is
made up of two wood boards, each having the same elastic modulus. The lower board will

337




SHEAR STRESS IN BEAMS

100 mm

1

50 mm

120 mm

FIGURE 9.2 Beam cross-
sectional dimensions.

4.5 kN 4.5 kN

1m 1m

4.5 kN | |

—4.5 kN

FIGURE 9.1 Simply supported beam with concentrated load applied at midspan.

be designated as member (1), and the upper board will be designated as member (2). The
cross-sectional dimensions of the beam are shown in Figure 9.2.

The objective of this investigation is to determine the forces acting on member (1) at
sections B and C.

From the bending-moment diagram, the internal bending moments at sections B and
C are Mg = 1.350 kN-m and M~ = 2.025 kN-m, respectively. Both moments are positive;
thus, beam segment BC will be deformed as shown in Figure 9.3a. Compression normal
stresses will be produced in the upper half of the beam cross section, and tension normal
stress will be produced in the lower half. The bending stress distribution over the depth of
the cross section at these two locations can be determined from the flexure formula with the
use of a moment of inertia about the z centroidal axis of 1, = 33,750,000 mm?. The distribu-
tion of bending stresses is shown in Figure 9.3b.

To determine the forces acting on member (1), we will consider only those normal
stresses acting between points b and ¢ (on section B) and between points e and f (on
section C). At B, the bending stress varies from 1.0 MPa (T) at b to 3.0 MPa (T) at c. At C,
the bending stress varies from 1.5 MPa (T) at e to 4.5 MPa (T) at f.

From Figure 9.2, the cross-sectional area of member (1) is

A1 = (50 mm) (120 mm) = 6,000 mm?

To determine the resultant force at section B that acts on this area, the stress distribution can
be split into two components: a uniformly distributed portion having a magnitude of 1.0 MPa
and a triangular portion having a maximum intensity of (3.0 MPa — 1.0 MPa) = 2.0 MPa. By
this approach, the resultant force acting on member (1) at section B can be calculated as

1
Resultant Fg = (1.0 N/mm?2)(6,000 mm?2) + 5 (2.0 N/mm?2)(6,000 mm?)
= 12,000 N = 12 kN
Since the bending stresses are tensile, the resultant force acts in tension on section B.

Similarly, the stress distribution on section C can be split into two components:
a uniformly distributed portion having a magnitude of 1.5 MPa and a triangular portion having



a maximum intensity of (4.5 MPa — 1.5 MPa) = 3.0 MPa. The resul-
tant force acting on member (1) at section C is found from

RESULTANT FORCES PRODUCED
BY BENDING STRESSES

1
Resultant F = (1.5 N/mm?)(6,000 mm?) + 5 (3.0 N/mm?2)(6,000 mm?)

= 18,000 N = 18 kN

The resultant forces caused by the bending stresses on member (1)
are shown in Figure 9.3c. Notice that the resultant forces are not
equal in magnitude. Why are these resultant forces unequal? The
resultant force on section C is larger than the resultant force on sec-
tion B because the internal bending moment M- is larger than M.
The resultant forces Fy and F, will be equal in magnitude only
when the internal bending moments are the same on sections B and C.
Is member (1) of beam segment BC in equilibrium? This portion
of the beam is not in equilibrium, because XF, # 0. How much ad-
ditional force is required to satisfy equilibrium? An additional
force of 6 kN in the horizontal direction is required to satisfy equi-
librium for member (1). Where must this additional force be
located? All normal stresses acting on the two vertical faces (b—c and
e—f) have been considered in the calculations for F and F.. The
bottom horizontal face c—f'is a free surface that has no stress acting
on it. Therefore, the additional 6-kN horizontal force required to
satisfy equilibrium must be located on horizontal surface b—e, as
shown in Figure 9.4. This surface is the interface between member
(1) and member (2). What is the term given to a force that acts on
a surface parallel to its line of action? The 6-kN horizontal force
acting on surface b—e is termed a shear force. Notice that the 6-kN
force acts in the same direction as the resultants of the bending
stress—that is, parallel to the x axis.

What lessons can be drawn from this simple investigation?
In those beam spans where the internal bending moment is not con-
stant, the resultant forces acting on portions of the cross section will
be unequal in magnitude. Equilibrium of these portions can be satis-
fied only by an additional shear force that is developed internally in
the beam.

In the sections that follow, we will discover that this additional
internal shear force required to satisfy equilibrium can be developed
in two ways. The internal shear force can be the resultant of shear
stresses developed in the beam, or it can be provided by individual
fasteners such as bolts, nails, or screws.

Fe=18kN

FIGURE 9.4 Free-body diagram of member (1).

e b

1.350 kN-m 2.025 kN-m

B C
(a) Internal bending moments

3.0 MPa (C) 4.5 MPa (C)

y
L
1.0 MPa (T) 1.5 MPa (T)
30MPa(T) B C  45MPa(T)

(b) Bending stresses

y y h
ﬂ

x_ | |
Fg=12kN " '
g =
Fe=18kN
B c

(c) Bending stress resultant forces

FIGURE 9.3 Moments, stresses, and forces acting on
beam segment BC.



A beam segment is subjected to the internal bending moments
shown. The cross-sectional dimensions of the beam are given.

(a) Sketch a side view of the beam segment, and plot the
distribution of bending stresses acting at sections A and B.
Indicate the magnitude of key bending stresses in the
sketch.

(b) Determine the resultant forces acting in the x direction on
area (2) at sections A and B, and show these resultant forces
in the sketch.

30 mm ) 150 mm ) _ 30 mm
‘ ‘ ‘ ‘ (c) Is the specified area in equilibrium with respect to forces
acting in the x direction? If not, determine the horizontal
force required to satisfy equilibrium for the specified
100 mm area and show the location and direction of this force in
l l the sketch.
2) 30 mm
T Plan the Solution

After computing the section properties, the normal stresses pro-

duced by the bending moment will be determined from the flexure
formula. In particular, the bending stresses acting on area (2) will be calculated. From
these stresses, the resultant forces acting in the horizontal direction at each end of the
beam segment will be computed.

SOLUTION

(a) The centroid location in the z direction can be determined from symmetry. The centroid
location in the y direction must be determined for the U-shaped cross section. The
U-shape is subdivided into rectangular shapes (1), (2), and (3), and the y centroid
location is calculated from the following:

30 mm ) , 150 mm ) _ 30 mm Ai (mmz) Vi (mm) Vi Ai (mm3)
‘ ‘ ‘ ‘ (1) 3,000 50 150,000
) 4,500 15 67,500
100 mm 3) 3,000 50 150,000
5% i l 10,500 367,500
inm d O 30 mm
Ref. axis T T
15 mm _ XyA; 367,500 mm3
y= = = 35.0 mm

2A; 10,500 mm?2

The z centroidal axis is located 35.0 mm above the reference axis for the U-shaped cross
section. Next, the moment of inertia about the z centroidal axis is calculated. The paral-
lel axis theorem is required since the centroids of areas (1), (2), and (3) do not coincide
with the z centroidal axis for the U-shape. The complete calculation is summarized in
the table on the next page.




I,; (mm?) Id,| mm) | d?A; (mm? I, (mm?) 0mm_ 150 mm
(1) 2,500,000 15.0 675,000 3,175,000 ‘ ‘
@) 337,500 20 1,800,000 2,137,500
3) 2,500,000 15.0 675,000 3,175,000
8,487,500

(b)

The moment of inertia of the U-shaped cross section about its z
centroidal axis is /, = 8,487,500 mm*.

For the positive bending moments M, and M acting on the
beam segment as shown, compression normal stresses will be M, = 11.0kN-m
produced above the z centroidal axis and tension normal stresses
will occur below the z centroidal axis. The flexure formula [Equa-
tion (8.7)] is used to compute the bending stress at any coordi-
nate location y. (Recall that the y coordinate axis has its origin at
the centroid.) For example, the bending stress at the top of area
(1) at section A is calculated with y = +65 mm:

Tension bending stress

My (11 KN-m)(65 mm)(1,000 N/KN)(1,000 mm/m)
I 8,487,500 mm*
= —84.2 MPa = 84.2 MPa (C)

Oy =

The maximum tension and compression bending
stresses at sections A and B are shown in the figure
to the right.

Of particular interest in this example are the bending
stresses acting on area (2) of the U-shaped cross 45.4 MPa (T)
section. The normal stresses acting on area (2) are A
shown in the following figure:

84.2 MPa (C)

84.2 MPa (C) 126.4 MPa (C)
y

|

6.48 MPa (T) % 9.72 MPa (T)

7
45.4 MPa (T) 44 2 Bk 68.0 MPa (T)

The resultant force of the bending stresses acting on area (2) must be determined
at section A and at section B. The normal stresses acting on area (2) are all of the same
sense (i.e., tension), and since these stresses are linearly distributed in the y direction,
we need only determine the average stress intensity. The stress distribution is uni-
formly distributed across the z dimension of area (2). Therefore, the resultant force
acting on area (2) can be determined from the product of the average normal stress
and the area upon which it acts. Area (2) is 150 mm wide and 30 mm deep; therefore,
A, = 4,500 mm?2. On section A, the resultant force in the x direction is

1
Fy= 5(6.48 MPa + 45.4 MPa) (4,500 mmz) = 116,730 N = 116.7 kN
and on section B, the horizontal resultant force is

1
Fp = (972 MPa + 68.0 MPa) (4,500 mm?) = 174,870 N = 174.9 kN

f Compression bending st?

B My = 16.5kN-m

126.4 MPa (C)

X

68.0 MPa (T)




84.2 MPa (C) 126.4 MPa (C)
y

L,

6.48 MPa (T) 9.72 MPa (T)
116.7 KN €l ‘ @ ‘—h) 174.9 kN
45.4 MPa (1) £ =S 68.0 MPa (T)

(c) Consider the equilibrium of area (2). In the x direction, the sum of the resultant forces is
XF,=1749kN — 116.7kN = 582 kN # 0

Area (2) is not in equilibrium. What observations can be drawn from this situation?
Whenever a beam segment is subjected to nonuniform bending—that is, whenever the
bending moments are changing along the span of the beam—portions of the beam
cross section will require additional forces in order to satisfy equilibrium in the longi-
tudinal direction. Where can these additional forces be applied to area (2)?

No shear forces

1 on these surfaces
116.7 kKN jFszg']kN .

1749 kN

| @

The additional force in the horizontal direction F}, required to satisfy equilibrium
cannot emanate from the upper and lower surfaces of area (2) since these are free
surfaces. Therefore, F;; must act at the boundaries between areas (1) and (2), and
between areas (2) and (3). By symmetry, half of the horizontal force will act on each
surface. Since Fy; acts along the vertical sides of area (2), it is termed a shear force.

ies Example M9.1

Discussion of the horizontal shear force developed in a flexural member.

compression

tension



_PROBIEMS

For the problems that follow, a beam segment subjected to internal
bending moments at sections A and B is shown along with a sketch
of the cross-sectional dimensions. For each problem,

(a) sketch a side view of the beam segment, and plot the distribution
of bending stresses acting at sections A and B. Indicate the
magnitude of key bending stresses in the sketch.

(b) determine the resultant forces acting in the x direction on the
specified area at sections A and B, and show these resultant
forces in the sketch.

(c) is the specified area in equilibrium with respect to forces
acting in the x direction? If not, determine the horizontal force
required to satisfy equilibrium for the specified area, and show
the location and direction of this force in the sketch.

P9.1 The 20-in.-long beam segment shown in Figure P9.1a is
subjected to internal bending moments of M, = 24 kip-ft and
M = 28 kip-ft. Consider area (1) shown in Figure P9.15.

@ 3.5in.

y
b4 4y 17 in.
3.5in.

20 in, B

0.75 in. 0.75 in.
3

Sin.
FIGURE P9.1b Cross-
sectional dimensions.

FIGURE P9.1a Beam segment.

P9.2 The 12-in.-long beam segment shown in Figure P9.2a is
subjected to internal bending moments of M, = 700 Ib-ft and
My = 400 Ib-ft. Consider area (1) shown in Figure P9.2b.

700 Ib-ft

400 Ib-ft

12 in, B

FIGURE P9.2a Beam segment.

4.5 in.
v M lin i
z
7 in.
6 in.
1in.

FIGURE P9.2b Cross-sectional dimensions.

P9.3 The 500-mm-long beam segment shown in Figure P9.3a is
subjected to internal bending moments of M, = —5.8 kN-m and
My = —3.2 kN-m. Consider area (1) shown in Figure P9.35.

(

5.8 kN-m

Y.

A

s 3.2 kN-m
00 my | B
FIGURE P9.3a Beam segment.
160 mm
30 mm am T
T y
z
300 mm

omn] || |20mm

FIGURE P9.3b Cross-sectional dimensions.



P9.4 The 16-in.-long beam segment shown in Figure P9.4a is
subjected to internal bending moments of M, = —3,300 lb-ft and
My = —4,700 Ib-ft. Consider area (1) shown in Figure P9.4b.

3,300 Ib-ft

A
4,700 Ib-ft

16 ill. B

FIGURE P9.4a Beam segment.

12 in.

FIGURE P9.4b Cross-sectional dimensions.

P9.5 The 18-in.-long beam segment shown in Figure P9.5a/6a is
subjected to internal bending moments of M, = —42 kip-in. and
My = —36 kip-in. Consider area (1) shown in Figure P9.5b/6b.

8, B 36 kip-in.

FIGURE P9.5a/6a Beam segment.

6 in. _

3]

2 in.

2 in.
T
I

FIGURE P9.5b/6b Cross-sectional dimensions.

10 in.

P9.6 The 18-in.-long beam segment shown in Figure P9.5a/6a
is subjected to internal bending moments of M, = —42 kip-in. and
My = —36 kip-in. Consider area (2) shown in Figure P9.5b/6b.

P9.7 The 300-mm-long beam segment shown in Figure P9.7a/8a
is subjected to internal bending moments of M, = 7.5 kN-m and
My = 8.0 kN-m. Consider area (1) shown in Figure P9.75/8b.

7.5 kN-m

8.0 kN-m

3
0 My B

FIGURE P9.7a/8a Beam segment.

150 mm 40 mm

40 mm

40 mm

280 mm

40 mm—)l—l(—

FIGURE P9.7b/8b Cross-sectional dimensions.

P9.8 The 300-mm-long beam segment shown in Figure P9.7a/8a
is subjected to internal bending moments of M, = 7.5 kN-m and
My = 8.0 kN-m. Consider the combined areas (1), (2), and (3)
shown in Figure P9.7b/8b.



9.3 The Shear Stress Formula

In this section, a method for determining the shear stresses produced in a prismatic beam
made of a homogeneous linear-elastic material will be developed. Consider the beam
shown in Figure 9.5a, which is subjected to various loadings. The cross section of the
beam is shown in Figure 9.5b. In this development, particular attention is focused on a por-
tion of the cross section that will be designated A’.

A free-body diagram of the beam having length Ax and located at some distance x from
the origin will be investigated (Figure 9.6a). The internal shear force and bending moment
on the left side of the free-body diagram (section a—b—c) are designated as V and M, respec-
tively. On the right side of the free-body diagram (section d—e—f'), the internal shear force
and bending moment are slightly different: V + AV and M + AM. Equilibrium in the hori-
zontal x direction will be considered here. The internal shear forces V and V + AV and the
distributed load w(x) act in the vertical direction; consequently, they will have no effect on
equilibrium in the x direction, and they can be omitted in the subsequent analysis.

The normal stresses acting on this free-body diagram (Figure 9.6b) can be determined
by the flexure formula. On the left side of the free-body diagram, the bending stresses due
to the internal bending moment M are given by My/I_, and on the right side, the internal
bending moment M + AM creates bending stresses given by (M + AM)y/I_. The signs
associated with the bending stresses will be determined by inspection. Above the neutral

Area A’

M,

Ax

I T
(a) Beam loading (b) Cross section

FIGURE 9.5 Prismatic beam subjected to nonuniform bending.

w(x)

I, 4
M == (M+AM)y
e 1

q >N (} {l;

(a) Free-body diagram (b) Bendmg stresses due to internal
bending moments

FIGURE 9.6 Free-body diagrams of beam segment.
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SHEAR STRESS IN BEAMS

The moment of inertia term
appearing in Equation (9.1)
stems from the flexure formula,
which was used to determine the
bending stresses acting over the
entire depth of the beam and
over area A’ in particular. For
that reason, I is the moment of
inertia of the entire cross section
about the z axis.

a d
—_—
b +
[y =R S [orssm,
AR y Fy A z

N

FIGURE 9.7 Free-body diagram of area A’ (profile view).

axis, the internal bending moments produce compression normal stresses, which act on the
free-body diagram in the directions shown.

If a beam is in equilibrium, then any portion of the beam that we choose to consider
must also be in equilibrium. We will consider a portion of the free-body diagram shown in
Figure 9.6, starting at section b—e (y = y;) and extending away from the neutral axis
(upward in this case) to the outermost boundary of the cross section (y = y,). This is the
portion of the cross section designated as A’ in Figure 9.5b. A free-body diagram of area A’
is shown in Figure 9.7.

The resultant force on sections a—b and d—e can be found by integrating the normal
stresses acting on area A’, which includes that portion of the cross-sectional area starting at
y =y, and extending vertically to the top of the cross section at y = y,. (See Figure 9.5b.)
No force exists on section a—d; however, we shall assume that an internal horizontal force
Fy; could be present on section b—e. The equilibrium equation for the sum of forces acting
on area A’ in the x direction can be written as

M M+ AM
ZFXZIA,I—ydA’—f,deAHLFH:O (@)

% IZ

where the signs of each term are determined by inspection of Figure 9.7. The integral terms
in Equation (a) can be expanded to give

M M AM ., B
ZFx_fA,ZydA—L,ZydA—L,TydA+FH_o (b)

Canceling terms and rearranging give

FH S A’I_ydA, (C)

With respect to area A’, both AM and I, are constant; therefore, Equation (c) can be simplified to

AM g
Fy === J, vt @

The integral term in Equation (d) is the first moment of area A" about the neutral axis of the
cross section. This quantity will be designated Q. More details concerning the calculation
of O will be presented in Section 9.4. By replacing the integral term with the designation Q,
Equation (d) can be rewritten as

Fy = —— 9.1)




What is the significance of Equation (9.1)? If the internal bending moment in a beam
is not constant (i.e., AM # 0), then an internal horizontal shear force F; must exist at y =
¥, in order to satisfy equilibrium. Furthermore, note that the term Q pertains expressly
to area A'. (See Figure 9.5b.) Since the value of Q changes with area A’, so too does F/,.
In other words, at every value of y possible within a cross section, the internal shear
force Fy required for equilibrium is unique.

Before continuing, it may be helpful to apply Equation (9.1) to the problem discussed in
Section 9.2. In that problem, the internal bending moments on the right and left sides of the
beam segment (which had a length of Ax = 150 mm) were M, = 1.350 kN-m and M, =
2.025 kN-m, respectively. From these two moments, AM = 2.025 kN-m — 1.350 kN-m =
0.675 kN-m = 675 kN-mm. The moment of inertia I, was given as I, = 33,750,000 mm*.

The area A’ pertinent to this problem is simply the area of member (1), the 50-mm by
120-mm board at the bottom of the cross section. The first moment of area Q is computed
from [y dA’. Let the width of member (1) be denoted by b. Since this width is constant, the
differential area dA’ can be conveniently expressed as dA" = bdy. In this instance, area A’
starts at y = —25 mm and extends away from the neutral axis in a downward direction to
an outermost boundary of y = —75 mm. With b = 120 mm, the first moment of area Q is
calculated as

y=="175 1 y=-75
= = pH=|2 3
Q fy:,zs bydy = b3 [y?|,__55 = 300,000 mm

and from Equation (9.1), the horizontal shear force F; required to keep member (1) in
equilibrium is

_ AMQ (675 kN-mm)(300,000 mm?)
A 33,750,000 mm*

Z

= 6 kN

Fy
This result agrees with the horizontal force determined in Section 9.2.

Shear Stress in a Beam

Equation (9.1) can be extended to define the shear stress produced in a beam subjected to
nonuniform bending. The surface upon which Fj, acts has a length of Ax. Depending upon
the shape of the beam cross section, the width of area A’ may vary, so the width of area A’
aty =y, will be denoted by the variable 7. (See Figure 9.5b.) Since stress is defined as force
divided by area, the average horizontal shear stress acting on horizontal section b—e can be
derived by dividing F}; given in Equation (9.1) by the area of the surface upon which this
force acts, which is # Ax:

o _Fa _AMQ_AMOQ
Hoe ™ tAx " tAxI,  Ax Lt ©

Implicit in this equation is the assumption that shear stress is constant across the width of
the cross section at any y position. That is, at any specific y position, the shear stress is
constant for any z location. This derivation also assumes that the shear stresses 7 are paral-
lel to the vertical sides of the cross section (i.e., the y axis).

In the limit as Ax— 0, AM/Ax can be expressed in terms of differentials as dM/dx, and
so Equation (e) can be enhanced to give the horizontal shear stress acting at location x
along the beam’s span:

)

THE SHEAR STRESS FORMULA

—

100 mm

7

50 mm

S

120 mm

FIGURE 9.2 (repeated) Beam
cross-sectional dimensions.



SHEAR STRESS IN BEAMS

The terms horizontal shear
stress and transverse shear
stress are both used in reference
to beam shear stress. Since shear
stresses on perpendicular planes
must be equal in magnitude,
these two terms are effectively
synonyms in that both refer to
the same numerical shear

stress value.

The moment of inertia /_ in
Equation (9.2) is the moment
of inertia of the entire cross
section about the z axis.

Equation (f) defines the horizontal shear stress in a beam. Note that shear stress will exist
in a beam at those locations where the bending moment is not constant (i.e., dM/dx # 0). As
discussed previously, the first moment of area Q varies in value for every possible y in the
beam cross section. Depending upon the shape of the cross section, the width # may also
vary with y. Consequently, the horizontal shear stress varies over the depth of the cross sec-
tion at any location x along the beam span.

The simple investigation presented in Section 9.2 and the equations derived in this sec-
tion have demonstrated the concept that is essential to understanding shear stresses in beams.

Horizontal shear forces and, consequently, horizontal shear stresses are caused in a flex-
ural member at those locations where the internal bending moment is changing along
the beam span. The imbalance in the bending stress resultant forces acting on a portion
of the cross section demands an internal horizontal shear force for equilibrium.

Equation (f) gives an expression for the horizontal shear stress developed in a beam. Al-
though the term dM/dx helps to clarify the source of shear stress in beams, it is awkward
for calculation purposes. Is there an equivalent expression for dM/dx? Recall the relation-
ships developed in Section 7.3 between internal shear force and internal bending moment.
Equation (7.2) defined the following relationship:

M _

7.2
0 v (7.2)

In other words, wherever the bending moment is changing, there is an internal shear
force V. The term dM/dx in Equation (f) can be replaced by the internal shear force V to
give an expression for 7 that is easier to use:

Ty = — (@

Section 1.6 demonstrated that a shear stress never acts on just one surface. If there is a shear
stress T on a horizontal plane in the beam, then there is also a shear stress 7y, of the same
magnitude on a vertical plane (Figure 9.8). Since the horizontal and vertical shear stresses
are equal, we will let 7, = 7, = 7; thus, Equation (g) can be simplified into a form com-
monly known as the shear stress formula:

T (9.2)

Since Q varies with area A’, the value of 7 varies over the depth of the cross section. At the
upper and lower boundaries of the cross section (e.g., points 4, ¢, d, and fin Figure 9.8), the
value of Q is zero since area A’ is zero. The maximum value of Q occurs at the neutral axis of
the cross section. Accordingly, the largest shear stress 7 is usually located at the neutral axis;
however, this is not necessarily so. In Equation (9.2), the internal shear force V and the mo-
ment of inertia /, are constant at any particular location x along the span. The value of Q is
clearly dependent upon the particular y coordinate being considered. The term 7 (which is the
cross section width in the z direction at any specific y location) in the denominator of Equa-
tion (9.2) can also vary over the depth of the cross section. Therefore, the maximum horizon-
tal shear stress 7 occurs at the y coordinate that has the largest value of Q/z. Most often, the
largest value of Q/f does occur at the neutral axis, but this is not necessarily the case.
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FIGURE 9.8 Shear stress at point e.

The direction of the shear stress acting on a transverse plane is the same as the direc-
tion of the internal shear force. As illustrated in Figure 9.8, the internal shear force acts
downward on section d—e—f. The shear stress acts in the same direction on the vertical
plane. Once the direction of the shear stress on one face has been determined, the shear
stresses acting on the other planes are known.

Although the stress given by Equation (9.2) is associated with a particular point in a
beam, it is averaged across the thickness 7 and hence is accurate only if 7 is not too great.
For a rectangular section having a depth equal to twice the width, the maximum stress
computed by methods that are more rigorous is about 3 percent greater than that given by
Equation (9.2). If the cross section is square, the error is about 12 percent. If the width is
four times the depth, the error is almost 100 percent! Furthermore, if the shear stress for-
mula is applied to a cross section in which the sides of the beam are not parallel, such as a
triangular section, the average stress is subject to additional error because the transverse
variation of stress is greater when the sides are not parallel.

9.4 The First Moment of Area Q

Calculation of the first moment of area Q for a specific y location in a beam cross section
is initially one of the most confusing aspects associated with shear stress in flexural mem-
bers. It tends to be confusing because there is not a unique value of Q for a particular cross
section—there are many values of Q. For example, consider the box-shaped cross section
shown in Figure 9.9a. In order to calculate the shear stress associated with the internal
shear force V at points a, b, and c, three different values of Q must be determined.

What is Q? Q is a mathematical abstraction termed a first moment of area. Recall that
a first moment of area term appears as the numerator in the definition of a centroid:

y:j/;ydA

j;dA

Q is the first moment of area of only portion A" of the total cross-sectional area A. Equation
(a) can be rewritten in terms of A’ instead of the total area A and rearranged to give a useful
formulation for Q:

(a)

0= fA ydA' = i’fA, dA' = yA' 9.3)

Here, y' is the distance from the neutral axis of the cross section to the centroid of area A'.

THE FIRST MOMENT OF AREA Q



(a) Box shape

(b) Area A’ for point a

(c) Area A’ for point b

To determine Q for point a in Figure 9.9a, the cross-sectional area is subdivided at a,
slicing parallel to the neutral axis (which is perpendicular to the direction of the internal shear
force V). The area A’ begins at this cut line and extends away from the neutral axis to the free
surface of the beam. (Recall the free-body diagram in Figure 9.7 used to evaluate horizontal
equilibrium of area A’ in the preceding derivation.) The area A’ to be used in calculating Q
for point a is highlighted in Figure 9.9b. The centroid of the highlighted area relative to the
neutral axis (the z axis in this instance) is determined, and Q is calculated from the product
of this centroidal distance and the area of the shaded portion of the cross section.

A similar process is used to calculate Q for point b. The box shape is sectioned at b paral-
lel to the neutral axis. (Note: Vis always perpendicular to its
corresponding neutral axis and vice versa.) The area A’ be-
gins at this cut line and extends away from the neutral axis
to the free surface, as shown in Figure 9.9¢. The centroidal
locationy' of the highlighted area relative to the neutral axis
is determined, and Q is calculated from Q = y'A’".

Point ¢ is located on the neutral axis for the box shape;
thus, area A" begins at the neutral axis (Figure 9.94). For
points a and b, it was clear which direction was meant by
the phrase “away from the neutral axis.” However, in this
instance c is actually on the neutral axis, which raises the
question, Should area A" extend above the neutral axis or
below the neutral axis? The answer is, Either direction will
give the same Q at point c. Although the area above the
neutral axis is highlighted in Figure 9.94, the area below the
neutral axis would give the same result. The centroidal loca-
tion y' of the highlighted area relative to the neutral axis is
determined, and Q is calculated from Q = y'A’.

The first moment of the total cross-sectional area A
(e) Calculation process taken about the neutral axis must be zero (by definition of

FIGURE 9.9 Calculating Q at different locations in a box-shaped the neutral axis). While the illustrations given here have

Cross section.

Generally, if the point of interest
is above the neutral axis, it is
convenient to consider an area A’
that begins at the point and
extends upward. If the point of
interest is below the neutral axis,
consider the area A’ that begins
at the point and extends
downward.

shown how Q can be calculated using an area A’ above

points a, b, and c, the first moment of the area below
points a, b, and c is simply the negative. In other words, the value of Q calculated using an
area A’ below points a, b, and ¢ must have the same magnitude as Q calculated from an area
A" above points a, b, and c. It is usually easier to calculate Q using an area A’ that extends
away from the neutral axis, but there are exceptions.

Let us consider the calculation of Q for point b (Figure 9.9¢) in more detail. The area
A’ can be divided into three rectangular areas (Figure 9.9¢) sothat A’ = A, + A, + A;. The
centroid location ' of the highlighted area can be calculated with respect to the neutral
axis from the following:
¥ = NAL+ NA) + 334
A+ A+ Ay

The value of Q associated with point b is calculated from the following:

A+ A + s
A+ A+ A
This result suggests a more direct calculation procedure that is often expedient. Q for cross

sections that consist of 7 shapes can be calculated as the summation

0= ZyiAi (9.4)

where y; = distance between the neutral axis and the centroid of shape i and A; = area of shape i.

! ! A
0=yA — A (A + A + Ay) = 0A + Ay + 1A,




9.5 Shear Stresses in Beams of Rectangular
Cross Section

Beams of rectangular cross sections will be considered to develop some understanding of
how shear stress is distributed over the depth of a beam. Consider a beam subjected to an
internal shear force of V. Keep in mind that a shear force exists only when the internal
bending moment is not constant and that it is the variation in bending moments along the
span that creates shear stress in a beam, as discussed in Section 9.3. The rectangular cross
section shown in Figure 9.10a has width b and height /; therefore, the total cross-sectional
area is A = bh. By symmetry, the centroid of the rectangle is located at mid-height. The
moment of inertia about the z centroidal axis (i.e., the neutral axis) is I, = bh3/12.

Shear stress in the beam will be determined from Equation (9.2). To investigate the
distribution of 7 over the cross section, the shear stress will be computed at an arbitrary
height y from the neutral axis (Figure 9.100). The first moment of area Q for the high-
lighted area A’ can be expressed as

a8 o e

(d) Shear stress distribution (e) Shear stress acts on both
transverse and longitudinal
planes

FIGURE 9.10 Shear distribution in a rectangular cross section.
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Shear stress
intensity is
distributed

parabolically

(c) Parabolic distribution of shear stress



SHEAR STRESS IN BEAMS

The accuracy of Equation (9.6)
depends on the depth-to-width
ratio of the cross section. For
beams in which the depth is
much greater than the width,
Equation (9.6) can be considered
exact. As the cross section
approaches a square shape, the
true maximum horizontal shear
stress is somewhat greater than

the result given by Equation (9.6).

The shear stress 7 as a function of the vertical coordinate y can now be determined from the
shear formula:

v v 1(h2 6V (h?
. _[__yz]b e [__ 2] ©-2

T=—<=—X
4 4

Izt [Lth]b 2
12

Equation (9.5) is a second-order equation, which indicates that 7 is distributed paraboli-
cally with respect to y (Figure 9.10c). Aty = £ h/2, 7 = 0. The shear stress vanishes at the
extreme fibers of the cross section since A’ = 0 and consequently Q = 0 at these locations.
There is no shear stress on a free surface of the beam. The maximum horizontal shear stress
occurs at y = 0, which is the neutral axis location. At the neutral axis, the maximum hori-
zontal shear stress in a rectangular cross section is given by

oA 9.6)

bh 3V

AT T
2 2bh

Tmax — -

It is important to emphasize that Equation (9.6) gives the maximum horizontal shear stress
only for rectangular cross sections. Note that the maximum horizontal shear stress at the
neutral axis is 50 percent greater than the overall average shear stress given by 7 = V/A.

To summarize, the shear stress intensity associated with an internal shear force V in
arectangular cross section is distributed parabolically in the direction perpendicular to the
neutral axis (i.e., in the y direction) and uniformly in the direction parallel to the neutral
axis (i.e., in the z direction) (Figure 9.10d). The shear stress vanishes at the upper and
lower edges of the rectangular cross section and peaks at the neutral axis location. It is
important to remember that shear stress acts on both transverse and longitudinal planes
(Figure 9.10¢).

The expression “maximum shear stress” in the context of beam shear stresses is prob-
lematic. In Chapter 12, the discussion of stress transformations will show that the state of
stress existing at any point can be expressed by many different combinations of normal and
shear stress, depending on the orientation of the plane surface upon which the stresses act.
(This notion has been introduced previously in Section 1.5, pertaining to axial members,
and in Section 6.4, regarding torsion members.) Consequently, the expression “maxi-
mum shear stress”” when applied to beams could be interpreted to mean either

(a) the maximum value of 7 = VQ/It for any coordinate y in the cross section, or

(b) the maximum shear stress at a particular point in the cross section when all
possible plane surfaces that pass through the point are considered.

In this chapter, to preclude ambiguity, the expression “maximum horizontal shear
stress” will be used to indicate that the maximum value of 7 = VQ/It for any coordinate
y in the cross section is to be determined. Since shear stresses on perpendicular planes
must be equal in magnitude, it would be equally proper to use the expression “maxi-
mum transverse shear stress” for this purpose. In Chapter 12, the maximum shear stress
at a particular point will be determined using the notion of stress transformations, and
in Chapter 15, maximum normal and shear stresses at specific points in beams will be
discussed in more detail.



ies Example M9.2

Derivation of the shear stress formula.

A 10-ft-long simply supported laminated wood beam consists of eight 1.5-in. by 6-in. Y
planks glued together to form a section 6 in. wide by 12 in. deep, as shown. The beam 15in. i;%}g?:( b
carries a 9-kip concentrated load at midspan. At section a—a located 2.5 ft from pin (typ) I iZ%;S i
support A, determine — ¢

12 in. z 22;‘; =
(a) the average horizontal shear stress in the glue joints at b, ¢, and d. ~— z
b) th i horizontal shear stress in th tion. E2 ~—4d
(b) the maximum horizontal shear stress in the cross section ===

E =
Plan the Solution 3%2%
The transverse shear force V acting at section a—a can be deter- L&)l
mined from a shear-force diagram for the simply supported 9 kips
beam. To determine the horizontal shear stress in the indicated y
glue joints, the corresponding first moment of area Q must be " v
calculated for each location. The average horizontal shear = ' .
stress Wi}l then be determined by the shear stress formula given N v B = c
in Equation (9.2). 2.5 ft
5 fit 5 fit ‘

SOLUTION

Internal Shear Force at Section a—a

The shear-force and bending-moment diagrams can readily be
constructed for the simply supported beam. From the shear- 4 Y
force diagram, the internal shear force V acting at section a—a
is V = 4.5 kips.

Section Properties

The centroid location for the rectangular cross section can be
determined from symmetry. The moment of inertia of the cross
section about the z centroidal axis is equal to

_ bR _ (6in)(12in.)°

. = 864 in4
12 12

(a) Average Horizontal Shear Stress in Glue Joints 22.5 Kip-ft
The shear stress formula is

11.25 kip-ft
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To determine the average horizontal shear stress in the glue joints at b, ¢, and d
by the shear stress formula, the first moment of area Q and the width of the stressed
surface t must be determined for each location.

Shear stress in glue joint b: The portion of the cross section to be considered for
Q begins at point b and extends away from the neutral axis. The first moment
of this area about the neutral axis is denoted by Q. The area to be considered for
joint b is highlighted on the left. The area of the highlighted region is (1.50 in.)
(6 in.) = 9 in.2. The distance from the neutral axis to the centroid of the high-
lighted area is 5.25 in. The first moment of area Q corresponding to joint b is
calculated as

0, = (1.50 in.)(6 in.)(5.25 in.) = 47.25 in.?

The width of the glue joint is = 6 in. From the shear stress formula, the average
horizontal shear stress in glue joint b is computed as

VO, _ (45 kips)(47.25 in?)

_ Ans.
Lt, (864 in.*)(6 in.)

T = 0.0410 kst = 41.0 psi

This shear stress acts in the x direction on the glue joint. (Note: The shear stress
determined by the shear stress formula is an average shear stress because the shear
stress actually varies somewhat in magnitude across the 6-in. width of the cross
section. The variation is more pronounced for cross sections that are relatively
short and wide.)

Shear stress in glue joint c: The area to be considered for joint ¢, highlighted in the
figure to the left, begins at ¢ and extends away from the neutral axis. The first mo-
ment of area Q corresponding to joint c is calculated as

0, = (4.50 in.)(6 in.)(3.75 in.) = 101.25 in.3

The width of the glue joint is # = 6 in. From the shear stress formula, the average
horizontal shear stress acting in the x direction in glue joint ¢ is computed as

VO,  (45kips)(101.25in3)

Te = — - - = 0.0879 ksi = 87.9 psi Ans.
11, (864 in.*)(6 in.)

Shear stress in glue joint d: The area to be considered for joint d, highlighted in
the figure to the left, begins at d and extends away from the neutral axis. In this
instance, however, the area extends downward from d, away from the z axis. The
first moment of area Q corresponding to joint d is calculated as

0, = (3in.)(6 in.)(4.50 in.) = 81.0 in.3

The average horizontal shear stress acting in the x direction in glue joint d is com-
puted as

VO, _ (4.5 kips)(81.0 in.3)

= - - = 0.0703 ksi = 70.3 psi Ans.
1t, (864 in.*)(6 in.)

Ta




(b) Maximum Horizontal Shear Stress in Cross Section

The maximum horizontal shear stress in the rectangular cross section occurs at the neutral
axis. To calculate Q, the area beginning at the z axis and extending upwards or extending
downwards may be used, as shown in the following two figures:

6 in.
T R
=
= > 3in =%
LZ ;Z?%\i} 11111 z A Neutral axis
w/ Neutral axis T _i\é\% )

= = 3in.
6in. [E —~
e
| E==2
6in.

For either area, Q is calculated as
Omax = (6in.) (6in.) (3in.) = 108 in.3

The maximum value of Q always occurs at the neutral axis location. Also, the maximum
horizontal shear stress usually occurs at the neutral axis. There are instances, however, in
which the width 7 of the stressed surface varies over the depth of the cross section. In such
instances, it is possible that the maximum horizontal shear stress will occur at a y location
other than the neutral axis.

The maximum horizontal shear stress in the rectangular cross section is computed as

. -
= Vo @S Kp9(08inS) ) oag i~ 938 pei Ans.
It (864 in.*)(6 in.)

PROBILEMS

P9.9 A 1.6-m-long cantilever beam supports a concentrated load ~ stresses at points located 35 mm, 70 mm, 105 mm, and 140 mm be-
of 7.2 kN as shown in Figure P9.9a. The beam is made of a rectangu-  low the top surface of the beam. From these results, plot a graph
lar timber having a width of 120 mm and a depth of 280 mm as  showing the distribution of shear stresses from top to bottom of the

shown in Figure P9.9b. Calculate the maximum horizontal shear  beam.

. 72kN

X

280

mm

-
|

A

1.6 C)I
L o 120 mm

FIGURE P9.9a Cantilever beam. FIGURE P9.9b Cross-sectional dimensions.



P9.10 A 14-ft-long simply supported timber beam carries a 6-kip
concentrated load at midspan as shown in Figure P9.10a. The cross-
sectional dimensions of the timber are shown in Figure P9.10b.

(a) At section a—a, determine the magnitude of the shear stress in
the beam at point H.

(b) At section a—a, determine the magnitude of the shear stress
in the beam at point K.

(c) Determine the maximum horizontal shear stress that occurs in
the beam at any location within the 14-ft span length.

(d) Determine the maximum tension bending stress that occurs
in the beam at any location within the 14-ft span length.

6 kips
y
1 v
(o) i } X
A ﬁ ta B = C
3ft
7t 7 ft
1

FIGURE P9.10a Simply supported timber beam.

L3
3in. '

v

H

z 15 in.

4 K
1in.

6 in.

FIGURE P9.10b Cross-sectional dimensions.

P9.11 A 5-m-long simply supported timber beam carries a uni-
formly distributed load of 12 kN/m as shown in Figure P9.11a. The
cross-sectional dimensions of the beam are shown in Figure P9.11b.

(a) At section a—a, determine the magnitude of the shear stress in
the beam at point H.

(b) At section a—a, determine the magnitude of the shear stress
in the beam at point K.

(c) Determine the maximum horizontal shear stress that occurs in
the beam at any location within the 5-m span length.

(d) Determine the maximum compression bending stress that
occurs in the beam at any location within the 5-m span length.

12 kN/m

|
VU S

Aﬁ a ]m&Bx

FIGURE P9.11a Simply supported timber beam.

5m

y
H
- r
300 mm 60 mm
T f
110 mm
K
100 mm

FIGURE P9.11b Cross-sectional dimensions.

P9.12 A 5-m-long simply supported timber beam carries two
concentrated loads as shown in Figure P9.12a. The cross-sectional
dimensions of the beam are shown in Figure P9.12b.

(a) At section a—a, determine the magnitude of the shear stress in
the beam at point H.

(b) At section a—a, determine the magnitude of the shear stress
in the beam at point K.

(c) Determine the maximum horizontal shear stress that occurs in
the beam at any location within the 5-m span length.

(d) Determine the maximum compression bending stress that
occurs in the beam at any location within the 5-m span length.

14 kN 42 kN 0.5m

2m

FIGURE P9.12a Simply supported timber beam.

4 450 mm

150 mm

FIGURE P9.12b Cross-sectional dimensions.



P9.13 A laminated wood beam consists of eight 2 in. X 6-in.
planks glued together to form a section 6 in. wide by 16 in. deep, as
shown in Figure P9.13a. If the allowable strength of the glue in
shear is 130 psi, determine

(a) the maximum uniformly distributed load w that can be applied
over the full length of the beam if the beam is simply supported
and has a span of L = 23 ft.

(b) the shear stress in the glue joint at H, which is located 4 in. above
the bottom of the beam and at a distance of x = 42 in. from
the left support. Assume that the beam is subjected to the load w
determined in part (a).

(c) the maximum tension bending stress in the beam when the
load of part (a) is applied.

<
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FIGURE P9.13a Simply supported timber beam.

L ESY
2 in. (typ) f¥§§é

z% 16 in.
=72

6 in.

FIGURE P9.13b Cross-sectional dimensions.

P9.14 A simply supported wood beam of length L = 9 ft carries
a concentrated load P at midspan, as shown in Figure P9.14a. The
cross-sectional dimensions of the beam (Figure P9.14b) are b = 5 in.
and 7 = 9 in. If the allowable shear strength of the wood is 100 psi,
determine the maximum load P that may be applied at midspan.
Neglect the effects of the beam’s self-weight.

P

v

L L

2 2
FIGURE P9.14a Simply supported timber beam.

y

¥

b

FIGURE P9.14b Cross-sectional dimensions.

P9.15 A wood beam supports the loads shown in Figure P9.154.
The cross-sectional dimensions of the beam are shown in Figure
P9.15b. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the beam.
(b) the maximum tension bending stress in the beam.

4kN
y| 7 kN/m

LILIIILILILT 4

- C D
1 m l 1.5m
T

FIGURE P9.15a Simply supported timber beam.

A B
| 25m

T
70 mm
100 mm 240 mm
70 mm
y
20 mm 75 mm 20 mm

FIGURE P9.15b Cross-sectional dimensions.



FIGURE 9.11 Solid circular
cross section.

FIGURE 9.12 Hollow circular
cross section.

9.6 _Shear Stresses in Beams of Circular Cross Section

In beams with circular cross sections, transverse shear stress does not act parallel to the y
axis over the entire depth of the shape. Consequently, the shear stress formula is not ap-
plicable in general for a circular cross section. However, Equation (9.2) can be used to de-
termine the shear stress acting at the neutral axis.

A solid circular cross section of radius r is shown in Figure 9.11. To use the shear
stress formula, the value of Q for the highlighted semicircular area must be determined.
The area A’ of the semicircle is A’ = 7r?/2. The distance from the neutral axis to the cen-
troid of the semicircle is given by ¥'= 4r/34r. Thus, Q can be calculated as

., Arar: 2
0=YyA =§T=§r3 9.7)
or, in terms of the diameter d = 2r, as
L
0= Ed 9.8)

The width of the circular cross section at the neutral axis is = 2r, and the moment of in-
ertia about the z axis is I, = 7r#/4 = wd*/64. Substituting these relationships into the shear
stress formula gives the following expression for 7., at the neutral axis of a solid circular
cross section:

VO _ V. 2, 1 _ 4V _ 4V

X SO SRS 4 (9.9)
e wrt/47 3 2r 3w 3A

T

A hollow circular cross section having outside radius R and inside radius r is shown
in Figure 9.12. The results from Equations (9.7) and (9.8) can be used to determine Q for
the highlighted area above the neutral axis:

_ 231 = Lips_ g
0 =R —r]= Z[D* — d&*] 9.10)

The width 7 of the hollow circular cross section at the neutral axis is two times the wall
thickness, or t = 2(R — r) = D — d. The moment of inertia of the hollow circular shape
about the z axis is

™ ™
= 2R =] = ZD* - %]

9.7 Shear Stresses in Webs of Flanged Beams

The elementary theory used to derive the shear stress formula is suitable for determining
only the shear stress developed in the web of a flanged beam (if it is assumed that the beam
is bent about its strong axis). A wide-flange beam shape is shown in Figure 9.13. To deter-
mine the shear stress at a point a located in the web of the cross section, the calculation for
Q consists of determining the first moment of the two highlighted areas (1) and (2) about
the neutral axis z (Figure 9.13b). A substantial portion of the total area of a flanged shape
is concentrated in the flanges, so the first moment of area (1) about the z axis makes up a
large percentage of Q. While Q increases as the value of y decreases, the change is not as
pronounced in a flanged shape as it would be for a rectangular cross section. Consequently,



the distribution of shear stress magnitudes over the depth of the web, while still parabolic, SHEAR STRESSES IN WEBS OF
is relatively uniform (Figure 9.13a). The minimum horizontal shear stress occurs at the FLANGED BEAMS
junction between the web and the flange, and the maximum horizontal shear stress occurs
at the neutral axis. For wide-flange steel beams, the difference between the maximum and
minimum web shear stresses is typically in the range of 10-60 percent.
In deriving the shear stress formula, it was assumed that the shear stress across the
width of the beam (i.e., in the z direction) could be considered constant. This assumption is
not valid for the flanges of beams;
therefore, shear stresses computed for

by
the top and bottom flanges from J 7 min 1 T
Equation (9.2) and plotted in Figure ., @ d
9.13a are fictitious. Shear stresses are e 2
developed in the flanges (1) of a wide- Tmax z —4%
v

flange beam, but they act in the x and
z directions, not the x and y direc-
tions. Shear stresses in thin-walled T min [ |

members such as wide-flange shapes
will be discussed in more detail in
Section 9.9. FIGURE 9.13  Shear stress distribution in a wide-flange shape.

ty,—> <— %

(a) Shear stress distribution (b) Cross section

A concentrated load of P = 36 kN is applied to the y
upper end of a pipe as shown. The outside diameter 36 kN

of the pipe is D = 220 mm, and the inside diameter
is d = 200 mm. Determine the vertical shear stress
on the y—z plane of the pipe wall.

Plan the Solution

The shear stress in a pipe shape can be determined
from the shear stress formula [Equation (9.2)] using
the first moment of area Q calculated from Equation
(9.10).

Pipe cross section.

SOLUTION
Section Properties
The centroid location for the tubular cross section can be determined from symmetry.
The moment of inertia of the cross section about the z centroidal axis is equal to

w

I. = —[D*—d*) =
= 2Dt -]

21220 mm)* — (200 mm)*] = 36,450,329 mm’
Equation (9.10) is used to compute the first moment of area Q for a pipe shape:

0 =D -a) =

T %[(220 mm)3 — (200 mm)3] = 220,667 mm?




y Shear Stress Formula
36 kN The maximum vertical shear stress in this pipe occurs along the intersection of the y—z
- plane and the pipe wall. Note that the y—z plane is perpendicular to the direction of the
shear force V, which acts in the x direction in this instance. The thickness ¢ upon
which the shear stress acts is equal to = D — d = 20 mm. The maximum shear stress
on this plane is computed from the shear stress formula:

Vh
44 __ VO _ (36000 N)(220,667 mm?)
™ Lt (36,450,329 mm*)20 mm)

= 10.90 MPa Ans.

Pipe free-body diagram. Further Explanation
At first, it may be difficult for the student to visualize the shear stress acting in a
pipe shape. To better understand the cause of shear stress in this situation, consider
a free-body diagram of a short portion of the pipe near the point of load applica-
tion. The 36-kN external load produces an internal bending moment M, which
produces tension and compression normal stresses on the —x and +x portions of
the pipe, respectively. We will investigate the equilibrium of half of the pipe.
Compression normal stresses are created in the right half-pipe by the internal
bending moment M. Equilibrium in the y direction requires a resultant force acting

Compression downward to resist the upward force created by the compression normal stresses.

normal stress This downward resultant force comes from shear stresses acting vertically in the

Stresses acting on the right wall of the pipe. For the example considered here, the shear stress has a magnitude
half of the pipe. of 7 = 10.90 MPa.

EXAMPLE 9.4

A cantilever beam is subjected to a concentrated
load of 2,000 N. The cross-sectional dimensions
of the double-tee shape are shown. Determine

(a) the shear stress at point H, which is located
17 mm below the centroid of the double-tee
shape.

(b) the shear stress at point K, which is located
5 mm above the centroid of the double-tee
shape.

(c) the maximum horizontal shear stress in the
double-tee shape.

S6.mm Plan the Solution
| { 3mm  The shear stress in the double-tee shape can be determined from the shear stress
| Y | formula [Equation (9.2)]. The challenge in this problem lies in determining the
15 Tnm : | fK i i,l' ) appropriate values of Q for each calculation.
z S
T 17 Tnm SOLUTION
30 mm gyl 4 42mm  Section Properties
The centroid location for the double-tee cross section must be determined at the

outset. The results are shown in the figure to the left. The moment of inertia of
the cross section about the z centroidal axis is /, = 88,200 mm?*.




(a) Shear Stress at H

Before proceeding to the calculation of 7, it is helpful to visualize the source of the
shear stresses produced in the flexural member. Consider a free-body diagram cut
near the free end of the cantilever beam. The external 2,000 N concentrated load
creates an internal shear force V = 2,000 N and an internal bending moment M,
which varies over the cantilever span. To investigate the shear stresses produced in
the double-tee cross section, this free body will be divided further in a manner
similar to the derivation presented in Section 9.3.

The shear stress acting at H is exposed by cutting the free-body diagram
shown. The internal bending moment M produces compression bending stresses
that are linearly distributed over the stems of the double-tee shape. The resultant
force from these compression normal stresses tends to push the double-tee stems
in the positive x direction. To satisfy equilibrium in the horizontal direction, shear
stresses 7 must act on the horizontal surfaces exposed at H. The magnitude of
these shear stresses is found from the shear stress formula [Equation (9.2)].

In determining the proper value of the first moment of area Q for use in the
shear stress formula, it is helpful to keep this free-body diagram in mind.

Calculating Q at point H: The double-tee cross section is shown in the figure to
the right. Only a portion of the entire cross section is considered in the Q calcula-
tion. To determine the proper area, slice through the cross section parallel to the
axis of bending at point H and consider that portion of the cross section beginning
at H and extending away from the neutral axis. Note that slicing through the sec-
tion parallel to the axis of bending can also be described as slicing through the
section perpendicular to the direction of the internal shear force V.

The area to be considered in the Q calculation for point H is highlighted in
the cross section. (This is the area denoted A’ in the derivation of the shear stress
formula in Section 9.3, particularly Figures 9.5 and 9.7.)

Q for point H is the moment of areas (1) and (2) about the z centroidal axis
(i.e., the neutral axis about which bending occurs). From the cross-section sketch,
Qy, is calculated as

0y = 2[3 mm)(13 mm)23.5 mm)] = 1,833 mm?
The shear stress acting at H can now be calculated from the shear stress formula:

VO, _ (2,000 N)(1,833 mm?)

= = 6.93 MPa Ans.
It (88,200 mm* ) (6 mm)

Ty =

Note that the term ¢ in the shear stress formula is the width of the surface exposed
in cutting the free-body diagram through point H. In slicing through the two stems
of the double-tee shape, a surface 6 mm wide is exposed; therefore, t = 6 mm.

(b) Shear Stress at K

Consider again a free-body diagram cut near the free end of the cantilever beam.
This free-body diagram will be further dissected by cutting a free-body diagram,
beginning at point K and extending away from the neutral axis, as shown in the
figure to the right. The internal bending moment M produces tension bending
stresses that are linearly distributed over the stems and flange of the double-tee
shape. The resultant force from these tension normal stresses tends to pull this
portion of the cross section in the —x direction. Shear stresses 7 must act on the
horizontal surfaces exposed at K to satisfy equilibrium in the horizontal direction.

Compression
bending stress
-
_ owr - H
L ==
T

56 mm

3 mm ||20mm|| 3 mm
< <

Tension
bending
stress

== \
—

e —
T




3 mm ||20mm|| 3 mm
T T

z
15 mm

30 mm — Rk—Y 42mm

(6) 7

3 mm ||20mm|| 3 mm
T T

Calculating Q at point K: The area to be considered in the Q calculation for
point K is highlighted in the cross section. Q for point K is the moment of
areas (3), (4), and (5) about the z centroidal axis:

Ok = 2[G mm)(7 mm) (8.5 mm)]
+(56 mm)(3 mm)(13.5 mm) = 2,625 mm?

The shear stress acting at K is

3
VO _ 2000 N)(2.625 mm*) _ g oy y oo Ans.
Lt (88,200 mm*)(©6 mm)

Ty =

(¢) Maximum Horizontal Shear Stress

The maximum value of Q corresponds to an area that begins at and extends
away from the neutral axis. For this location, however, the instruction ex-
tends away from the neutral axis can mean either the area above or the area
below the neutral axis. The value obtained for Q is the same in either case.
For the double-tee cross section, the calculation for Q is somewhat simpler
if we consider the highlighted area below the neutral axis:

Opax = 2[3 mm) (30 mm) (15 mm)] = 2,700 mm3
The maximum horizontal shear stress in the double-tee shape is

3
7 = Y 20002700 mm’) _ 5, \ip, Ans.
1t (88,200 mm*)(6 mm)

ies Example M9.4

unitss mm  Determine the shear stress at points H and K for a simply supported beam, which

, TR
74

z

250.9

190.1 7

100

Wr265 %37 |->He—9.7

I: = 33.6x10° mm*

r%'l consists of the WT265 X 37 standard steel shape shown.
:*13.6
4 H
K




ies Example M9.5

Determine the distribution of shear stresses produced in a tee shape.

ies Example M9.6

Determine the maximum horizontal shear stress in a

simply supported wide-flange beam. kR

ies Example M9.7

Determine the shear stress at point H for a cantilever post, which consists of a structural
tube as shown.




ies Example M9.8

Determine the normal and shear stresses at point H, which is
located 3 in. above the centroidal axis for the wide-flange shape.

ies Exercises

M9.3 Q-tile: The Q Section Property Game. Score at least M9.4 Determine the shear stresses acting at points H and K for a
90 percent on the Q-tile game. wide-flange shape subjected to an internal shear force V.

The Q Section Property Game

FIGURE M9.3 FIGURE M9.4

PROBLEMS

P9.16 A 50-mm-diameter solid steel shaft supports loads
P, = 1.5 kN and P, = 3.0 kN as shown in Figure P9.16/17. As-
sume that L; = 150 mm, L, = 300 mm, and L; = 225 mm. The
bearing at B can be idealized as a roller support, and the bearing at
D can be idealized as a pin support. Determine the magnitude and
location of

(a) the maximum horizontal shear stress in the shaft.
(b) the maximum tension bending stress in the shaft.

FIGURE P9.16/17



P9.17 A 1.25-in.-diameter solid steel shaft supports loads
P, =4001b and P = 900 Ib as shown in Figure P9.16/17. Assume
that L, = 61in., L, = 12 in., and Ly = 8 in. The bearing at B can be
idealized as a roller support, and the bearing at D can be idealized
as a pin support. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.
(b) the maximum tension bending stress in the shaft.

P9.18 A 1.00-in.-diameter solid steel shaft supports loads
P, =2001b and Pj, = 240 1b as shown in Figure P9.18/19. Assume
that L, = 2in.,, L, = 5in., and Ly = 4 in. The bearing at B can be
idealized as a pin support, and the bearing at C can be idealized as
a roller support. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.
(b) the maximum tension bending stress in the shaft.

g

Vo -

FIGURE P9.18/19

P9.19 A 20-mm-diameter solid steel shaft supports loads P, =
900 N and Pj, = 1,200 N as shown in Figure P9.18/19. Assume that
L, =50 mm, L, = 120 mm, and L; = 90 mm. The bearing at B can
be idealized as a pin support, and the bearing at C can be idealized
as a roller support. Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.
(b) the maximum compression bending stress in the shaft.

P9.20 A 1.25-in.-diameter solid steel shaft supports loads
P, = 600 1b, P, = 1,600 Ib, and P, = 400 Ib as shown in Figure
P9.20/21. Assume that L, = 6 in., L, = 15 in., L3 = 8 in., and
L, = 10 in. The bearing at B can be idealized as a roller support,
and the bearing at D can be idealized as a pin support. Determine
the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.
(b) the maximum tension bending stress in the shaft.

FIGURE P9.20/21

P9.21 A 25-mm-diameter solid steel shaft supports loads
P, =1,000N, P- = 3,200 N, and P = 800 N as shown in Figure
P9.20/21. Assume that L; = 80 mm, L, = 200 mm, L; = 100 mm,
and L, = 125 mm. The bearing at B can be idealized as a roller
support, and the bearing at D can be idealized as a pin support.
Determine the magnitude and location of

(a) the maximum horizontal shear stress in the shaft.
(b) the maximum tension bending stress in the shaft.

P9.22 A 3-in. standard steel pipe (D = 3.500 in.; d = 3.068 in.)
in Figure 9.22b/23b supports a concentrated load of P = 900 1b
as shown in Figure P9.22a/23a. The span length of the cantilever
beam is L = 3 ft. Determine the magnitude of

(a) the maximum horizontal shear stress in the pipe.
(b) the maximum tension bending stress in the pipe.

FIGURE P9.22a/23a Cantilever beam.

FIGURE P9.22b/23b Pipe cross section.

P9.23 A steel pipe (D = 170 mm; d = 150 mm) in Figure
P9.22b/23b supports a concentrated load of P as shown in Figure
P9.22a/23a. The span length of the cantilever beam is L = 1.2 m.

(a) Compute the value of Q for the pipe.

(b) If the allowable shear stress for the pipe shape is 75 MPa,
determine the maximum load P that can be applied to the
cantilever beam.

P9.24 A concentrated load P is applied to the upper end of a
I-m-long pipe as shown in Figure P9.24a/25a. The outside
diameter of the pipe is D = 114 mm, and the inside diameter is
d =102 mm.

(a) Compute the value of Q for the pipe.

(b) If the allowable shear stress for the pipe shape is 75 MPa,
determine the maximum load P that can be applied to the
cantilever beam.



FIGURE P9.24b/25b

Pipe cross section.

FIGURE P9.24a/25a
Cantilever pipe.

P9.25 A concentrated load of P = 6 kips is applied to the up-
per end of a 4-ft-long pipe, as shown in Figure P9.24a/25a. The
pipe is an 8-in. standard steel pipe, which has an outside diameter
of D = 8.625 in. and an inside diameter of d = 7.981 in. Deter-
mine the magnitude of

(a) the maximum vertical shear stress in the pipe.
(b) the maximum tension bending stress in the pipe.

P9.26 The cantilever beam shown in Figure P9.26a/27a is
subjected to a concentrated load of P = 38 kips. The cross-sectional
dimensions of the wide-flange shape are shown in Figure P9.265/27b.
Determine

(a) the shear stress at point H, which is located 4 in. below the
centroid of the wide-flange shape.
(b) the maximum horizontal shear stress in the wide-flange shape.

6.75 in.
0.455 in.

ey p—
0.285 in. —>{|[«— _T

14.00 in.

FIGURE P9.26b/27b

FIGURE P9.26a/27a

P9.27 The cantilever beam shown in Figure P9.26a/27a is sub-
jected to a concentrated load of P. The cross-sectional dimensions
of the wide-flange shape are shown in Figure P9.26b/27b.

(a) Compute the value of Q that is associated with point K, which
is located 2 in. above the centroid of the wide-flange shape.
(b) If the allowable shear stress for the wide-flange shape is
14 ksi, determine the maximum concentrated load P that
can be applied to the cantilever beam.

P9.28 The cantilever beam shown in Figure P9.28a/29a is sub-
jected to a concentrated load of P. The cross-sectional dimensions
of the rectangular tube shape are shown in Figure P9.285/29b.

(a) Compute the value of Q that is associated with point H, which is
located 90 mm above the centroid of the rectangular tube shape.

(b) If the allowable shear stress for the rectangular tube shape is
125 MPa, determine the maximum concentrated load P that
can be applied to the cantilever beam.

250 mm
50 mm
8 mm
FIGURE P9.28b/29b (typ)

P9.29 The cantilever beam shown in Figure P9.28a/29a is
subjected to a concentrated load of P = 175 kN. The cross-
sectional dimensions of the rectangular tube shape are shown in
Figure P9.28H/29b. Determine

(a) the shear stress at point K, which is located 50 mm below the
centroid of the rectangular tube shape.
(b) the maximum horizontal shear stress in the rectangular tube shape.

P9.30 The internal shear force V at a certain section of an alumi-
num beam is 8 kN. If the beam has a cross section shown in Figure
P9.30, determine

75 mm

75 mm

30 mm

—>I_l<— 5 mm

FIGURE P9.30



(a) the shear stress at point H, which is located 30 mm above the
bottom surface of the tee shape.
(b) the maximum horizontal shear stress in the tee shape.

P9.31 The internal shear force V at a certain section of a steel
beam is 80 kN. If the beam has a cross section shown in Figure
P9.31, determine

(a) the shear stress at point H, which is located 30 mm below the
centroid of the wide-flange shape.
(b) the maximum horizontal shear stress in the wide-flange shape.

y 15 mm
I |
80kNM T
—>|[<— 10 mm
z 210 mm
30 mm
H
| . |
210 mm
FIGURE P9.31 | |

P9.32 The internal shear force V at a certain section of a steel
beam is 110 kips. If the beam has a cross section shown in
Figure P9.32, determine

(a) the value of Q associated with point H, which is located 2 in.
below the top surface of the flanged shape.
(b) the maximum horizontal shear stress in the flanged shape.

5in.
1in.
’ |
[} |_
2in.
v A
[ lin. 12in.
z
110 kips J,
[ |
8 in. ‘ 1in.
FIGURE P9.32

P9.33 The internal shear force V at a certain section of a steel
beam is 75 kips. If the beam has a cross section shown in Figure
P9.33, determine

(a) the shear stress at point H, which is located 2 in. above the
bottom surface of the flanged shape.

(b) the shear stress at point K, which is located 4.5 in. below the
top surface of the flanged shape.

— y| — T-
0.75in. —{ |«— 05in 4.5 in.
(typ) .l __i
ﬁ? K 10 in.
H
L 75 kips
2 in.
L 10 in. J

FIGURE P9.33

P9.34 Consider a 100-mm-long segment of a simply supported
beam (Figure P9.34a). The internal bending moments on the left
and right sides of the segment are 75 kN-m and 80 kN-m, respec-
tively. The cross-sectional dimensions of the flanged shape are
shown in Figure P9.34b. Determine the maximum horizontal shear
stress in this segment of the beam.

.

e

VAR
O

75 kN-m

100 mm

FIGURE P9.34a Beam segment (side view).

150 mm
1

| | 60 mm

Aomm — < mm

| | 60mm

250 mm T

FIGURE P9.34b Cross-sectional dimensions.



P9.35 A simply supported beam with spans of @ = 1.5 m and
b = 5.5 m supports loads of w = 40 kN/m and P = 30 kN, as shown
in Figure P9.35a. The cross-sectional dimensions of the wide-
flange shape are shown in Figure P9.35b.

(a) Determine the maximum shear force in the beam.

(b) At the section of maximum shear force, determine the shear
stress in the cross section at point H, which is located a
distance of ¢ = 75 mm below the neutral axis of the wide-
flange shape.

(c) At the section of maximum shear force, determine the
maximum horizontal shear stress in the cross section.

(d) Determine the magnitude of the maximum bending stress in
the beam.

P

Vlllllllllllllfllllllllll
A =5 c

FIGURE P9.35a

300 mm

i

FIGURE P9.35b

P9.36 A simply supported beam supports the loads shown in
Figure P9.36a. The cross-sectional dimensions of the structural
tube shape are shown in Figure P9.36b.

(a) At section a—a, which is located 4 ft to the right of pin support
B, determine the bending stress and the shear stress at point H,
which is located 3 in. below the top surface of the tube shape.

(b) Determine the magnitude and the location of the maximum
horizontal shear stress in the tube shape at section a—a.

25 kips 12 kips

4 ft

3 kips/ft

‘4l

4 M ]|

FIGURE P9.36a

0.375 in.

|

3in.

y

o

0.375 in. —>{|<—

H

16 in.

12 in.

FIGURE P9.36b

P9.37 A cantilever beam supports the loads shown in Figure
P9.37a. The cross-sectional dimensions of the shape are shown in
Figure P9.37b. Determine

(a) the maximum horizontal shear stress.

(b) the maximum compression bending stress.

(c) the maximum tension bending stress.

3,100 Ib

1,200 1b/ft

v TTTTITTTTTITITTITI 1T

FIGURE P9.37a

12 in.
0.4 in. y
T z—& /[
6 in.
—> 0.4 in.

FIGURE P9.37b

P9.38 A cantilever beam supports the loads shown in Figure
P9.38a. The cross-sectional dimensions of the shape are shown in
Figure P9.38b. Determine

(a) the maximum vertical shear stress.
(b) the maximum compression bending stress.
(c) the maximum tension bending stress.



(a) Determine the magnitude of the maximum shear force in the
beam.

(b) At the section of maximum shear force, determine the shear
stress magnitude in the cross section at point H, which is
located 2 in. above the bottom surface of the wide-flange shape.

(c) At the section of maximum shear force, determine the
magnitude of the maximum horizontal shear stress in the
cross section.

(d) Determine the magnitude of the maximum compression
bending stress in the beam. Where along the span does
this stress occur?

1,200 1b
450 Ib/ft
JIIIIIIIILIIIIELY \ 4
o) |
FIGURE P9.38a
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P9.39 A simply supported beam fabricated from pultruded rein- E E—
forced plastic supports the loads shown in Figure P9.39a. The 2 in.
cross-sectional dimensions of the plastic wide-flange shape are v
shown in Figure P9.395. FIGURE P9.39b

9.8 Shear Flow in Built-Up Members

While standard steel shapes and other specially formed cross sections are frequently used
to construct beams, there are instances in which beams must be fabricated from compo-
nents such as wood boards or metal plates to suit a particular purpose. As has been shown
in Section 9.2, nonuniform bending creates horizontal forces (i.e., forces parallel to the
longitudinal axis of the beam) in each portion of the cross section. To satisfy equilibrium,
additional horizontal forces must be developed internally between these parts. For a cross
section made from disconnected components, fasteners such as nails, screws, bolts, or
other individual connectors must be added so that the separate pieces act together as a uni-
fied flexural member (Figure 9.14a).

The cross section of a built-up flexural member is shown in Figure 9.14a. Nails con-
nect four wood boards so that they act as a unified flexural member. As in Section 9.3, we
will consider a length Ax of the beam, which is subjected to nonuniform bending
(Figure 9.14b). Next, we will examine a portion A" of the cross section to assess the forces
that act in the longitudinal direction (i.e., the x direction). In this instance, we will consider
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(a) Cross section made from

four wood boards

(b) Built-up beam subjected to (c) Free-body diagram of board (3)

nonuniform bending

FIGURE 9.14 Horizontal equilibrium of a built-up beam.

The term I, appearing in
Equations (9.1), (9.11), and
(9.12) is always the moment of
inertia of the entire cross section
about the z centroidal axis.

It is important to understand that
shear flow stems from normal
stresses created by internal
bending moments that vary
along the beam span. The term V
appears in Equation (9.12) as a
substitute for dM/dx. Shear flow
acts parallel to the longitudinal
axis of the beam—that is, in the
same direction as the bending
stresses.

board (3) as area A’. A free-body diagram of board (3) is shown in Figure 9.14¢. Using an
approach similar to the derivation presented in Section 9.3, Equation (9.1) relates the
change in internal bending moment AM over a length Ax to the horizontal force required to
satisfy equilibrium for area A":

_ AMQ
I

%

Fy, 9.1)

The change in internal bending moment AM can be expressed as AM = (dM/dx)Ax = V
Ax, thereby allowing Equation (9.1) to be rewritten in terms of the internal shear force V:

FHz‘;—QAx

Z

©.11)

Equation (9.11) relates the internal shear force V in a beam to the horizontal force Fy; re-
quired to keep a specific portion of the cross section (area A’) in equilibrium. The term Q
is the first moment of area A" about the neutral axis, and /, is the moment of inertia of the
entire cross section about the neutral axis.

The force Fy, required to keep board (3) (i.e., area A") in equilibrium must be supplied
by nail B shown in Figure 9.14a, and it is the presence of individual fasteners (such as
nails) that is unique to the design of built-up flexural members. In addition to using the
flexure formula and the shear stress formula to consider bending stresses and shear stresses,
the designer of a built-up flexural member must ensure that the fasteners used to connect
the pieces together are adequate to transmit the horizontal forces required for equilibrium.

To facilitate this type of analysis, it is convenient to introduce a quantity known
as shear flow. If both sides of Equation (9.11) are divided by Ax, shear flow ¢ can be
defined as

9.12)

The shear flow g is the shear force per unit length of beam span required to satisfy horizon-
tal equilibrium for a specific portion of the cross section. Equation (9.12) is called the
shear flow formula.



Analysis and Design of Fasteners

Built-up cross sections use individual fasteners such as nails, screws, or bolts to connect
several components into a unified flexural member. One example of a built-up cross section
is shown in Figure 9.14a, and several other examples are shown in Figure 9.15. Although
these examples consist of wood boards connected by nails, the principles are the same re-
gardless of the beam material or the fastener type.

Consideration of fasteners usually involves one of the following objectives:

® Given the internal shear force V in the beam and the shear force capacity of a
fastener, what is the proper spacing intervals for fasteners along the beam span
(i.e., in the longitudinal x direction)?

® Given the diameter and spacing interval s of the fasteners, what is the shear stress
74 produced in each fastener for a given shear force V in the beam?

® Given the diameter, spacing interval s, and allowable shear stress of the fasteners,
what is the maximum shear force V that is acceptable for the built-up member?

To address these objectives, an expression can be developed from Equation (9.12) that
relates fastener resistance to the horizontal force F, required to keep an area A’ in equi-
librium. The length term Ax in Equation (9.12) will be set equal to the fastener spacing
interval s along the x axis of the beam. In terms of the shear flow ¢, the total horizontal
force Fj, that must be transmitted between connected parts over a beam interval of s can be
expressed as

Fy =gs (a)

The internal horizontal force F;; must be transmitted between the boards or plates by the
fasteners. (Note: The effect of friction between the connected parts is neglected.) The shear
force that can be transmitted by a single fastener (e.g., nail, screw, or bolt) will be denoted
by V;. Since more than one fastener could be used within the spacing interval s, the number
of fasteners in the interval will be denoted by n,. The resistance provided by n, fasteners
must be greater than or equal to the horizontal force Fy, required to keep the connected part
in equilibrium horizontally:

Fy = ngVy (b)

Combining Equation (a) with Equation (b) gives a relationship between the shear flow
g, the fastener spacing interval s, and the shear force that can be transmitted by a single
fastener V. This equation will be termed the fastener force-spacing relationship.

gs = n;Vy 9.13)

The average shear stress 7, produced in a fastener can be expressed as

_ Y

T = Af (c)

where the fastener is assumed to act in single shear and A, = cross-sectional area of fas-
tener. Using this relationship, Equation (9.13) can be rewritten in terms of shear stress in
the fastener. This equation will be termed the fastener stress-spacing relationship.

qs = l’lfoAf 9.14)

SHEAR FLOW IN
BUILT-UP MEMBERS

Nail B

(a) I-shaped wood beam
Cross section

Nail

(b) U-shaped wood beam
cross section

Nail Nail
(c) Alternate U-shaped wood

beam cross section

FIGURE 9.15 Examples of
built-up flexural members.



SHEAR STRESS IN BEAMS

Identifying the Proper Area for Q

In analyzing the shear flow g for a particular application, the most confusing decision often
concerns which portion of the cross section to include in the Q calculation. The key to
identifying the proper area A’ is to determine which portion of the cross section is being
held in place by the fastener.

Several built-up wood beam cross sections are shown in Figure 9.14a and Figure 9.15.
In each case, nails are used to connect the wood boards together into a unified flexural mem-
ber. A vertical internal shear force V is assumed to act in the beam for each cross section.

For the tee shape shown in Figure 9.14q, board (1) is held in place by nail A. To ana-
lyze nail A, the designer must determine the shear flow ¢ transmitted between board (1) and
the remainder of the cross section. The proper Q for this purpose is the first moment of
board (1)’s area about the z centroidal axis. Similarly, the shear flow associated with nail B
requires Q for board (3) about the neutral axis. Nail C must transmit the shear flow arising
from boards (1), (2), and (3) to the stem of the tee shape. Consequently, the proper Q
includes boards (1), (2), and (3).

Figure 9.15a shows an I-shaped cross section that is fabricated by nailing flange boards
(1) and (3) to web board (2). Nail A connects board (1) to the remainder of the cross section;
therefore, the shear flow g associated with nail A is based on first moment of area Q for board
(1) about the z axis. Nail B connects board (3) to the remainder of the cross section. Since
board (3) is smaller than board (1) and more distant from the z axis, a different value of Q will
be calculated, resulting in a different value of g for board (3). Consequently, it is likely that
the nail spacing interval s for nail B will be different from s for nail A. In both instances, I is
the moment of inertia of the entire cross section about the z centroidal axis.

Figures 9.15b and 9.15¢ show alternative configurations for U-shaped cross sections
in which board (2) is connected to the remainder of the cross section by two nails. The part
held in place by the nails is board (2) in both configurations. Both alternatives have the
same dimensions, the same cross-sectional area, and the same moment of inertia. However,
the value of Q calculated for board (2) in Figure 9.15b will be smaller than Q for board (2)
in Figure 9.15¢. Consequently, the shear flow for the first configuration will be smaller than
q for the alternative configuration.

A simply supported beam with an overhang supports a concentrated load of 500 Ib at D.
The beam is fabricated from two 2-in. by 8-in. wood boards that are fastened together
with lag screws spaced at 5-in. intervals along the length of the beam. The centroid loca-
tion of the fabricated cross section is shown in the sketch, and the moment of inertia of
the cross section about the z centroidal axis is 7. = 290.667 in.%. Determine the shear force
acting in the lag screws.

8 in.
y
L 1
3.50 in. | | 2in
T— z
6.5 in. 8in
71t 7t 2in.
<




Plan the Solution

Whenever a cross section includes discrete fasteners (such as nails, screws, or bolts), the
shear flow formula [Equation (9.12)] and the related fastener force-spacing relationship
[Equation (9.13)] will be helpful in assessing the suitability of the fasteners for the in-
tended purpose. To determine the shear force acting in the fasteners, we must first iden-
tify those portions of the cross section that are held in place by the fasteners. For the
basic tee-shape cross section considered here, it is evident that the top flange board is
secured to the stem board by the lag screws. If the entire cross section is to be in equilib-
rium, the resultant force acting in the horizontal direction on the flange board must be
transmitted by shear forces in the fasteners to the stem board. In the analysis, a short
length of the beam equal to the spacing interval of the lag screws will be considered to
determine the shear force that must be supplied by each fastener to satisfy equilibrium.

SOLUTION

Free-Body Diagram at C

To better understand the function of the fasteners, consider a free-body dia-
gram (FBD) cut at section C, 5 in. from the end of the overhang. This FBD
includes one lag screw fastener. The external 500-1b concentrated load cre-
ates an internal shear force V = 500 Ib and an internal bending moment
M = 2,500 Ib-in. acting at C in the direction shown.

The internal bending moment M = 2,500 1b-in. creates tension bend-
ing stresses above the neutral axis (i.e., the z centroidal axis) and compres-
sion bending stresses below the neutral axis. The key normal stresses acting
on the flange and the stem can be calculated from the flexure formula. These
stresses are labeled in the figure.

The approach outlined in Section 9.2 can be used to compute the resul-
tant horizontal force created by the tension bending stresses acting on the
flange. The resultant force has a magnitude of 344 1b, and it pulls the flange
in the —x direction. If the flange is to be in equilibrium, additional force act-
ing in the +x direction must be present. This added force is provided by the
shear resistance of the lag screw. With this force denoted as V}, equilibrium
in the horizontal direction dictates that V, = 344 Ib.

In other words, equilibrium of the flange can be satisfied only if 344 Ib
of resistance from the stem flows through the lag screw into the flange. The
magnitude of V, determined here is applicable only for a 5-in.-long segment
of the beam. If a segment longer than 5 in. were considered, the internal
bending moment M would be larger, which in turn would create larger bend-
ing stresses and a larger resultant force magnitude. Consequently, it is con-
venient to express the amount of force that must flow to the connected por-
tion in terms of the horizontal resistance required per unit of beam span. The
shear flow for this instance is

344 1b
9= 55, = 68.8 Ib/in. (a)

The preceding discussion is intended to illuminate the behavior of a built-up
beam. A basic understanding of the forces and stresses involved in this type
of flexural member facilitates the proper use of the shear flow formula
[Equation (9.12)] and the fastener force-spacing relationship [Equation
(9.13)] to analyze and design fasteners in built-up flexural members.

500 Ib

V=5001b

M = 2,500 Ib-in.
500 Ib
Tension
bending stress
30.10 psi

12.90 psi

55.91 psi
Compression c
bending stress

5in
500 1b
Tension 4
bending stress
30.10 psi
344 1b Gl

12.90 psi

Shear force
from
fastener

X




Shear Flow Formula
The shear flow formula rewritten as

9= (b)

1,000 Ib

and the fastener force-spacing relationship

gs = ngV, (c)

will be employed to determine the shear force V,
produced in the lag screws of the built-up beam.
Appropriate values for the terms appearing in
these equations will now be developed.

Beam internal shear force V: The shear-force and
bending-moment diagrams for the simply sup-
ported beam are shown. The V diagram reveals that
the internal shear force has a constant magnitude of
V' = 500 Ib throughout the entire beam span.

First moment of area Q: Q is calculated for the portion of the cross section connected
by the lag screw. Consequently, Q is calculated for the flange board in this situation:

0 = (8in.)(2in.)(2.5in.) = 40 in.3

Fastener spacing interval s: The lag screws are installed at 5-in. intervals along the
span; therefore, s = 5 in.

Shear flow g: The shear flow that must be transmitted from the stem to the flange
through the fastener can be calculated from the shear flow formula:

VO (500 1b)(40 in3) .
=—==-"—" """ =6881Ib/in. d
I, (290.667 in%) " @

Notice that the result obtained in Equation (d) from the shear flow formula is identical
to the result obtained in Equation (a). While the shear flow formula provides a conve-
nient format for calculation purposes, the underlying flexural behavior addressed by
this equation may not be readily evident. The preceding investigation using a FBD of
the beam at C may help to enhance one’s understanding of this behavior.

Fastener shear force V,: The shear force that must be provided by the fastener can be
calculated from the fastener force-spacing relationship. The beam is fabricated with
one lag screw installed in each 5-in. interval; therefore, ne= 1.

gs =ngVy

g5 _ (688 Ib/in.)(5 in.)

-V,
Y ny 1 fastener

= 344 1b per fastener Ans.




EXAMPLE 9.6

An alternative cross section is proposed for the simply supported beam of Example 9.5.
In the alternative design, the beam is fabricated from two 1-in. by 10-in. wood boards
nailed to a 2-in. by 6-in. flange board. The centroid location of the fabricated cross sec-
tion is shown in the sketch, and the moment of inertia of the cross section about the z
centroidal axis is I, = 290.667 in.*. If the allowable shear resistance of each nail is
80 1b, determine the maximum spacing interval s that is acceptable for the built-up beam.

6 in.
Nails — 4
—
3.50 in.
T z
6.5 in.

2 in.

|

in.

7 ft 7 ft 1in 1in.
Plan the Solution 6in.
The shear flow formula [Equation (9.12)] and the fastener force-spacing rela-
tionship [Equation (9.13)] will be required to determine the maximum spacing Y ’ l
interval s. Since the 2-in. by 6-in. flange board is held in place by the nails, the . 0 5.,
first moment of area Q as well as the shear flow g will be based on this region 5 55, 1 ’
of the cross section. T z L% T

10 in.

SOLUTION

Beam Internal Shear Force V
The shear-force and bending-moment diagrams for the simply supported beam
are shown in Example 9.5. The shear force V has a constant magnitude of V =

1in.

1in.

500 1b throughout the entire beam span.
First moment of area Q: Q is calculated for the 2-in. by 6-in. flange board, which is the
portion of the cross section held in place by the nails.
Q = (6in.)2 in.)2.5 in.) = 30 in.3?
Shear flow q: The shear flow that must be transmitted through the pair of nails is
_ Vo (500 1b)(30 in.%)
I, (290.667 in.4)

Maximum nail spacing interval s: The maximum spacing interval for the nails can be
calculated from the fastener force-spacing relationship [Equation (9.13)]. The beam is
fabricated with two nails installed in each interval; therefore, ng = 2.

= 51.6 Ib/in.

qs = ngVy

_ ngVy (2 nails)(80 Ib/nail)
LS = =
q 51.6 Ib/in.

Pairs of nails must be installed at intervals less than or equal to 3.10 in. In practice, nails
would be driven at 3-in. intervals.

=3.101n. Ans.




ies Example M9.9

Determine the allowable shear force capacity of two wood box beams,
which are fabricated with two different nail configurations.

les Example M9.10

Determine the maximum nail spacing that can be used to construct a U-shaped beam
from wood boards.

L

12in J

ies Example M9.11

Mec
MOVIES

Determine the maximum longitudinal bolt spacing required to support a 50-kip shear
force.




les Example M9.12

Determine the shear stress developed in the bolts used to connect two
channel shapes back to back.

ies Example M9.13

Determine the shear stress in the bolts used to fabricate a box beam.

The box beam is

75 mm constructed from two
18-mm-thick plywood

18 mm heets and two
75-mm by 100-mm
wood flanges.

18 mm

Determine the
shear stress in each
bolt and the bearing
stress between the

bolts and the

plywood web.

ies Exercises

M9.9 Five multiple-choice questions involving the calculation of Q for
built-up beam cross sections.




M9.10 Five multiple-choice questions pertaining to shear flow
in built-up beam cross sections.

6 in.

2in.

| 12 in. |
r

FIGURE M9.10

_PROBIEMS

M9.11 Four multiple-choice questions pertaining to shear flow
in built-up beam cross sections.

T

125 mm

|

FIGURE M9.11

P9.40 A wood beam is fabricated from one 2 X 10 and two
2 X 4 pieces of dimension lumber to form the I-beam cross section
shown in Figure P9.40/41. The flanges of the beam are fastened to
the web with nails that can safely transmit a force of 120 1b in direct
shear. If the beam is simply supported and carries a 1,000-1b load at
the center of a 12-ft span, determine
(a) the horizontal force transferred from each flange to the
web in a 12-in.-long segment of the beam.
(b) the maximum spacing s (along the length of the beam)
required for the nails.
(c) the maximum horizontal shear stress in the I-beam.

4 in. l
| \(| 2 in.
2 in
10 in.
~ %% .
| /-g 2& | 2 in.

Nails —J T
FIGURE P9.40/41

P9.41 A beam is fabricated from one 2 X 10 and two 2 X 4
pieces of dimension lumber to form the I-beam cross section shown
in Figure P9.40/41. The I-beam will be used as a simply supported
beam to carry a concentrated load P at the center of a 20-ft span.
The wood has an allowable bending stress of 1,200 psi and an
allowable shear stress of 90 psi. The flanges of the beam are fas-
tened to the web with nails that can safely transmit a force of 120 1b
in direct shear.
(a) If the nails are uniformly spaced at an interval of s = 4.5 in.
along the span, what is the maximum concentrated load P that

can be supported by the beam? Demonstrate that the maximum
bending and shear stresses produced by P are acceptable.

(b) Determine the magnitude of load P that produces the
allowable bending stress in the span (i.e., o, = 1,200 psi).
‘What nail spacing s is required to support this load magnitude?
Demonstrate that the maximum horizontal shear stresses
produced by P are acceptable.

P9.42 A box beam is fabricated from four boards, which are fas-
tened together with nails, as shown in Figure P9.42b. The nails are
installed at a spacing of s = 125 mm (Figure P9.42a), and each nail
can provide a resistance of V,= 500 N. In service, the box beam will
be installed so that bending occurs about the z axis. Determine the
maximum shear force V that can be supported by the box beam on
the basis of the shear capacity of the nailed connections.

FIGURE P9.42a

y 25 mm
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—& 250 mm
40 | 120 | 40 25 mm
FIGURE P9.42b mm LLLLLIS TN L4k




P9.43 A box beam is fabricated from four boards, which are
fastened together with screws, as shown in Figure P9.43b. Each
screw can provide a resistance of 800 N. In service, the box beam
will be installed so that bending occurs about the z axis, and the
maximum shear force in the beam will be 9 kN. Determine the
maximum permissible spacing interval s for the screws. (See
Figure P9.43a.)

B
o~k

FIGURE P9.43a

1
50 mm
0 mm
50 mm
140 mm J L 25 mm
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FIGURE P9.43b

P9.44 A beam is fabricated by nailing together three pieces of
dimension lumber as shown in Figure P9.44a. The cross-sectional
dimensions of the beam are shown in Figure P9.44)H. The beam
must support an internal shear force of V = 750 Ib.

(a) Determine the maximum horizontal shear stress in the cross
section for V = 750 1b.

(b) If each nail can provide 100 Ib of horizontal resistance,
determine the maximum allowable spacing s for the nails.

(c) If the three boards were connected by glue instead of nails,
what minimum shear strength would be necessary for the
glued joints?

FIGURE P9.44a
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HERR
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2 in.
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FIGURE P9.44b

P9.45 A beam is fabricated by gluing four dimension lumber
boards, each 40 mm wide and 90 mm deep, to a 32 X 400 plywood
web as shown in Figure P9.45. Determine the maximum allowable
shear force and the maximum allowable bending moment that this
section can carry if the allowable bending stress is 6 MPa, the al-
lowable shear stress in the plywood is 640 kPa, and the allowable
shear stress in the glued joints is 250 kPa.

mm

32 mm

FIGURE P9.45

P9.46 A beam is fabricated from one 2 X 12 and two 2 X 10
dimension lumber boards to form the double-tee cross section
shown in Figure P9.46. The beam flange is fastened to the stem
with nails. Each nail can safely transmit a force of 175 Ib in direct
shear. The allowable shear stress of the wood is 70 psi.

(a) If the nails are uniformly spaced at an interval of s = 4 in.
along the span, what is the maximum internal shear force V
that can be supported by the double-tee cross section?

(b) What nail spacing s would be necessary to develop the full
strength of the double-tee shape in shear? (Full strength means
that the maximum horizontal shear stress in the double-tee
shape equals the allowable shear stress of the wood.)

) 12 in. ,
(—Nailsw
2in
y
z
10 in.

|

J 'L2in‘

FIGURE P9.46 “"J. L




P9.47 A box beam is fabricated from two plywood webs that are
secured to dimension lumber boards at its top and bottom flanges
(Figure P9.47b/48b). The beam supports a concentrated load of
P = 5,000 Ib at the center of a 15-ft span (Figure P9.47a/48a).
Bolts (3/8-in. diameter) connect the plywood webs and the lumber
flanges at a spacing of s = 12 in. along the span. Supports A and C
can be idealized as a pin and a roller, respectively. Determine

(a) the maximum horizontal shear stress in the plywood webs.
(b) the average shear stress in the bolts.
(c) the maximum bending stress in the lumber flanges.

FIGURE P9.47a/48a
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FIGURE P9.47b/48b

P9.48 A box beam is fabricated from two plywood webs that are
secured to dimension lumber boards at its top and bottom flanges
(Figure P9.47b/48D). The lumber has an allowable bending stress
of 1,500 psi. The plywood has an allowable shear stress of 300 psi.
The 3/8-in.-diameter bolts have an allowable shear stress of 6,000 psi,
and they are spaced at intervals of s = 9 in. The beam span is L = 15 ft
(Figure P9.47a/48a). Support A can be assumed to be pinned, and
support C can be idealized as a roller.

(a) Determine the maximum load P that can be applied to the
beam at midspan.

(b) Report the bending stress in the lumber, the shear stress in the
plywood, and the average shear stress in the bolts at the load
P determined in part (a).

P9.49 A beam is fabricated from three boards, which are fastened
together with screws, as shown in Figure P9.49b. The screws are
uniformly spaced along the span of the beam at intervals of 150 mm

(Figure P9.49a). In service, the beam will be positioned so that
bending occurs about the z axis. The maximum bending moment in
the beam is M_ = —4.50 kKN-m, and the maximum shear force in the
beam is V, = —2.25 kN. Determine

(a) the magnitude of the maximum horizontal shear stress in
the beam.

(b) the shear force in each screw.

(c) the magnitude of the maximum bending stress in the beam.

Spacing = 150 mm
FIGURE P9.49a

220 mm
I y I S
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z
—— Screws ——
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FIGURE P9.49b

P9.50 A beam is fabricated by bolting together three wood
members as shown in Figure P9.50a/51a. The cross-sectional di-
mensions are shown in Figure P9.506/51b. The 8-mm-diameter
bolts are spaced at intervals of s = 200 mm along the x axis of the
beam. If the internal shear force in the beam is V = 7 kN, determine
the shear stress in each bolt.

FIGURE P9.50a/51a



300 mm

FIGURE P9.50b/51b

P9.51 A beam is fabricated by bolting together three wood
members as shown in Figure P9.50a/51a. The cross-sectional di-
mensions are shown in Figure P9.50b/51b. The allowable shear
stress of the wood is 850 kPa, and the allowable shear stress of the
10-mm-diameter bolts is 40 MPa. Determine

(a) the maximum internal shear force V that the cross section
can withstand based on the allowable shear stress in
the wood.

(b) the maximum allowable bolt spacing s required to develop the
internal shear force computed in part (a).

P9.52 A cantilever flexural member is fabricated by bolting two
identical cold-rolled steel channels back to back as shown in Fig-
ure P9.52a. The cantilever beam has a span of L = 1,600 mm and
supports a concentrated load of P = 600 N. The cross-sectional
dimensions of the built-up shape are shown in Figure P9.52b. The
effect of the rounded corners can be neglected in determining the
section properties for the built-up shape.

(a) If 4-mm-diameter bolts are installed at intervals of s = 75 mm,
determine the shear stress produced in the bolts.

(b) If the allowable average shear stress in the bolts is 96 MPa,
determine the minimum bolt diameter required if a spacing of
s = 400 mm is used.

FIGURE P9.52a

65 mm

y 7|(
3 mm

o ]
!
40 mm

|

FIGURE P9.52b

P9.53 A W360 X 51 steel beam (see Appendix B) in an existing
structure is to be strengthened by adding a 200-mm-wide by
25-mm-thick cover plate to its lower flange, as shown in Figure
P9.53. The cover plate is attached to the lower flange by pairs of
24-mm-diameter bolts spaced at intervals of s along the beam span.
Bending occurs about the z centroidal axis.

(a) If the allowable bolt shear stress is 96 MPa, determine the
maximum bolt spacing interval s required to support an
internal shear force in the beam of V = 85 kN.

(b) If the allowable bending stress is 150 MPa, determine the
allowable bending moment for the existing W360 X 51
shape, the allowable bending moment for the W360 X 51
with the added cover plate, and the percentage increase in
moment capacity that is gained by adding the cover plate.

e ——
W360 X 51
y
z—
25 mm
Cover V.
plate —
‘ 200 mm ‘

FIGURE P9.53

P9.54 A W410 X 60 steel beam (see Appendix B) is simply
supported at its ends and carries a concentrated load P at the center
of a 7-m span. The W410 X 60 shape will be strengthened by add-
ing two 250-mm-wide by 16-mm-thick cover plates to its flanges as
shown in Figure P9.54/55. Each cover plate is attached to its flange
by pairs of 20-mm-diameter bolts spaced at intervals of s along the
beam span. The allowable bending stress is 150 MPa, the allowable
average shear stress in the bolts is 96 MPa, and bending occurs
about the z centroidal axis.

(a) On the basis of the 150-MPa allowable bending stress,
determine the maximum concentrated load P that may be
applied at the center of a 7-m span for a W410 X 60 steel
beam with two cover plates.

(b) For the internal shear force V associated with the concentrated
load P determined in part (a), compute the maximum spacing
interval s required for the bolts that attach the cover plates to
the flanges.
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P9.55 A W410 X 60 steel beam (see Appendix B) is simply sup-
ported at its ends and carries a concentrated load of P = 420 kN
at the center of a 7-m span. The W410 X 60 shape will be strength-
ened by adding two 250-mm-wide by 16-mm-thick cover plates
to its flanges as shown in Figure P9.54/55. Each cover plate is
attached to its flange by pairs of bolts spaced at intervals of s = 250 mm
along the beam span. The allowable average shear stress in the bolts
is 96 MPa, and bending occurs about the z centroidal axis. Deter-
mine the minimum required diameter for the bolts.

FIGURE P9.54/55

P9.56 A W310 X 60 steel beam (see Appendix B) has a C250 X
45 channel bolted to the top flange as shown in Figure P9.56/57. The
beam is simply supported at its ends and carries a concentrated load of

100 kN at the center of a 6-m span. Pairs of 24-mm-diameter bolts are
spaced at intervals of s along the beam. If the allowable average shear
stress in the bolts must be limited to 125 MPa, determine the maxi-
mum spacing interval s for the bolts.

C250 X 45

W310 X 60

FIGURE P9.56/57

P9.57 A W310 X 60 steel beam (see Appendix B) has a C250 X
45 channel bolted to the top flange as shown in Figure P9.56/57.
The beam is simply supported at its ends and carries a concentrated
load of 90 kN at the center of an 8-m span. If pairs of bolts are
spaced at 600-mm intervals along the beam, determine

(a) the shear force carried by each of the bolts.
(b) the bolt diameter required if the average shear stress in the
bolts must be limited to 75 MPa.

9.9 Shear Stress and Shear Flow in
Thin-Walled Members

In the preceding discussion of built-up beams, the internal shear force Fj; required for
horizontal equilibrium of a specific portion and length of a flexural member was expressed

by Equation (9.11):

(9.11)

As shown in Figure 9.14, the force F, acts parallel to the bending stresses (i.e., in the
x-direction). The shear flow ¢ was derived in Equation (9.12),

By _,_ V0

9.12
Ax I ( )

“

to express the shear force per unit length of beam span required to satisfy horizontal equi-
librium for a specific portion of the cross section. In this section, these ideas will be applied
to the analysis of average shear stress and shear flow in thin-walled members such as the
flanges of wide-flange beam sections.

Shear Stress in Thin-Walled Sections

Consider the segment of length dx of the wide-flange beam shown in Figure 9.16a. The bend-
ing moments M and M + dM produce compression bending stresses in the upper flange of the
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FIGURE 9.16 Shear stresses in a thin-walled wide-flange beam.

member. Next, consider the free-body diagram of a portion of the upper flange, element (1),
shown in Figure 9.16b. On the back side of the beam segment, the bending moment M creates
compression normal stresses that act on the —x face of flange element (1). The resultant of
these normal stresses is the horizontal force F. Similarly, the bending moment M + dM acting
on the front side of the beam segment produces compression normal stresses that act on the
+x face of flange element (1), and the resultant of these stresses is the horizontal force F +
dF. Since the resultant force acting on the front side of element (1) is greater than the re-
sultant force acting on the back side, an additional force of dF must act on element (1) to
satisfy equilibrium. This force dF can act only on the exposed surface BB’ (since all other
surfaces are free of stress). By a derivation similar to that used in obtaining Equation (9.11),
the force dF can be expressed in terms of differentials as

V
dF = I—Q (9.15)
e

where Q is the first moment of the cross-sectional area of element (1) about the neutral axis
of the beam section. The area of surface BB’ is dA = ¢ dx, and thus, the average shear stress
acting on the longitudinal section BB’ is

_dF _VQ
dA It ©.16)

Note that 7 in this instance represents the average value of the shear stress acting on a z
plane [i.e., the vertical surface BB’ of element (1)] in the horizontal direction x, or in other
words, 7. Since the flange is thin, the average shear stress 7_, will not vary much over the
thickness ¢ of the flange. Consequently, 7., can be assumed to be constant. Since shear
stresses acting on perpendicular planes must be equal (see Section 1.6), the shear stress 7,
acting on an x face in the z direction must equal 7,, at any point on the flange (Figure 9.16¢).
Accordingly, the horizontal shear stress 7, at any point on a transverse section of the flange
can be obtained from Equation (9.16).

SHEAR STRESS AND SHEAR
FLOW IN THIN-WALLED
MEMBERS
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FIGURE 9.18 Shear stress
directions at various locations

in the cross-section.
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(c) Horizontal shear
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flange element (1).

(b) FBD of flange element (2).

(a) Thin-walled beam section.

FIGURE 9.17 Thin-walled wide-flange beam.

The shear stress 7, acting on an x face in the vertical y direction at point B of the
flange element is shown in Figure 9.16d. The top and bottom surfaces of the flange are free
surfaces; thus, Ty = 0. Since the flange is thin and the shear stresses on the top and bottom
of the flange element are zero, the shear stress 7, through the thickness of the flange will
be very small and thus can be neglected. Consequently, only the shear stresses (and shear
flows) that act parallel to the free surfaces of the thin-walled section will be significant.

Next, consider point C on the upper flange of the beam segment shown in Figure 9.17a.
A free-body diagram of flange element (2) is shown in Figure 9.17b. With the same ap-
proach used for point B, it can be demonstrated that the shear stress 7., must act in the di-
rection shown in Figure 9.17¢. Similar analyses for points D and E on the lower flange of
the cross section reveal that the shear stress 7, acts in the directions shown in Figure 9.18.

Equation (9.16) can be used to determine the shear stress in the flanges (Figure 9.19a)
and the web (Figure 9.19b) of wide-flange shapes, in box beams (Figures 9.20a and 9.200),
in half-pipes (Figure 9.21), and in other thin-walled shapes, provided that the shear force V

Free surface

Free surface Cut Free surface

Cut \-Free surface Toy

z z
N.A. N.A.
Vv V

l | ) ]

(a) Shear stress in flange (b) Shear stress in web

FIGURE 9.19 Shear stresses in a wide-flange shape.
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FIGURE 9.20 Shear stresses in a box-shaped cross section.

acts along an axis of symmetry for the cross section. For each shape, the cutting plane of
the free-body diagram must be perpendicular to the free surface of the member. The
shear stress acting parallel to the free surface can be calculated from Equation (9.16).
(As discussed previously, the shear stress acting perpendicular to the free surface is
negligible because of the thinness of the element and the proximity of the adjacent
free surface.)

Shear Flow in Thin-Walled Sections

The shear flow along the top flange of the wide-flange shape shown in Figure 9.22a will be
studied here. The product of the shear stress at any point in a thin-walled shape and the
thickness  at that point is equal to the shear flow g:

o[22

L)

q (9.17)

For a given cross section, the shear force V and the moment of inertia /, in Equation (9.17)
are constant. Thus, the shear flow at any location in the thin-walled shape depends only on
the first moment of area Q. Consider the shear flow acting on the shaded area, which is
located a horizontal distance of s from the tip of the flange. The shear flow acting at s can
be calculated as

e X @

Note that Q is the first moment of the shaded area about the neutral axis. From inspection
of Equation (a), the distribution of shear flow along the top flange is a linear function of s.
The maximum shear flow in the flange occurs at s = b/2:

Vid( b Vbtd
t[]= ! )

(Gmax)r = Z_IZ B 4.

Note that s = b/2 is the centerline of the section. Since the cross section is assumed to be
thin walled, centerline dimensions for the flange and web can be used in the calculation.
This approximate procedure simplifies the calculations and is satisfactory for thin-walled
cross sections. Owing to symmetry, similar analyses of the other three flange elements
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FIGURE 9.22 Wide-flange shape with equal flange and web thicknesses.

produce the same result for (¢,,,) The linear variation of shear flow in the flanges is
shown in Figure 9.22c.

The total force developed in the upper left flange of Figure 9.22a can be determined
by integration of Equation (a). The force on the differential element ds is dFF = ¢ ds. The
total force acting on the upper left flange element is, therefore,

bl2Vid Vb2td
Fr= lagds = sds =
7= Jads fo 21" % 7 el
This same result can also be determined by calculating the area under the triangular distri-
bution in Figure 9.22¢ since ¢ is a distribution of force per length:
b 1 [Vbtd] b Vbid

1
Fr=— = | =
F= 5 madr 3 =5 ()2 T el

Again on the basis of symmetry, the force F} in each flange element will be the same. These
flange forces are shown in their proper directions in Figure 9.22d. From the direction of these
forces, it is evident that horizontal force equilibrium of the cross section is maintained.




Next, consider the web of the thin-walled cross section shown in Figure 9.22b. In the
web, the shear flow is
o
2 202 72

2
_ Vbtd N Vit [d_ B yz] ©

—

q L

2, 20\ 4

By using the expression for (), derived in Equation (b), Equation (c) can be rewritten
as the sum of the shear flows in the flange plus the change in shear flow over the depth of
the web:

q = 2(qmax)y + 2%[1—2 - yz]
The shear flow in the web increases parabolically from a minimum value at y = d/2 of
(@min)w = 2(gmax)r to @ maximum value at y = 0 of
2
81,

(Gmax)w = Z(Qmax)f +

Again, it should be noted that the shear flow expression here has been based on the center-
line dimensions of the cross section.

To determine the force in the web, Equation (c) must be integrated. Again, with the
centerline bounds of y = *d/2, the force in the web can be expressed as

dr vt d?
Fy=fqay= [ —[bd+7—y2]dy

—dn 21
AR
= %lbcﬂ + %3]
or
F, - I—‘Z[zbt[g]z ; %] @

The moment of inertia /, for the thin-walled flanged shape can be expressed as

L + bt[i]z
12 2

td3
+ —_—

I,=1 + Lpep = 2
z ‘flanges web 12

Since ¢ is small, the first term in the brackets can be neglected so that

d\? 3
= - +—=
I, 2bt[2] 2

Substituting this expression into Equation (d) gives F,, = V, which is as expected. (See
Figure 9.22d.)

SHEAR STRESS AND SHEAR
FLOW IN THIN-WALLED
MEMBERS



SHEAR STRESS IN BEAMS

It is useful to visualize shear flow in the same manner that one might visualize fluid
flow in a network of pipes. In Figure 9.22¢, the shear flows ¢ in the two top flange ele-
ments are directed from the outermost edges toward the web. At the junction of the web
and the flange, these shear flows turn the corner and flow down through the web. At the
bottom flange, the flows split again and move outward toward the flange tips. Because
this flow is always continuous in any structural section, it serves as a convenient method
for determining the directions of shear stresses. For instance, if the shear force acts
downward on the beam section of Figure 9.22a, then we can recognize immediately that
the shear flow in the web must act downward. Since the shear flow must be continuous
through the section, we can infer that (a) the shear flows in the upper flange must move
toward the web, and (b) the shear flows in the bottom flange must move away from the
web. Using this simple technique to ascertain the directions of shear flows and shear
stresses is easier than visualizing the directions of the forces acting on elements such
those in Figures 9.16b and 9.17b.

The preceding analysis demonstrates how shear stresses and shear flow in a thin-
walled cross section can be calculated. The results offer a more complete understanding
of how shear stresses are distributed throughout a beam that is subjected to shear forces.
(Recall that in Section 9.7, shear stresses in a wide-flange cross section were determined
for the web only.) Three important conclusions should be drawn from these analyses:

1. The shear flow g is dependent on the value of Q, and Q will vary throughout the cross
section. For beam cross-sectional elements that are perpendicular to the direction of the
shear force V, g and hence 7 will vary linearly in magnitude. Both ¢ and 7 will vary
parabolically in cross-sectional elements that are parallel to or inclined toward the
direction of V.

2. Shear flow will always act parallel to the free surfaces of the cross-sectional elements.

3. Shear flow is always continuous in any cross-sectional shape subjected to a shear
force. Visualization of this flow pattern can be used to establish the direction of both
q and 7 in a shape. The flow is such that the shear flows in the various cross-sectional
elements contribute to V while satisfying both horizontal and vertical equilibrium.

Closed Thin-Walled Sections

Flanged shapes such as wide-flange shapes (Figure 9.19) and tee shapes are classified as open
sections, whereas box shapes (Figure 9.20) and circular pipe shapes are classified as closed
sections. The distinction between open and closed sections is that closed shapes have a con-
tinuous periphery in which the shear flow is uninterrupted and open shapes do not. Consider
beam cross sections that satisfy two conditions: (a) The cross section has at least one longitu-
dinal plane of symmetry, and (b) the beam loads act in this plane of symmetry. For open sec-
tions, such as flanged shapes, satisfying these conditions, the shear flow and shear stress clearly
must be zero at the tips of the flanges. For closed sections such as box or pipe shapes, the loca-
tions at which the shear flow and the shear stress vanish are not so readily apparent.

A thin-walled box section subjected to a shear force V is shown in Figure 9.23a. This
section is split vertically along its longitudinal plane of symmetry in Figure 9.23b. The shear
flow in vertical walls of the box must flow parallel to the internal shear force V; thus, the shear
flow in the top and bottom walls of the box must act in the directions shown. On the plane of
symmetry, the shear stress at points B and B' must be equal; however, the shear flows act in
opposite directions. Similarly, the shear stress at points C and C" must be equal, but they, too,
act in opposing directions. Consequently, the only possible value of shear stress that can satisfy
these constraints is 7 = 0. Since ¢ = 7, the shear flow must also be zero at these points. From
this analysis, we can conclude that the shear flow and the shear stress for a closed thin-walled
beam section must be zero on a longitudinal plane of symmetry.
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FIGURE 9.23  Shear stress in a thin-walled box cross section.

A beam with the thin-walled inverted-tee-shaped cross section shown is _)I 8 mm
subjected to a vertical shear force of V = 37 kN. The location of the neutral
axis is shown on the sketch, and the moment of inertia of the inverted-tee 50 T.ﬂm
shape about the neutral axis is I = 11,219,700 mm®*. Determine the shear .*_ a
stresses in the tee stem at points a, b, ¢, and d, and in the tee flange at points ~ 143.0 mm 50 mm
e and f. Plot the distribution of shear stress in both the stem and flange. L 186 mm
Plan the Solution NA. ¢ 8mm
The location of the neutral axis and the moment of inertia of the inverted-  43.0 mm '’ l
tee shape about the neutral axis are given. The value of Q associated with = E * ] —-
each point will be determined from Q = y'A’ for the applicable portion 55 mml S T
A’ of the cross-sectional area. After Q is determined, the shear stress will 220 mm
1

be calculated from Equation (9.16).

SOLUTION

Points a, b, and c are located in the stem of the inverted-tee shape. A horizontal cutting
plane that is perpendicular to the walls of the stem defines the boundary of area A’. For
these locations, area A’ begins at the cutting plane and reaches upward to the top of the
stem. Point d is located at the junction of the stem and the flange. For this location, the area
A’ is simply the area of the flange. Point e is also at the junction of the stem and the flange;
however, the shear stress in the flange is to be determined at e. The area A" corresponding
to point e extends from the left end of the flange to a vertical cutting plane located at the
centerline of the stem. (Note that the centerline location for the cutting plane is acceptable
because the shape is thin walled.) For point fin the flange, a vertical cutting plane defines
the boundary of area A’, which extends horizontally from the cutting plane to the outer
edge of the flange. For all points, the first moment Q is the moment of the area A" about the
neutral axis of the inverted-tee shape. The shear stress at each point is calculated from

_ve

It
where V = 37 kN and 7 = 11,219,700 mm*. The thickness 7 is 8 mm for each location.
The results of these analyses are summarized in the following table:

T
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The directions and intensities of the shear stress in the inverted-tee shape are shown
in the sketch. Note that the shear stress in the tee stem is distributed parabolically, while
the shear stress in the flange is distributed linearly. At the junction of the stem and the
flange, the shear stress intensity is cut in half as shear flows outward in two opposing
directions.

19.46 MPa

30.67 MPa

33.72 MPa

€— < — <— <— ]

[ _<— — —>1] 31.20 MPa

7.8%/]15.60 MPa
15.60 MPa 7.80 MPa

EXAMPLE 9.8

A 6061-T6 aluminum thin-walled tube is subjected to a vertical shear force of
V = 21,000 Ib, as shown in the figure at the right. The outside diameter of the tube
is D = 8.0 in., and the inside diameter is d = 7.5 in. Plot the distribution of shear
stress in the tube.

Plan the Solution

stress formula 7 = VQ/It. At the outset, an expression for the moment of inertia of a
thin-walled tube will be derived. From the earlier discussion of shear stresses in
closed thin-walled cross sections, the free-body diagram to be considered for the
calculation of Q should be symmetric about the xy-plane. Based on this free-body
diagram, the first moment of area Q corresponding to an arbitrary location in the
tube wall will be derived and the variation of shear stress will be determined.

SOLUTION

The shear stress in the tube will be determined from the shear stress formula 7 = VQ/It.
The values for both 7 and Q can be determined by integration using polar coordinates.
Since the tube is thin walled, the radius r of the tube is taken as the radius to the middle
of the tube wall; therefore,

m
; 1

The shear stress distribution in the thin-walled tube will be calculated from the shear KT_///
14

t

For a thin-walled tube, the radius r is much greater than the wall thickness ¢ dd
(e r>>1). ¢ g

Moment of Inertia z
From the sketch, observe that the distance y from the z axis to a differential area »
dA of the tube wall can be expressed as y = r sin ¢. The differential area dA can
be expressed as the product of the differential arclength ds and the tube thick-
ness t; thus, dA = t ds. Furthermore, the differential arclength can be expressed as !
ds = rdd¢. As aresult, the differential area can be expressed in polar coordinates




of rand ¢ as dA = r t d¢p. From these relationships for y and dA, the moment of inertia of
the thin-walled tube can be derived as follows:

2 2
r.= [yaa= [ " (rsin ¢ rdd = 131 i "sin2pdd
1 1 2
=ri Ed) - Esinqbcosqb .

= 7t

First Moment of Area Q
The value of Q can also be determined by integration in polar coordinates. From
the sketch on the left, the value of Q for the area of the cross section above the
arbitrarily chosen sections defined by 6 and 76 will be determined. The free-
body diagram to be considered for the calculation of Q should be symmetric about
the xy-plane.

From the definition of Q, the first moment of area dA about the neutral axis

(N.A.) can be expressed as dQ = y dA. Substituting the previous expressions for y
and dA into this definition gives the following expression of dQ in terms of r and ¢:

dQ = ydA = (rsin ¢)rt d

The angle ¢ will vary between symmetric limits of 6 and 77— 6. The following
integration shows the derivation of a general expression for Q:

0 T—0
0= fe dQ = \ r2tsingde

= r2 [—cosq&]gie

= 2r2tcosf

Shear Stress Expressions

The variation of shear stress 7 can now be expressed in terms of the angle 6:
VO V(2r2tcos®) V
T T oy e 0

Note that the thickness term ¢ in the shear stress equation is the total width of the surface

exposed when cutting the free-body diagram. The free-body diagram considered between

sections at 6 and 70 exposes a total width of two times the wall thickness; hence, the

term 2¢ appears in the preceding shear stress equation.

For a thin-walled tube in which » >> ¢, the cross-sectional area can be approximated
by A = 27rrt. Thus, the shear stress 7 can be expressed as

= e
T—A/2 Ccosv = A COS

and the maximum shear stress given by

2V

Tmax — A

at a value of 6 = 0.




Calculation of Shear Stress Distribution
The radius 7 for the given aluminum tube is

_D+d _800in. + 7.50 in.

r 2 2 = 3.875in.
Thus, the shear stress distribution can be computed from
Vv 0 21,000 Ib 0
=——cosf = cos
H—— 7(3.875 in.)(0.25 in.)

= (6,900 psi) cosf

The direction of the shear stress is shown in the next figure, along with a graph of the
shear stress magnitude as a function of the angle 6:

0 10 20 30 40 50
0 (deg)

60 70 80 90

9.10 Shear Centers of Thin-Walled Open Sections

In Sections 8.1 through 8.3, the theory of bending was developed for prismatic beams. In
deriving this theory, beams were assumed to have a longitudinal plane of symmetry (Figure
8.2a) and loads acting on the beam, as well as the resulting curvatures and deflections, were
assumed to act only in the plane of bending. The only time that the requirement of symmetry
was removed was in Section 8.8, where it was shown that the bending moment could be re-
solved into component moments about the principal axes of the cross section, provided that
the loading was pure bending (i.e., no shear forces were present). However, unsymmetrical
bending configurations in which shear forces were present were not considered.

If loads are applied in the plane of bending and the cross section is symmetric with
respect to the plane of bending, twisting of the beam cannot occur. However, suppose that
we consider bending of a beam (a) not symmetric with respect to the longitudinal plane of
bending and (b) subjected to transverse shear forces in addition to bending moments. For
beams such as this, the resultant of the shear stresses produced by the transverse loads will
act in a plane that is parallel to, but offset from, the plane of loading. Whenever the resul-
tant shear forces do not act in the plane of the applied loads, the beam will twist about its
longitudinal axis in addition to bending about its neutral axis. Bending without twisting is
possible, however, if the transverse loads pass through the shear center. The shear center
can be simply defined as the location (to the side of the longitudinal axis of the beam)
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The exact location of the
shear center for thick-walled
unsymmetrical cross
sections is difficult to obtain
and is known only for a few
cases.

where the transverse loads should be placed to avoid twisting of the cross section. In other
words, transverse loads applied through the shear center cause no torsion of the beam.

Determination of the shear center location has important ramifications for beam de-
sign. Beam cross sections are generally configured to provide the greatest possible econ-
omy of material. As a result, beam cross sections are frequently composed of thin plates
arranged so that the resulting shape is strong in flexure. Wide-flange and channel shapes are
designed with most of the material concentrated at the greatest practical distance from the
neutral axis. This arrangement makes for an efficient flexural shape because most of the
beam material is placed in the flanges, which are locations of high flexural stress. Less
material is used in the web, which is near the neutral axis where flexural stresses are low.
The web primarily serves to carry shear force while also securing the flanges in position.
An open cross section that is made up of thin plate elements may be strong in flexure, but
it is extremely weak in torsion. If a beam twists as it bends, torsional shear stresses will be
developed in the cross section, and generally, these shear stresses will be quite large in
magnitude. For that reason, it is important for the beam designer to ensure that loads are
applied in a manner that eliminates twisting of the beam. This can be accomplished when
external loads act through the shear center of the cross section.

The shear center of a cross section is always located on an axis of symmetry. The
shear center for a beam cross section having two axes of symmetry coincides with the cen-
troid of the section. For cross sections that are unsymmetrical about one axis or both axes,
the shear center must be determined by computation or observation. The method of solu-
tion for thin-walled cross sections is conceptually simple. We will first assume that the
beam cross section bends, but does not twist. On the basis of this assumption, the resultant
internal shear forces in the thin-walled shape will be determined by consideration of the
shear flow produced in the shape. Equilibrium between the external load and the internal
resultant forces must be maintained. From this requirement, the location of the external
load necessary to satisfy equilibrium can then be computed.

Shear Center for a Channel Section

Consider the thin-walled channel shape used as a cantilever beam, as shown in Figure
9.24a. A vertical external load P that acts through the centroid of the cross section will

P

(a) Vertical load P acting through centroid (b) Bending and twisting in response to the
applied load

FIGURE 9.24 Bending and twisting of the cantilever beam.



FIGURE 9.25 Rear view of cantilever beam.

cause the beam to both bend and twist, as depicted in Figure 9.24b. To better understand
what causes the channel shape to twist, it is instructive to look at the internal shear flow
produced in the beam in response to the applied load P.

The beam of Figure 9.24 is shown from the rear in Figure 9.25. The shear flow pro-
duced at Section A-A’ in response to the external load P will be examined.

For the cantilever beam loaded as shown in Figure 9.26a, the upward internal shear
force V must equal the downward external load P. The shear force V creates shear flow ¢
that acts in the web and in the flanges in the directions shown in the figure.

(a) Shear flow in the channel shape (b) Resultant shear forces in the flanges
and the web

FIGURE 9.26 Internal shear flow and resultant forces acting on Section A-A’.

SHEAR CENTERS OF
THIN-WALLED OPEN
SECTIONS



SHEAR STRESS IN BEAMS

FIGURE 9.27 Shifting load
P away from the centroid.

The thickness of each flange is thin compared with the overall depth d of the channel
shape; therefore, the vertical shearing force transmitted by each flange is small and can be
neglected. (See Figure 9.16.) Consequently, the resultant shear force F,, determined by in-
tegrating the shear flow in the web must equal V. The resultant shear force F; produced in
each flange by the shear flow can be determined by integrating g over the width b of the
channel flange. The directions of the resultant shear forces in the flanges and in the web are
shown in Figure 9.26b. Since the forces Fare equal in magnitude, but act in opposite direc-
tions, they form a couple that tends to twist the channel section about its longitudinal axis
x. This couple, which arises from the resultant shear forces in the flanges, causes the chan-
nel to twist as it bends, as depicted in Figure 9.24b.

In Figure 9.27, the couple formed by the flange forces F causes the channel to
twist in a counterclockwise direction. To counterbalance this twist, an equal clockwise
torsional moment is required. A torsional moment can be produced by moving the external
load P away from the centroid (i.e., to the right in Figure 9.27). Because there is moment
equilibrium about point B (located at the top of the channel web), the beam will no
longer have a tendency to twist when the clockwise moment Pe equals the counter-
clockwise moment F d. The distance e measured from the centerline of the channel
web defines the location of the shear center O. Furthermore, the location of the shear
center is solely a function of the cross-sectional geometry and dimensions, and does
not depend upon the magnitude of the applied loading, as will be demonstrated in
Example 9.9.

When the vertical external load P acts through the shear center O of the channel
(Figure 9.28a), the cantilever beam bends without twisting (Figure 9.28b).

The shear center of a cross section is always located on an axis of symmetry. Thus,
if the external load is applied in the horizontal direction through the centroid of the chan-
nel, as shown in Figure 9.29a, there is no tendency for the channel to twist as it bends
(Figure 9.29b). The resultant shear forces in the flanges are equal in magnitude, and both
act to oppose the applied load P. In the channel web, there are two equal resultant shear
forces that act in opposite directions above and below the axis of symmetry.

(a) External load P acting through the shear (b) Bending without twisting in response to
center O the applied load

FIGURE 9.28 Bending of the cantilever beam without twisting.
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(a) External load P applied horizontally (b) Cantilever beam bends without twisting
through the centroid

FIGURE 9.29 External load acting in a plane of symmetry.

In conclusion, as long as the external loads act through the shear center, the beam will
bend without twisting. When this requirement is met, the stresses in the beam can be deter-
mined from the flexure formula.

Determination of the Shear Center Location

The location of the shear center for an unsymmetrical shape is computed by the procedure
outlined as follows:

Determine how the shear “flows” in the various portions of the cross section.

Determine the distribution of shear flow ¢ for each portion of the cross section from
the shear flow equation g = VQ/I. Convert the shear flow into a force resultant by
integrating g along the length of the cross-sectional element. The shear flow g will
vary (a) linearly in elements that are perpendicular to the direction of the internal
shear force V and (b) parabolically in elements that are parallel to or inclined toward
the direction of V.

® Alternatively, determine the distribution of shear stress 7 from the shear stress
equation 7 = VQ/It and convert the shear stress into a force resultant by integrating
7 over the area of the cross-sectional element.
Sketch the shear force resultants that act in each element of the cross section.

Determine the shear center location by summing moments about an arbitrary point
(for instance, point B) on the cross section. Choose a convenient location for

point B—one that eliminates as many force resultants from the moment equilibrium
equation as possible.

® Study the direction of rotation of the shear forces, and place the external force P at an
eccentricity e from point B so that the direction of the moment Pe is opposite to that
caused by the resultant shear forces.
Sum moments about point B, and solve for the eccentricity e.

If the cross section has an axis of symmetry, then the shear center lies at the point
where this axis intersects the line of action of the external load. If the shape has no
axes of symmetry, then rotate the cross section 90° and repeat the process to obtain
another line of action for the external loads. The shear center lies at the intersection of
these two lines.



EXAMPLE 9.9
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Derive an expression for the location of the shear center O for the channel
shape shown.

Plan the Solution

From the concept of shear flow, the horizontal shear force produced in each
channel flange will be determined. The twisting moment produced by these
forces will be counteracted by the moment produced by the vertical external
load P acting at a distance of e from the centerline of the channel web.

SOLUTION
Since the applied load P is assumed to act at the shear center O, the channel
shape will bend about the z axis (i.e., the neutral axis), but it will not twist
about the x axis. To better understand the forces that cause twisting in the
thin-walled channel and the forces that counteract this twisting tendency,
consider the rear face of the channel cross section.

The internal shear force V creates shear flow ¢ in the web and in the
flanges, which is expressed by

The shear force V and the shear flow ¢ act in the directions shown in the fig-
ure to the left. The shear flow at any location in the thin-walled shape de-
pends only on the first moment of area Q.

Consider the shear flow in the upper flange that acts in the shaded area,
which is located a horizontal distance of s from the tip of the flange. The
shear flow acting at s can be calculated as

q:V_Q: v[ d]_thf

~ st &= 9.18
AR G BT ©-18)

Notice that the magnitude of the shear flow varies linearly from the free sur-
face at the flange tip, where s = 0, to a maximum value at the web, where
s = b. The total horizontal force acting on the upper flange is determined by
integrating the shear flow over the width of the top flange:

b Vird Vb2diy
Ff_fqu_‘/(\) oL sds= L (a)

The force F ) in the lower flange will be the same magnitude; however, it will
act in the opposite direction, thus maintaining equilibrium in the z direction.
The couple created by the flange forces F tends to twist the channel shape in
a clockwise direction, as shown in the figure to the right.

The thickness 7 of each flange is thin compared with the overall depth d
of the channel shape; therefore, the vertical shearing force transmitted by
each flange is small and can be neglected. (See Figure 9.16.) Consequently,
the resultant force F,, of the shear flow in the web must equal V. Moreover,
the upward internal shear force V must equal the downward external load P
to satisfy equilibrium in the y direction; hence, P = V.




The forces P and V, which are separated by a distance of e, create a couple that tends
to twist the channel shape in a counterclockwise direction. A moment equilibrium equa-
tion about point B can thus be written as

Mp = —Fpd+Pe =0

In this equation, substitute P = V and replace F; with the expression derived in Equation

(a) to get
Vb2dt
e = [ f]d
4I,
and then solve for e:
_ bzdztf
€= Al (9.19) Ans.

The distance e from the centerline of the channel web defines the location of the shear
center O. Notice that the shear center location is dependent only on the dimensions and
geometry of the cross section.

EXAMPLE 9.10

For the channel shape of Example 9.10, assume that d = 8.00 in., b =
3.00 in., 1= 0.125 in., and #,, = 0.125 in. Determine the distribution of shear
stress produced in the channel if a load of P = 900 Ib is applied at the shear
center.

Plan the Solution

The moment of inertia of the thin-walled channel shape will be determined.
The shear stress produced in each channel flange is linearly distributed; thus,
only the maximum value, which occurs at points B and D, will need to be
determined. The distribution of shear stress in the flange is parabolically dis-
tributed, with its minimum value occurring at points B ant D and its maxi-
mum value occurring at point C.

SOLUTION

Moment of Inertia

The moment of inertia for the channel shape can be expressed by the
following:

1,d3 b} (4)2
IZ=—V;2 +2l%+[5] bl‘f
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d
j“ (900 1b)(1.50 in.3)

Note that since the shape is thin walled, the centerline dimensions can be used in this
calculation. Furthermore, the term containing t} can be neglected since it is very small;
thus, the moment of inertia is calculated as

t..d3 [fbd2
=Tt
~ (0.125in.)(8.00 in.)3 N (0.125 in.)(3.00 in.)(8.00 in.)2
12 2
=17.33 in.%

Shear Stress in the Flanges

The shear stress in the flanges will be distributed linearly, from zero at the flange tips
(i.e., A and E) to a maximum value at the junction of the flange and the web (i.e., B
and D). The first moment of area Q for point B can be calculated as

d
= (btp) =
Op = (bty) >
= (3.00 in.)(0.125 in.)(4.00 in.) = 1.50 in.3
and the shear stress 7 at point B is thus
_VOs
IZl‘f

_ (900 1b)(1.50 in.3)
(17.33 in.%)(0.125 in.)

B

= 623 psi

Shear Stress in the Web

The shear stress in the web will be distributed parabolically, from minimum values
at points B and D to its maximum value at point C. The shear stress at point B in the
web is

VOp

T =
B L,

= = 623 psi
(17.33 in.4)(0.125 in.) pst

The first moment of area Q for point C can be calculated as

o d+[ d]d
Qc_(tf)E ol

= 1.50 in.3 + (0.125in.)(4.00 in.)(2.00 in.) = 2.50 in.3
and the shear stress at point C is

Ve
< Lt

_(9001b)(2.50 in.3)
(17.33 in.4)(0.125 in.)

= 1,039 psi




Distribution of Shear Stress
The distribution of shear stress over the entire channel shape has been
plotted in the figure to the right.

623 psi

B 623 psi

C 1,039 psi

D 623 psi

623 psi

Consider the channel shape of Example 9.10, shown again here. Neglecting
stress concentrations, determine the maximum shear stress created in the
shape if the load P = 900 1b is applied at the centroid of the section, which
is located 0.75 in. to the left of the web centerline.

Plan the Solution

This example illustrates the considerable additional shear stress created
in the channel when the external load does not act through the shear cen-
ter. The distance from the channel centroid to the shear center O will be
calculated and used to determine the magnitude of the torque that acts on
the section. The shear stress created by this torque will be calculated from
Equation (6.25). The total shear stress will be the sum of the shear stress
due to bending, as determined in Equation 9.10, and the shear stress due
to twisting.

SOLUTION
Shear Center

From Equation (9.19), the location of the shear center O for the channel is calculated as

b2d%;  (3.00 in.)2(6.00 in.)2(0.125 in.)
e = —

4L, 4(17.33 in.%) = (0.584 in.

Equivalent Loading

We know that the channel will bend without twisting if load P is applied at the shear
center O, and furthermore, we know how to determine the shear stresses in the channel




4 B shape for a load applied at the shear center.
Therefore, it will be valuable to determine an
equivalent loading that acts at the shear center.
This equivalent loading will enable us to sepa-
0\ rate the loading into components that cause (a)
/ bending and (b) torsion.
V The actual load acts through the centroid,
as shown in Figure (a) to the left. The equivalent
load at the shear center consists of a force and a
E | D concentrated moment, as shown in Figure (b).

z—(d

P

The equivalent force at O is simply equal to the

E D
J 1 J & applied load P. The concentrated moment will
0.75 in. 0.584 in. 0.75 in. 0.584 in.

(@) Load acting through centroid.

(¢) Shear stress due to bending.

be a torque of magnitude
(b) Equivalent loading at shear center.

T = (900 1b)(0.75 in. + 0.584 in.) = 1,200 Ib-in.

Shear Stress due to Bending
The maximum shear stress due to bending
caused by the 900-1b load was determined in

Example 9.10. The flow of the shear stress is
y 5 \ shown in Figure (c). Recall that the maximum

shear stress due to this load occurred at the hor-

a |
T T _’J r izontal axis of symmetry and had a value of
J r 7. = 1,039 psi
hi—
J Shear Stress due to Torsion
r - r The torque T causes the member to twist, and
J the shear stress is greatest along the edges of the
— r cross section. Recall that torsion of noncircular
D

|
E sections—particularly, narrow rectangular cross
sections—was discussed in Section 6.11. This
(d) Shear stress due to torsion. discussion revealed that the maximum shear stress
and the shear stress distribution for a member of
uniform thickness and arbitrary shape is equivalent to that of a rectangular bar with a large

aspect ratio. (See Figure 6.20.) For the channel shape considered here, the shear stress can
be calculated from Equation (6.25):

a=0.125in.
b =3.00 in. + 8.00 in. + 3.00 in. = 14.00 in.
_ 3T 3(1,200 Ib-in.)

=2l = = 16,460 psi
Tmax =2 T (0.125 in.) 2(14.00 in.) pst

Maximum Combined Shear Stress
The maximum stress due to the combined bending and twisting occurs at the neutral axis
(i.e., point C) on the inside surface of the web. The value of this combined shear stress is

Tmax = Tbend T Tiwist = 1,039 psi + 16,460 psi = 17,500 psi Ans.




Find the shear center O for the semicircular thin-walled cross section shown.

Plan the Solution

Shear stresses are created in the wall of the semicircular cross section in response to the
applied load P. The moment produced by these shear stresses about the center C of the
thin-walled cross section must equal the moment of the load P about center C if the sec-
tion is to bend without twisting. We will develop an expression for the differential mo-
ment dM acting on an area dA of the wall. Then, we will integrate dM to determine the
total twisting moment produced by the shear stresses and equate that expression to the
moment created by the external load P acting at the shear center O. From this, the location
of the shear center O can be derived.

SOLUTION

Moment of Inertia

From the sketch, observe that the distance y from the z axis to a differential area dA of the
wall can be expressed as y = r cos ¢. The differential area dA can be expressed as the
product of the differential arclength ds and the thickness #; thus, dA = t ds. Furthermore,
the differential arclength can be expressed as ds = r d¢. As a result, the differential area
can be expressed in polar coordinates of r and ¢ as dA = r t d¢p. From these relationships
for y and dA, the moment of inertia of the semicircular thin-walled cross section can be
derived as follows:

1= [y2aa = [ eos g2redp = 31 [ 7 copdg

= r3t ld) + ls'nd>cosd> "
rit|3 5 si .
ot
2
First Moment of Area Q

The value of Q can also be determined by integration in polar coordinates. From the
sketch on the right, the value of Q for the area of the cross section above an arbitrarily
chosen angle 6 is to be determined.

From the definition of Q, the first moment of area dA about the neutral axis (N.A.)
can be expressed as dQ = y dA. Substituting the previous expressions for y and dA into
this definition gives the following expression of dQ in terms of r and ¢:

dQ = ydA = (rcos) rt do
Integrating dQ between ¢ = 0 and ¢p = 6 gives a general expression for Q:
0 6
0= j(; dQ = f(; r2tcos ¢ deo

= rzt[sin(ﬂg

= r2¢ sin@

<

ds dA
¢
do, y
-
N.A. C
t
y
dA
¢
do v
N.A C
-
t




dA

do, y

N.A.

<TT (rt do)
7

Shear Stress
The variation of shear stress 7 can now be expressed in terms of the angle ¢:
VO V(rztsinqb) 2V .
=—=———"—""=—3in¢
It [77;»3t ]t Trt
2

Moments about C
The resultant force dF acting on the element of area dA is expressed as dF =
7dA = 7 (rt d) or

_2rtv

dF = mrt

2V
sing d¢p = e sing d¢
The moment of dF about point C is
2rv
dMg=rdF = %Sinqﬁ do

Integrate this expression between ¢ = 0 and ¢ = 7 to determine the moment produced
by the shear stresses:

w2rvV . 4rv
Mc = fdMC— j;) 7sm¢ do =
To satisfy moment equilibrium, the moment M- of the shear stress 7 about the center C of
the thin-walled cross section must equal the moment of the load P about that same point:

MC:P€

The resultant of the shear stress is the shear force V, and the shear force V must equal the
applied load P to satisfy vertical equilibrium. Therefore, it follows that the distance e to
the shear center is

_Mc _Mc_ Ar

=7p v 751.27}”

Ans.

This result shows that the shear center O is located outside of the semicircular cross section.

Sections Consisting of Two Intersecting Thin Rectangles

Next, we will consider thin-walled open sections made up of two intersecting rectangles.
Consider an equal-leg angle section, such as that shown in Figure 9.30. When a vertical

\4
%
% ,7 ,7
/ q
//45°
\f \ 8 \
\\ F, F

(a) Shear Flow. (b) Resultant Shear Forces. (c) Shear Center.

FIGURE 9.30 Shear center of equal leg angle shapes.



C——e—1

o o o

FIGURE 9.31 Various cross sections, each consisting of two thin rectangles.

shear force V is applied to the cross section, the shear flow ¢ is directed along the center-
line of each leg, parallel to the walls of the angle shape, as shown in Figure 9.30a. The
resultant shear forces in the two legs are F'; and F,, as shown in Figure 9.30b. Horizontal
equilibrium must be satisfied; therefore, the sum of the horizontal force components of
F, and F, must be zero. Accordingly, forces /| and F, must be equal in magnitude. The
sum of the vertical force components of F; and F, must equal the vertical shear force
acting in the beam.

Given that transverse loads applied through the shear center cause no torsion of the
beam, where must a vertical load be placed so that the beam will not twist? The load must
be placed at the point of intersection of forces F| and F,. The intersection of the centerlines
for the two legs must be the shear center since the sum of the moments of force components
of F'; and F), and shear force V about point O is zero.

A similar line of reasoning is applicable for all cross sections consisting of two inter-
secting thin rectangles, such as those shown in Figure 9.31. In each case, the resultant shear
force must act along the centerline of the rectangle. Consequently, the point of intersection
of these two centerlines defines the location of the shear center O.

PROBILEMS

SHEAR CENTERS OF
THIN-WALLED OPEN

SECTIONS

P9.58 A shear force of V = 260 kN is applied to the rectangular  P9.60 A shear force of V = 4,200 Ib acts on the thin-walled
tube shape shown in Figure P9.58/59. Determine the magnitude of  section shown in Figure P9.60. Using dimensions of a = 2 in., b =
the shear flow at points A and B. 3in., h = 4in., and r = 0.25 in. (where 7 is constant throughout the

entire cross section), determine the shear flow magnitude at points

P9.59 A shear force of V = 375 kN is applied to the rectangular 4 p .4 -
tube shape shown in Figure P9.58/59. Determine the magnitude of o
the shear flow at points C and D.

100 mm

Y 10 mm
b
A C D | ’679‘
B A

[® 0 T
B
z 200 mm
A )
% $ »
C Vv
—f —
200 mm 200 mm | a b ‘ | a |
T I T T T 1

FIGURE P9.58/59 FIGURE P9.60



P9.61 The thin-walled cross section shown in Figure P9.61 has a
constant wall thickness of r = 0.5 in. Assume that b, = 12 in,, b, =
81n., and & = § in. If the shear force acting on the cross section is V =
2,100 Ib, directed in the negative y direction, determine the shear flow

(a) at point B in the upper flange.
(b) at point C in the web.
(c) at point F in the lower flange.
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FIGURE P9.61

P9.62 The vertical shear force V acts on the thin-walled section
shown in Figure P9.62. Sketch the shear flow diagram for the cross
section. Assume that the wall thickness of the section is constant.

FIGURE P9.62

P9.63 The angle shown in Figure P9.63 is subjected to a vertical
shear force of V = 3.5 kips. Sketch the distribution of shear flow
along the leg AB. Indicate the numerical value at all peaks.

n/\AA

1
AN >

0.251 1n

FIGURE P9.63

P9.64 The channel section shown in Figure P9.64 is subjected to
a vertical shear force of V = 31 kN. Calculate the horizontal shear
stress 7, at point A, and the vertical shear stress 7 at point B.

12mm—>|_|<— y| —>| |<—12mm

T
- B $ l ’7 76inm
(_()‘SOmm

125 mm

16 mm

125 mm

FIGURE P9.64

P9.65 The channel section shown in Figure P9.65 is subjected to
a vertical shear force of V = 7 kips. Calculate the horizontal shear
stress 7, at point A, and the vertical shear stress 75 at point B.

0.25 in.

' [

z 3 T L 3in.
i v 1
0.20in, — k— —J k—020in

8 in.

FIGURE P9.65

P9.66 Determine the location of the shear center O for the cross
section shown in Figure P9.66.

0.25 in.

0.25 in.
P —

FIGURE P9.66

P9.67 An extruded beam has the cross section shown in Fig-
ure P9.67. Determine (a) the location of the shear center O, and
(b) the distribution of shear stress created by P = 30 kN.
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FIGURE P9.67

P9.68 An extruded beam has the cross section shown in Figure
P9.68. Using dimensions of b = 30 mm, 4 = 36 mm, and 7 = 5 mm,
calculate the location of the shear center O.

o=

o=

b
FIGURE P9.68
P9.69 An extruded beam has the cross section shown in Figure

P9.69. For this shape, use dimensions of b = 50 mm, 4 = 40 mm,
and + = 3 mm. What is the distance e to the shear center O?

f i
2
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e _‘ ﬁ
2
b
FIGURE P9.69

P9.70 An extruded beam has the cross section shown in Figure
P9.70. The dimensions of this shape are » = 75 mm, & = 90 mm,

and + = 6 mm. Assume that the thickness ¢ is constant for all
portions of the cross section. What is the distance e from the left-

most element to the shear center O?

FIGURE P9.70

2h

P9.71 Determine the location of the shear center for the cross
section shown in Figure P9.71. Use dimensions of a = 50 mm, b =
100 mm, 42 = 300 mm, and r = 5 mm. Assume that the thickness ¢

is constant for all portions of the cross section.

FIGURE P9.71
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P9.72 Locate the shear center for the cross section shown in Fig-
ure P9.72. Assume that the web thickness is the same as the flange

thickness.
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FIGURE P9.72




P9.73 Show that the shear center for the zee-shaped section
shown in Figure P9.73 is located at the centroid of the section.
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P9.74-P9.78 Determine the location of the shear center O of a 35 mm 60° P
thin-walled beam of uniform thickness having the cross section * 0 D
shown in Figures P9.74-P9.78. B l
35 mm 60°
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Beam Deflections

10.1 Introduction

Important relations between applied load and both normal and shear stresses developed
in a beam were presented in Chapters 8 and 9. However, a design is normally not com-
plete until the deflection of the beam has been determined for its particular load. While
they generally do not create a safety risk in themselves, excessive beam deflections may
impair the successful function of a structure in other ways. In building construction, ex-
cessive deflections can cause cracks in walls and ceilings. Doors and windows may not
close properly. Floors may sag or vibrate noticeably as people walk on them. In many
machines, beams and flexural components must deflect just the right amount for gears or
other parts to make proper contact. In summary, the satisfactory design of a flexural com-
ponent usually includes a specified maximum deflection in addition to a minimum load-
carrying capacity.

The deflection of a beam depends on the stiffness of the material and the cross-
sectional dimensions of the beam, as well as the configuration of the applied loads and
supports. Three common methods for calculating beam deflections are presented here:
(1) the integration method, (2) the use of discontinuity functions, and (3) the superposi-
tion method.

In the discussion that follows, three coordinates will be used. As shown in Figure 10.1,
the x axis (positive to the right) extends along the initially straight longitudinal axis of the
beam. The x coordinate is used to locate a differential beam element, which has an unde-
formed width of dx. The v axis extends positive upward from the x axis. The v coordinate
measures the displacement of the beam’s neutral surface. The third coordinate is y, which is
a localized coordinate with its origin at the neutral surface of the beam cross section. The y
coordinate is measured positive upwards, and it is used to describe specific locations within
the beam cross section. The x and y coordinates are the same as those used in deriving the
flexure formula in Chapter 8.

”leM

oz =)+

FIGURE 10.1 Coordinate
system




FIGURE 10.2 Radius of

curvature p related to sign of M.

10.2 Moment-Curvature Relationship

When a straight beam is loaded and the action is elastic, the longitudinal centroidal axis of
the beam becomes a curve, which is termed the elastic curve. The relationship between
internal bending moment and curvature of the elastic curve was developed in Section 8.4.
Equation 8.5 summarized the moment—curvature relationship:

= = (8.5)

This equation relates the radius of curvature p of the neutral surface of the beam to the in-
ternal bending moment M (about the z axis), the elastic modulus of the material £, and the
moment of inertia of the cross-sectional area L. Since E and I, are always positive, the sign
for p is consistent with the sign of the bending moment. As shown in Figure 10.2, a positive
bending moment M creates a radius of curvature p that extends above the beam—that is, in
the positive v direction. When M is negative, p extends below the beam in a negative v
direction.

10.3 The Differential Equation of the Elastic Curve

The relationship between bending moment and radius of curvature is applicable when the
bending moment M is constant for a flexural component. For most beams, however, the
bending moment varies along its span and a more general expression is required to express
the deflection v as a function of the coordinate x.

From calculus, curvature k is defined as

1 ddxe?
k=== 3/2

P 1+ (dv/dx)?]

For typical beams, the slope dv/dx is very small, and its square can be neglected in com-
parison to unity. This approximation simplifies the curvature expression

1 d?v
K== —
p dx?
and Equation (8.5) becomes
d2v
EId— = M(x) (10.1)

This is the differential equation of the elastic curve for a beam. In general, the bending
moment M will be a function of position x along the beam’s span.

The differential equation of the elastic curve can also be obtained from the geometry of
the deflected beam, as shown in Figure 10.3. The deflection v at point A on the elastic curve
is shown in Figure 10.3a. Point A is located at a distance of x from the origin. A second point,
B, is located at a distance of x + dx from the origin, and it has a deflection of v + dv.



When the beam is bent, points along the beam both deflect and rotate.
The angle of rotation 6 of the elastic curve is the angle between the x axis and
the tangent to the elastic curve, as shown for point A in the enlarged view of
Figure 10.3b. Similarly, the angle of rotation at point B is 8 + df, where df is
the increase in rotation angle between points A and B.

The slope of the elastic curve is the first derivative dv/dx of the deflection v.
From Figure 10.3b, the slope can also be defined as the vertical increment dv di-
vided by the horizontal increment dx between points A and B. Since dv and dx are
infinitesimally small, the first derivative dv/dx can be related to the rotation angle
0 by the tangent function:

dv—taG
e (a)

Note that the slope dv/dx is positive when the tangent to the elastic curve slopes
upward to the right.

In Figure 10.3b, the distance along the elastic curve between points A and B
is denoted as ds, and from the definition of arc length, ds = p df. If the angle of
rotation 6 is very small (as it would be for a beam with small deflections), then the
distance ds along the elastic curve in Figure 10.3b is essentially the same as the
increment dx along the x axis. Therefore, dx = p df, or

L (b)
p dx
Since tan 6 = 6 for small angles, Equation (a) can be approximated as
dv
el ©

Therefore, the beam angle of rotation # (measured in radians) and the slope dv/dx
are equal if beam deflections are small.
Taking the derivative of Equation (c) with respect to x gives

P _do
dx?  dx

THE DIFFERENTIAL EQUATION
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FIGURE 10.3a Elastic curve.

do
p

B 0+do
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FIGURE 10.3b Enlarged region around

point A.

(d)

From Equation (b), df/dx = 1/p. Additionally, Equation (8.5) gives the relationship between

M and p. Combining these expressions gives

&y _db_ 1M

2> dx p EI

or

d?v

(e)

(10.1)

In general, the bending moment M will be a function of position x along the beam’s span.
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Sign Conventions

The sign convention for bending moments established in Section 7.3 (see Figure 10.4) will
be used for Equation (10.1). Both E and I are always positive; therefore, the signs of the
bending moment and the second derivative must be consistent. With the coordinate axes as
shown in Figure 10.5, the beam slope changes from positive to negative in the segment
from A to B; therefore, the second derivative is negative, which agrees with the sign con-
vention of Section 7.3. For segment BC, both d2v/dx* and M are seen to be positive.

Careful study of Figure 10.5 reveals that the signs of the bending moment and the
second derivative are also consistent when the origin is selected at the right with x positive
to the left and v positive upward. However, the signs are inconsistent when v is positive
downward. Consequently, v will always be chosen as positive upward for horizontal beams
in this book.

Relationship of Derivatives

Before proceeding with the solution of Equation (10.1), it is instructive to associate the
successive derivatives of the elastic curve deflection v with the physical quantities that they
represent in beam action. They are

Deflection = v

dv
Slope = — = 6
g dx
d*v .
Moment M = EI ) (from Equation 10.1)
x
3
Shear V = am = EI v (for EI constant)
dx dx?
4
Load w = d—V = EI ﬂ (for EI constant)
dx dx?*

where the signs are as defined in Sections 7.2 and 7.3.

Starting from the load diagram, a method based on these differential relations was
presented in Section 7.3 for constructing first the shear diagram V and then the moment
diagram M. This method can be readily extended to the construction of the slope diagram
0 and the beam deflection diagram v. From Equation (e),

9 M

@2 f
dx EI ®

This equation can be integrated to give

g xg M xg M
do = —dx S0, —0, = —dx
0, fo EI BooA fo El

This relation shows that the area under the moment diagram between any two points along
the beam (with the added consideration of EI) gives the change in slope between the same
two points. Likewise, the area under the slope diagram between two points along the beam
gives the change in deflection between these points. These relations have been used to con-
struct the complete series of diagrams shown in Figure 10.6 for a simply supported beam
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FIGURE 10.6 Relationship between beam diagrams.

with a concentrated load at midspan. The geometry of the beam was used to locate the
points of zero slope and deflection, required as starting points for the construction. More
commonly used methods for calculating beam deflections will be developed in succeeding
sections.

Recap of Assumptions

Before proceeding with specific methods for calculating beam deflections, it is helpful to
keep in mind the assumptions used in developing the differential equation of the elastic
curve. All of the limitations that apply to the flexure formula also apply to the calculation
of deflections because the flexure formula was used in the derivation of Equation (10.1). It
is further assumed that

1. The square of the slope of the beam is negligible compared with unity. This assumption
means that beam deflections must be relatively small.

2. Plane cross sections of the beam remain planar as the beam deflects. This assumption
means that beam deflections due to shear stresses are assumed negligible.

3. The values of E and I remain constant for any segment along the beam. If either E or /
varies along the beam span, and if this variation can be expressed as a function of the
distance x along the beam, a solution of Equation (10.1) that considers this variation
may be possible.

THE DIFFERENTIAL EQUATION
OF THE ELASTIC CURVE
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10.4 Deflections by Integration
of a Moment Equation

Whenever the assumptions of the previous section are satisfied and the bending moment
can be readily expressed as an integrable function of x, Equation (10.1) can be solved for
the deflection v of the elastic curve at any location x along the beam’s span. The procedure
begins with the derivation of a bending-moment function M(x) based on equilibrium con-
siderations. A single function that is applicable for the entire span may be derived, or it may
be necessary to derive several functions, each applicable only to a specific region of the
beam span. The moment function is substituted into Equation (10.1) to define the differen-
tial equation. This type of differential equation can be solved by integration. Integration of
Equation (10.1) produces an equation that defines the beam slope dv/dx. Integrating again
produces an equation that defines the deflection v of the elastic curve. This approach for
determining the elastic curve equation is called the double-integration method.

Each integration produces a constant of integration, and these constants must be eval-
uated from known conditions of slope and deflection. The types of conditions for which
values of v and dv/dx are known can be grouped into three categories: boundary conditions,
continuity conditions, and symmetry conditions.

Boundary Conditions

Boundary conditions are specific values of deflection v or slope dv/dx that are known at
particular locations along the beam span. As the term implies, boundary conditions are
found at the lower and upper limits of the interval being considered. For example, a bending-
moment equation M(x) may be derived for a particular beam within a region of x; = x = x,.
The boundary conditions, in this instance, would be found at x = x; and x = x,.

Boundary conditions are known slopes and deflections at the limits of the bending-
moment equation M(x). The term “boundary” refers to the bounds of M(x), not nec-
essarily the bounds of the beam. Although boundary conditions are found at beam
supports, only those supports within the bounds of M(x) can be used as boundary
conditions.

Figure 10.7 shows several support conditions and lists the boundary conditions associated
with each. A pin or roller support represents a simple support at which the beam is restrained
from deflecting transversely (either upward or downward for a horizontal beam); conse-
quently, the beam deflection at either a pin or a roller must be v = 0. Neither a pin nor a
roller, however, restrains a beam against rotation, and consequently, the beam slope at a
simple support cannot be a boundary condition. At a fixed connection, the beam is restrained
against both deflection and rotation; therefore, v = 0 and dv/dx = 0 at a fixed connection.

While boundary conditions involving deflection v and slope dv/dx are normally equal
to zero at supports, there may be instances in which the engineer wishes to analyze the ef-
fects of support displacement on the beam. For instance, a common design concern is the
possibility of support settlement, in which compression of soil underneath a foundation
causes the support to displace downward. To examine possibilities of this sort, nonzero
boundary conditions may sometimes be specified.

One boundary condition can be used to determine one and only one constant of integration.



Continuity Conditions

Many beams are subjected to abrupt changes in loading along the beam, such as concen-
trated loads, reactions, or even distinct changes in the intensity of a uniformly distributed
load. The M(x) equation for the region just to the left of an abrupt change will be different
from the M(x) equation for the region just to the right. As a result, it is not possible to derive
a single equation for the bending moment (in terms of ordinary algebraic functions) that is
valid for the entire beam length. This can be resolved by writing separate bending-moment
equations for each segment of the beam. Although the segments are bounded by abrupt
changes in load, the beam itself is continuous at such locations and, consequently, the de-
flection and the slope at the junction of two adjacent segments must match. This is termed
a continuity condition.

Symmetry Conditions

In some instances, beam supports and applied loads may be configured so that symmetry
exists for the span. When symmetry exists, the value of the beam slope will be known at
certain locations. For instance, a simply supported beam with a uniformly distributed load
is symmetric. From symmetry, the slope of the beam at midspan must equal zero. Sym-
metry may also abbreviate the deflection analysis in that the elastic curve need only be
determined for half of the span.

Each boundary, continuity, and symmetry condition produces an equation containing
one or more of the constants of integration. In the double-integration method, two con-
stants of integration are produced for each beam segment; therefore, two conditions are
required to evaluate the constants.

Procedure for Double-Integration Method

Calculating the deflection of a beam by the double-integration method involves several
definite steps, and the following sequence is strongly recommended:

1. Sketch: Sketch the beam including supports, loads, and the x—v coordinate system.
Sketch the approximate shape of the elastic curve. Pay particular attention to the slope
and deflection of the beam at the supports.

2. Support reactions: For some beam configurations, it may be necessary to deter-
mine support reactions before proceeding to analysis of specific beam segments. For
these instances, determine the beam reactions by considering the equilibrium of the
entire beam. Show these reactions in their proper direction on the beam sketch.

3. Equilibrium: Select the segment or segments of the beam to be considered. For each
segment, draw a free-body diagram (FBD) that cuts through the beam segment at some
distance x from the origin. Show all loads acting on the FBD. If distributed loads act on
the beam, then that portion of the distributed loading, which acts on the FBD, must be
shown at the outset. Include the internal bending moment M acting at the cut surface of
the beam, and always show M acting in the positive direction. (See Figure 10.5.) This
ensures that the bending-moment equation will have the correct sign. From the FBD,
derive the bending-moment equation, taking care to note the interval for which it is
applicable (e.g., x; = x = x,).

4. Integration: For each segment, set the bending-moment equation equal to EI d>v/dx>.
Integrate this differential equation twice, obtaining a slope equation dv/dx, a deflection
equation v, and two constants of integration.

DEFLECTIONS BY INTEGRATION
OF A MOMENT EQUATION



BEAM DEFLECTIONS 5. Boundary and continuity conditions: List the boundary conditions that are ap-
plicable for the bending-moment equation. If the analysis involves two or more beam
segments, also list the continuity conditions. Remember that two conditions are re-
quired to evaluate the two constants of integration produced in each beam segment.

6. Evaluate constants: Use the boundary and continuity conditions to evaluate all
constants of integration.

7. Elastic curve and slope equations: Replace the constants of integration in step 4
with the values obtained from the boundary and continuity conditions in step 6. Check
the resulting equations for dimensional homogeneity.

8. Deflections and slopes at specific points: Calculate the deflection at specific
points when required.

The following examples illustrate the use of the double-integration method for calcu-
lating beam deflections:

The cantilever beam shown is subjected to a concentrated
load P at its free end. Determine the equation of the elas-
tic curve as well as the deflection and slope of the beam at
A. Assume that ET is constant for the beam.

[ . Plan the Solution
' — —— Consider a free-body diagram that cuts through the beam at
" A &1y, Elasticcurve B a distance x from the free end of the cantilever. Write an

equilibrium equation for the sum of moments, and from

L i this, determine the equation for the bending moment M as it
varies with x. Substitute M into Equation (10.1), and inte-
grate twice. Use the boundary conditions known at the fixed
end of the cantilever to evaluate the constants of integration.

SOLUTION

Equilibrium

Cut through the beam at an arbitrary distance x from the origin, and draw a free-body dia-

v | gram, taking care to show the internal moment M acting in the positive sense. The equilib-

rium equation for the sum of moments about section a—a is
IM, ,=Px+M=0
i L 5 Therefore, the bending-moment equation for this beam is simply

A a 1%
;)‘ M = —Px (a)

Notice that moment equation (a) is valid for all values of x for this particular beam. In other
words, Equation (a) is valid in the interval 0 = x = L. Substitute the expression for M into
Equation (10.1) to obtain

2
EI% = —Px (b)
X




Integration
Equation (b) will be integrated twice. The first integration gives a general equation for
the beam slope dv/dx:

2
Elﬂ=—Pi+Cl (©)
dx 2

Here, C, is a constant of integration. A second integration gives a general equation for
the elastic curve v:

3
Elv = —P% +Cx +C, (d)

Here, C, is a second constant of integration. The constants C; and C, must be evaluated
before the slope and elastic curve equations are complete.

Boundary Conditions

Boundary conditions are values of deflection v or slope dv/dx that are known at particu-
lar locations along the beam span. For this beam, the bending-moment equation M in
Equation (a) is valid in the interval 0 = x = L. The boundary conditions, therefore, are
found either at x = 0 or x = L.

Consider the interval 0 = x = L for this beam and loading. At x = 0, the beam is
unsupported. The beam will deflect downward, and as it deflects, the slope of the beam
will no longer be zero. Consequently, neither the deflection v nor the slope dv/dx is
known at x = 0. At x = L, the beam is supported by a fixed support. The fixed support
at B prevents deflection and rotation; therefore, we know two bits of information with
absolute certainty atx = L: v = 0 and dv/dx = 0. These are the two boundary conditions
that will be used to evaluate the constants of integration C, and C,.

Evaluate Constants
Substitute the boundary condition dv/dx = 0 at x = L into Equation (c) to evaluate
the constant C;:

dv Px? _P(L)y?

El —=—-——+4+C, = EI0) =
dx 2

PI2
+ Cl Cl = T

Next, substitute the value of C, and the boundary condition v = 0 at x = L into Equation
(d), and solve for the second constant of integration C,:

_P(L} | PL? _PD

3
Ely = —% +Cx+C, = EI0) = WG G =

Elastic Curve Equation
Substitute the expressions obtained for C; and C, into Equation (d) to complete the
elastic curve equation:

Px3 PI? PI? . P
Elv=-""4 2522 that simplifies to v = —[—x3 + 3L2x — 23] | (e)
6 2 3 6El

Similarly, the beam slope equation from Equation (c) can be completed with the expres-
sion derived for C;:

7 E
el — R simplifies to dv_ i[L2 — x?] ()
dx 2 2 dx  2EI




Beam Deflection and Slope at A
The deflection and slope of the beam at A are obtained by setting x = 0 in Equations (e)
and (f). The beam deflection and slope at the free end of the cantilever are

v, = —P—L3 and [ A
A 35 ns.

@) _rz
dx ), 2EI

ies Example M10.2

P
EI = constant

J—

Derive the equation for the elastic curve, and determine expressions for the slope
and deflection of the beam at B. Use the double-integration method.

A simply supported beam is subjected to the linearly distrib-
uted load shown. Determine the equation of the elastic curve.

Also, determine the deflection of the beam at midspan B and

— —
Elastic curve

//

! X
;ﬁ c the slope of the beam at support A. Assume that EI is constant

Plan the Solution

L L
2 ! 2
1[%X]XZW<>_XQ
2L L 2W0
W=—F"X
L
l' /
v M
a

‘ for the beam.

Generally, two moment equations would be needed to define
the complete variation of M over the entire span. However, in
this case, the beam and loading are symmetrical. On the basis of symmetry, we
need only solve for the elastic curve in the interval 0 = x = L/2. The boundary
conditions for this interval will be found at the pin support A and at midspan B.

SOLUTION

Support Reactions

Since the beam is symmetrically supported and symmetrically loaded, the
beam reactions at A and C are identical:

A, =C, =2

No loads act in the x direction; therefore, A, = 0.

Equilibrium
Cut through the beam at an arbitrary distance x from the origin, and draw a
free-body diagram, taking care to show the internal moment M acting in a
positive direction. The equilibrium equation for the sum of moments about
section a—a is




WLL]x—l—M:O
4

- )
20 L 3

Hence, the bending-moment equation for this beam is

3
wolx — wyx
4

M = (valid for 0 = x = L/2) (a)

Substitute this expression for M into Equation (10.1) to obtain

2 3
Elﬂ _ wolx — wyx (b)
dx? 4 3L

Integration
To obtain the elastic curve equation, Equation (b) will be integrated twice. The first
integration gives

dv. wolx?  wyx*

dx 8 12L

+ G (©)

where C, is a constant of integration. Integrating again gives

3 5
By = Wb _ % oL, d)
24 60L

where C, is a second constant of integration.

Boundary Conditions

Moment equation (a) is valid only in the interval 0 = x = L/2; therefore, the boundary
conditions must be found in this same interval. At x = 0, the beam is supported by a pin
connection; consequently, v =0 atx = 0.

A common mistake for this type of problem is to try to use the roller support at C
as the second boundary condition. Although it is certainly true that the beam’s deflection
at C will be zero, we cannot use v = 0 at x = L as a boundary condition for this problem.
Why? We must choose a boundary condition that is within the bounds of the moment
equation—that is, within the interval 0 = x = L/2.

The second boundary condition required for evaluation of the constants of integra-
tion can be found from symmetry. The beam is symmetrically supported, and the load-
ing is symmetrically placed on the span. Therefore, the slope of the beam at x = L/2
must be dv/dx = 0.

Evaluate Constants

Substitute the boundary condition v = 0 at x = 0 into Equation (d) to find that C, = 0.
Next, substitute the value of C, and the boundary condition dv/dx = 0 atx = L/2

into Equation (c), and solve for the constant of integration C,:

dv woLx?  wyx*

dx 8 12L

+C, = EI0) =

WOL(SL/Z)2 _ wo (L/2)* e

12L
_ Swl?
192




Elastic Curve Equation

Substitute the expressions obtained for C, and C, into Equation (d) to complete the elastic
curve equation:

wolx®  wyxd  SwI? . WoX 16x*
0 — 0= _ =0~ x that simplifies to v = —2 a

24 60L 192 960EI

Elv = (e)

40Lx* — — 2513

Similarly, the beam slope equation from Equation (c) can be completed with the expres-
sion derived for C;:

L2 4 Sw, L3 .
&y _ Wokx® _ woxt  Swol? simplifies to D _ WoX

2 16x4
dx 8 12L 192 dx 192E1

. __5]3
IL,

®

Beam Deflection at Midspan
The deflection of the beam at midspan B is obtained by setting x = L/2 in Equation (e):

3 5 3
LR wo 2P 5wl ;o
24 60L 192 Ans.
Clew Lt wl
1,920E1 120ET

Elvy =

Vg =

Beam Slope at A
The slope of the beam at A is obtained by setting x = 0 in Equation (f):

EI — .
[ Ix Ans.

ﬂ] ~_ woL(0)2 wy(0)* 3 Swyl?
. 8 120 192

ﬂ] _ Swl?
dx), 192

The cantilever beam shown is subjected to a uniformly distributed load w.
Determine the equation of the elastic curve as well as the deflection v,

w
TTITTITIITTIITIITTITT and rotation angle 05 of the beam at the free end of the cantilever.
I Assume that E/ is constant for the beam.

—— | R
A ic curve B
Elastic curve ?B JVB Plan the Solution
| L In this example, we will consider a free-body diagram of the tip of the

1 cantilever to illustrate how a simple coordinate transformation can sim-
plify the analysis.

SOLUTION
Equilibrium
Before the elastic curve equation can be obtained, an equation describ-
ing the variation of bending moment must be derived. Typically, one
would begin this process by drawing a free-body diagram (FBD) of
the left portion of the beam, such as the accompanying sketch. In order




to complete this FBD, however, the vertical reaction force Ay and
the moment reaction M, must be determined. Perhaps it might be
simpler to consider a FBD of the right portion of the cantilever,
since the reactions at fixed support A do not appear on
that FBD.

A FBD of the right portion of the cantilever beam is shown.
A common mistake at this stage of the analysis is to define the
beam length between section a—a and B as x. The origin of the x—v
coordinate system is located at support A, with positive x extend-
ing to the right. To be consistent with the defined coordinate sys-
tem, the length of the beam segment must be denoted L — x. This
simple coordinate transformation is the key to success for this
type of problem.

Cut through the beam at section a—a, and consider the beam
and its loading between a—a and the free end of the cantilever at
B. Note that a clockwise internal moment M is shown acting on
the beam segment at a—a. Clockwise is the positive direction for
an internal moment acting on the left face of a bending element,
and this direction is consistent with the sign convention shown
in Figure 10.5.

The equilibrium equation for the sum of moments about a—a is

L—x

M, , = —w(L —x)[ ]— M =0

Therefore, the bending-moment equation for this beam is

w
M = —2(L—x)?
2( )

I
|

A a
P
|
l

uuufuuw Y
)

174 B
L—x

L

Free-body diagram of the left portion
of the cantilever beam.

iw (L—x)
M
a

v ¢ B

Free-body diagram of the right portion
of the cantilever beam.

(a)

Notice that this equation is valid for the interval 0 = x = L. Substitute the expression for

M into Equation (10.1) to obtain

d?v w
El— = ——(L — x)?
) 5 ( )
Integration
The first integration of Equation (b) gives
) G e R
dx 6

(b)

(©

where C, is a constant of integration. Note the sign change on the first term. Integrating

again gives

w
Ehv=——(L—-x)*+Cx+C
24( ) ! 2

where C, is a second constant of integration.

(d)




Boundary Conditions
Boundary conditions for the cantilever beam are

x=0,v=0 and x=0,dv/dx=0

Evaluate Constants
Substitute the boundary condition dv/dx = 0 at x = 0 into Equation (c) to evaluate the

constant C;:
3
EY Yo e = BO=2C-00+c ¢ =-2E
dx 6 6 6

Next, substitute the value of C, and the boundary condition v = 0 at x = 0 into Equation
(d) and solve for the second constant of integration C:

w w wl3
Elv = 2L =0 + Gt C = EI0) = — (L= 0) =" (0) + G,

I4
.G, =
24
Elastic Curve Equation
Substitute the expressions obtained for C; and C, into Equation (d) to complete the elastic
curve equation,

3 b o 2
Elv = —K(L —x)* — e + W—, which simplifiesto v = — s
24 6 24 24EI

(612 —4Lx + x2)| (o)

Similarly, the beam slope equation from Equation (c) can be completed with the expres-
sion derived for C|,

3
EI @ = K(L — x)? —ﬂ, which simplifies to dv =
dx 6 6 dx

wx

T (312 — 3Lx + x2) ()

Beam Deflection at B
At the tip of the cantilever, x = L. Substituting this value into Equation (e) gives

w w3 wlA wlA
Elvy = —2[L— @ - 2@+ 2= =22
'8 otk 6 Dty Y

Beam Rotation Angle at B
If beam deflections are small, the rotation angle 6 is equal to the slope dv/dx. Substituting
x = L into Equation (f) gives

dv w wl?
|2 =Y —wp -2
(), =g |

ﬂ] __wE
X 6 B

e Ans.
dx 6EI ° s




EXAMPLE 10.4

The simple beam supports a concentrated load P acting at
distances a and b from the left and right supports, respec- v

termine the beam slopes at supports A and C. Assume that E/

tively. Determine the equations of the elastic curve. Also, de-
. (o)
is constant for the beam.

Plan the Solution Blastic curve -~ T~
Two elastic curve equations will be required for this beam a b
and loading: one curve that applies to the interval 0 = x < a
and a second curve that applies to a = x = L. Altogether, four
constants of integration will result from the double integra-
tion of two equations. Two of these constants can be evaluated from boundary conditions
at the beam supports, where the beam deflections are known (v = 0atx =0andv =0
at x = L). The two remaining constants of integration will be found from continuity
conditions. Since the beam is continuous, both sets of equations must produce the same
beam slope and deflection at x = a, where the two elastic curves meet.
SOLUTION
Support Reactions
From equilibrium of the entire beam, the reactions at pin A and roller C are
Pb Pa
AX = O Ay = T Cy = T
Equilibrium
In this example, the bending moments are expressed by two
equations, one for each segment of the beam. Based on the
free-body diagrams shown here, the bending-moment equa-
tions for this beam are |ﬁ B L 5
A 14
P
M = ﬂ O=x=a) (a)
IL) x
Pb
L
M=P—bx—P(x—a) (a=x<=1L) (b)
L P
Integration for the Interval 0 <x <a Y M
Substitute Equation (a) into Equation (10.1) to obtain ﬁ L 5
A A \%
2
Eld—; _ Phx ©) } . o
dx IL Ph
A X
Integrate Equation (c) twice to obtain
2
% P o ()
dx 2L
Pbx3
Elv =24 cx + G, ©




Integration for the Intervala =x =L
Substitute Equation (b) into Equation (10.1) to obtain

d*>v  Pbx

Integration
Integrate Equation (f) twice to obtain

2
E]ﬂ _ phE £(x —a)? + G (@
dx 2L 2
Pbx3 P
Ev="22 L _ap+Cx+C (h)
v oL 5 (x —a) 2 X A

Equations (d), (e), (g), and (h) contain four constants of integration; therefore, four
boundary and continuity conditions are required to evaluate the constants.

Continuity Conditions

The beam is a single, continuous member. Consequently, the two sets of equations must
produce the same slope and the same deflection at x = a. Consider slope equations
(d) and (g). At x = a, these two equations must produce the same slope; therefore, set
the two equations equal to each other and substitute the value a for each variable x:

Pb(a)? Pb(a)?
ar 1 =
2L 2L

- g[(a) _aP+ G -C =G )

Likewise, deflection equations (e) and (h) must give the same deflection v at x = a. Set-
ting these equations equal to each other and substituting x = a give

Pb(a)?
T aF Cl(a) aF C2 =

Pb(a)?

P .
o gl@- aP + Cya)+C, C=C, O

Boundary Conditions
At x = 0, the beam is supported by a pin connection; consequently, v = 0 at x = 0.
Substitute this boundary condition into Equation (e) to find

3 3
Elv = Pé’z rCx+C, = EI0) =9

Since C, = C, from Equation (j),

C2=C4 =O (k)

At x = L, the beam is supported by a roller connection; consequently, v = 0 at x = L.

Substitute this boundary condition into Equation (h) to find

Pbx3 Pb(L)3 P
6L 6

Elv =

Noting that (L — a) = b, simplify this equation to obtain

2 3 2 3 2 _ K2
EI(O):Pb6L Pb P PY_ Pb(I2 DY)

—-—+GL Gy =
6 3 3

6L 6L 6L




Since C| = C;,

Pb(I? — b?)

G=G=""74

M

Elastic Curve Equation
Substitute the expressions obtained for the constants of integration [i.e., Equations (k)
and (1)] into Equations (e) and (h) to complete the elastic curve equations,

3 2 _ 32
Elv = Pox” _ P = b )x, which simplifies to
6L 6L
Pbx (m
v =— [I2 — b? — x?] 0=x=<a)
6LEI
and
3 2 _ 2
Elv = Pox” B(x —a) - Mx, which simplifies to
6L 6 6L -
_ )3
Vv = — Pbx [Lz—l72—x2]—M (a=x<=1L)
6LEI 6El

The slopes for the two portions of the beam can be determined by substituting the values
for C, and C; into Equations (d) and (g), respectively, to obtain

g & _ Pbx> _ Ph(I2— b?)
dx 2L 6L (0)
BB 30y 0=x<a)
dx 6LEI
and
2 22
g P P i)
dx 2L 2 6L )
_ )2
ﬂ _ _P_b(Lz_bz ~3x2) — Px—a) (a<x<L)
dx 6LEI 2EI

The deflection v and slope dv/dx can be computed for any location x along the beam span
from Equations (m), (n), (0), and (p).

Beam Slope at Supports

The slope of the beam can be determined at each support from Equations (o) and (p).
At pin support A, the beam slope is found from Equation (0), using x = 0 and recogniz-
ing thata = L — b:

[ﬂ] — _P_b(LZ_bZ):_P_b(L_b)(L_{_b):_w Ans
dx), 6LEI 6LEI 6LEI
At roller support C, the beam slope is found from Equation (p), using x = L:
_ )2
[ﬂ] = _P_b(LZ — b2 —312) — M
dx ) 6LEI 2FEI
_ Pb(2I? — 3bL + b*) _ Pab(L + a) Ans-

6LEI 6LEI




MecMovies Exercises

M10.1 Beam Boundary Condition Game. Determine appro-
priate boundary conditions needed to determine constants of inte-
gration for the double-integration method.

v(x) Determine the appropriate
boundary conditions. In most
of these cases, two boundary
conditions will be required;
however, some configurations
may require up to four. When

i O O

A B you've finished selecting all

L
beam L for analysis of the given beam,
1 F 1 click the Grade Me button.

Select from these possible

Drag the proper boundary conditions
boundary conditions.

to one of the docking hubs below.
B x=0,dv/dx=0

ﬂ. &x=0.v=0
=N | B x=L/2dv/dx=0
Im Bx=L/2,v=0

B x=Ldv/dx=0
B x=Lv=0

If you make a mistake, click this
button B to reset all selections made
for the beam and loading.

Grade Me B

FIGURE M10.1

PROBLEMS

P10.1-P10.3  For the loading shown in Figure P10.1-P10.3, use
the double-integration method to determine

(a) the equation of the elastic curve for the cantilever beam.
(b) the deflection at the free end.
(c) the slope at the free end.

Assume that EI is constant for each beam.

v

b

A B
L L
I 1

FIGURE P10.1

FIGURE P10.2

v
w,

FIGURE P10.3

P10.4 For the beam and loading shown in Figure P10.4, use the
double-integration method to determine

(a) the equation of the elastic curve for segment AB of the beam.
(b) the deflection at B.
(c) the slope at A.

Assume that EI is constant for the beam.

P

v

|~
|~

FIGURE P10.4



P10.5 For the beam and loading shown in Figure P10.5, use the
double-integration method to determine

(a) the equation of the elastic curve for the beam.
(b) the slope at A.

(c) the slope at B.

(d) the deflection at midspan.

Assume that EI is constant for the beam.

1!?__

FIGURE P10.5

P10.6 For the beam and loading shown in Figure P10.6, use the
double-integration method to determine

(a) the equation of the elastic curve for the beam.
(b) the maximum deflection.
(c) the slope at A.

Assume that EI is constant for the beam.
| v

JIJIJIWWIIIIIIIIILILIIILY

O) { X

A =3B

| L

FIGURE P10.6

P10.7 For the beam and loading shown in Figure P10.7, use the
double-integration method to determine

(a) the equation of the elastic curve for segment AB of the beam.
(b) the deflection midway between the two supports.

(c) the slope at A.

(d) the slope at B.

Assume that EI is constant for the beam.

—lll<

*

FIGURE P10.7
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P10.8 For the beam and loading shown in Figure P10.8, use the
double-integration method to determine

(a) the equation of the elastic curve for segment BC of the beam.
(b) the deflection midway between B and C.
(c) the slope at C.

Assume that EI is constant for the beam.

P P
Y \
| (o) —
A = B = D
AL | L

L
FIGURE P10.8

P10.9 For the beam and loading shown in Figure P10.9, use the
double-integration method to determine

(a) the equation of the elastic curve for segment AB of the beam.
(b) the deflection midway between A and B.
(c) the slope at B.

Assume that EI is constant for the beam.

v | .
JIIIIIIIIIIIIIIIIIITY \ |

AE?— B = c

. |
FIGURE P10.9
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P10.10 For the beam and loading shown in Figure P10.10, use
the double-integration method to determine

(a) the equation of the elastic curve for segment AC of the beam.
(b) the deflection at B.
(c) the slope at A.

Assume that ET is constant for the beam.

v | ;
JIIIJIVIIIIIILIIIIILTT

QJ!
A

=

B = C
L | L

.
I

FIGURE P10.10



P10.11 For the simply supported steel beam [E = 200 GPa; P10.15 For the beam and loading shown in Figure P10.15, use
I = 129 X 10° mm*] shown in Figure P10.11, use the double-  the double-integration method to determine

integration method to determine the deflection at B. Assume that (a) the equation of the elastic curve for the cantilever beam.

L=4m,P=60kN, andw = 40 kN/m. (b) the deflection at the free end.
P (c) the slope at the free end.
! | W Assume that ET is constant for the beam.
TTTTITITITIIVITITITITIIT
9) 1 X v "
A B = ’

| L L |

I 2 1 I X
FIGURE P10.11 A B
P10.12 For the cantilever steel beam [E = 200 GPa; I = 129 X ! L !
10° mm*] shown in Figure P10.12, use the double-integration
method to determine the deflection at A. Assume that L = 2.5 m, FIGURE P10.15
P = 50kN, and w = 30 kN/m.

p P10.16 For the beam and loading shown in Figure P10.16, use

the double-integration method to determine
w
V,L JILIILILIIILLLLLLLLLLL (a) the equation of the elastic curve for the cantilever beam.
x (b) the deflection at the free end.
A B (c) the slope at the free end.
L ! Assume that EI is constant for the beam.

FIGURE P10.12 v

to determine the deflection at B. Assume that L = 3 m, M, = 70 kN-m,
and w = 15 kN/m.

v

"o
P10.13 For the cantilever steel beam [E = 200 GPa; I = 129 X
10 mm*] shown in Figure P10.13, use the double-integration method
T X
A B

| L
f

FIGURE P10.16

lllllllllllllllllllllllm
z X

M P10.17 For the beam and loading shown in Figure P10.17, use
the double-integration method to determine

A B
| L
3

(a) the equation of the elastic curve for the cantilever beam.
(b) the deflection at B.

P10.14 For the cantilever steel beam [E = 200 GPa; / = 129 X  (c¢) the deflection at the free end.

10° mm*] shown in Figure P10.14, use the double-integration method ~ (d) the slope at the free end.

to determine the deflection at A. Assume that L = 2.5 m, P = 50 kN, Assume that EI is constant for the beam.
and w, = 90 kN/m.

FIGURE P10.13

v

P
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A B

A B C
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FIGURE P10.14 FIGURE P10.17



P10.18 For the beam and loading shown in Figure P10.18, use v
the double-integration method to determine

(a) the equation of the elastic curve for the beam. ﬁ
A

(b) the deflection at B. B & c
Assume that EI is constant for the beam. | 3L | L
I T 1
) FIGURE P10.19
| w
JILILLLLLLLLL P10.20 For the beam and loading shown in Figure P10.20, use
Egj | X the double-integration method to determine
A == B = C (a) the equation of the elastic curve for the beam.
| L L (b) the location of the maximum deflection.
f 2 ' 2 ' (¢) the maximum beam deflection.
FIGURE P10.18 Assume that EI is constant for the beam.
v W()
P10.19 For the beam and loading shown in Figure P10.19, use
the double-integration method to determine 5 .
|

(b) the deflection at C. |
(c) the slope at B. I

Assume that EI is constant for the beam. FIGURE P10.20

(a) the equation of the elastic curve for the entire beam. A Q| B
1

10.5 Deflections by Integration of Shear-Force
or Load Equations

In Section 10.3, the equation of the elastic curve was obtained by integrating the differen-
tial equation

2
EI% -M (10.1)
X

and applying the appropriate bounding conditions to evaluate the two constants of integra-
tion. In a similar manner, the equation of the elastic curve can be obtained from shear-force
or load equations. The differential equations that relate deflection v to shear force V or load

w are thus
3
LY vy (10.2)
dx?
4
meY (10.3)
dx*

where both V and w are functions of x. When Equations (10.2) or (10.3) are used to obtain
the equation of the elastic curve, either three or four integrations will be required instead
of the two integrations required with Equation (10.1). These additional integrations will
introduce additional constants of integration. The boundary conditions, however, now in-
clude conditions on the shear forces and bending moments, in addition to the conditions



BEAM DEFLECTIONS

on slopes and deflections. The selection of a particular differential equation is usually
based on mathematical convenience or personal preference. In those instances when the
expression for the load is easier to write than the expression for the moment, Equation
(10.3) would be preferred over Equation (10.1). The following example illustrates the use
of Equation (10.3) for calculating beam deflections:

A beam is loaded and supported as shown. Assume that EI is
constant for the beam. Determine

(a) the equation of the elastic curve in terms of wy, L, x, E, and .
(b) the deflection of the right end of the beam.
(c) the support reactions A, and M, at the left end of the beam.

Plan the Solution

Since the equation for the load distribution is given and the mo-
ment equation is not easy to derive, Equation (10.3) will be
used to determine the deflections.

SOLUTION
The upward direction is considered positive for a distributed load w; therefore,
Equation (10.3) is written as

El— = w(x) = —w, cos[%] (@)

Integration
Equation (a) will be integrated four times to obtain the elastic curve equation.

d3v 2w, L X
EI— =V(x) = —|==0 ]sin[—] +C b
3 (x) [ . 2L 1 (b)

d*v 4w, [? X

EIE = M(x) = [ g ]COS[Z] + Cix + G, (c)

dv 8w, L3 X x2
ElI— = EIf = | —2 ]sin[—] C,—+Cx+C d
. [ - L) T 1 T T @

4
Elv = _[16WOL ]cos[ﬂ-—i] T+ G+ Cx + G, ©




Boundary Conditions and Constants
The four constants of integration are determined by applying the boundary conditions.
Thus,

4
Atx =0,v =0 therefore, C, = 16W2L
ar
dv
Atx =0,— = 0; therefore, C; = 0
dx
Atx =L,V = 0; therefore, C, = M
o
2
Atx = L,M = 0; therefore, C, = 2wol”
a

Elastic Curve Equation
Substitute the expressions obtained for the constants of integration into Equation (e) to
complete the elastic curve equation:
)
37El

4814 cos %] — 3Lx3 + 3m32x2 — 4814 Ans.

Beam Deflection at Right End of Beam
The deflection of the beam at B is obtained by setting x = L in the elastic curve equation:

273 — 4 o o
Vg = — Wo 1 2374 4 3304 — 4814] = _@m 4wl —0.04795 202"
3m4El 3mtEl El
Ans.
Support Reactions at A

The shear force V and the bending moment M at any distance x from the support are given
by the following equations derived from Equations (b) and (c):

V(x) = 2oL —sin[ﬂ]]
T 2L
M(x) = 2W2L 2Lcos[§] + mx — ’ITL]
T

Thus, the support reactions at the left end of the beam (i.e., x = 0) are

2w, L
A=V, = 7: Ans.
2(m — 2)wy L2
My = —TO Ans.

PROBLEMS

P10.21 For the beam and loading shown in Figure P10.21, v
integrate the load distribution to determine

(a) the equation of the elastic curve for the beam.

o

(b) the maximum deflection for the beam.

Assume that EI is constant for the beam.

N

FIGURE P10.21




P10.22 For the beam and loading shown in Figure P10.22,
integrate the load distribution to determine

(a) the equation of the elastic curve for the beam.
(b) the deflection midway between the supports.

Assume that EI is constant for the beam.

Yo

M

| L

FIGURE P10.22

P10.23 For the beam and loading shown in Figure P10.23,
integrate the load distribution to determine

(a) the equation of the elastic curve.
(b) the deflection at the left end of the beam.
(¢) the support reactions B, and Mp.

Assume that EI is constant for the beam.

3

Wy X
v w(x) = 03 "o
M
[ X
A B
L J
1

FIGURE P10.23

P10.24 For the beam and loading shown in Figure P10.24,
integrate the load distribution to determine

(a) the equation of the elastic curve.
(b) the deflection midway between the supports.
(c) the support reactions A, and B,..

Assume that EI is constant for the beam.

3
Wo X
"o

_ 70
B

| L

FIGURE P10.24

|
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P10.25 For the beam and loading shown in Figure P10.25,
integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the deflection at the left end of the beam.
(c) the support reactions By and Mp.

Assume that EI is constant for the beam.

w(x) =w, cos [ ﬂ]
W, /_ 0 2L

=

FIGURE P10.25

P10.26 For the beam and loading shown in Figure P10.26,
integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the deflection midway between the supports.
(c) the slope at the left end of the beam.

(d) the support reactions A and B,.

Assume that EI is constant for the beam.

&
mﬁx_f"

X
=B
| L |

FIGURE P10.26

w(x) = w, sin

P10.27 For the beam and loading shown in Figure P10.27,
integrate the load distribution to determine

(a) the equation of the elastic curve.

(b) the deflection midway between the supports.
(c) the slope at the left end of the beam.

(d) the support reactions A, and B,.

Assume that EI is constant for the beam.

i)
2L

w(x) =w, sin
v /m
T L
A =5

| L

FIGURE P10.27
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P10.28 For the beam and loading shown in Figure P10.28, Ww(x) = w sin [ﬂ]
2L

integrate the load distribution to determine v <

(a) the equation of the elastic curve.
(b) the deflection at the left end of the beam.

"o

(¢) the support reactions B, and Mp. [

Assume that EI is constant for the beam. A

FIGURE P10.28

10.6 Deflections Using Discontinuity Functions

The integration procedures used to derive the elastic curve equations are relatively straight-
forward if the beam loading can be expressed as a single continuous function acting over
the entire length of the beam. However, the procedures discussed in Sections 10.4 and 10.5
can become quite complicated and tedious for beams that carry multiple concentrated loads
or segmented distributed loads. For example, the beam in Example 10.4 was loaded by a
single concentrated load. In order to determine the elastic curve for this relatively uncom-
plicated beam and loading, moment equations had to be derived for two beam segments.
Double integration of these two moment equations generated four constants of integration
that had to be evaluated using boundary conditions and continuity conditions. For beams
that are more complicated such as those with multiple concentrated loads or segmented
distributed loads, it is evident that the computations required to derive all of the necessary
equations and to solve for all of the constants of integration can become quite lengthy. The
use of discontinuity functions greatly simplifies this process. In this section, discontinuity
functions will be used to determine the elastic curve for beams with several loads. These
functions provide a versatile and efficient technique for the computation of deflections for
both statically determinate and statically indeterminate beams with constant flexural rigidity
EI The use of discontinuity functions for statically indeterminate beams will be discussed
in Section 11.4.

As discussed in Section 7.4, discontinuity functions allow all loads that act on the
beam to be incorporated into a single load function w(x) that is continuous for the entire
length of the beam even though the loads may not be. Since w(x) is a continuous function,
the need for continuity conditions is eliminated, thus simplifying the calculation process.
When the beam reaction forces and moments are included in w(x), the constants of integra-
tion for both V(x) or M(x) are automatically determined without the need for explicit refer-
ence to boundary conditions. However, additional constants of integration arise in the
double integration of M(x) to obtain the elastic curve v(x). Each integration produces one
constant, and these two constants must be evaluated using the beam boundary conditions.
Beginning with the moment—curvature relationship expressed in Equation (10.1), M(x) is
integrated to obtain Elv'(x), producing a constant of integration that has the value
C, = EIv'(0). A second integration gives Elv(x), and the resulting constant has the value
C, = EIv(0). For some beams, the slope or deflection or both may be known at x = 0, mak-
ing it effortless to determine either C; or C,. More typically, boundary conditions such as
pin supports, roller supports, and fixed supports occur at locations other than x = 0. For
such beams, it will be necessary to use two beam boundary conditions to develop equations
containing the unknown constants C, and C,. These equations are then solved simultane-
ously to compute C; and C,.

Application of discontinuity functions to compute beam slopes and deflections is
illustrated in the following examples:



EXAMPLE 10.6

For the beam shown, use discontinuity functions to compute the
deflection of the beam

v

(a) atA.
Y (b) at C.
| fx Assume a constant value of EI = 17 X 103 kN-m? for the beam.
=75 c D
2m | 25m 25m | Plan the Solution
' ' ' Determine the reactions at simple supports B and D. Using
Table 7.2, write w(x) expressions for the 25-kN concentrated
load as well as the two support reactions. Integrate w(x) four
times to determine equations for the beam slope and deflection.
Use the boundary conditions known at the simple supports to
evaluate the constants of integration.
SOLUTION
25 kN Support Reactions
A FBD of the beam is shown to the left. Based on this FBD, the
V beam reaction forces can be computed as
| IQ“.I x My = (25kN)(2 m) + Dy(Sm) = 0
\- B D
T ¢ <D, =—10 kN
2m 2.5m 2.5m
B\'I ' le XF,=B,+ D, —25kN =0
~.B, = 35kN

Discontinuity Expressions

25-kN concentrated load: Use case 2 of Table 7.2 to write the following expression for the
25-kN concentrated load:

w(x) = =25 kN(x — 0 m) "

Reaction forces B, and D,: The upward reaction forces at B and D are expressed by using
case 2 of Table 7.2:

w(x) = 35kN(x —2m) ' —10 kN(x — 7m) '

Note that the term for reaction force Dy will always have a value of zero in this example,
since the beam is only 7 m long; therefore, this term may be omitted here.

Integrate the beam loading expression: Integrate the load expression w(x) for the beam,
w(x) = —25kN(x—0m) ' +35kN(x—2m) '
to obtain the shear-force function V(x):

V(x) = fw(x)dx — —25KkN(x — 0 m)’ + 35 kN(x — 2 m)"

and again to obtain the bending-moment function M(x):

M(x) = fV(x)dx = —25kN(x — 0m)" + 35kN(x — 2 m)'




Note that, since w(x) is written in terms of both the loads and the reactions, no constants

of integration have been needed up to this point in the calculation. However, the next two

integrations (which will produce functions for beam slope and deflection) will require

constants of integration that must be evaluated from the beam boundary conditions.
From Equation (10.1), we can write

2
EI;Z— = M(x) = —25kN(x— 0m)' + 35kN(x — 2 m)'

Integrate the moment function to obtain an expression for the beam slope:

o AN R A\ D S C 35 (x—2m) + C (a)
dx 2
Integrate again to obtain the beam deflection function:
EIv:—ﬂ( — 0 )3 3)SkN(x—Zm)3+C1x+C2 (b)

Evaluate constants, using boundary conditions: Boundary conditions are specific values
of deflection v or slope dv/dx that are known at particular locations along the beam span.
For this beam, the deflection v is known at the roller support (x = 2 m) and at the pin
support (x = 7 m). Substitute the boundary condition v = 0 at x = 2 m into Equation (b)
to obtain

25 kN 35 kN

—QC2mP+——O0m’P+C2m+C, =0 (c)

Next, substitute the boundary condition v = 0 at x = 7 m into Equation (b) to obtain

251‘N(7 m)3 + SSkN(SmP +C(Tm+C, =0 (d)

Solve Equations (c) and (d) simultaneously for the two constants of integration C; and C5:
C, = 1333333 kN-m? and C, = —233.3333 kN-m?

The beam slope and elastic curve equations are now complete:

g% - B om?  EN o my 11333333 kvam?
dx 2 2
Elv = —%TKN< —0m) + 356kN x —2m) + (133.3333 kN-m2) x — 233.3333 kN-m®

(a) Beam Deflection at A
At the tip of the overhang where x = 0 m, the beam deflection is

Elv, (x —2m) + (133.3333 kN-m2) x — 233.3333 kN-m?

—= o e—om) +

—233.3333 kN-m3

—m3
v, = 23IENMT 613955 1 = 1373 mm | Ans.

17 X103 kN-m?

25 kN 3 35kN
2




(b) Beam Deflection at C

At C where x = 4.5 m, the beam deflection is
Elv. = —@(4.5 m)3 + %(2.5 m)? + (133.3333 kN-m?) (4.5 m) — 233.3333 kN-m3

= 78.1249 kN-m3

78.1249 kN-m3
Ve = ————— = 0.004596 m = 4.60 mm
€ T 17X10° kKN-m? T Ans.
|
V| 60 KkN/m 40 KN/ For the beam shown, use discontinuity functions to compute
JILIIILLLLY (a) the slope of the beam at A.

(b) the deflection of the beam at B.

S
&
=

=D
Sm 3m | 3m
' ' ' ' Plan the Solution

Determine the reactions at simple supports A and D. Using
Table 7.2, write w(x) expressions for the two uniformly distrib-
uted loadings as well as the two support reactions. Integrate

| 60 kN/m 0 KNn w(x) four times to determine equations for the beam slope and

m deflection. Use the boundary conditions known at the simple
dlILILILIL) supports to evaluate the constants of integration.

D
3m 3m

| D,

C E

Assume a constant value of EI = 125 X 103 kN-m? for the beam.

o
=

E SOLUTION

Support Reactions
y A FBD of the beam is shown to the left. From this FBD, the
beam reaction forces can be computed as

IM, = —(60 kN/m)(4 m)(2 m) — (40 kN/m)(6 m)(12 m) + Dy (12 m) = 0

B C

5m
T T

D, = 280 kN
SF, = A, + D, — (60 kN/m)(4 m) — (40 kN/m)(6 m) = 0
< A, = 200 kN

Discontinuity Expressions
Distributed load between A and B: Use case 5 of Table 7.2 to write the following expres-
sion for the 60-kN/m distributed load:

w(x) = —60 kN/m(x — 0 m)’ + 60 kN/m(x — 4 m)"

Note that the second term in this expression is required to cancel out the first term
for x >4 m.

Distributed load between C and E: Again, use case 5 of Table 7.2 to write the following
expression for the 40-kN/m distributed load:

w(x) = —40 kN/m (x — 9 m)’ + 40 kN/m (x — 15 m)°

The second term in this expression will have no effect, since the beam is only 15 m long;
therefore, this term will be omitted from further consideration.




Reaction forces A, and D,: The upward reaction forces at A and D are expressed by using
case 2 of Table 7.2:

w(x) = 200 kN(x —0m) ' + 280 kN(x — 12 m) '
Integrate the beam loading expression: The load expression w(x) for the beam is thus
w(x) = 200 kN(x — 0 m) ' — 60 kN/m(x — 0 m)’ + 60 kN/m (x — 4 m)°
—40 kKN/m (x — 9 m)’ + 280 kKN (x — 12 m) "
Integrate w(x) to obtain the shear-force function V(x):
V(x) = fw(x)dx = 200 kN(x — 0 m)" — 60 kN/m(x — 0 m)" + 60 kN/m (x — 4 m)'
—40 kKN/m(x — 9 m)" + 280 kN(x — 12 m)"

Then integrate again to obtain the bending-moment function M(x):

1 60 kN/m 2 60 kN/m 2
2

M(x) = [Vx)dx = 200 KN(x =0 m) (x —0m) + (x — 4 m)

40 KN/m

- 9 m)”> + 280 kN (x — 12 m)'

The inclusion of the reaction forces in the expression for w(x) has automatically ac-
counted for the constants of integration up to this point. However, the next two integra-
tions (which will produce functions for beam slope and deflection) will require constants
of integration that must be evaluated from the beam boundary conditions.
From Equation (10.1), we can write
d?v 1 60 kN/m

ETY = M(x) = 200 KN(x — 0 m)
dx?

60 kN/m

(x—0m) + (x —4m)’

~ 40 KN/m
2

Integrate the moment function to obtain an expression for the beam slope:

(x —9m)” + 280 kN(x — 12 m)'

EIﬂ _ 2OOkN(x—0m>2— 6OkN/m<x_0m>3+ 60kN/m<x_4m>3
dx 2 6 6 @
a
_ 40 kN/m IZN/‘“(x —omy + BN pmy iy

Integrate again to obtain the beam deflection function:

gy~ 200KN s 60N o 60 KN
24 24 .
_ 40 KN/m lz‘i‘”m r—omt+ BN mp s ox

Evaluate constants, using boundary conditions: Boundary conditions are specific values of
deflection v or slope dv/dx that are known at particular locations along the beam span. For
this beam, the deflection v is known at the pin support (x = 0 m) and at the roller support
(x = 12 m). Substitute the boundary condition v = 0 at x = 0 m into Equation (b) to obtain

C,=0




Next, substitute the boundary condition v = 0 at x = 12 m into Equation (b) to obtain
constant Cy:

200 kN 60 kN/m

(12 my — 60 kN/m 40 KN/m

12 m)* + —— (@8 m)*
( ) 24 ( ) 24

B m)*+ C,(12m) =0
-.Cp = —1,322.0833 kN-m?

The beam slope and elastic curve equations are now complete:

g® _200kN o GOKNm o 60KNN
dx 2
—@u Comy + ZBOKN o ) 1.322.0833 KNam?
gy = 200KN s GOKN/m e G0KNR
6 24
—%u —omyt 4+ BBOKN 1o m) = (1.322.0833 kKN-m?2) x
(a) Beam Slope at A
The beam slope at A (x = 0 m) is
EI [ﬂ] = —1,322.0833 kN-m?
dx),
1m?2
,-.[ﬂ] _ 13220833 KN'm” _ ) 158 rad Ans.
dx), 125X 103 kN-m?
(b) Beam Deflection at B
The beam deflection at B (x = 4 m) is
Elv, = 2006kN (4 m)® — %(4 m)* — (1,322.0833 kN-m2)(4 m) = —3,795 kN-m3
—m3
v = _3ISKNMT (030360 m = 304 mm | Ans.

125 %103 kN-m?

EXAMPLE 10.8

For the beam shown, use discontinuity functions to compute

v
kips/ft .
| 6 kips/ft the deflection of the beam at D. Assume a constant value of
EI = 192,000 kip-ft? for the beam.
A B
| 4ft

* Plan the Solution
Determine the reactions at fixed support A. Using Table 7.2,
write w(x) expressions for the linearly distributed load as
well as the two support reactions. Integrate w(x) four times
to determine equations for the beam slope and deflection.

6 kips/ft .
M, m1 Use the boundary conditions known at the fixed support to
C evaluate the constants of integration.

|
|
C D
8 ft 4 ft

SOLUTION
A .
? Support Reactions
4t ; } i A FBD of the beam is shown to the left. Based on this FBD,
the beam reaction forces can be computed as




1 .
IF, = A, - 5(6 kips/ft) (8 ft) = 0
~A, = 24 kips

M,

M, - %(6 Kips/ft) (8 ft)[4 fit + 2(8;0

] -0
- M, = —224 kipt

Discontinuity Expressions

Distributed load between B and C: Use case 6 of Table 7.2 to write the following expres-
sion for the distributed load:

6 kips/ft
8 ft

Reaction forces A and M : The reaction forces at A are expressed with the use of cases 1
and 2 of Table 7.2:

w(x) = —224 Kip-ft (x — 0 ft) > + 24 kips(x — 0 ft) '

6 kips/ft

w(x) = — (x —4ft) + (x —12 ft)' + 6 kips/ft (x — 12 ft)°

Integrate the beam loading expression: The load expression w(x) for the beam is thus
w(x) = —224 kip-ft(x — 0 ft)_2 + 24 kips(x — 0 ft)_l
6 kips/ft 6 kips/ft
8 ft 8 fi

(x —4f) + (x —12 ft)' + 6 kips/ft (x — 12 ft)°

Integrate w(x) to obtain the shear-force function V(x):
V(x) = fw(x)dx = —224 kipft(x — 0 ft)71 + 24 kips{(x — 0 ft)0

6 Kips/ft (x—4 ft)2 n 6 kips/ft

(x —12 ft)” + 6 kips/ft (x — 12 ft)'
2(8 ft) 2(8 ft)

Then integrate again to obtain the bending-moment function M(x):
M(x) = f V(x)dx = —224 kipft(x — 0 ft)" + 24 kips(x — 0 ft)’

_ 6 kips/ft (x—4 ft)3 N 6 kips/ft

(x — 12 ft)°
6(8 ft) 6(8 ft)

(x —12 ft>3 n 6 kips/ft
2
The inclusion of the reaction forces in the expression for w(x) has automatically ac-
counted for the constants of integration up to this point. However, the next two integra-
tions (which will produce functions for beam slope and deflection) will require constants
of integration that must be evaluated from the beam boundary conditions.

From Equation (10.1), we can write

d?v

EIF = M(x) = —224 kipft(x — 0 ft)’ + 24 kips{(x — 0 i)'
X
6 kips/ft (x—4 ft)3 n 6 kips/ft (x—12 ft)3 n 6 kips/ft (x—12 ft)z
6(8 ft) 6(8 ft) 2

Integrate the moment function to obtain an expression for the beam slope:

EIY — _204 kipi(x — 0 )’ + 22 KBS (0 12
“ 6 kips/f 6 k'2s/f 6 kips/f @
LS AN L. LMD P L. LMD F I o)
24(8 1) 24(8 o) 6




Integrate again to obtain the beam deflection function:
Elv — 224 kip-ft (x—0 ft)2 o 24 kips (x—0 ft)3
. . . (b)
_SMIPI gy g SR gy SMS gyt ox G
120(8 ft) 120(8 ft) 24
Evaluate constants, using boundary conditions: For this beam, the slope and the deflec-
tion are known at x = 0 ft. Substitute the boundary condition dv/dx = 0 at x = 0 ft into
Equation (a) to obtain
C, =0
Next, substitute the boundary condition v = 0 at x = 0 ft into Equation (b) to obtain
constant C,:
CZ = 0

The beam slope and elastic curve equations are now complete:

LY~ 004 kipi(x — 0 ft) + 22 KPS g 2

dx 2
_ 6 kips/ft (x—4 ft)4 n 6 kips/ft (x—12 ft>4 n 6 kips/ft (x—12 ft)3
24(8 ft) 24(8 ft) 6
Elv — 224 kip-t (x—0 ft>2 n 24 kips (x-0 ft)3
6 kips/ft (x—4 ft)s N 6 kips/ft (x—12 ft>5 N 6 kips/ft (x—12 ft)4
1208 ft) 120(8 ft) 2
Beam deflection at D: The beam deflection at D (x = 16 ft) is computed as follows:
Elv,, = _M(m ft)2 + M(m ft)3 — M(IZ ft)S + M@ ft)s + M@ ft)4
2 6 120(8 ft) 120(8 ft) 24
= —13,772.8 kip-t3
o 3 M
vy = T2 071933 f — 0.861n. | Ans.
192,000 kip-ft2
|
PROBLEMS

P10.29 For the beam and loading shown in Figure P10.29, use
discontinuity functions to compute the deflection of the beam at D.
Assume a constant value of EI = 1,750 kip-ft? for the beam.

P10.30 The solid 30-mm-diameter steel [E = 200 GPa] shaft
shown in Figure P10.30 supports two pulleys. For the loading
shown, use discontinuity functions to compute

(a) the shaft deflection at pulley B.
(b) the shaft deflection at pulley C.

5 kips 3 kips
2%
\ \ J ¢
0 —x
A ﬁ- B C =% D
I 4 ft 6 ft I 3ft

FIGURE P10.29

800 N

FIGURE P10.30



P10.31 For the beam and loading shown in Figure P10.31, use
discontinuity functions to compute

(a) the slope of the beam at C.
(b) the deflection of the beam at C.

Assume a constant value of EI = 560 X 10° N-mm? for the beam.

1,400 N
v
210 N-m
N\
A K5 c D < E
L200mm 150 mm 250 mm J
" ' 100 mm B

FIGURE P10.31

P10.32 The solid 30-mm-diameter steel [E = 200 GPa] shaft
shown in Figure P10.32 supports two belt pulleys. Assume that the
bearing at A can be idealized as a pin support and that the bearing
at E can be idealized as a roller support. For the loading shown, use
discontinuity functions to compute

(a) the shaft deflection at pulley B.
(b) the shaft deflection at point C.

A B D E
# . #.
‘ 300 mm I 200 mm| 300 mm I 200 mm ‘

¢6OON ¢SOON

FIGURE P10.32

P10.33 The cantilever beam shown in Figure P10.33 consists
of a W530 X 74 structural steel wide-flange shape [E = 200 GPa;
I = 410 X 10 mm*]. Use discontinuity functions to compute the
deflection of the beam at C for the loading shown.

v| 40 kKN

FIGURE P10.33

P10.34 The cantilever beam shown in Figure P10.34 consists of
a W21 X 50 structural steel wide-flange shape [E = 29,000 ksi;
I =984 in.*]. Use discontinuity functions to compute the deflection
of the beam at D for the loading shown.
I 9 kips )

| 4 Kips/ft

ﬁ««anﬂTfﬂl

]
]
|D

X

A B c
L 4ft | 3ft 9ft

FIGURE P10.34

P10.35 The simply supported beam shown in Figure P10.35
consists of a W410 X 85 structural steel wide-flange shape
[E = 200 GPa; I = 316 X 10° mm*]. For the loading shown, use
discontinuity functions to compute

(a) the slope of the beam at A.
(b) the deflection of the beam at midspan.

v
| 75 kKN/m

lQ;} —x
A T B c =D
I

2.5m 3.0m

FIGURE P10.35

P10.36 The simply supported beam shown in Figure P10.36
consists of a W14 X 30 structural steel wide-flange shape
[E = 29,000 ksi; I = 291 in.*]. For the loading shown, use discon-
tinuity functions to compute

(a) the slope of the beam at A.
(b) the deflection of the beam at midspan.

2.5 kips/ft
JIIIIIIILIIL .
AE B c -O-ID
| 6 ft 12 ft 6 ft |

FIGURE P10.36

P10.37 The simply supported beam shown in Figure P10.37
consists of a W21 X 50 structural steel wide-flange shape
[E = 29,000 ksi; I = 984 in.*]. For the loading shown, use discon-
tinuity functions to compute

(a) the slope of the beam at A.
(b) the deflection of the beam at B.

Y 7 kips/fit
4 kips/ft
llllllllllll
A B Q-Ic
11 fi 9 ft |

FIGURE P10.37



P10.38 The simply supported beam shown in Figure P10.38
consists of a W200 X 59 structural steel wide-flange shape
[E = 200 GPa; I = 60.8 X 10° mm*]. For the loading shown, use
discontinuity functions to compute

(a) the deflection of the beam at C.
(b) the deflection of the beam at F.

20 kN 10 kN

8 kKN/m

JIJJIiildl)

FIGURE P10.38

P10.39 The solid 0.50-in.-diameter steel [E = 30,000 ksi] shaft
shown in Figure P10.39 supports two belt pulleys. Assume that the
bearing at B can be idealized as a pin support and that the bearing
at D can be idealized as a roller support. For the loading shown, use
discontinuity functions to compute

(a) the shaft deflection at pulley A.
(b) the shaft deflection at pulley C.

10 in. |

1
&120 b

| 5in. 0in. |
T

&90 Ib

FIGURE P10.39

P10.40 The cantilever beam shown in Figure P10.40 consists of
a W8 X 31 structural steel wide-flange shape [E = 29,000 ksi;
I = 110 in.*]. For the loading shown, use discontinuity functions
to compute

(a) the slope of the beam at A.
(b) the deflection of the beam at A.

|

75 Kip-ft 3.5 Kips/ft
| JJJIIVILLIILLIITI
I x
A B C
5 ft 10 ft |

FIGURE P10.40

P10.41 The simply supported beam shown in Figure P10.41
consists of a W14 X 34 structural steel wide-flange shape
[E = 29,000 ksi; I = 340 in.*]. For the loading shown, use discon-
tinuity functions to compute

(a) the slope of the beam at E.
(b) the deflection of the beam at C.

6 kips/ft

‘m TIT
| 0 —
A B 1— c =
8 fit | 8 fit 10 ft 41t |
T

T
FIGURE P10.41
P10.42 For the beam and loading shown in Figure P10.42, use
discontinuity functions to compute

(a) the deflection of the beam at A.
(b) the deflection of the beam at midspan (i.e., x = 2.5 m).

Assume a constant value of EI = 1,500 kN-m? for the beam.

Y 18 KN/m
|
[— {9 x

P10.43 For the beam and loading shown in Figure P10.43, use
discontinuity functions to compute

(a) the slope of the beam at B.
(b) the deflection of the beam at A.

Assume a constant value of EI = 133,000 kip-ft? for the beam.

X
c
5 ft |
1

P10.44 For the beam and loading shown in Figure P10.44, use
discontinuity functions to compute

4 kips/ft
I

A

B
9 ft

FIGURE P10.43

(a) the slope of the beam at B.
(b) the deflection of the beam at C.

Assume a constant value of EI = 34 X 10° 1b-ft? for the beam.

v 7,000 Ib/ft
| (o) —x
A = B c =D
41t | 9 ft 51t |
T 1

FIGURE P10.44



P10.45 For the beam and loading shown in Figure P10.45, use
discontinuity functions to compute

(a) the slope of the beam at A.
(b) the deflection of the beam at B.

Assume a constant value of EI = 370,000 kip-ft> for the beam.

8 kips/ft

FIGURE P10.45

P10.46 For the beam and loading shown in Figure P10.46, use
discontinuity functions to compute

(a) the slope of the beam at B.
(b) the deflection of the beam at B.

Assume a constant value of EI = 110,000 kN-m? for the beam.

40 kN/m

|

A B
| 4m

FIGURE P10.46

v

10.7Z Method of Superposition

P10.47 For the beam and loading shown in Figure P10.47, use
discontinuity functions to compute

(a) the deflection of the beam at A.
(b) the deflection of the beam at C.

Assume a constant value of EI = 24,000 kN-m? for the beam.

35kN 70 kN/m

|
[ X

-T-D

1.5m

FIGURE P10.47
P10.48 For the beam and loading shown in Figure P10.48, use
discontinuity functions to compute

(a) the slope of the beam at B.
(b) the deflection of the beam at A.

Assume a constant value of EI = 54,000 kN-m? for the beam.

v | 50 kN/m
[ X
A B C
3m 1m |
I “1

FIGURE P10.48

The method of superposition is a practical and convenient method for obtaining beam
deflections. The principle of superposition states that the combined effect of several
loads acting simultaneously on an object can be computed from the sum of the effects
produced by each load acting individually. How can this principle be used to compute
beam deflections? Consider a cantilever beam subjected to a uniformly distributed load
and a concentrated load at its free end. To compute the deflection at B (Figure 10.8a), two
separate deflection calculations can be performed. First, the cantilever beam deflection at
B is calculated considering only the uniformly distributed load w (Figure 10.8b). Next, the
deflection caused by the concentrated load P alone is computed (Figure 10.8c¢). The re-
sults of these two calculations are then added algebraically to give the deflection at B for

the total load.

Beam deflection and slope equations for common support and load configurations
are frequently tabulated in engineering handbooks and other reference materials. A table
of equations for frequently used simply supported and cantilever beams is presented in
Appendix C. (This table of common beam formulas is often referred to as a beam table.)
Appropriate application of these equations enables the analyst to determine beam deflec-

tions for a wide variety of support and load configurations.
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(a) Total load (b) Distributed load only (c) Concentrated load only
FIGURE 10.8 Superposition principle applied to beam deflections.

Several conditions must be satisfied if the principle of superposition is to be valid for
beam deflections.

1. The deflection must be linearly related to the loading. Inspection of the equations
found in Appendix C shows that all load variables (i.e., w, P, and M) are first-order
variables.

2. Hooke’s Law must apply for the material, meaning that the relationship between stress
and strain remains linear.

3. The loading must not significantly change the original geometry of the beam. This
condition is satisfied if beam deflections are small.

4. Boundary conditions resulting from the sum of individual cases must be the same as
the boundary conditions in the original beam configuration. In this context, boundary
conditions are normally deflection or slope values at beam supports.

MecMovies Example M10.7

Introduction to the superposition method with two elementary examples—one
cantilever beam example and one simply supported beam example.

P

TITITITLIIIIILILY
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' L/2 L/2 ]‘

Applying the Superposition Method

The superposition method can be a quick and powerful method for calculating beam de-
flections; however, application of this method may initially seem more like an art than an
engineering calculation. Before proceeding, it may be helpful to consider various calcula-
tion skills that are often used in typical beam and loading configurations.

Skill 1—Using slope to calculate deflection: The beam slope at location A may be
needed in order to calculate the beam deflection at location B.



Skill 2—Using both deflection and slope values to calculate deflections: Both METHOD OF SUPERPOSITION
the beam slope and deflection at location A may be needed to calculate the beam deflec-
tion at location B.
Skill 3—Using the elastic curve: Equations are given in beam tables for beam slope
and deflection at key locations, such as at the free end of a cantilever beam and at
midspan of a simply supported beam. There are many instances, however, when deflections
must be computed at other locations. In these instances, deflections can be calculated
from the elastic curve equation.

Skill 4—Using both cantilever and simply supported beam cases: For a simply
supported beam with an overhang, both cantilever and simply supported beam equations
are required to compute the deflection at the free end of the overhang.

Skill 5—Subtracting load: For a beam with distributed loads over only a portion of a
span, it may be expedient to consider first the distributed load on the entire span. Then,
the load can be cancelled out in a portion of the span by adding the inverse of the load
(i.e., a load equal in magnitude, but opposite in direction). This skill may also be useful
for cases involving linearly distributed loadings (i.e., triangular loads).

Skill 6—Using known deflections at specific locations to compute unknown
forces or moments: This skill is particularly useful in analyzing statically indeter-
minate beams.

Skill 7—Using known slopes at specific locations to compute unknown forces
or moments: This skill is useful in analyzing statically indeterminate beams.

Skill 8—A beam and loading configuration may often be subdivided in more
than one manner: A given beam and loading may be subdivided and added in any
manner that yields the same boundary conditions (i.e., deflection and/or slope at the sup-
ports) as those in the original beam configuration. Alternative approaches may require
fewer calculations to produce the same results.

The skills in the preceding list are presented with examples and interactive prob-
lems in MecMovies M10.3 and M10.4 (8 Skills: Parts I and II) and in MecMovies
M10.5 (Superposition Warm-Up).

8 SKills: Parts I and 11

SOMETIMES THE
SUCCESSFUL APPLICATION
OF SUPERPOSITION CAMN
SEEM MORE LIKE AN ART
RATHER THAN AN
ENGINEERING CALCULATION.

ESSENTIAL SKILLS THAT
MUST BE UNDERSTOOD AND
MASTERED IN ORDER TO
ARPPLY THE SUFERFPOSITION
METHOD TO VARIOUS BEAM
ANALYSES.

SKILLS

PART I. SKILLS 1-<

[introduction == G7esl@




les Example M10.5

Superposition Warm-Up. A series of examples and exercises that
illustrate basic skills required for successful application of the super-
position method to beam deflection problems.

Use beam

slope 6 to find
deflection v

TASK: FIND V¢
APPROACH:

(1) From beam table, select simply supported beam
with uniformly distributed load over entire span.

(2) Table gives formula for slope at support B.

(3) Since there is a roller at B, ve = 0.

(4) ve =08 x L2,

[skill 1 - beamn 1

| 21| (=] = ]| | V7T

EXAMPLE 10.9

80 kN/m
x
A B C
| 3m 2m

Case 1—Cantilever with uniform load.

X

A B C
L 3m
k

Case 2—Cantilever with concentrated moment.

150 kN-m

2 m
T 1

are consistent.

The cantilever beam shown consists of a structural steel wide-flange
shape [E = 200 GPa; I = 650 X 10° mm?]. For the loading shown,
determine

(a) the beam deflection at point B.
(b) the beam deflection at point C.

Plan the Solution

To solve this problem, the given loading will be separated into two
cases: (1) a cantilever beam with a uniformly distributed load and (2)
a cantilever beam with a concentrated moment acting at the free end.
Pertinent equations for these two cases are given in the beam table
found in Appendix C. For case 1, we will use equations for the deflec-
tion and rotation angle at the free end of the cantilever to determine
the beam deflections at B and C. For case 2, the elastic curve equation
will be used to compute beam deflections at both locations.

SOLUTION
For this beam, the elastic modulus is £ = 200 GPa and the moment
of inertia is I = 650 X 10 mm®. Since the term EI will appear in all
of the equations, it may be helpful to start by computing this value:
EI = (200 GPa)(650 x 10 mm*) = 130 x 10'> N-mm?
= 130 x 103 kN-m?

As in all calculations, it is essential to use consistent units throughout the computations.
This is particularly important in the superposition method. When substituting numbers into
the various equations obtained from the beam table, it is easy to lose track of the units. If
this happens, you may find that you have calculated a beam deflection that seems absurd,
such as a deflection of 1,000,000 mm for a beam that spans only 3 m. To avoid this situa-
tion, always be aware of the units associated with each variable and make sure that all units




Case 1—Cantilever with Uniform Load

From the beam table in Appendix C, the deflection at the free end of a
cantilever beam that is subjected to a uniformly distributed load over
its entire span is given as

wl#
mx = gy

(a)

The beam deflection at B can be calculated with this equation; however, v
this equation alone will not be sufficient to calculate the deflection 80 kN/m

between A and B. There are no loads acting on the beam between B

and C, which means that there will be no bending moment in the beam A B

in this region. Since there is no moment, the beam will not be bent
(i.e., curved), and its slope between B and C will be constant. Since
the beam is continuous, its slope between B and C must equal the
rotation angle of the beam at B caused by the uniformly distributed
load. (Note: Since small deflections are assumed, the beam slope
dv/dx is equal to the rotation angle # and the terms “slope” and
“rotation angle” will be used synonymously.)

From the beam table in Appendix C, the slope at the free end of
this cantilever beam is given as

at C. For the beam considered here, the uniform load extends only IT TTTTTTITTTITTII?
|

3m 2m

wl?
Gmax I pp—
6EI

(b)

The beam deflection at C will be calculated from both Equations (a)
and (b).

Problem-Solving Tip: Before beginning the calculation, it is helpful to sketch the
deflected shape of the beam. Next, make a list of the variables that appear in the stan-
dard equations along with the values applicable for the specific beam being analyzed.
Make sure that the units are consistent at this point in the process. In this example, for
instance, all force units will be expressed in terms of kilonewtons (kIN) and all length
units will be stated in terms of meters (m). Making a simple list of the variables ap-
pearing in the equations will greatly increase your likelihood of success, and it will
save you a lot of time in checking your work.

Beam deflection at B: Equation (a) will be used to compute the beam
deflection at B. For this beam,

w = —80 kN/m
L=3m Although the beam is rotated in
El = 130 % 10? kN-m2 v this region, it remains straight.
Note: The distributed load w is negative in this instance because the = T
distributed load on the beam acts opposite to the direction shown in “: B c
the beam table. The cantilever span length L is taken as 3 m because
3m 2m

this is the length of the uniformly distributed load. L ,




Substitute these values into Equation (a) to find
~wlt (=80 kN/m)(3 m)*
8EI 8(130 x 103 kN-m2)

The positive value indicates an upward deflection, as expected.

=6.231%x103 m = 6.231 mm

Vp =

Beam deflection at C: The beam deflection at C will be equal to the beam deflection at B
plus an additional deflection caused by the slope of the beam between B and C. The rota-
tion angle of the beam at B is given by Equation (b), using the same variables as before:
_ wl (=80 kN/m)(3 m)*
B 6EI 6(130 X 103 kN-m2)
The deflection at C is computed from vy, 65, and the length of the beam between
Band C:

Ve = Vg + 05(2m)

= 2.769 x 1073 rad

(6.231 1073 m) + (2.769 X 1073 rad) (2 m)
11.769 X 103 m = 11.769 mm

The positive value indicates an upward deflection.

Case 2—Cantilever with Concentrated Moment
From the beam table in Appendix C, the elastic curve equation for
a cantilever beam subjected to a concentrated moment applied at

y its free end is given as
A B €1 150 kN-m ;
e | =36 ©
v P 7
- ’ Beam deflection at B: The elastic curve equation will be used to
_ /T/ ﬁ compute the beam deflections at both B and C for this case. For
—_——— '8 ) this beam,
A B €| 150 kN-m M = —150 kN-m
X im 2 EI'= 130 X 103 KN-m?
Note: The concentrated moment M is negative because it acts in
the opposite direction to that shown in the beam table.
Substitute these values into Equation (c), using x = 3 m to
compute the beam deflection at B:
2 _ g 2
vy = M CONMGM” 546500103 m = 5.192 mm
2EI 2(130 x 103 kN-m?)
Beam deflection at C: Substitute the same values into Equation (c),
using x = 5 m to compute the beam deflection at C:
Mx? —150 kN- 2
v = — M CI0OKNMG M _ 4y 453510 m = 14.423 mm
//’ 2EI 2(130 x 103 kN-m?)
v ‘ / /
v
HTFTQ%HW(V/ ‘ Combine the Two Cases
e E f \ . The deflections at B and C are found from the sum of cases 1 and 2:
-
A B c éOkN—m vp = 6231 mm + 5.192 mm = 11.42 mm Ans.
! 3m 2m ve = 11.769 mm + 14.423 mm = 26.2 mm Ans.




les Example M10.8

Determine the maximum deflection of the cantilever beam. Assume that EI is v
constant for the beam.

ies Example M10.9

L/2

L/2

Determine the deflection at point C on the beam shown. Assume that EI is constant

for the beam.

EXAMPLE 10.10

The simply supported beam shown consists of a W16 X 40
structural steel wide-flange shape [E = 29,000 ksi; [ =
518 in.*]. For the loading shown, determine the beam deflec-
tion at point C.

20 kips

30 kips

Plan the Solution HQ)
One of the standard configurations found in the beam tables is 4
a simply supported beam with a concentrated load acting at a

4 ft

6 ft

3 ft

7 ft

location other than the middle of the span. The elastic curve

tion of the total span.

SOLUTION

¥ = _P_bx(LZ —b2—x2) for0=x=a
6LEI

equation from this standard beam configuration will be used to compute the deflection for
the beam considered here, which has two concentrated loads. However, the elastic curve
equation must be applied differently for each load because it is applicable only for a por-

The solution of this beam deflection problem will be subdivided into two cases. In case 1, the
30-kip load acting on the simply supported beam will be considered. Case 2 will consider the
20-kip load. The elastic curve equation for a simply supported beam with a single concen-
trated load acting at a location other than the middle of the span is given in the beam table as

(a)




a=13ft

For this beam, the elastic modulus is £ = 29,000 ksi and the moment of inertia is
I = 518 in.*. The term EI, which appears in all calculations, has the value

EI = (29,000 ksi)(518 in.*) = 15.022 X 10° kip-in.?

30 kips

. Case 1—30-kip Load on Simple Span
=71t

It is essential to note the interval upon which the elastic curve
equation is applicable. Equation (a) gives the beam deflection

v

at any distance x from the origin up to, but not past, the loca-

6 ft

tion of the concentrated load, which is denoted by the term
a in the equation. For this beam, @ = 13 ft. Since point C is
located at x = 10 ft, the elastic curve equation is applicable for

D

3 ft 7 ft

this case.

L=20ft

a=13ft

The deflected shape of the beam is shown. List the vari-
ables that appear in the elastic curve equation along with their
corresponding values:

30 kips

b="T7ft

P =30 kips
b="T71t=84in.

L =20 ft = 240 in.
| EI = 15.022 X 106 kip-in.2

Beam deflection at C: At point C, x = 10 ft = 120 in. There-

20 kips

a=4ft

fore, the beam deflection at C for this case is

Pbx.
6LEI
B (30 kips) (84 in.) (120 in.)

"~ 6(240 in.)(15.022 x 106 kip-in.2)
= —0.5053 in.

Ve (12 — b — x?)

[(240 in.)2 — (84 in.)2 — (120 in.)?]

Case 2—20-kip Load on Simple Span

h—16 ft Next, consider the simply supported beam with only the

20-kip load. From this sketch, it is apparent that the distance a
from the origin to the point of application of the 20-kip load is

a = 4 ft. Since C is located at x = 10 ft, the elastic curve equa-

k@

4 ft 6 ft

=z

tion is not applicable for this case, because x > a.
However, the elastic curve equation can be used for this

3 ft 7 ft

case if we make a simple transformation. The origin of the x—v

L=20 ft coordinate axes will be repositioned at the right end of the

20 kips

b=4ft

beam, and the positive x direction will be redefined as extend-

ing toward the pin support at the left end of the span. With

this transformation, x < a, and the elastic curve equation can
v be used.

a=161ft The variables that appear in the elastic curve equation

and their corresponding values are

| P = 20 kips

6 ft

b=4ft=48in.
L =20 ft = 240 in.

3 ft 7 ft

L=20ft EI = 15.022 X 10° kip-in.2




20 kips
b=41t I a=161t
X o~ ~ —— kc g — =
| x=10ft
L=20ft
Beam deflection at C: At point C, x = 10 ft = 120 in., and the
beam deflection at C for this case is
Pbx
Ve = ———— (12 — b* — x?
= “orm )
20 kips) (48 in. in. . . .
_ . Q0kp9A8In)A20in) 004090 (48 iny2 — (120 in)?]
6(240 in.)(15.022 x 10° Kip-in.?)
= —0.2178 in.
20 kips 30 kips
Combine the Two Cases v
The deflection at C is the sum of cases 1 and 2.
ve = —0.5053 in. — 0.2178 in. = —0.723 in.  Ans. Y Y
5 ~
RS =
1 I S T
4t 6t | 3n 7 ’
The simply supported beam shown consists of a W24 X 76 struc- 40 kips
tural steel wide-flange shape [E = 29,000 ksi; / = 2,100 in.*]. For the
loading shown, determine v
(a) the beam deflection at point C. V
(b) the beam deflection at point A. ; o) ;
(c) the beam deflection at point E. A =B C D= E
. 8 ft | 8 fit 8 fit | 8 ft
Plan the Solution ' ' ' '
Before starting to solve this problem, sketch the deflected shape 40 kips
of the elastic curve. The 40-kip load will cause the beam to bend
downward at E, which in turn will cause the beam to bend upward v
between the simple supports. Since B is a pin support, the deflec- v
tion of the beam at B will be zero, but the slope will not be zero. —— = |
Let us consider the beam span between B and C in more | &‘ —_— '
detail. What is it exactly that causes the beam to bend upward in | B ¢ b | ﬂ
this region? Certainly, the 40-kip load is involved, but more pre- | 8 |  8ft 8ft J  8ft
cisely, the 40-kip load creates a bending moment, and it is this
bending moment that causes the beam to bend upward. For that reason, the effect of a con-
centrated moment applied at one end of a simply supported span is the only consideration
required to compute the beam deflection at C.




Next, consider the overhang span between A and B. No bending moments act in this
portion of the beam; thus, the beam does not bend, but it does rotate because it is attached
to the center span. The overhang portion AB rotates by an angle equal to the rotation angle
05, which occurs at the left end of the center span. The deflection of overhang AB is due
exclusively to this rotation, and accordingly, the beam deflection at A can be calculated
from the rotation angle 6, of the center span.

Finally, consider the overhang span between D and E. The deflection at E is a com-
bination of two effects. The more obvious effect is the deflection at the free end of a
cantilever beam subjected to a concentrated load. This deflection, however, does not ac-
count for all of the deflection at E. The standard cantilever beam cases found in Appendix
C assume that the beam does not rotate at the fixed support; or in other words, the canti-
lever cases assume that the support is rigid. Overhang DE, however, is not connected to a
rigid support. It is connected to center span BD, which is flexible. As the center span
flexes, the overhang rotates downward, and this is the second effect that causes deflection
at E. To calculate the beam deflection at E, we must consider both cantilever and simply
supported beam cases.

SOLUTION
For this beam, the elastic modulus is £ = 29,000 ksi and the moment of inertia is
I = 2,100 in.*. The term EI, which appears in all calculations, has the value

EI = (29,000 ksi)(2,100 in.*) = 60.9 x 10¢ kip-in.2

The bending moment produced at D by the 40-kip load is M = (40 kips)(8 ft) = 320 kip-ft =
3,840 kip-in.

Case 1—Upward Deflection of Center Span
The upward deflection of point C in the center span is computed from the elastic curve
equation for a simply supported beam subjected to a concentrated moment at D:

p = =t (x2 = 3Lx + 2I7) (a)
6LEI

Beam deflection at C: Substitute the following values into
Equation (a):

Ve

 6LEI
(—3,840 kip-in.) (96 in.)

320 kip-ft
M = =320 kip-ft = —3,840 kip-in.
——— == x x = 8 ft = 96 in.
| c b | L =16 ft = 192 in.
St 8t EI = 60.9 X 106 kip-in.2
Use these values to compute the beam deflection at C:
Mx

(x? — 3Lx + 217)

[(96 in.)? — 3(192 in.)(96 in.) + 2(192 in.)?] = +0.1453 in. Ans.

~ 6192 in.)(60.9 x 106 kip-in.2)

Case 2—Downward Deflection of Overhang AB

The downward deflection of point A on the overhang span is computed from the rotation
angle produced at support B of the center span by the concentrated moment, which acts at
D. In the beam table, the magnitude of the rotation angle at the end of the span opposite
from the concentrated moment is given by




ML
- = b
GEI ®) :

0 320 kip-ft
By the values defined previously, the rotation angle magnitude /A: _ “ 7«
at Bis —=—

s e o —

ML (3,840 Kip-in.)(192 in.)
- — 0.0020177 rad ~ ~
6El  6(60.9 % 10° Kip-n.2) st | LA L ‘

VA

B

Beam deflection at A: By inspection, the rotation angle at B must be positive; that is, the
beam slopes upward to the right at the pin support. Since there is no bending moment in
overhang span AB, the beam will not bend between A and B. Its slope will be constant and
equal to 6. The magnitude of the beam deflection at A is computed from the beam slope:

vy = 0pL,4p = (0.0020177 rad)(96 in.) = 0.1937 in.
By inspection, the overhang will deflect downward at A; therefore, v, = —0.1937 in. Ans.

Case 3—Downward Deflection of Overhang DE

The downward deflection of point E on the overhang span is computed from two consid-
erations. First, consider a cantilever beam subjected to a concentrated load at its free end.
The deflection at the tip of the cantilever is given by the equation

40 kips
v = _P_L3 (©)
e 3EI v
From the values
P = 40 kips
L = 8 ft = 96 in. , . | 8 ft

EI = 60.9 X 10° kip-in.2
one component of the beam deflection at E can be computed as
PI3 (40 kips) (96 in.)3

- — 01937 in. (d)
"ET 3R T T 3(60.9 X 106 kipn.2) (

As discussed previously, this cantilever beam case does not account for all of the deflec-
tion at E. Equation (c) assumes that the cantilever beam does not rotate at its support.
Since center span BD is flexible, overhang DE rotates downward as the center span bends.
The magnitude of the rotation angle of the center span caused by the concentrated mo-
ment M can be computed from the following equation:

ML

GZE (e)

Note: Equation (e) gives the beam rotation angle at the location
of M for a simply supported beam subjected to a concentrated

moment applied at one end. With the values defined for case 2, ' o, 320 kip-ft
the rotation angle of the center span at roller support D can be
calculated as ——
/ i VE
ML (3,840 kip-in.) (192 in.) B c b 7\’51
o ML _ LEO2 I _ 0.0040355 rad | s s | s
3EI 3(60.9 X 106 kip-in.?) i f -




By inspection, the rotation angle at D must be negative; that is, the beam slopes down-
ward to the right at the roller support. The magnitude of the beam deflection at E due to the
center span rotation at D is computed from the beam slope and the length of overhang DE:

vp = 0pLy, = (0.0040355 rad)(96 in.) = 0.3874 in.

By inspection, the overhang will deflect downward at E; consequently, this deflection
component is

vy = —0.3874 in. (f)

The total deflection at E is the sum of deflections (d) and (f):
vp = —0.1937 in. —0.3874 in. = —0.581 in. Ans.

ies Example M10.10

Determine expressions for the slope 6 and the deflection v at end C
of the beam shown. Assume that EI is constant for the beam.

The simply supported beam shown consists of a W410 X 60 struc-
tural steel wide-flange shape [E = 200 GPa; [ = 216 X 10° mm*].

\ l l l l l l l l l l l l l l l l ll For the loading shown, determine

[ o) x (a) the beam deflection at point A.
A .l. B c D> E (b) the beam deflection at point C.
| 3m 3m | 2m

(c) the beam deflection at point E.

80 kN/m

Plan the Solution

Although the loading in this example is more complicated, the
same general approach used to solve Example 10.8 will be used
for this beam. The loading will be separated into three cases:

70 kN v v

80 kN/m

v JLLLLLLILLLTYL

[ {o) ] ]

| x [ ) | X
A J-B c D> E A 1|-B c D2 E
T

3m | 2m

3m 2m 3m 3m

3m 3m

Case 1—Concentrated load on left overhang. Case 2—Uniformly distributed load on center span.



The beam deflections at A, C, and E will be computed for each
case with the use of standard equations from Appendix C for both 80 kN/m
deflection and slope. Cases 1 and 3 will require equations for both m
simply supported and cantilever beams, whereas case 2 will re- | = .
quire only simply supported beam equations. After completing the " "B c > -
calculations for all three cases, the results will be added to give the

final deflections at the three locations. L 3m 3m J 3m J 2m ]
SOLUTION Case 3—Uniformly distributed load on right overhang.

For this beam, the elastic modulus is £ = 200 GPa and the
moment of inertia is I = 216 X 10° mm#*. Therefore,

EI = (200 GPa)(216 X 10° mm*) = 43.2 +10'2 N-mm? = 43.2 X 103 kN-m?

Case 1—Concentrated Load on Left Overhang

Both simply supported and cantilever beam equations will be required to compute deflec-
tions at A, but only simply supported beam equations will be necessary to compute the
beam deflections at C and E.

Beam deflection at A: Consider the cantilever beam deflection at

v
A of the 3-m-long overhang. From Appendix C, the maximum TOKN
deflection of a cantilever beam with a concentrated load applied
at the tip is given as
X
PI3 B
Vmax = 547 (2) A B
3EI 3m

Equation (a) will be used to compute one portion of the beam deflection at A. We set
P =70 kN
L=3m
EI = 43.2 X103 kKN-m?
The cantilever beam deflection at A will then be

yy = PP COKNGM? ) ses 103 m = —14.583 mm
3EI 3(43.2 X 103 kN-m?)

This calculation implicitly assumes that the beam is fixed to a rigid support at B. How-
ever, the overhang is not attached to a rigid support at B, but rather to a flexible beam that
rotates in response to the moment produced by the 70-kN load. The rotation of the over-
hang at B must be accounted for in determining the deflection at A.

The moment at B due to the 70-kN load is M = (70 kN)(3 m) = 210 kN-m, which
acts counterclockwise as shown. The rotation angles at the ends of the span of a simply
supported beam subjected to a concentrated moment can be obtained from Appendix C:

0, = _ ML (at the end where M is applied) (b)
3EI
0, = +% (opposite the end where M is applied) (©

The rotation angle at B is required to obtain the deflection at A. The rotation angle at D
will be used later to calculate the deflection at E.




Using the variables and values,

M = —210 kN-m

° L = 6m (ie., the length of the center span)
E = EI = 432 X10° kN-m?

the rotation angle at B is calculated from Equation (b):

ML (=210 kN-m)(6 m)

0, = ——= =
b 3EI 3(43.2 X 103kN-m?)

= 9.722 X 1073 rad

The beam deflection at A is computed from the rotation angle 6, and the overhang
length:

vy = 0px,4p = (9.722X1073 rad)(=3 m) = —29.167 X 1073 m = —29.167 mm
Beam deflection at C: The beam deflection at C for this case is found from the elastic

curve equation for a simply supported beam with a concentrated moment applied at one
end. From Appendix C, the elastic curve equation is

Mx 5
=— — 3Lx + 2I7?
V= om * ) O

With the variables and values

M = —210 kN-m

x=3m

L = 6 m (i.e., the length of the center span)
EI = 43.2 X103 kN-m?

the beam deflection at C is calculated from Equation (d):

Ve = — My (x* — 3Lx + 217)
6LEI

B (—210 kN-m) (3 m)
6(6 m)(43.2 X 103 kN-m?2)
10.938 X103 m = 10.938 mm

[((3 m)?2 —3(6 m)(3 m) + 2(6 m)?]

Beam deflection at E: For this case, the overhang at the right end of the span has no bend-
ing moment; therefore, it does not bend. The rotation angle at D given by Equation (c) and
the overhang length are used to compute the deflection at £. With the variables and values
M = —210 kN-m
L =6 m (ie., the length of the simple span)
ElI = 43.2 X103 kN-m?

the rotation angle at D is calculated from Equation (c):

ML _ (210kN-m)(6m) _ ) eci 51073 rad
6El  6(43.2% 103 KN-m?)

Oy = +




The beam deflection at E is computed from the rotation angle 6, and the overhang
length:

v = Opxpp = (—4.861x1073 rad)(2 m) = —9.722 X103 m = —9.722 mm

Case 2—Uniformly Distributed Load on Center Span
For the uniformly distributed load acting on the center span, equations for the maximum
deflection acting at midspan and the slopes at the ends of the span will be required.

Beam deflection at A: Since the uniformly distributed load acts only between the sup-
ports, there is no bending moment in the overhang spans. To compute the deflection at A,
begin by computing the slope at the end of the simple span. From Appendix C, the rota-
tion angles at the ends of the span are given by

wl3
6 = —0 = —
T 4 © .
. 80 kN/m
To compute the rotation angle at B, let
s[OS ITTIITTLIITT A,
w = 80 kN/m _V_C X
L —6m A | B b T o\ D ‘ E
3m 3m 3m 2m
El = 43.2 X103 kN-m? . . .
and compute 6, from Equation (e):
3 3
o, = —2E ___GOMVMOM 166675103 rad

C24EI 24(432 %103 kKN-m2)

The beam deflection at A is computed from the rotation angle 6, and the overhang
length:

v, = 0% = (—16.667 X107 rad)(—=3 m) = 50.001x 103 m = 50.001 mm

Beam deflection at C: The equation for the midspan deflection of a simply supported
beam subjected to a uniformly distributed load can be obtained from Appendix C:

o Swl?
max = TR AR ®

From Equation (f), the deflection at C for case 2 is

4 4
vp = 2w S@OKNMOMT 5 5505103 m = —31.250 mm

C384E1  384(432x103 kNm?)

Beam deflection at E: The rotation angle at D is calculated from Equation (e):

wl? (80 kN/m)(6 m)?®

- = = 16.667 1073 rad
24E1  24(43.2 %103 kN-m?)

Op

The beam deflection at E is computed from the rotation angle 6, and the overhang
length:

vp = Opxpp = (16.667 X107 rad)(2 m) = 33.334 X 10 m = 33.334 mm




Case 3—Uniformly Distributed Load on Right Overhang
Both simply supported and cantilever beam equations will be required to compute deflec-
tions at E; only simply supported beam equations will be necessary to compute the beam

deflections at A and C.

Beam deflection at E: Consider the cantilever beam deflection at E of the 2-m-long over-
hang. From Appendix C, the maximum deflection of a cantilever beam with a uniformly
distributed load is given as

VA

Vg = —

80 kN/m

wlt

wl*
% = ——
max SEl (€
Let
w = —80 kN/m

L=2m
El = 43.2 X103 kN-m?

and use Equation (g) to compute one portion of the beam deflec-
tion at E:

(80 kN/m)(2 m)*

8EI

-m

Op
IA’_T.V-F—
= B : C

3m

0p
160 kN
=)

v

E

X

8(43.2 %103 kN-m2)

= —3.704 X103 m = —3.074 mm

This calculation implicitly assumes that the beam is fixed to a
rigid support at D. However, the overhang is not attached to a
rigid support at D, but rather to a flexible beam that rotates in
response to the moment produced by the 80-kN uniformly dis-
tributed load. The rotation of the overhang at D must be ac-
counted for in determining the deflection at E.

The moment at D due to the 80-kN distributed load is
M = (0.5)(80 kN/m)(2 m)? = 160 kN-m, which acts clockwise
as shown. The rotation angles at the ends of the span of a simply
supported beam subjected to a concentrated moment are given
by Equations (b) and (c). Let

M = —160 kN-m
L = 6m (ie., the length of the center span)
EI = 43.2 X103 kN-m?

and use Equation (b) to compute the rotation angle at D:

D

_ ML (=160 kN-m)(6 m)
3EI  3(43.2x103 kN-m?)

= —7.407 %1073 rad

The beam deflection at E is computed from the rotation angle 6, and the overhang
length:

vp = Opxpp = (7407 %1073 rad)(2 m) = —14.814 X 10 m = —14.814 mm




Beam deflection at C: The beam deflection at C for this case is found from the elastic
curve equation [Equation (d)] for a simply supported beam with a concentrated moment
applied at one end. With the variables and values

M = —160 kN-m

x=3m

L = 6m (ie., the length of the center span)
EI = 43.2 X103 kN-m?2

the beam deflection at C is calculated from Equation (d):

M e 3px4or2)
6LEI

(160 KN-m)(3 m)
6(6 m)(432 X 10° kN-m?)

8.333 X103 m = 8.333 mm

Ve

[(3 m)2 —3(6 m)(3 m) + 2(6 m)?]

Beam deflection at A: Use Equation (c) to compute the rotation angle at B:

ML (—160 KN-m)(6 m)
6EI 6(43.2 103 kN-m?)

p = =3.704 X 1073 rad

The beam deflection at A is computed from the rotation angle 6, and the overhang length:

vy = Opxys = (3.704 X107 rad)(—=3 m) = —11.112x 102 m = —11.112 mm

- VA Yc VE
Superposition Case (mm) (mm) (mm)
—14.583

Case 1—Concentrated load on left overhang 99.167 10.938 —9.722
Case 2—Uniformly distributed load on center span 50.001 | —31.250 33.334

. o . —3.704
Case 3—Uniformly distributed load on right overhang —11.112 8333 | 14814

Total Beam Deflection | —4.86 —11.98 5.09 Ans.

ies Example M10.11

Determine an expression for the deflection of the beam at the midpoint b P
of span BD. Assume that EI for the beam is constant throughout all
spans.




ies Example M10.12

Wo Use the superposition method to determine the deflection of the beam at
l \L L A. Assume that EI is constant for the beam.

v *P Use the superposition method to determine the magnitude of force P
required to make the deflection of the beam equal to zero at B. Assume that E/
is constant for the beam.

Determine the maximum for the moment M, such that the beam slope at
A is zero. Assume that E] is constant for the beam.




ies Exercises

M10.3 8 Skills. Part I: Skills 1-4. Series of skills necessary to  M10.5 Superposition Warm-Up. Examples and concept check
solve beam deflection problems by the superposition method. points pertaining to four basic superposition skills.

TIMES TH
suCCESSFuI_ Aﬂbl.lCAT\OH
F S

ERPOSITION CAM .
SEEm MORE LIKE AN ART
RATHER THAN AN 'Al| Use both cantilever
ENGINEERING CALCULATION,
THIS. MO VIS Pl |_ J_ and simple beam
ILLUSTRATE EIGHT ke L ke L2 | cases to find

ESSENTIAL SKILLS THAT

MUST BE UNDERSTOOD AMND deflection v
A;‘;st THEDS.SBEW2§1:|“—13N TASK: FIND Ve
METHOD TO VARIOUS BEAM
ARAETRER APPROACH:
(1) From beam table, first select a cantilever beam with
concentrated load at the tip and determine ve.
(2) This is not the complete solution because the cantilever
beam case assumes Mth-slou of the beam at !Ia
0. = 0. The BC is not d to
rigid supp itis toa
PART I. SKILLS 1-=S beam that rotates 5t B.
[skill 4 - beam 8 == = |[=0 1318
introduction == [i7s]@
FIGURE M10.5
FIGURE M10.3

M10.6 One Simple Beam, One Load, Three Cases. Determine
numeric values of beam deflections at various points in a simply sup-
ported beam with two overhangs. All deflections can be determined
with superposition of no more than three basic deflection cases.

M10.4 8 SKkills. Part II: Skills 5-8. Series of skills necessary to
solve beam deflection problems by the superposition method.

—— concept checkpoints

succssssul_ APPLICATION
LIPERFPOSITION Can

SEEM MORE LIKE AN ART

RATHER THAN Ar lﬂolﬂ

ENGINEERING CALCULATION.
THIS MOVIE WILL
ILLUSTRATE EISHT

ESSENTIAL SKILLS THAT
MUST BE UNDERSTOOD AND
MASTERED IN ORDER TO A B D E G
(== BEAM

0.60 m|m
r T T T

1,oo| un‘
T 1

2.40

span distances in meters EI = 15.2x10" N-m’

The simply supported beam shown is subjected to a concentrated
load of 120 kN acting at B. Determine the beam deflection at A
produced by the concentrated load (in mm).

[Upward deflection = +; Downward deflection = -]

Hint: The beam ss than 40 mm
PART IT: SKILLS S—-3

s ssee Jf S a2 s o

introduction (== ais]@ Enter your answer (without units). [ |[CenterT]

on magnitude

FIGURE M10.4 FIGURE M10.6



PROBLEMS

P10.49 For the beams and loadings shown in Figures
P10.49a-d, determine the beam deflection at point H. Assume that
EI = 8 X 10* kN-m? is constant for each beam.
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P10.50 For the beams and loadings shown in Figures P10.50a—,
determine the beam deflection at point H. Assume that EI =
1.2 X 107 kip-in.2 is constant for each beam.
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P10.51 For the beams and loadings shown in Figures
P10.51a—d, determine the beam deflection at point H. Assume that
EI = 6 X 10* kN-m? is constant for each beam.
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P10.52 For the beams and loadings shown in Figures P10.52a-d,
determine the beam deflection at point H. Assume that £/ = 3.0 X
10° kip-in.? is constant for each beam.
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P10.53 The simply supported beam shown in Figure P10.53
consists of a W24 X 94 structural steel wide-flange shape
[E = 29,000 ksi; I = 2,700 in.*]. For the loading shown, determine
the beam deflection at point C.
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P10.54 The simply supported beam shown in Figure P10.54
consists of a W460 X 82 structural steel wide-flange shape
[E = 200 GPa; I = 370 X 10° mm*]. For the loading shown, deter-
mine the beam deflection at point C.
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P10.55 The simply supported beam shown in Figure P10.55
consists of a W410 X 60 structural steel wide-flange shape
[E = 200 GPa; I = 216 X 10° mm*]. For the loading shown, deter-
mine the beam deflection at point B.
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P10.56 The simply supported beam shown in Figure P10.56
consists of a W21 X 44 structural steel wide-flange shape [E =
29,000 ksi; I = 843 in.*]. For the loading shown, determine the
beam deflection at point B.
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P10.57 The cantilever beam shown in Figure P10.57 consists
of a rectangular structural steel tube shape [E = 29,000 ksi;
I = 476 in.*]. For the loading shown, determine

(a) the beam deflection at point B.
(b) the beam deflection at point C.
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P10.58 The cantilever beam shown in Figure P10.58 con-
sists of a rectangular structural steel tube shape [E = 200 GPa;
I = 400 X 10 mm*]. For the loading shown, determine

(a) the beam deflection at point A.
(b) the beam deflection at point B.
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P10.59 The solid 1.25-in.-diameter steel [E = 29,000 ksi] shaft
shown in Figure P10.59 supports two pulleys. For the loading
shown, determine

(a) the shaft deflection at point B.

(b) the shaft deflection at point C.

FIGURE P10.59

P10.60 The cantilever beam shown in Figure P10.60 consists
of a rectangular structural steel tube shape [E = 29,000 ksi;
I = 1,710 in.*]. For the loading shown, determine

(a) the beam deflection at point A.
(b) the beam deflection at point B.
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P10.61 The simply supported beam shown in Figure P10.61
consists of a W21 X 44 structural steel wide-flange shape [E =
29,000 ksi; I = 843 in.*]. For the loading shown, determine

(a) the beam deflection at point A.
(b) the beam deflection at point C.
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P10.62 The simply supported beam shown in Figure P10.62
consists of a W530 X 66 structural steel wide-flange shape [E =
200 GPa; I = 351 X 10° mm*]. For the loading shown, determine

(a) the beam deflection at point B.
(b) the beam deflection at point D.
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P10.63 The simply supported beam shown in Figure P10.63/64
consists of a W21 X 44 structural steel wide-flange shape [E =
29,000 ksi; / = 843 in.*]. For a loading of w = 6 kips/ft, determine

(a) the beam deflection at point A.
(b) the beam deflection at point C.
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P10.64 The simply supported beam shown in Figure P10.63/64
consists of a W21 X 44 structural steel wide-flange shape [E =
29,000 ksi; I = 843 in.*]. For a loading of w = 8 kips/ft, determine

(a) the beam deflection at point C.
(b) the beam deflection at point E.

P10.65 The solid 30-mm-diameter steel [E = 200 GPa] shaft
shown in Figure P10.65 supports two belt pulleys. Assume that the
bearing at B can be idealized as a roller support and that the bearing
at D can be idealized as a pin support. For the loading shown,
determine

(a) the shaft deflection at pulley A.
(b) the shaft deflection at pulley C.
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P10.66 The cantilever beam shown in Figure P10.66 consists
of a W530 X 92 structural steel wide-flange shape [E = 200 GPa;
I = 552 X 10 mm*]. For the loading shown, determine

(a) the beam deflection at point A.
(b) the beam deflection at point B.
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P10.67 The solid 30-mm-diameter steel [E = 200 GPa] shaft
shown in Figure P10.67/68 supports two belt pulleys. Assume that
the bearing at A can be idealized as a pin support and that the bear-
ing at E can be idealized as a roller support. For the loading shown,
determine the shaft deflection at pulley B.

D E

N B

I 200 mm ‘
I T
¢7SO N

¢SOON
FIGURE P10.67/68

P10.68 The solid 30-mm-diameter steel [E = 200 GPa] shaft
shown in Figure P10.67/68 supports two belt pulleys. Assume that
the bearing at A can be idealized as a pin support and that the bear-
ing at E can be idealized as a roller support. For the loading shown,
determine the shaft deflection at pulley D.
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P10.69 The simply supported beam shown in Figure P10.69/70
consists of a W410 X 60 structural steel wide-flange shape [E =
200 GPa; I = 216 X 10° mm*]. For the loading shown, determine
the beam deflection at point B.
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P10.70 The simply s